1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/CmpInstAnalysis.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
42 #include <cassert>
43 #include <utility>
44 
45 using namespace llvm;
46 using namespace PatternMatch;
47 
48 #define DEBUG_TYPE "instcombine"
49 
50 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
51                            SelectPatternFlavor SPF, Value *A, Value *B) {
52   CmpInst::Predicate Pred = getMinMaxPred(SPF);
53   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
54   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
55 }
56 
57 /// Replace a select operand based on an equality comparison with the identity
58 /// constant of a binop.
59 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
60                                             const TargetLibraryInfo &TLI) {
61   // The select condition must be an equality compare with a constant operand.
62   Value *X;
63   Constant *C;
64   CmpInst::Predicate Pred;
65   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
66     return nullptr;
67 
68   bool IsEq;
69   if (ICmpInst::isEquality(Pred))
70     IsEq = Pred == ICmpInst::ICMP_EQ;
71   else if (Pred == FCmpInst::FCMP_OEQ)
72     IsEq = true;
73   else if (Pred == FCmpInst::FCMP_UNE)
74     IsEq = false;
75   else
76     return nullptr;
77 
78   // A select operand must be a binop, and the compare constant must be the
79   // identity constant for that binop.
80   BinaryOperator *BO;
81   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)) ||
82       ConstantExpr::getBinOpIdentity(BO->getOpcode(), BO->getType(), true) != C)
83     return nullptr;
84 
85   // Last, match the compare variable operand with a binop operand.
86   Value *Y;
87   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
88     return nullptr;
89   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
90     return nullptr;
91 
92   // +0.0 compares equal to -0.0, and so it does not behave as required for this
93   // transform. Bail out if we can not exclude that possibility.
94   if (isa<FPMathOperator>(BO))
95     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
96       return nullptr;
97 
98   // BO = binop Y, X
99   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
100   // =>
101   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
102   Sel.setOperand(IsEq ? 1 : 2, Y);
103   return &Sel;
104 }
105 
106 /// This folds:
107 ///  select (icmp eq (and X, C1)), TC, FC
108 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
109 /// To something like:
110 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
111 /// Or:
112 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
113 /// With some variations depending if FC is larger than TC, or the shift
114 /// isn't needed, or the bit widths don't match.
115 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
116                                 InstCombiner::BuilderTy &Builder) {
117   const APInt *SelTC, *SelFC;
118   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
119       !match(Sel.getFalseValue(), m_APInt(SelFC)))
120     return nullptr;
121 
122   // If this is a vector select, we need a vector compare.
123   Type *SelType = Sel.getType();
124   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
125     return nullptr;
126 
127   Value *V;
128   APInt AndMask;
129   bool CreateAnd = false;
130   ICmpInst::Predicate Pred = Cmp->getPredicate();
131   if (ICmpInst::isEquality(Pred)) {
132     if (!match(Cmp->getOperand(1), m_Zero()))
133       return nullptr;
134 
135     V = Cmp->getOperand(0);
136     const APInt *AndRHS;
137     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
138       return nullptr;
139 
140     AndMask = *AndRHS;
141   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
142                                   Pred, V, AndMask)) {
143     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
144     if (!AndMask.isPowerOf2())
145       return nullptr;
146 
147     CreateAnd = true;
148   } else {
149     return nullptr;
150   }
151 
152   // In general, when both constants are non-zero, we would need an offset to
153   // replace the select. This would require more instructions than we started
154   // with. But there's one special-case that we handle here because it can
155   // simplify/reduce the instructions.
156   APInt TC = *SelTC;
157   APInt FC = *SelFC;
158   if (!TC.isNullValue() && !FC.isNullValue()) {
159     // If the select constants differ by exactly one bit and that's the same
160     // bit that is masked and checked by the select condition, the select can
161     // be replaced by bitwise logic to set/clear one bit of the constant result.
162     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
163       return nullptr;
164     if (CreateAnd) {
165       // If we have to create an 'and', then we must kill the cmp to not
166       // increase the instruction count.
167       if (!Cmp->hasOneUse())
168         return nullptr;
169       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
170     }
171     bool ExtraBitInTC = TC.ugt(FC);
172     if (Pred == ICmpInst::ICMP_EQ) {
173       // If the masked bit in V is clear, clear or set the bit in the result:
174       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
175       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
176       Constant *C = ConstantInt::get(SelType, TC);
177       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
178     }
179     if (Pred == ICmpInst::ICMP_NE) {
180       // If the masked bit in V is set, set or clear the bit in the result:
181       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
182       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
183       Constant *C = ConstantInt::get(SelType, FC);
184       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
185     }
186     llvm_unreachable("Only expecting equality predicates");
187   }
188 
189   // Make sure one of the select arms is a power-of-2.
190   if (!TC.isPowerOf2() && !FC.isPowerOf2())
191     return nullptr;
192 
193   // Determine which shift is needed to transform result of the 'and' into the
194   // desired result.
195   const APInt &ValC = !TC.isNullValue() ? TC : FC;
196   unsigned ValZeros = ValC.logBase2();
197   unsigned AndZeros = AndMask.logBase2();
198 
199   // Insert the 'and' instruction on the input to the truncate.
200   if (CreateAnd)
201     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
202 
203   // If types don't match, we can still convert the select by introducing a zext
204   // or a trunc of the 'and'.
205   if (ValZeros > AndZeros) {
206     V = Builder.CreateZExtOrTrunc(V, SelType);
207     V = Builder.CreateShl(V, ValZeros - AndZeros);
208   } else if (ValZeros < AndZeros) {
209     V = Builder.CreateLShr(V, AndZeros - ValZeros);
210     V = Builder.CreateZExtOrTrunc(V, SelType);
211   } else {
212     V = Builder.CreateZExtOrTrunc(V, SelType);
213   }
214 
215   // Okay, now we know that everything is set up, we just don't know whether we
216   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
217   bool ShouldNotVal = !TC.isNullValue();
218   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
219   if (ShouldNotVal)
220     V = Builder.CreateXor(V, ValC);
221 
222   return V;
223 }
224 
225 /// We want to turn code that looks like this:
226 ///   %C = or %A, %B
227 ///   %D = select %cond, %C, %A
228 /// into:
229 ///   %C = select %cond, %B, 0
230 ///   %D = or %A, %C
231 ///
232 /// Assuming that the specified instruction is an operand to the select, return
233 /// a bitmask indicating which operands of this instruction are foldable if they
234 /// equal the other incoming value of the select.
235 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
236   switch (I->getOpcode()) {
237   case Instruction::Add:
238   case Instruction::Mul:
239   case Instruction::And:
240   case Instruction::Or:
241   case Instruction::Xor:
242     return 3;              // Can fold through either operand.
243   case Instruction::Sub:   // Can only fold on the amount subtracted.
244   case Instruction::Shl:   // Can only fold on the shift amount.
245   case Instruction::LShr:
246   case Instruction::AShr:
247     return 1;
248   default:
249     return 0;              // Cannot fold
250   }
251 }
252 
253 /// For the same transformation as the previous function, return the identity
254 /// constant that goes into the select.
255 static APInt getSelectFoldableConstant(BinaryOperator *I) {
256   switch (I->getOpcode()) {
257   default: llvm_unreachable("This cannot happen!");
258   case Instruction::Add:
259   case Instruction::Sub:
260   case Instruction::Or:
261   case Instruction::Xor:
262   case Instruction::Shl:
263   case Instruction::LShr:
264   case Instruction::AShr:
265     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
266   case Instruction::And:
267     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
268   case Instruction::Mul:
269     return APInt(I->getType()->getScalarSizeInBits(), 1);
270   }
271 }
272 
273 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
274 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
275                                           Instruction *FI) {
276   // Don't break up min/max patterns. The hasOneUse checks below prevent that
277   // for most cases, but vector min/max with bitcasts can be transformed. If the
278   // one-use restrictions are eased for other patterns, we still don't want to
279   // obfuscate min/max.
280   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
281        match(&SI, m_SMax(m_Value(), m_Value())) ||
282        match(&SI, m_UMin(m_Value(), m_Value())) ||
283        match(&SI, m_UMax(m_Value(), m_Value()))))
284     return nullptr;
285 
286   // If this is a cast from the same type, merge.
