1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 41 #include <cassert> 42 #include <utility> 43 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 #define DEBUG_TYPE "instcombine" 48 49 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 50 SelectPatternFlavor SPF, Value *A, Value *B) { 51 CmpInst::Predicate Pred = getMinMaxPred(SPF); 52 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 53 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 54 } 55 56 /// Replace a select operand based on an equality comparison with the identity 57 /// constant of a binop. 58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 59 const TargetLibraryInfo &TLI) { 60 // The select condition must be an equality compare with a constant operand. 61 Value *X; 62 Constant *C; 63 CmpInst::Predicate Pred; 64 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 65 return nullptr; 66 67 bool IsEq; 68 if (ICmpInst::isEquality(Pred)) 69 IsEq = Pred == ICmpInst::ICMP_EQ; 70 else if (Pred == FCmpInst::FCMP_OEQ) 71 IsEq = true; 72 else if (Pred == FCmpInst::FCMP_UNE) 73 IsEq = false; 74 else 75 return nullptr; 76 77 // A select operand must be a binop. 78 BinaryOperator *BO; 79 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 80 return nullptr; 81 82 // The compare constant must be the identity constant for that binop. 83 // If this a floating-point compare with 0.0, any zero constant will do. 84 Type *Ty = BO->getType(); 85 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 86 if (IdC != C) { 87 if (!IdC || !CmpInst::isFPPredicate(Pred)) 88 return nullptr; 89 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 90 return nullptr; 91 } 92 93 // Last, match the compare variable operand with a binop operand. 94 Value *Y; 95 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 96 return nullptr; 97 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 98 return nullptr; 99 100 // +0.0 compares equal to -0.0, and so it does not behave as required for this 101 // transform. Bail out if we can not exclude that possibility. 102 if (isa<FPMathOperator>(BO)) 103 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 104 return nullptr; 105 106 // BO = binop Y, X 107 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 108 // => 109 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 110 Sel.setOperand(IsEq ? 1 : 2, Y); 111 return &Sel; 112 } 113 114 /// This folds: 115 /// select (icmp eq (and X, C1)), TC, FC 116 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 117 /// To something like: 118 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 119 /// Or: 120 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 121 /// With some variations depending if FC is larger than TC, or the shift 122 /// isn't needed, or the bit widths don't match. 123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 124 InstCombiner::BuilderTy &Builder) { 125 const APInt *SelTC, *SelFC; 126 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 127 !match(Sel.getFalseValue(), m_APInt(SelFC))) 128 return nullptr; 129 130 // If this is a vector select, we need a vector compare. 131 Type *SelType = Sel.getType(); 132 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 133 return nullptr; 134 135 Value *V; 136 APInt AndMask; 137 bool CreateAnd = false; 138 ICmpInst::Predicate Pred = Cmp->getPredicate(); 139 if (ICmpInst::isEquality(Pred)) { 140 if (!match(Cmp->getOperand(1), m_Zero())) 141 return nullptr; 142 143 V = Cmp->getOperand(0); 144 const APInt *AndRHS; 145 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 146 return nullptr; 147 148 AndMask = *AndRHS; 149 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 150 Pred, V, AndMask)) { 151 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 152 if (!AndMask.isPowerOf2()) 153 return nullptr; 154 155 CreateAnd = true; 156 } else { 157 return nullptr; 158 } 159 160 // In general, when both constants are non-zero, we would need an offset to 161 // replace the select. This would require more instructions than we started 162 // with. But there's one special-case that we handle here because it can 163 // simplify/reduce the instructions. 164 APInt TC = *SelTC; 165 APInt FC = *SelFC; 166 if (!TC.isNullValue() && !FC.isNullValue()) { 167 // If the select constants differ by exactly one bit and that's the same 168 // bit that is masked and checked by the select condition, the select can 169 // be replaced by bitwise logic to set/clear one bit of the constant result. 170 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 171 return nullptr; 172 if (CreateAnd) { 173 // If we have to create an 'and', then we must kill the cmp to not 174 // increase the instruction count. 175 if (!Cmp->hasOneUse()) 176 return nullptr; 177 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 178 } 179 bool ExtraBitInTC = TC.ugt(FC); 180 if (Pred == ICmpInst::ICMP_EQ) { 181 // If the masked bit in V is clear, clear or set the bit in the result: 182 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 184 Constant *C = ConstantInt::get(SelType, TC); 185 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 186 } 187 if (Pred == ICmpInst::ICMP_NE) { 188 // If the masked bit in V is set, set or clear the bit in the result: 189 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 191 Constant *C = ConstantInt::get(SelType, FC); 192 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 193 } 194 llvm_unreachable("Only expecting equality predicates"); 195 } 196 197 // Make sure one of the select arms is a power-of-2. 198 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 199 return nullptr; 200 201 // Determine which shift is needed to transform result of the 'and' into the 202 // desired result. 203 const APInt &ValC = !TC.isNullValue() ? TC : FC; 204 unsigned ValZeros = ValC.logBase2(); 205 unsigned AndZeros = AndMask.logBase2(); 206 207 // Insert the 'and' instruction on the input to the truncate. 208 if (CreateAnd) 209 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 210 211 // If types don't match, we can still convert the select by introducing a zext 212 // or a trunc of the 'and'. 213 if (ValZeros > AndZeros) { 214 V = Builder.CreateZExtOrTrunc(V, SelType); 215 V = Builder.CreateShl(V, ValZeros - AndZeros); 216 } else if (ValZeros < AndZeros) { 217 V = Builder.CreateLShr(V, AndZeros - ValZeros); 218 V = Builder.CreateZExtOrTrunc(V, SelType); 219 } else { 220 V = Builder.CreateZExtOrTrunc(V, SelType); 221 } 222 223 // Okay, now we know that everything is set up, we just don't know whether we 224 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 225 bool ShouldNotVal = !TC.isNullValue(); 226 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 227 if (ShouldNotVal) 228 V = Builder.CreateXor(V, ValC); 229 230 return V; 231 } 232 233 /// We want to turn code that looks like this: 234 /// %C = or %A, %B 235 /// %D = select %cond, %C, %A 236 /// into: 237 /// %C = select %cond, %B, 0 238 /// %D = or %A, %C 239 /// 240 /// Assuming that the specified instruction is an operand to the select, return 241 /// a bitmask indicating which operands of this instruction are foldable if they 242 /// equal the other incoming value of the select. 243 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 244 switch (I->getOpcode()) { 245 case Instruction::Add: 246 case Instruction::Mul: 247 case Instruction::And: 248 case Instruction::Or: 249 case Instruction::Xor: 250 return 3; // Can fold through either operand. 251 case Instruction::Sub: // Can only fold on the amount subtracted. 252 case Instruction::Shl: // Can only fold on the shift amount. 253 case Instruction::LShr: 254 case Instruction::AShr: 255 return 1; 256 default: 257 return 0; // Cannot fold 258 } 259 } 260 261 /// For the same transformation as the previous function, return the identity 262 /// constant that goes into the select. 263 static APInt getSelectFoldableConstant(BinaryOperator *I) { 264 switch (I->getOpcode()) { 265 default: llvm_unreachable("This cannot happen!"); 266 case Instruction::Add: 267 case Instruction::Sub: 268 case Instruction::Or: 269 case Instruction::Xor: 270 case Instruction::Shl: 271 case Instruction::LShr: 272 case Instruction::AShr: 273 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 274 case Instruction::And: 275 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 276 case Instruction::Mul: 277 return APInt(I->getType()->getScalarSizeInBits(), 1); 278 } 279 } 280 281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 283 Instruction *FI) { 284 // Don't break up min/max patterns. The hasOneUse checks below prevent that 285 // for most cases, but vector min/max with bitcasts can be transformed. If the 286 // one-use restrictions are eased for other patterns, we still don't want to 287 // obfuscate min/max. 288 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 289 match(&SI, m_SMax(m_Value(), m_Value())) || 290 match(&SI, m_UMin(m_Value(), m_Value())) || 291 match(&SI, m_UMax(m_Value(), m_Value())))) 292 return nullptr; 293 294 // If this is a cast from the same type, merge. 295 Value *Cond = SI.getCondition(); 296 Type *CondTy = Cond->getType(); 297 if (TI->getNumOperands() == 1 && TI->isCast()) { 298 Type *FIOpndTy = FI->getOperand(0)->getType(); 299 if (TI->getOperand(0)->getType() != FIOpndTy) 300 return nullptr; 301 302 // The select condition may be a vector. We may only change the operand 303 // type if the vector width remains the same (and matches the condition). 304 if (CondTy->isVectorTy()) { 305 if (!FIOpndTy->isVectorTy()) 306 return nullptr; 307 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 308 return nullptr; 309 310 // TODO: If the backend knew how to deal with casts better, we could 311 // remove this limitation. For now, there's too much potential to create 312 // worse codegen by promoting the select ahead of size-altering casts 313 // (PR28160). 