287   if (TI->getNumOperands() == 1 && TI->isCast()) {
288     Type *FIOpndTy = FI->getOperand(0)->getType();
289     if (TI->getOperand(0)->getType() != FIOpndTy)
290       return nullptr;
291 
292     // The select condition may be a vector. We may only change the operand
293     // type if the vector width remains the same (and matches the condition).
294     Type *CondTy = SI.getCondition()->getType();
295     if (CondTy->isVectorTy()) {
296       if (!FIOpndTy->isVectorTy())
297         return nullptr;
298       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
299         return nullptr;
300 
301       // TODO: If the backend knew how to deal with casts better, we could
302       // remove this limitation. For now, there's too much potential to create
303       // worse codegen by promoting the select ahead of size-altering casts
304       // (PR28160).
305       //
306       // Note that ValueTracking's matchSelectPattern() looks through casts
307       // without checking 'hasOneUse' when it matches min/max patterns, so this
308       // transform may end up happening anyway.
309       if (TI->getOpcode() != Instruction::BitCast &&
310           (!TI->hasOneUse() || !FI->hasOneUse()))
311         return nullptr;
312     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
313       // TODO: The one-use restrictions for a scalar select could be eased if
314       // the fold of a select in visitLoadInst() was enhanced to match a pattern
315       // that includes a cast.
316       return nullptr;
317     }
318 
319     // Fold this by inserting a select from the input values.
320     Value *NewSI =
321         Builder.CreateSelect(SI.getCondition(), TI->getOperand(0),
322                              FI->getOperand(0), SI.getName() + ".v", &SI);
323     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
324                             TI->getType());
325   }
326 
327   // Only handle binary operators (including two-operand getelementptr) with
328   // one-use here. As with the cast case above, it may be possible to relax the
329   // one-use constraint, but that needs be examined carefully since it may not
330   // reduce the total number of instructions.
331   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
332       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
333       !TI->hasOneUse() || !FI->hasOneUse())
334     return nullptr;
335 
336   // Figure out if the operations have any operands in common.
337   Value *MatchOp, *OtherOpT, *OtherOpF;
338   bool MatchIsOpZero;
339   if (TI->getOperand(0) == FI->getOperand(0)) {
340     MatchOp  = TI->getOperand(0);
341     OtherOpT = TI->getOperand(1);
342     OtherOpF = FI->getOperand(1);
343     MatchIsOpZero = true;
344   } else if (TI->getOperand(1) == FI->getOperand(1)) {
345     MatchOp  = TI->getOperand(1);
346     OtherOpT = TI->getOperand(0);
347     OtherOpF = FI->getOperand(0);
348     MatchIsOpZero = false;
349   } else if (!TI->isCommutative()) {
350     return nullptr;
351   } else if (TI->getOperand(0) == FI->getOperand(1)) {
352     MatchOp  = TI->getOperand(0);
353     OtherOpT = TI->getOperand(1);
354     OtherOpF = FI->getOperand(0);
355     MatchIsOpZero = true;
356   } else if (TI->getOperand(1) == FI->getOperand(0)) {
357     MatchOp  = TI->getOperand(1);
358     OtherOpT = TI->getOperand(0);
359     OtherOpF = FI->getOperand(1);
360     MatchIsOpZero = true;
361   } else {
362     return nullptr;
363   }
364 
365   // If we reach here, they do have operations in common.
366   Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF,
367                                       SI.getName() + ".v", &SI);
368   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
369   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
370   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
371     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
372     NewBO->copyIRFlags(TI);
373     NewBO->andIRFlags(FI);
374     return NewBO;
375   }
376   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
377     auto *FGEP = cast<GetElementPtrInst>(FI);
378     Type *ElementType = TGEP->getResultElementType();
379     return TGEP->isInBounds() && FGEP->isInBounds()
380                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
381                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
382   }
383   llvm_unreachable("Expected BinaryOperator or GEP");
384   return nullptr;
385 }
386 
387 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
388   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
389     return false;
390   return C1I.isOneValue() || C1I.isAllOnesValue() ||
391          C2I.isOneValue() || C2I.isAllOnesValue();
392 }
393 
394 /// Try to fold the select into one of the operands to allow further
395 /// optimization.
396 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
397                                             Value *FalseVal) {
398   // See the comment above GetSelectFoldableOperands for a description of the
399   // transformation we are doing here.
400   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
401     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
402       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
403         unsigned OpToFold = 0;
404         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
405           OpToFold = 1;
406         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
407           OpToFold = 2;
408         }
409 
410         if (OpToFold) {
411           APInt CI = getSelectFoldableConstant(TVI);
412           Value *OOp = TVI->getOperand(2-OpToFold);
413           // Avoid creating select between 2 constants unless it's selecting
414           // between 0, 1 and -1.
415           const APInt *OOpC;
416           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
417           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
418             Value *C = ConstantInt::get(OOp->getType(), CI);
419             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
420             NewSel->takeName(TVI);
421             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
422                                                         FalseVal, NewSel);
423             BO->copyIRFlags(TVI);
424             return BO;
425           }
426         }
427       }
428     }
429   }
430 
431   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
432     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
433       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
434         unsigned OpToFold = 0;
435         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
436           OpToFold = 1;
437         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
438           OpToFold = 2;
439         }
440 
441         if (OpToFold) {
442           APInt CI = getSelectFoldableConstant(FVI);
443           Value *OOp = FVI->getOperand(2-OpToFold);
444           // Avoid creating select between 2 constants unless it's selecting
445           // between 0, 1 and -1.
446           const APInt *OOpC;
447           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
448           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
449             Value *C = ConstantInt::get(OOp->getType(), CI);
450             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
451             NewSel->takeName(FVI);
452             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
453                                                         TrueVal, NewSel);
454             BO->copyIRFlags(FVI);
455             return BO;
456           }
457         }
458       }
459     }
460   }
461 
462   return nullptr;
463 }
464 
465 /// We want to turn:
466 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
467 /// into:
468 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
469 /// Note:
470 ///   Z may be 0 if lshr is missing.
471 /// Worst-case scenario is that we will replace 5 instructions with 5 different
472 /// instructions, but we got rid of select.
473 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
474                                          Value *TVal, Value *FVal,
475                                          InstCombiner::BuilderTy &Builder) {
476   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
477         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
478         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
479     return nullptr;
480 
481   // The TrueVal has general form of:  and %B, 1
482   Value *B;
483   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
484     return nullptr;
485 
486   // Where %B may be optionally shifted:  lshr %X, %Z.
487   Value *X, *Z;
488   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
489   if (!HasShift)
490     X = B;
491 
492   Value *Y;
493   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
494     return nullptr;
495 
496   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
497   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
498   Constant *One = ConstantInt::get(SelType, 1);
499   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
500   Value *FullMask = Builder.CreateOr(Y, MaskB);
501   Value *MaskedX = Builder.CreateAnd(X, FullMask);
502   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
503   return new ZExtInst(ICmpNeZero, SelType);
504 }
505 
506 /// We want to turn:
507 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
508 /// into:
509 ///   (or (shl (and X, C1), C3), Y)
510 /// iff:
511 ///   C1 and C2 are both powers of 2
512 /// where:
513 ///   C3 = Log(C2) - Log(C1)
514 ///
515 /// This transform handles cases where:
516 /// 1. The icmp predicate is inverted
517 /// 2. The select operands are reversed
518 /// 3. The magnitude of C2 and C1 are flipped
519 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
520                                   Value *FalseVal,
521                                   InstCombiner::BuilderTy &Builder) {
522   // Only handle integer compares. Also, if this is a vector select, we need a
523   // vector compare.
524   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
525       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
526     return nullptr;
527 
528   Value *CmpLHS = IC->getOperand(0);
529   Value *CmpRHS = IC->getOperand(1);
530 
531   Value *V;
532   unsigned C1Log;
533   bool IsEqualZero;
534   bool NeedAnd = false;
535   if (IC->isEquality()) {
536     if (!match(CmpRHS, m_Zero()))
537       return nullptr;
538 
539     const APInt *C1;
540     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
541       return nullptr;
542 
543     V = CmpLHS;
544     C1Log = C1->logBase2();
545     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
546   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
547              IC->getPredicate() == ICmpInst::ICMP_SGT) {
548     // We also need to recognize (icmp slt (trunc (X)), 0) and
549     // (icmp sgt (trunc (X)), -1).