314 // 315 // Note that ValueTracking's matchSelectPattern() looks through casts 316 // without checking 'hasOneUse' when it matches min/max patterns, so this 317 // transform may end up happening anyway. 318 if (TI->getOpcode() != Instruction::BitCast && 319 (!TI->hasOneUse() || !FI->hasOneUse())) 320 return nullptr; 321 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 322 // TODO: The one-use restrictions for a scalar select could be eased if 323 // the fold of a select in visitLoadInst() was enhanced to match a pattern 324 // that includes a cast. 325 return nullptr; 326 } 327 328 // Fold this by inserting a select from the input values. 329 Value *NewSI = 330 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 331 SI.getName() + ".v", &SI); 332 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 333 TI->getType()); 334 } 335 336 // Cond ? -X : -Y --> -(Cond ? X : Y) 337 Value *X, *Y; 338 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 339 (TI->hasOneUse() || FI->hasOneUse())) { 340 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 341 // TODO: Remove the hack for the binop form when the unary op is optimized 342 // properly with all IR passes. 343 if (TI->getOpcode() != Instruction::FNeg) 344 return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI)); 345 return UnaryOperator::CreateFNeg(NewSel); 346 } 347 348 // Only handle binary operators (including two-operand getelementptr) with 349 // one-use here. As with the cast case above, it may be possible to relax the 350 // one-use constraint, but that needs be examined carefully since it may not 351 // reduce the total number of instructions. 352 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 353 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 354 !TI->hasOneUse() || !FI->hasOneUse()) 355 return nullptr; 356 357 // Figure out if the operations have any operands in common. 358 Value *MatchOp, *OtherOpT, *OtherOpF; 359 bool MatchIsOpZero; 360 if (TI->getOperand(0) == FI->getOperand(0)) { 361 MatchOp = TI->getOperand(0); 362 OtherOpT = TI->getOperand(1); 363 OtherOpF = FI->getOperand(1); 364 MatchIsOpZero = true; 365 } else if (TI->getOperand(1) == FI->getOperand(1)) { 366 MatchOp = TI->getOperand(1); 367 OtherOpT = TI->getOperand(0); 368 OtherOpF = FI->getOperand(0); 369 MatchIsOpZero = false; 370 } else if (!TI->isCommutative()) { 371 return nullptr; 372 } else if (TI->getOperand(0) == FI->getOperand(1)) { 373 MatchOp = TI->getOperand(0); 374 OtherOpT = TI->getOperand(1); 375 OtherOpF = FI->getOperand(0); 376 MatchIsOpZero = true; 377 } else if (TI->getOperand(1) == FI->getOperand(0)) { 378 MatchOp = TI->getOperand(1); 379 OtherOpT = TI->getOperand(0); 380 OtherOpF = FI->getOperand(1); 381 MatchIsOpZero = true; 382 } else { 383 return nullptr; 384 } 385 386 // If the select condition is a vector, the operands of the original select's 387 // operands also must be vectors. This may not be the case for getelementptr 388 // for example. 389 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 390 !OtherOpF->getType()->isVectorTy())) 391 return nullptr; 392 393 // If we reach here, they do have operations in common. 394 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 395 SI.getName() + ".v", &SI); 396 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 397 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 398 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 399 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 400 NewBO->copyIRFlags(TI); 401 NewBO->andIRFlags(FI); 402 return NewBO; 403 } 404 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 405 auto *FGEP = cast<GetElementPtrInst>(FI); 406 Type *ElementType = TGEP->getResultElementType(); 407 return TGEP->isInBounds() && FGEP->isInBounds() 408 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 409 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 410 } 411 llvm_unreachable("Expected BinaryOperator or GEP"); 412 return nullptr; 413 } 414 415 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 416 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 417 return false; 418 return C1I.isOneValue() || C1I.isAllOnesValue() || 419 C2I.isOneValue() || C2I.isAllOnesValue(); 420 } 421 422 /// Try to fold the select into one of the operands to allow further 423 /// optimization. 424 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 425 Value *FalseVal) { 426 // See the comment above GetSelectFoldableOperands for a description of the 427 // transformation we are doing here. 428 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 429 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 430 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 431 unsigned OpToFold = 0; 432 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 433 OpToFold = 1; 434 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 435 OpToFold = 2; 436 } 437 438 if (OpToFold) { 439 APInt CI = getSelectFoldableConstant(TVI); 440 Value *OOp = TVI->getOperand(2-OpToFold); 441 // Avoid creating select between 2 constants unless it's selecting 442 // between 0, 1 and -1. 443 const APInt *OOpC; 444 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 445 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 446 Value *C = ConstantInt::get(OOp->getType(), CI); 447 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 448 NewSel->takeName(TVI); 449 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 450 FalseVal, NewSel); 451 BO->copyIRFlags(TVI); 452 return BO; 453 } 454 } 455 } 456 } 457 } 458 459 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 460 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 461 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 462 unsigned OpToFold = 0; 463 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 464 OpToFold = 1; 465 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 466 OpToFold = 2; 467 } 468 469 if (OpToFold) { 470 APInt CI = getSelectFoldableConstant(FVI); 471 Value *OOp = FVI->getOperand(2-OpToFold); 472 // Avoid creating select between 2 constants unless it's selecting 473 // between 0, 1 and -1. 474 const APInt *OOpC; 475 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 476 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 477 Value *C = ConstantInt::get(OOp->getType(), CI); 478 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 479 NewSel->takeName(FVI); 480 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 481 TrueVal, NewSel); 482 BO->copyIRFlags(FVI); 483 return BO; 484 } 485 } 486 } 487 } 488 } 489 490 return nullptr; 491 } 492 493 /// We want to turn: 494 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 495 /// into: 496 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 497 /// Note: 498 /// Z may be 0 if lshr is missing. 499 /// Worst-case scenario is that we will replace 5 instructions with 5 different 500 /// instructions, but we got rid of select. 501 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 502 Value *TVal, Value *FVal, 503 InstCombiner::BuilderTy &Builder) { 504 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 505 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 506 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 507 return nullptr; 508 509 // The TrueVal has general form of: and %B, 1 510 Value *B; 511 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 512 return nullptr; 513 514 // Where %B may be optionally shifted: lshr %X, %Z. 515 Value *X, *Z; 516 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 517 if (!HasShift) 518 X = B; 519 520 Value *Y; 521 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 522 return nullptr; 523 524 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 525 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 526 Constant *One = ConstantInt::get(SelType, 1); 527 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 528 Value *FullMask = Builder.CreateOr(Y, MaskB); 529 Value *MaskedX = Builder.CreateAnd(X, FullMask); 530 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 531 return new ZExtInst(ICmpNeZero, SelType); 532 } 533 534 /// We want to turn: 535 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 536 /// into: 537 /// (or (shl (and X, C1), C3), Y) 538 /// iff: 539 /// C1 and C2 are both powers of 2 540 /// where: 541 /// C3 = Log(C2) - Log(C1) 542 /// 543 /// This transform handles cases where: 544 /// 1. The icmp predicate is inverted 545 /// 2. The select operands are reversed 546 /// 3. The magnitude of C2 and C1 are flipped 547 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 548 Value *FalseVal, 549 InstCombiner::BuilderTy &Builder) { 550 // Only handle integer compares. Also, if this is a vector select, we need a 551 // vector compare. 552 if (!TrueVal->getType()->isIntOrIntVectorTy() || 553 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 554 return nullptr; 555 556 Value *CmpLHS = IC->getOperand(0); 557 Value *CmpRHS = IC->getOperand(1); 558 559 Value *V; 560 unsigned C1Log; 561 bool IsEqualZero; 562 bool NeedAnd = false; 563 if (IC->isEquality()) { 564 if (!match(CmpRHS, m_Zero())) 565 return nullptr; 566 567 const APInt *C1; 568 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 569 return nullptr; 570 571 V = CmpLHS; 572 C1Log = C1->logBase2(); 573 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 574 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 575 IC->getPredicate() == ICmpInst::ICMP_SGT) { 576 // We also need to recognize (icmp slt (trunc (X)), 0) and 577 // (icmp sgt (trunc (X)), -1). 