550     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
551     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
552         (!IsEqualZero && !match(CmpRHS, m_Zero())))
553       return nullptr;
554 
555     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
556       return nullptr;
557 
558     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
559     NeedAnd = true;
560   } else {
561     return nullptr;
562   }
563 
564   const APInt *C2;
565   bool OrOnTrueVal = false;
566   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
567   if (!OrOnFalseVal)
568     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
569 
570   if (!OrOnFalseVal && !OrOnTrueVal)
571     return nullptr;
572 
573   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
574 
575   unsigned C2Log = C2->logBase2();
576 
577   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
578   bool NeedShift = C1Log != C2Log;
579   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
580                        V->getType()->getScalarSizeInBits();
581 
582   // Make sure we don't create more instructions than we save.
583   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
584   if ((NeedShift + NeedXor + NeedZExtTrunc) >
585       (IC->hasOneUse() + Or->hasOneUse()))
586     return nullptr;
587 
588   if (NeedAnd) {
589     // Insert the AND instruction on the input to the truncate.
590     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
591     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
592   }
593 
594   if (C2Log > C1Log) {
595     V = Builder.CreateZExtOrTrunc(V, Y->getType());
596     V = Builder.CreateShl(V, C2Log - C1Log);
597   } else if (C1Log > C2Log) {
598     V = Builder.CreateLShr(V, C1Log - C2Log);
599     V = Builder.CreateZExtOrTrunc(V, Y->getType());
600   } else
601     V = Builder.CreateZExtOrTrunc(V, Y->getType());
602 
603   if (NeedXor)
604     V = Builder.CreateXor(V, *C2);
605 
606   return Builder.CreateOr(V, Y);
607 }
608 
609 /// Transform patterns such as: (a > b) ? a - b : 0
610 /// into: ((a > b) ? a : b) - b)
611 /// This produces a canonical max pattern that is more easily recognized by the
612 /// backend and converted into saturated subtraction instructions if those
613 /// exist.
614 /// There are 8 commuted/swapped variants of this pattern.
615 /// TODO: Also support a - UMIN(a,b) patterns.
616 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
617                                             const Value *TrueVal,
618                                             const Value *FalseVal,
619                                             InstCombiner::BuilderTy &Builder) {
620   ICmpInst::Predicate Pred = ICI->getPredicate();
621   if (!ICmpInst::isUnsigned(Pred))
622     return nullptr;
623 
624   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
625   if (match(TrueVal, m_Zero())) {
626     Pred = ICmpInst::getInversePredicate(Pred);
627     std::swap(TrueVal, FalseVal);
628   }
629   if (!match(FalseVal, m_Zero()))
630     return nullptr;
631 
632   Value *A = ICI->getOperand(0);
633   Value *B = ICI->getOperand(1);
634   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
635     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
636     std::swap(A, B);
637     Pred = ICmpInst::getSwappedPredicate(Pred);
638   }
639 
640   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
641          "Unexpected isUnsigned predicate!");
642 
643   // Account for swapped form of subtraction: ((a > b) ? b - a : 0).
644   bool IsNegative = false;
645   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))))
646     IsNegative = true;
647   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))))
648     return nullptr;
649 
650   // If sub is used anywhere else, we wouldn't be able to eliminate it
651   // afterwards.
652   if (!TrueVal->hasOneUse())
653     return nullptr;
654 
655   // All checks passed, convert to canonical unsigned saturated subtraction
656   // form: sub(max()).
657   // (a > b) ? a - b : 0 -> ((a > b) ? a : b) - b)
658   Value *Max = Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
659   return IsNegative ? Builder.CreateSub(B, Max) : Builder.CreateSub(Max, B);
660 }
661 
662 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
663 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
664 ///
665 /// For example, we can fold the following code sequence:
666 /// \code
667 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
668 ///   %1 = icmp ne i32 %x, 0
669 ///   %2 = select i1 %1, i32 %0, i32 32
670 /// \code
671 ///
672 /// into:
673 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
674 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
675                                  InstCombiner::BuilderTy &Builder) {
676   ICmpInst::Predicate Pred = ICI->getPredicate();
677   Value *CmpLHS = ICI->getOperand(0);
678   Value *CmpRHS = ICI->getOperand(1);
679 
680   // Check if the condition value compares a value for equality against zero.
681   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
682     return nullptr;
683 
684   Value *Count = FalseVal;
685   Value *ValueOnZero = TrueVal;
686   if (Pred == ICmpInst::ICMP_NE)
687     std::swap(Count, ValueOnZero);
688 
689   // Skip zero extend/truncate.
690   Value *V = nullptr;
691   if (match(Count, m_ZExt(m_Value(V))) ||
692       match(Count, m_Trunc(m_Value(V))))
693     Count = V;
694 
695   // Check if the value propagated on zero is a constant number equal to the
696   // sizeof in bits of 'Count'.
697   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
698   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
699     return nullptr;
700 
701   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
702   // input to the cttz/ctlz is used as LHS for the compare instruction.
703   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
704       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
705     IntrinsicInst *II = cast<IntrinsicInst>(Count);
706     // Explicitly clear the 'undef_on_zero' flag.
707     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
708     NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
709     Builder.Insert(NewI);
710     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
711   }
712 
713   return nullptr;
714 }
715 
716 /// Return true if we find and adjust an icmp+select pattern where the compare
717 /// is with a constant that can be incremented or decremented to match the
718 /// minimum or maximum idiom.
719 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
720   ICmpInst::Predicate Pred = Cmp.getPredicate();
721   Value *CmpLHS = Cmp.getOperand(0);
722   Value *CmpRHS = Cmp.getOperand(1);
723   Value *TrueVal = Sel.getTrueValue();
724   Value *FalseVal = Sel.getFalseValue();
725 
726   // We may move or edit the compare, so make sure the select is the only user.
727   const APInt *CmpC;
728   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
729     return false;
730 
731   // These transforms only work for selects of integers or vector selects of
732   // integer vectors.
733   Type *SelTy = Sel.getType();
734   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
735   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
736     return false;
737 
738   Constant *AdjustedRHS;
739   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
740     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
741   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
742     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
743   else
744     return false;
745 
746   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
747   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
748   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
749       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
750     ; // Nothing to do here. Values match without any sign/zero extension.
751   }
752   // Types do not match. Instead of calculating this with mixed types, promote
753   // all to the larger type. This enables scalar evolution to analyze this
754   // expression.
755   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
756     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
757 
758     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
759     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
760     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
761     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
762     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
763       CmpLHS = TrueVal;
764       AdjustedRHS = SextRHS;
765     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
766                SextRHS == TrueVal) {
767       CmpLHS = FalseVal;
768       AdjustedRHS = SextRHS;
769     } else if (Cmp.isUnsigned()) {
770       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
771       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
772       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
773       // zext + signed compare cannot be changed:
774       //    0xff <s 0x00, but 0x00ff >s 0x0000
775       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
776         CmpLHS = TrueVal;
777         AdjustedRHS = ZextRHS;
778       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
779                  ZextRHS == TrueVal) {
780         CmpLHS = FalseVal;
781         AdjustedRHS = ZextRHS;
782       } else {
783         return false;
784       }
785     } else {
786       return false;
787     }
788   } else {
789     return false;
790   }
791 
792   Pred = ICmpInst::getSwappedPredicate(Pred);
793   CmpRHS = AdjustedRHS;
794   std::swap(FalseVal, TrueVal);
795   Cmp.setPredicate(Pred);
796   Cmp.setOperand(0, CmpLHS);
797   Cmp.setOperand(1, CmpRHS);
798   Sel.setOperand(1, TrueVal);
799   Sel.setOperand(2, FalseVal);
800   Sel.swapProfMetadata();
801 
802   // Move the compare instruction right before the select instruction. Otherwise
803   // the sext/zext value may be defined after the compare instruction uses it.
804   Cmp.moveBefore(&Sel);
805 
806   return true;
807 }
808 
809 /// If this is an integer min/max (icmp + select) with a constant operand,
810 /// create the canonical icmp for the min/max operation and canonicalize the
811 /// constant to the 'false' operand of the select:
812 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
813 /// Note: if C1 != C2, this will change the icmp constant to the existing
814 /// constant operand of the select.