578 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 579 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 580 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 581 return nullptr; 582 583 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 584 return nullptr; 585 586 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 587 NeedAnd = true; 588 } else { 589 return nullptr; 590 } 591 592 const APInt *C2; 593 bool OrOnTrueVal = false; 594 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 595 if (!OrOnFalseVal) 596 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 597 598 if (!OrOnFalseVal && !OrOnTrueVal) 599 return nullptr; 600 601 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 602 603 unsigned C2Log = C2->logBase2(); 604 605 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 606 bool NeedShift = C1Log != C2Log; 607 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 608 V->getType()->getScalarSizeInBits(); 609 610 // Make sure we don't create more instructions than we save. 611 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 612 if ((NeedShift + NeedXor + NeedZExtTrunc) > 613 (IC->hasOneUse() + Or->hasOneUse())) 614 return nullptr; 615 616 if (NeedAnd) { 617 // Insert the AND instruction on the input to the truncate. 618 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 619 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 620 } 621 622 if (C2Log > C1Log) { 623 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 624 V = Builder.CreateShl(V, C2Log - C1Log); 625 } else if (C1Log > C2Log) { 626 V = Builder.CreateLShr(V, C1Log - C2Log); 627 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 628 } else 629 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 630 631 if (NeedXor) 632 V = Builder.CreateXor(V, *C2); 633 634 return Builder.CreateOr(V, Y); 635 } 636 637 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 638 /// There are 8 commuted/swapped variants of this pattern. 639 /// TODO: Also support a - UMIN(a,b) patterns. 640 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 641 const Value *TrueVal, 642 const Value *FalseVal, 643 InstCombiner::BuilderTy &Builder) { 644 ICmpInst::Predicate Pred = ICI->getPredicate(); 645 if (!ICmpInst::isUnsigned(Pred)) 646 return nullptr; 647 648 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 649 if (match(TrueVal, m_Zero())) { 650 Pred = ICmpInst::getInversePredicate(Pred); 651 std::swap(TrueVal, FalseVal); 652 } 653 if (!match(FalseVal, m_Zero())) 654 return nullptr; 655 656 Value *A = ICI->getOperand(0); 657 Value *B = ICI->getOperand(1); 658 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 659 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 660 std::swap(A, B); 661 Pred = ICmpInst::getSwappedPredicate(Pred); 662 } 663 664 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 665 "Unexpected isUnsigned predicate!"); 666 667 // Account for swapped form of subtraction: ((a > b) ? b - a : 0). 668 bool IsNegative = false; 669 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A)))) 670 IsNegative = true; 671 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B)))) 672 return nullptr; 673 674 // If sub is used anywhere else, we wouldn't be able to eliminate it 675 // afterwards. 676 if (!TrueVal->hasOneUse()) 677 return nullptr; 678 679 // (a > b) ? a - b : 0 -> usub.sat(a, b) 680 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 681 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 682 if (IsNegative) 683 Result = Builder.CreateNeg(Result); 684 return Result; 685 } 686 687 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 688 InstCombiner::BuilderTy &Builder) { 689 if (!Cmp->hasOneUse()) 690 return nullptr; 691 692 // Match unsigned saturated add with constant. 693 Value *Cmp0 = Cmp->getOperand(0); 694 Value *Cmp1 = Cmp->getOperand(1); 695 ICmpInst::Predicate Pred = Cmp->getPredicate(); 696 Value *X; 697 const APInt *C, *CmpC; 698 if (Pred == ICmpInst::ICMP_ULT && 699 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 700 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 701 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 702 return Builder.CreateBinaryIntrinsic( 703 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 704 } 705 706 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 707 // There are 8 commuted variants. 708 // Canonicalize -1 (saturated result) to true value of the select. Just 709 // swapping the compare operands is legal, because the selected value is the 710 // same in case of equality, so we can interchange u< and u<=. 711 if (match(FVal, m_AllOnes())) { 712 std::swap(TVal, FVal); 713 std::swap(Cmp0, Cmp1); 714 } 715 if (!match(TVal, m_AllOnes())) 716 return nullptr; 717 718 // Canonicalize predicate to 'ULT'. 719 if (Pred == ICmpInst::ICMP_UGT) { 720 Pred = ICmpInst::ICMP_ULT; 721 std::swap(Cmp0, Cmp1); 722 } 723 if (Pred != ICmpInst::ICMP_ULT) 724 return nullptr; 725 726 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 727 Value *Y; 728 if (match(Cmp0, m_Not(m_Value(X))) && 729 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 730 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 731 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 732 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 733 } 734 // The 'not' op may be included in the sum but not the compare. 735 X = Cmp0; 736 Y = Cmp1; 737 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 738 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 739 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 740 BinaryOperator *BO = cast<BinaryOperator>(FVal); 741 return Builder.CreateBinaryIntrinsic( 742 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 743 } 744 745 return nullptr; 746 } 747 748 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 749 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 750 /// 751 /// For example, we can fold the following code sequence: 752 /// \code 753 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 754 /// %1 = icmp ne i32 %x, 0 755 /// %2 = select i1 %1, i32 %0, i32 32 756 /// \code 757 /// 758 /// into: 759 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 760 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 761 InstCombiner::BuilderTy &Builder) { 762 ICmpInst::Predicate Pred = ICI->getPredicate(); 763 Value *CmpLHS = ICI->getOperand(0); 764 Value *CmpRHS = ICI->getOperand(1); 765 766 // Check if the condition value compares a value for equality against zero. 767 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 768 return nullptr; 769 770 Value *Count = FalseVal; 771 Value *ValueOnZero = TrueVal; 772 if (Pred == ICmpInst::ICMP_NE) 773 std::swap(Count, ValueOnZero); 774 775 // Skip zero extend/truncate. 776 Value *V = nullptr; 777 if (match(Count, m_ZExt(m_Value(V))) || 778 match(Count, m_Trunc(m_Value(V)))) 779 Count = V; 780 781 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 782 // input to the cttz/ctlz is used as LHS for the compare instruction. 783 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 784 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 785 return nullptr; 786 787 IntrinsicInst *II = cast<IntrinsicInst>(Count); 788 789 // Check if the value propagated on zero is a constant number equal to the 790 // sizeof in bits of 'Count'. 791 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 792 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 793 // Explicitly clear the 'undef_on_zero' flag. 794 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 795 NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); 796 Builder.Insert(NewI); 797 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 798 } 799 800 // If the ValueOnZero is not the bitwidth, we can at least make use of the 801 // fact that the cttz/ctlz result will not be used if the input is zero, so 802 // it's okay to relax it to undef for that case. 803 if (II->hasOneUse() && !match(II->getArgOperand(1), m_One())) 804 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 805 806 return nullptr; 807 } 808 809 /// Return true if we find and adjust an icmp+select pattern where the compare 810 /// is with a constant that can be incremented or decremented to match the 811 /// minimum or maximum idiom. 812 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 813 ICmpInst::Predicate Pred = Cmp.getPredicate(); 814 Value *CmpLHS = Cmp.getOperand(0); 815 Value *CmpRHS = Cmp.getOperand(1); 816 Value *TrueVal = Sel.getTrueValue(); 817 Value *FalseVal = Sel.getFalseValue(); 818 819 // We may move or edit the compare, so make sure the select is the only user. 820 const APInt *CmpC; 821 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 822 return false; 823 824 // These transforms only work for selects of integers or vector selects of 825 // integer vectors. 826 Type *SelTy = Sel.getType(); 827 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 828 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 829 return false; 830 831 Constant *AdjustedRHS; 832 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 833 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 834 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 835 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 836 else 837 return false; 838 839 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 840 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 841 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 842 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 843 ; // Nothing to do here. Values match without any sign/zero extension. 