815 static Instruction *
816 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
817                                InstCombiner::BuilderTy &Builder) {
818   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
819     return nullptr;
820 
821   // Canonicalize the compare predicate based on whether we have min or max.
822   Value *LHS, *RHS;
823   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
824   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
825     return nullptr;
826 
827   // Is this already canonical?
828   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
829   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
830       Cmp.getPredicate() == CanonicalPred)
831     return nullptr;
832 
833   // Create the canonical compare and plug it into the select.
834   Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
835 
836   // If the select operands did not change, we're done.
837   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
838     return &Sel;
839 
840   // If we are swapping the select operands, swap the metadata too.
841   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
842          "Unexpected results from matchSelectPattern");
843   Sel.setTrueValue(LHS);
844   Sel.setFalseValue(RHS);
845   Sel.swapProfMetadata();
846   return &Sel;
847 }
848 
849 /// There are many select variants for each of ABS/NABS.
850 /// In matchSelectPattern(), there are different compare constants, compare
851 /// predicates/operands and select operands.
852 /// In isKnownNegation(), there are different formats of negated operands.
853 /// Canonicalize all these variants to 1 pattern.
854 /// This makes CSE more likely.
855 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
856                                         InstCombiner::BuilderTy &Builder) {
857   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
858     return nullptr;
859 
860   // Choose a sign-bit check for the compare (likely simpler for codegen).
861   // ABS:  (X <s 0) ? -X : X
862   // NABS: (X <s 0) ? X : -X
863   Value *LHS, *RHS;
864   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
865   if (SPF != SelectPatternFlavor::SPF_ABS &&
866       SPF != SelectPatternFlavor::SPF_NABS)
867     return nullptr;
868 
869   Value *TVal = Sel.getTrueValue();
870   Value *FVal = Sel.getFalseValue();
871   assert(isKnownNegation(TVal, FVal) &&
872          "Unexpected result from matchSelectPattern");
873 
874   // The compare may use the negated abs()/nabs() operand, or it may use
875   // negation in non-canonical form such as: sub A, B.
876   bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
877                           match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
878 
879   bool CmpCanonicalized = !CmpUsesNegatedOp &&
880                           match(Cmp.getOperand(1), m_ZeroInt()) &&
881                           Cmp.getPredicate() == ICmpInst::ICMP_SLT;
882   bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
883 
884   // Is this already canonical?
885   if (CmpCanonicalized && RHSCanonicalized)
886     return nullptr;
887 
888   // If RHS is used by other instructions except compare and select, don't
889   // canonicalize it to not increase the instruction count.
890   if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
891     return nullptr;
892 
893   // Create the canonical compare: icmp slt LHS 0.
894   if (!CmpCanonicalized) {
895     Cmp.setPredicate(ICmpInst::ICMP_SLT);
896     Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
897     if (CmpUsesNegatedOp)
898       Cmp.setOperand(0, LHS);
899   }
900 
901   // Create the canonical RHS: RHS = sub (0, LHS).
902   if (!RHSCanonicalized) {
903     assert(RHS->hasOneUse() && "RHS use number is not right");
904     RHS = Builder.CreateNeg(LHS);
905     if (TVal == LHS) {
906       Sel.setFalseValue(RHS);
907       FVal = RHS;
908     } else {
909       Sel.setTrueValue(RHS);
910       TVal = RHS;
911     }
912   }
913 
914   // If the select operands do not change, we're done.
915   if (SPF == SelectPatternFlavor::SPF_NABS) {
916     if (TVal == LHS)
917       return &Sel;
918     assert(FVal == LHS && "Unexpected results from matchSelectPattern");
919   } else {
920     if (FVal == LHS)
921       return &Sel;
922     assert(TVal == LHS && "Unexpected results from matchSelectPattern");
923   }
924 
925   // We are swapping the select operands, so swap the metadata too.
926   Sel.setTrueValue(FVal);
927   Sel.setFalseValue(TVal);
928   Sel.swapProfMetadata();
929   return &Sel;
930 }
931 
932 /// Visit a SelectInst that has an ICmpInst as its first operand.
933 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
934                                                   ICmpInst *ICI) {
935   Value *TrueVal = SI.getTrueValue();
936   Value *FalseVal = SI.getFalseValue();
937 
938   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
939     return NewSel;
940 
941   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
942     return NewAbs;
943 
944   bool Changed = adjustMinMax(SI, *ICI);
945 
946   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
947     return replaceInstUsesWith(SI, V);
948 
949   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
950   ICmpInst::Predicate Pred = ICI->getPredicate();
951   Value *CmpLHS = ICI->getOperand(0);
952   Value *CmpRHS = ICI->getOperand(1);
953   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
954     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
955       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
956       SI.setOperand(1, CmpRHS);
957       Changed = true;
958     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
959       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
960       SI.setOperand(2, CmpRHS);
961       Changed = true;
962     }
963   }
964 
965   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
966   // decomposeBitTestICmp() might help.
967   {
968     unsigned BitWidth =
969         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
970     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
971     Value *X;
972     const APInt *Y, *C;
973     bool TrueWhenUnset;
974     bool IsBitTest = false;
975     if (ICmpInst::isEquality(Pred) &&
976         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
977         match(CmpRHS, m_Zero())) {
978       IsBitTest = true;
979       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
980     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
981       X = CmpLHS;
982       Y = &MinSignedValue;
983       IsBitTest = true;
984       TrueWhenUnset = false;
985     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
986       X = CmpLHS;
987       Y = &MinSignedValue;
988       IsBitTest = true;
989       TrueWhenUnset = true;
990     }
991     if (IsBitTest) {
992       Value *V = nullptr;
993       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
994       if (TrueWhenUnset && TrueVal == X &&
995           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
996         V = Builder.CreateAnd(X, ~(*Y));
997       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
998       else if (!TrueWhenUnset && FalseVal == X &&
999                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1000         V = Builder.CreateAnd(X, ~(*Y));
1001       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1002       else if (TrueWhenUnset && FalseVal == X &&
1003                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1004         V = Builder.CreateOr(X, *Y);
1005       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1006       else if (!TrueWhenUnset && TrueVal == X &&
1007                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1008         V = Builder.CreateOr(X, *Y);
1009 
1010       if (V)
1011         return replaceInstUsesWith(SI, V);
1012     }
1013   }
1014 
1015   if (Instruction *V =
1016           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1017     return V;
1018 
1019   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1020     return replaceInstUsesWith(SI, V);
1021 
1022   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1023     return replaceInstUsesWith(SI, V);
1024 
1025   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1026     return replaceInstUsesWith(SI, V);
1027 
1028   return Changed ? &SI : nullptr;
1029 }
1030 
1031 /// SI is a select whose condition is a PHI node (but the two may be in
1032 /// different blocks). See if the true/false values (V) are live in all of the
1033 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1034 ///
1035 ///   X = phi [ C1, BB1], [C2, BB2]
1036 ///   Y = add
1037 ///   Z = select X, Y, 0
1038 ///
1039 /// because Y is not live in BB1/BB2.
1040 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1041                                                    const SelectInst &SI) {
1042   // If the value is a non-instruction value like a constant or argument, it
1043   // can always be mapped.
1044   const Instruction *I = dyn_cast<Instruction>(V);
1045   if (!I) return true;
1046 
1047   // If V is a PHI node defined in the same block as the condition PHI, we can
1048   // map the arguments.
1049   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1050 
1051   if (const PHINode *VP = dyn_cast<PHINode>(I))
1052     if (VP->getParent() == CondPHI->getParent())
1053       return true;
1054 
1055   // Otherwise, if the PHI and select are defined in the same block and if V is
1056   // defined in a different block, then we can transform it.
1057   if (SI.getParent() == CondPHI->getParent() &&
1058       I->getParent() != CondPHI->getParent())
1059     return true;
1060 
1061   // Otherwise we have a 'hard' case and we can't tell without doing more
1062   // detailed dominator based analysis, punt.
1063   return false;
1064 }
1065 
1066 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1067 ///   SPF2(SPF1(A, B), C)
1068 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1069                                         SelectPatternFlavor SPF1,
1070                                         Value *A, Value *B,
1071                                         Instruction &Outer,
1072                                         SelectPatternFlavor SPF2, Value *C) {
1073   if (Outer.getType() != Inner->getType())
1074     return nullptr;
1075 
1076   if (C == A || C == B) {
1077     // MAX(MAX(A, B), B) -> MAX(A, B)
1078     // MIN(MIN(a, b), a) -> MIN(a, b)
1079     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1080       return replaceInstUsesWith(Outer, Inner);
1081 
1082     // MAX(MIN(a, b), a) -> a
1083     // MIN(MAX(a, b), a) -> a
1084     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1085         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1086         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1087         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1088       return replaceInstUsesWith(Outer, C);
1089   }
1090 
1091   if (SPF1 == SPF2) {
1092     const APInt *CB, *CC;
1093     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1094       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1095       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1096       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1097           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1098           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1099           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1100         return replaceInstUsesWith(Outer, Inner);
1101 
1102       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1103       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1104       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1105           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1106           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1107           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1108         Outer.replaceUsesOfWith(Inner, A);
1109         return &Outer;
1110       }
1111     }
1112   }
1113 
1114   // ABS(ABS(X)) -> ABS(X)
1115   // NABS(NABS(X)) -> NABS(X)
1116   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1117     return replaceInstUsesWith(Outer, Inner);
1118   }
1119 
1120   // ABS(NABS(X)) -> ABS(X)
1121   // NABS(ABS(X)) -> NABS(X)
1122   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1123       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1124     SelectInst *SI = cast<SelectInst>(Inner);
1125     Value *NewSI =
1126         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1127                              SI->getTrueValue(), SI->getName(), SI);
1128     return replaceInstUsesWith(Outer, NewSI);
1129   }
1130 
1131   auto IsFreeOrProfitableToInvert =
1132       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1133     if (match(V, m_Not(m_Value(NotV)))) {
1134       // If V has at most 2 uses then we can get rid of the xor operation
1135       // entirely.
1136       ElidesXor |= !V->hasNUsesOrMore(3);
1137       return true;
1138     }
1139 
1140     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1141       NotV = nullptr;
1142       return true;
1143     }
1144 
1145     return false;
1146   };
1147 
1148   Value *NotA, *NotB, *NotC;
1149   bool ElidesXor = false;
1150 
1151   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1152   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1153   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1154   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1155   //
1156   // This transform is performance neutral if we can elide at least one xor from
1157   // the set of three operands, since we'll be tacking on an xor at the very
1158   // end.
1159   if (SelectPatternResult::isMinOrMax(SPF1) &&
1160       SelectPatternResult::isMinOrMax(SPF2) &&
1161       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1162       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1163       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1164     if (!NotA)
1165       NotA = Builder.CreateNot(A);
1166     if (!NotB)
1167       NotB = Builder.CreateNot(B);
1168     if (!NotC)
1169       NotC = Builder.CreateNot(C);
1170 
1171     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1172                                    NotB);
1173     Value *NewOuter = Builder.CreateNot(
1174         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1175     return replaceInstUsesWith(Outer, NewOuter);
1176   }
1177 
1178   return nullptr;
1179 }
1180 
1181 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1182 /// This is even legal for FP.
1183 static Instruction *foldAddSubSelect(SelectInst &SI,
1184                                      InstCombiner::BuilderTy &Builder) {
1185   Value *CondVal = SI.getCondition();
1186   Value *TrueVal = SI.getTrueValue();
1187   Value *FalseVal = SI.getFalseValue();
1188   auto *TI = dyn_cast<Instruction>(TrueVal);
1189   auto *FI = dyn_cast<Instruction>(FalseVal);
1190   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1191     return nullptr;
1192 
1193   Instruction *AddOp = nullptr, *SubOp = nullptr;
1194   if ((TI->getOpcode() == Instruction::Sub &&
1195        FI->getOpcode() == Instruction::Add) ||
1196       (TI->getOpcode() == Instruction::FSub &&
1197        FI->getOpcode() == Instruction::FAdd)) {
1198     AddOp = FI;
1199     SubOp = TI;
1200   } else if ((FI->getOpcode() == Instruction::Sub &&
1201               TI->getOpcode() == Instruction::Add) ||
1202              (FI->getOpcode() == Instruction::FSub &&
1203               TI->getOpcode() == Instruction::FAdd)) {
1204     AddOp = TI;
1205     SubOp = FI;
1206   }
1207 
1208   if (AddOp) {
1209     Value *OtherAddOp = nullptr;
1210     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1211       OtherAddOp = AddOp->getOperand(1);
1212     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1213       OtherAddOp = AddOp->getOperand(0);
1214     }
1215 
1216     if (OtherAddOp) {
1217       // So at this point we know we have (Y -> OtherAddOp):
1218       //        select C, (add X, Y), (sub X, Z)
1219       Value *NegVal; // Compute -Z
1220       if (SI.getType()->isFPOrFPVectorTy()) {
1221         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1222         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1223           FastMathFlags Flags = AddOp->getFastMathFlags();
1224           Flags &= SubOp->getFastMathFlags();
1225           NegInst->setFastMathFlags(Flags);
1226         }
1227       } else {
1228         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1229       }
1230 
1231       Value *NewTrueOp = OtherAddOp;
1232       Value *NewFalseOp = NegVal;
1233       if (AddOp != TI)
1234         std::swap(NewTrueOp, NewFalseOp);
1235       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1236                                            SI.getName() + ".p", &SI);
1237 
1238       if (SI.getType()->isFPOrFPVectorTy()) {
1239         Instruction *RI =
1240             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1241 
1242         FastMathFlags Flags = AddOp->getFastMathFlags();
1243         Flags &= SubOp->getFastMathFlags();
1244         RI->setFastMathFlags(Flags);
1245         return RI;
1246       } else
1247         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1248     }
1249   }
1250   return nullptr;
1251 }
1252 
1253 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1254   Constant *C;
1255   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1256       !match(Sel.getFalseValue(), m_Constant(C)))
1257     return nullptr;
1258 
1259   Instruction *ExtInst;
1260   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1261       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1262     return nullptr;
1263 
1264   auto ExtOpcode = ExtInst->getOpcode();
1265   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1266     return nullptr;
1267 
1268   // If we are extending from a boolean type or if we can create a select that
1269   // has the same size operands as its condition, try to narrow the select.
1270   Value *X = ExtInst->getOperand(0);
1271   Type *SmallType = X->getType();
1272   Value *Cond = Sel.getCondition();
1273   auto *Cmp = dyn_cast<CmpInst>(Cond);
1274   if (!SmallType->isIntOrIntVectorTy(1) &&
1275       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1276     return nullptr;
1277 
1278   // If the constant is the same after truncation to the smaller type and
1279   // extension to the original type, we can narrow the select.
1280   Type *SelType = Sel.getType();
1281   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1282   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1283   if (ExtC == C) {
1284     Value *TruncCVal = cast<Value>(TruncC);
1285     if (ExtInst == Sel.getFalseValue())
1286       std::swap(X, TruncCVal);
1287 
1288     // select Cond, (ext X), C --> ext(select Cond, X, C')
1289     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1290     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1291     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1292   }
1293 
1294   // If one arm of the select is the extend of the condition, replace that arm
1295   // with the extension of the appropriate known bool value.
1296   if (Cond == X) {
1297     if (ExtInst == Sel.getTrueValue()) {
1298       // select X, (sext X), C --> select X, -1, C
1299       // select X, (zext X), C --> select X,  1, C
1300       Constant *One = ConstantInt::getTrue(SmallType);
1301       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1302       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1303     } else {
1304       // select X, C, (sext X) --> select X, C, 0
1305       // select X, C, (zext X) --> select X, C, 0
1306       Constant *Zero = ConstantInt::getNullValue(SelType);
1307       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1308     }
1309   }
1310 
1311   return nullptr;
1312 }
1313 
1314 /// Try to transform a vector select with a constant condition vector into a
1315 /// shuffle for easier combining with other shuffles and insert/extract.