844 } 845 // Types do not match. Instead of calculating this with mixed types, promote 846 // all to the larger type. This enables scalar evolution to analyze this 847 // expression. 848 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 849 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 850 851 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 852 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 853 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 854 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 855 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 856 CmpLHS = TrueVal; 857 AdjustedRHS = SextRHS; 858 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 859 SextRHS == TrueVal) { 860 CmpLHS = FalseVal; 861 AdjustedRHS = SextRHS; 862 } else if (Cmp.isUnsigned()) { 863 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 864 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 865 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 866 // zext + signed compare cannot be changed: 867 // 0xff <s 0x00, but 0x00ff >s 0x0000 868 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 869 CmpLHS = TrueVal; 870 AdjustedRHS = ZextRHS; 871 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 872 ZextRHS == TrueVal) { 873 CmpLHS = FalseVal; 874 AdjustedRHS = ZextRHS; 875 } else { 876 return false; 877 } 878 } else { 879 return false; 880 } 881 } else { 882 return false; 883 } 884 885 Pred = ICmpInst::getSwappedPredicate(Pred); 886 CmpRHS = AdjustedRHS; 887 std::swap(FalseVal, TrueVal); 888 Cmp.setPredicate(Pred); 889 Cmp.setOperand(0, CmpLHS); 890 Cmp.setOperand(1, CmpRHS); 891 Sel.setOperand(1, TrueVal); 892 Sel.setOperand(2, FalseVal); 893 Sel.swapProfMetadata(); 894 895 // Move the compare instruction right before the select instruction. Otherwise 896 // the sext/zext value may be defined after the compare instruction uses it. 897 Cmp.moveBefore(&Sel); 898 899 return true; 900 } 901 902 /// If this is an integer min/max (icmp + select) with a constant operand, 903 /// create the canonical icmp for the min/max operation and canonicalize the 904 /// constant to the 'false' operand of the select: 905 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 906 /// Note: if C1 != C2, this will change the icmp constant to the existing 907 /// constant operand of the select. 908 static Instruction * 909 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 910 InstCombiner::BuilderTy &Builder) { 911 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 912 return nullptr; 913 914 // Canonicalize the compare predicate based on whether we have min or max. 915 Value *LHS, *RHS; 916 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 917 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 918 return nullptr; 919 920 // Is this already canonical? 921 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 922 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 923 Cmp.getPredicate() == CanonicalPred) 924 return nullptr; 925 926 // Create the canonical compare and plug it into the select. 927 Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS)); 928 929 // If the select operands did not change, we're done. 930 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 931 return &Sel; 932 933 // If we are swapping the select operands, swap the metadata too. 934 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 935 "Unexpected results from matchSelectPattern"); 936 Sel.setTrueValue(LHS); 937 Sel.setFalseValue(RHS); 938 Sel.swapProfMetadata(); 939 return &Sel; 940 } 941 942 /// There are many select variants for each of ABS/NABS. 943 /// In matchSelectPattern(), there are different compare constants, compare 944 /// predicates/operands and select operands. 945 /// In isKnownNegation(), there are different formats of negated operands. 946 /// Canonicalize all these variants to 1 pattern. 947 /// This makes CSE more likely. 948 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 949 InstCombiner::BuilderTy &Builder) { 950 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 951 return nullptr; 952 953 // Choose a sign-bit check for the compare (likely simpler for codegen). 954 // ABS: (X <s 0) ? -X : X 955 // NABS: (X <s 0) ? X : -X 956 Value *LHS, *RHS; 957 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 958 if (SPF != SelectPatternFlavor::SPF_ABS && 959 SPF != SelectPatternFlavor::SPF_NABS) 960 return nullptr; 961 962 Value *TVal = Sel.getTrueValue(); 963 Value *FVal = Sel.getFalseValue(); 964 assert(isKnownNegation(TVal, FVal) && 965 "Unexpected result from matchSelectPattern"); 966 967 // The compare may use the negated abs()/nabs() operand, or it may use 968 // negation in non-canonical form such as: sub A, B. 969 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || 970 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); 971 972 bool CmpCanonicalized = !CmpUsesNegatedOp && 973 match(Cmp.getOperand(1), m_ZeroInt()) && 974 Cmp.getPredicate() == ICmpInst::ICMP_SLT; 975 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); 976 977 // Is this already canonical? 