1316 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1317   Value *CondVal = SI.getCondition();
1318   Constant *CondC;
1319   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1320     return nullptr;
1321 
1322   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1323   SmallVector<Constant *, 16> Mask;
1324   Mask.reserve(NumElts);
1325   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1326   for (unsigned i = 0; i != NumElts; ++i) {
1327     Constant *Elt = CondC->getAggregateElement(i);
1328     if (!Elt)
1329       return nullptr;
1330 
1331     if (Elt->isOneValue()) {
1332       // If the select condition element is true, choose from the 1st vector.
1333       Mask.push_back(ConstantInt::get(Int32Ty, i));
1334     } else if (Elt->isNullValue()) {
1335       // If the select condition element is false, choose from the 2nd vector.
1336       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1337     } else if (isa<UndefValue>(Elt)) {
1338       // Undef in a select condition (choose one of the operands) does not mean
1339       // the same thing as undef in a shuffle mask (any value is acceptable), so
1340       // give up.
1341       return nullptr;
1342     } else {
1343       // Bail out on a constant expression.
1344       return nullptr;
1345     }
1346   }
1347 
1348   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1349                                ConstantVector::get(Mask));
1350 }
1351 
1352 /// Reuse bitcasted operands between a compare and select:
1353 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1354 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1355 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1356                                           InstCombiner::BuilderTy &Builder) {
1357   Value *Cond = Sel.getCondition();
1358   Value *TVal = Sel.getTrueValue();
1359   Value *FVal = Sel.getFalseValue();
1360 
1361   CmpInst::Predicate Pred;
1362   Value *A, *B;
1363   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1364     return nullptr;
1365 
1366   // The select condition is a compare instruction. If the select's true/false
1367   // values are already the same as the compare operands, there's nothing to do.
1368   if (TVal == A || TVal == B || FVal == A || FVal == B)
1369     return nullptr;
1370 
1371   Value *C, *D;
1372   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1373     return nullptr;
1374 
1375   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1376   Value *TSrc, *FSrc;
1377   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1378       !match(FVal, m_BitCast(m_Value(FSrc))))
1379     return nullptr;
1380 
1381   // If the select true/false values are *different bitcasts* of the same source
1382   // operands, make the select operands the same as the compare operands and
1383   // cast the result. This is the canonical select form for min/max.
1384   Value *NewSel;
1385   if (TSrc == C && FSrc == D) {
1386     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1387     // bitcast (select (cmp A, B), A, B)
1388     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1389   } else if (TSrc == D && FSrc == C) {
1390     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1391     // bitcast (select (cmp A, B), B, A)
1392     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1393   } else {
1394     return nullptr;
1395   }
1396   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1397 }
1398 
1399 /// Try to eliminate select instructions that test the returned flag of cmpxchg
1400 /// instructions.
1401 ///
1402 /// If a select instruction tests the returned flag of a cmpxchg instruction and
1403 /// selects between the returned value of the cmpxchg instruction its compare
1404 /// operand, the result of the select will always be equal to its false value.
1405 /// For example:
1406 ///
1407 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1408 ///   %1 = extractvalue { i64, i1 } %0, 1
1409 ///   %2 = extractvalue { i64, i1 } %0, 0
1410 ///   %3 = select i1 %1, i64 %compare, i64 %2
1411 ///   ret i64 %3
1412 ///
1413 /// The returned value of the cmpxchg instruction (%2) is the original value
1414 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
1415 /// must have been equal to %compare. Thus, the result of the select is always
1416 /// equal to %2, and the code can be simplified to:
1417 ///
1418 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1419 ///   %1 = extractvalue { i64, i1 } %0, 0
1420 ///   ret i64 %1
1421 ///
1422 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
1423   // A helper that determines if V is an extractvalue instruction whose
1424   // aggregate operand is a cmpxchg instruction and whose single index is equal
1425   // to I. If such conditions are true, the helper returns the cmpxchg
1426   // instruction; otherwise, a nullptr is returned.
1427   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
1428     auto *Extract = dyn_cast<ExtractValueInst>(V);
1429     if (!Extract)
1430       return nullptr;
1431     if (Extract->getIndices()[0] != I)
1432       return nullptr;
1433     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
1434   };
1435 
1436   // If the select has a single user, and this user is a select instruction that
1437   // we can simplify, skip the cmpxchg simplification for now.
1438   if (SI.hasOneUse())
1439     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
1440       if (Select->getCondition() == SI.getCondition())
1441         if (Select->getFalseValue() == SI.getTrueValue() ||
1442             Select->getTrueValue() == SI.getFalseValue())
1443           return nullptr;
1444 
1445   // Ensure the select condition is the returned flag of a cmpxchg instruction.
1446   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
1447   if (!CmpXchg)
1448     return nullptr;
1449 
1450   // Check the true value case: The true value of the select is the returned
1451   // value of the same cmpxchg used by the condition, and the false value is the
1452   // cmpxchg instruction's compare operand.
1453   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
1454     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
1455       SI.setTrueValue(SI.getFalseValue());
1456       return &SI;
1457     }
1458 
1459   // Check the false value case: The false value of the select is the returned
1460   // value of the same cmpxchg used by the condition, and the true value is the
1461   // cmpxchg instruction's compare operand.
1462   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
1463     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
1464       SI.setTrueValue(SI.getFalseValue());
1465       return &SI;
1466     }
1467 
1468   return nullptr;
1469 }
1470 
1471 /// Reduce a sequence of min/max with a common operand.
1472 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
1473                                         Value *RHS,
1474                                         InstCombiner::BuilderTy &Builder) {
1475   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
1476   // TODO: Allow FP min/max with nnan/nsz.
1477   if (!LHS->getType()->isIntOrIntVectorTy())
1478     return nullptr;
1479 
1480   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1481   Value *A, *B, *C, *D;
1482   SelectPatternResult L = matchSelectPattern(LHS, A, B);
1483   SelectPatternResult R = matchSelectPattern(RHS, C, D);
1484   if (SPF != L.Flavor || L.Flavor != R.Flavor)
1485     return nullptr;
1486 
1487   // Look for a common operand. The use checks are different than usual because
1488   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
1489   // the select.
1490   Value *MinMaxOp = nullptr;
1491   Value *ThirdOp = nullptr;
1492   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
1493     // If the LHS is only used in this chain and the RHS is used outside of it,
1494     // reuse the RHS min/max because that will eliminate the LHS.
1495     if (D == A || C == A) {
1496       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1497       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1498       MinMaxOp = RHS;
1499       ThirdOp = B;
1500     } else if (D == B || C == B) {
1501       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1502       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1503       MinMaxOp = RHS;
1504       ThirdOp = A;
1505     }
1506   } else if (!RHS->hasNUsesOrMore(3)) {
1507     // Reuse the LHS. This will eliminate the RHS.
1508     if (D == A || D == B) {
1509       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1510       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1511       MinMaxOp = LHS;
1512       ThirdOp = C;
1513     } else if (C == A || C == B) {
1514       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1515       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1516       MinMaxOp = LHS;
1517       ThirdOp = D;
1518     }
1519   }
1520   if (!MinMaxOp || !ThirdOp)
1521     return nullptr;
1522 
1523   CmpInst::Predicate P = getMinMaxPred(SPF);
1524   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
1525   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
1526 }
1527 
1528 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
1529   Value *CondVal = SI.getCondition();
1530   Value *TrueVal = SI.getTrueValue();
1531   Value *FalseVal = SI.getFalseValue();
1532   Type *SelType = SI.getType();
1533 
1534   // FIXME: Remove this workaround when freeze related patches are done.
1535   // For select with undef operand which feeds into an equality comparison,
1536   // don't simplify it so loop unswitch can know the equality comparison
1537   // may have an undef operand. This is a workaround for PR31652 caused by
1538   // descrepancy about branch on undef between LoopUnswitch and GVN.
1539   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
1540     if (llvm::any_of(SI.users(), [&](User *U) {
1541           ICmpInst *CI = dyn_cast<ICmpInst>(U);
1542           if (CI && CI->isEquality())
1543             return true;
1544           return false;
1545         })) {
1546       return nullptr;
1547     }
1548   }
1549 
1550   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
1551                                     SQ.getWithInstruction(&SI)))
1552     return replaceInstUsesWith(SI, V);
1553 
1554   if (Instruction *I = canonicalizeSelectToShuffle(SI))
1555     return I;
1556 
1557   // Canonicalize a one-use integer compare with a non-canonical predicate by
1558   // inverting the predicate and swapping the select operands. This matches a
1559   // compare canonicalization for conditional branches.
1560   // TODO: Should we do the same for FP compares?
1561   CmpInst::Predicate Pred;
1562   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
1563       !isCanonicalPredicate(Pred)) {
1564     // Swap true/false values and condition.
1565     CmpInst *Cond = cast<CmpInst>(CondVal);
1566     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
1567     SI.setOperand(1, FalseVal);
1568     SI.setOperand(2, TrueVal);
1569     SI.swapProfMetadata();
1570     Worklist.Add(Cond);
1571     return &SI;
1572   }
1573 
1574   if (SelType->isIntOrIntVectorTy(1) &&
1575       TrueVal->getType() == CondVal->getType()) {
1576     if (match(TrueVal, m_One())) {
1577       // Change: A = select B, true, C --> A = or B, C
1578       return BinaryOperator::CreateOr(CondVal, FalseVal);
1579     }
1580     if (match(TrueVal, m_Zero())) {
1581       // Change: A = select B, false, C --> A = and !B, C
1582       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1583       return BinaryOperator::CreateAnd(NotCond, FalseVal);
1584     }
1585     if (match(FalseVal, m_Zero())) {
1586       // Change: A = select B, C, false --> A = and B, C
1587       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1588     }
1589     if (match(FalseVal, m_One())) {
1590       // Change: A = select B, C, true --> A = or !B, C
1591       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1592       return BinaryOperator::CreateOr(NotCond, TrueVal);
1593     }
1594 
1595     // select a, a, b  -> a | b
1596     // select a, b, a  -> a & b
1597     if (CondVal == TrueVal)
1598       return BinaryOperator::CreateOr(CondVal, FalseVal);
1599     if (CondVal == FalseVal)
1600       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1601 
1602     // select a, ~a, b -> (~a) & b
1603     // select a, b, ~a -> (~a) | b
1604     if (match(TrueVal, m_Not(m_Specific(CondVal))))
1605       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
1606     if (match(FalseVal, m_Not(m_Specific(CondVal))))
1607       return BinaryOperator::CreateOr(TrueVal, FalseVal);
1608   }
1609 
1610   // Selecting between two integer or vector splat integer constants?
1611   //
1612   // Note that we don't handle a scalar select of vectors:
1613   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
1614   // because that may need 3 instructions to splat the condition value:
1615   // extend, insertelement, shufflevector.
1616   if (SelType->isIntOrIntVectorTy() &&
1617       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
1618     // select C, 1, 0 -> zext C to int
1619     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
1620       return new ZExtInst(CondVal, SelType);
1621 
1622     // select C, -1, 0 -> sext C to int
1623     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
1624       return new SExtInst(CondVal, SelType);
1625 
1626     // select C, 0, 1 -> zext !C to int
1627     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
1628       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1629       return new ZExtInst(NotCond, SelType);
1630     }
1631 
1632     // select C, 0, -1 -> sext !C to int
1633     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
1634       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1635       return new SExtInst(NotCond, SelType);
1636     }
1637   }
1638 
1639   // See if we are selecting two values based on a comparison of the two values.
1640   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
1641     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
1642       // Transform (X == Y) ? X : Y  -> Y
1643       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1644         // This is not safe in general for floating point:
1645         // consider X== -0, Y== +0.
1646         // It becomes safe if either operand is a nonzero constant.
1647         ConstantFP *CFPt, *CFPf;
1648         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1649               !CFPt->getValueAPF().isZero()) ||
1650             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1651              !CFPf->getValueAPF().isZero()))
1652         return replaceInstUsesWith(SI, FalseVal);
1653       }
1654       // Transform (X une Y) ? X : Y  -> X
1655       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1656         // This is not safe in general for floating point:
1657         // consider X== -0, Y== +0.
1658         // It becomes safe if either operand is a nonzero constant.
1659         ConstantFP *CFPt, *CFPf;
1660         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1661               !CFPt->getValueAPF().isZero()) ||
1662             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1663              !CFPf->getValueAPF().isZero()))
1664         return replaceInstUsesWith(SI, TrueVal);
1665       }
1666 
1667       // Canonicalize to use ordered comparisons by swapping the select
1668       // operands.
1669       //
1670       // e.g.
1671       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
1672       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1673         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1674         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1675         Builder.setFastMathFlags(FCI->getFastMathFlags());
1676         Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
1677                                             FCI->getName() + ".inv");
1678 
1679         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1680                                   SI.getName() + ".p");
1681       }
1682 
1683       // NOTE: if we wanted to, this is where to detect MIN/MAX
1684     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
1685       // Transform (X == Y) ? Y : X  -> X
1686       if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
1687         // This is not safe in general for floating point:
1688         // consider X== -0, Y== +0.
1689         // It becomes safe if either operand is a nonzero constant.
1690         ConstantFP *CFPt, *CFPf;
1691         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1692               !CFPt->getValueAPF().isZero()) ||
1693             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1694              !CFPf->getValueAPF().isZero()))
1695           return replaceInstUsesWith(SI, FalseVal);
1696       }
1697       // Transform (X une Y) ? Y : X  -> Y
1698       if (FCI->getPredicate() == FCmpInst::FCMP_UNE) {
1699         // This is not safe in general for floating point:
1700         // consider X== -0, Y== +0.
1701         // It becomes safe if either operand is a nonzero constant.
1702         ConstantFP *CFPt, *CFPf;
1703         if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
1704               !CFPt->getValueAPF().isZero()) ||
1705             ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
1706              !CFPf->getValueAPF().isZero()))
1707           return replaceInstUsesWith(SI, TrueVal);
1708       }
1709 
1710       // Canonicalize to use ordered comparisons by swapping the select
1711       // operands.
1712       //
1713       // e.g.
1714       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
1715       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1716         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1717         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1718         Builder.setFastMathFlags(FCI->getFastMathFlags());
1719         Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
1720                                             FCI->getName() + ".inv");
1721 
1722         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1723                                   SI.getName() + ".p");
1724       }
1725 
1726       // NOTE: if we wanted to, this is where to detect MIN/MAX
1727     }
1728 
1729     // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
1730     // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
1731     // also require nnan because we do not want to unintentionally change the
1732     // sign of a NaN value.
1733     Value *X = FCI->getOperand(0);
1734     FCmpInst::Predicate Pred = FCI->getPredicate();
1735     if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) {
1736       // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
1737       // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
1738       if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE &&
1739            match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) ||
1740           (X == TrueVal && Pred == FCmpInst::FCMP_OGT &&
1741            match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) {
1742         Value *Fabs = Builder.CreateIntrinsic(Intrinsic::fabs, { X }, FCI);
1743         return replaceInstUsesWith(SI, Fabs);
1744       }
1745       // With nsz:
1746       // (X <  +/-0.0) ? -X : X --> fabs(X)
1747       // (X <= +/-0.0) ? -X : X --> fabs(X)
1748       // (X >  +/-0.0) ? X : -X --> fabs(X)
1749       // (X >= +/-0.0) ? X : -X --> fabs(X)
1750       if (FCI->hasNoSignedZeros() &&
1751           ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) &&
1752             (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) ||
1753            (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) &&
1754             (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) {
1755         Value *Fabs = Builder.CreateIntrinsic(Intrinsic::fabs, { X }, FCI);
1756         return replaceInstUsesWith(SI, Fabs);
1757       }
1758     }
1759   }
1760 
1761   // See if we are selecting two values based on a comparison of the two values.
1762   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
1763     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
1764       return Result;
1765 
1766   if (Instruction *Add = foldAddSubSelect(SI, Builder))
1767     return Add;
1768 
1769   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1770   auto *TI = dyn_cast<Instruction>(TrueVal);
1771   auto *FI = dyn_cast<Instruction>(FalseVal);
1772   if (TI && FI && TI->getOpcode() == FI->getOpcode())
1773     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
1774       return IV;
1775 
1776   if (Instruction *I = foldSelectExtConst(SI))
1777     return I;
1778 
1779   // See if we can fold the select into one of our operands.
1780   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
1781     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
1782       return FoldI;
1783 
1784     Value *LHS, *RHS;
1785     Instruction::CastOps CastOp;
1786     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1787     auto SPF = SPR.Flavor;
1788 
1789     if (SelectPatternResult::isMinOrMax(SPF)) {
1790       // Canonicalize so that
1791       // - type casts are outside select patterns.
1792       // - float clamp is transformed to min/max pattern
1793 
1794       bool IsCastNeeded = LHS->getType() != SelType;
1795       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
1796       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
1797       if (IsCastNeeded ||
1798           (LHS->getType()->isFPOrFPVectorTy() &&
1799            ((CmpLHS != LHS && CmpLHS != RHS) ||
1800             (CmpRHS != LHS && CmpRHS != RHS)))) {
1801         CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered);
1802 
1803         Value *Cmp;
1804         if (CmpInst::isIntPredicate(Pred)) {
1805           Cmp = Builder.CreateICmp(Pred, LHS, RHS);
1806         } else {
1807           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1808           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
1809           Builder.setFastMathFlags(FMF);
1810           Cmp = Builder.CreateFCmp(Pred, LHS, RHS);
1811         }
1812 
1813         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
1814         if (!IsCastNeeded)
1815           return replaceInstUsesWith(SI, NewSI);
1816 
1817         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
1818         return replaceInstUsesWith(SI, NewCast);
1819       }
1820 
1821       // MAX(~a, ~b) -> ~MIN(a, b)
1822       // MIN(~a, ~b) -> ~MAX(a, b)
1823       Value *A, *B;
1824       if (match(LHS, m_Not(m_Value(A))) && match(RHS, m_Not(m_Value(B))) &&
1825           (!LHS->hasNUsesOrMore(3) || !RHS->hasNUsesOrMore(3))) {
1826         CmpInst::Predicate InvertedPred = getInverseMinMaxPred(SPF);
1827         Value *InvertedCmp = Builder.CreateICmp(InvertedPred, A, B);
1828         Value *NewSel = Builder.CreateSelect(InvertedCmp, A, B);
1829         return BinaryOperator::CreateNot(NewSel);
1830       }
1831 
1832       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
1833         return I;
1834     }
1835 
1836     if (SPF) {
1837       // MAX(MAX(a, b), a) -> MAX(a, b)
1838       // MIN(MIN(a, b), a) -> MIN(a, b)
1839       // MAX(MIN(a, b), a) -> a
1840       // MIN(MAX(a, b), a) -> a
1841       // ABS(ABS(a)) -> ABS(a)
1842       // NABS(NABS(a)) -> NABS(a)
1843       Value *LHS2, *RHS2;
1844       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1845         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
1846                                           SI, SPF, RHS))
1847           return R;
1848       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1849         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
1850                                           SI, SPF, LHS))
1851           return R;
1852     }
1853 
1854     // TODO.
1855     // ABS(-X) -> ABS(X)
1856   }
1857 
1858   // See if we can fold the select into a phi node if the condition is a select.
1859   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
1860     // The true/false values have to be live in the PHI predecessor's blocks.
1861     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
1862         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
1863       if (Instruction *NV = foldOpIntoPhi(SI, PN))
1864         return NV;
1865 
1866   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
1867     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
1868       // select(C, select(C, a, b), c) -> select(C, a, c)
1869       if (TrueSI->getCondition() == CondVal) {
1870         if (SI.getTrueValue() == TrueSI->getTrueValue())
1871           return nullptr;
1872         SI.setOperand(1, TrueSI->getTrueValue());
1873         return &SI;
1874       }
1875       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
1876       // We choose this as normal form to enable folding on the And and shortening
1877       // paths for the values (this helps GetUnderlyingObjects() for example).
1878       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
1879         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
1880         SI.setOperand(0, And);
1881         SI.setOperand(1, TrueSI->getTrueValue());
1882         return &SI;
1883       }
1884     }
1885   }
1886   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
1887     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
1888       // select(C, a, select(C, b, c)) -> select(C, a, c)
1889       if (FalseSI->getCondition() == CondVal) {
1890         if (SI.getFalseValue() == FalseSI->getFalseValue())
1891           return nullptr;
1892         SI.setOperand(2, FalseSI->getFalseValue());
1893         return &SI;
1894       }
1895       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
1896       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
1897         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
1898         SI.setOperand(0, Or);
1899         SI.setOperand(2, FalseSI->getFalseValue());
1900         return &SI;
1901       }
1902     }
1903   }
1904 
1905   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
1906     // The select might be preventing a division by 0.
1907     switch (BO->getOpcode()) {
1908     default:
1909       return true;
1910     case Instruction::SRem:
1911     case Instruction::URem:
1912     case Instruction::SDiv:
1913     case Instruction::UDiv:
1914       return false;
1915     }
1916   };
1917 
1918   // Try to simplify a binop sandwiched between 2 selects with the same
1919   // condition.
1920   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
1921   BinaryOperator *TrueBO;
1922   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
1923       canMergeSelectThroughBinop(TrueBO)) {
1924     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
1925       if (TrueBOSI->getCondition() == CondVal) {
1926         TrueBO->setOperand(0, TrueBOSI->getTrueValue());
1927         Worklist.Add(TrueBO);
1928         return &SI;
1929       }
1930     }
1931     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
1932       if (TrueBOSI->getCondition() == CondVal) {
1933         TrueBO->setOperand(1, TrueBOSI->getTrueValue());
1934         Worklist.Add(TrueBO);
1935         return &SI;
1936       }
1937     }
1938   }
1939 
1940   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
1941   BinaryOperator *FalseBO;
1942   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
1943       canMergeSelectThroughBinop(FalseBO)) {
1944     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
1945       if (FalseBOSI->getCondition() == CondVal) {
1946         FalseBO->setOperand(0, FalseBOSI->getFalseValue());
1947         Worklist.Add(FalseBO);
1948         return &SI;
1949       }
1950     }
1951     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
1952       if (FalseBOSI->getCondition() == CondVal) {
1953         FalseBO->setOperand(1, FalseBOSI->getFalseValue());
1954         Worklist.Add(FalseBO);
1955         return &SI;
1956       }
1957     }
1958   }
1959 
1960   if (BinaryOperator::isNot(CondVal)) {
1961     SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
1962     SI.setOperand(1, FalseVal);
1963     SI.setOperand(2, TrueVal);
1964     return &SI;
1965   }
1966 
1967   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
1968     unsigned VWidth = VecTy->getNumElements();
1969     APInt UndefElts(VWidth, 0);
1970     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1971     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
1972       if (V != &SI)
1973         return replaceInstUsesWith(SI, V);
1974       return &SI;
1975     }
1976   }
1977 
1978   // See if we can determine the result of this select based on a dominating
1979   // condition.
1980   BasicBlock *Parent = SI.getParent();
1981   if (BasicBlock *Dom = Parent->getSinglePredecessor()) {
1982     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
1983     if (PBI && PBI->isConditional() &&
1984         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
1985         (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) {
1986       bool CondIsTrue = PBI->getSuccessor(0) == Parent;
1987       Optional<bool> Implication = isImpliedCondition(
1988           PBI->getCondition(), SI.getCondition(), DL, CondIsTrue);
1989       if (Implication) {
1990         Value *V = *Implication ? TrueVal : FalseVal;
1991         return replaceInstUsesWith(SI, V);
1992       }
1993     }
1994   }
1995 
1996   // If we can compute the condition, there's no need for a select.
1997   // Like the above fold, we are attempting to reduce compile-time cost by
1998   // putting this fold here with limitations rather than in InstSimplify.
1999   // The motivation for this call into value tracking is to take advantage of
2000   // the assumption cache, so make sure that is populated.
2001   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2002     KnownBits Known(1);
2003     computeKnownBits(CondVal, Known, 0, &SI);
2004     if (Known.One.isOneValue())
2005       return replaceInstUsesWith(SI, TrueVal);
2006     if (Known.Zero.isOneValue())
2007       return replaceInstUsesWith(SI, FalseVal);
2008   }
2009 
2010   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2011     return BitCastSel;
2012 
2013   // Simplify selects that test the returned flag of cmpxchg instructions.
2014   if (Instruction *Select = foldSelectCmpXchg(SI))
2015     return Select;
2016 
2017   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
2018     return Select;
2019 
2020   return nullptr;
2021 }
2022