978 if (CmpCanonicalized && RHSCanonicalized) 979 return nullptr; 980 981 // If RHS is used by other instructions except compare and select, don't 982 // canonicalize it to not increase the instruction count. 983 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) 984 return nullptr; 985 986 // Create the canonical compare: icmp slt LHS 0. 987 if (!CmpCanonicalized) { 988 Cmp.setPredicate(ICmpInst::ICMP_SLT); 989 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); 990 if (CmpUsesNegatedOp) 991 Cmp.setOperand(0, LHS); 992 } 993 994 // Create the canonical RHS: RHS = sub (0, LHS). 995 if (!RHSCanonicalized) { 996 assert(RHS->hasOneUse() && "RHS use number is not right"); 997 RHS = Builder.CreateNeg(LHS); 998 if (TVal == LHS) { 999 Sel.setFalseValue(RHS); 1000 FVal = RHS; 1001 } else { 1002 Sel.setTrueValue(RHS); 1003 TVal = RHS; 1004 } 1005 } 1006 1007 // If the select operands do not change, we're done. 1008 if (SPF == SelectPatternFlavor::SPF_NABS) { 1009 if (TVal == LHS) 1010 return &Sel; 1011 assert(FVal == LHS && "Unexpected results from matchSelectPattern"); 1012 } else { 1013 if (FVal == LHS) 1014 return &Sel; 1015 assert(TVal == LHS && "Unexpected results from matchSelectPattern"); 1016 } 1017 1018 // We are swapping the select operands, so swap the metadata too. 1019 Sel.setTrueValue(FVal); 1020 Sel.setFalseValue(TVal); 1021 Sel.swapProfMetadata(); 1022 return &Sel; 1023 } 1024 1025 /// Visit a SelectInst that has an ICmpInst as its first operand. 1026 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 1027 ICmpInst *ICI) { 1028 Value *TrueVal = SI.getTrueValue(); 1029 Value *FalseVal = SI.getFalseValue(); 1030 1031 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) 1032 return NewSel; 1033 1034 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder)) 1035 return NewAbs; 1036 1037 bool Changed = adjustMinMax(SI, *ICI); 1038 1039 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1040 return replaceInstUsesWith(SI, V); 1041 1042 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1043 ICmpInst::Predicate Pred = ICI->getPredicate(); 1044 Value *CmpLHS = ICI->getOperand(0); 1045 Value *CmpRHS = ICI->getOperand(1); 1046 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1047 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1048 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1049 SI.setOperand(1, CmpRHS); 1050 Changed = true; 1051 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1052 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1053 SI.setOperand(2, CmpRHS); 1054 Changed = true; 1055 } 1056 } 1057 1058 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1059 // decomposeBitTestICmp() might help. 1060 { 1061 unsigned BitWidth = 1062 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1063 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1064 Value *X; 1065 const APInt *Y, *C; 1066 bool TrueWhenUnset; 1067 bool IsBitTest = false; 1068 if (ICmpInst::isEquality(Pred) && 1069 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1070 match(CmpRHS, m_Zero())) { 1071 IsBitTest = true; 1072 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1073 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1074 X = CmpLHS; 1075 Y = &MinSignedValue; 1076 IsBitTest = true; 1077 TrueWhenUnset = false; 1078 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1079 X = CmpLHS; 1080 Y = &MinSignedValue; 1081 IsBitTest = true; 1082 TrueWhenUnset = true; 1083 } 1084 if (IsBitTest) { 1085 Value *V = nullptr; 1086 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1087 if (TrueWhenUnset && TrueVal == X && 1088 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1089 V = Builder.CreateAnd(X, ~(*Y)); 1090 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1091 else if (!TrueWhenUnset && FalseVal == X && 1092 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1093 V = Builder.CreateAnd(X, ~(*Y)); 1094 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1095 else if (TrueWhenUnset && FalseVal == X && 1096 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1097 V = Builder.CreateOr(X, *Y); 1098 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1099 else if (!TrueWhenUnset && TrueVal == X && 1100 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1101 V = Builder.CreateOr(X, *Y); 1102 1103 if (V) 1104 return replaceInstUsesWith(SI, V); 1105 } 1106 } 1107 1108 if (Instruction *V = 1109 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1110 return V; 1111 1112 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1113 return replaceInstUsesWith(SI, V); 1114 1115 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1116 return replaceInstUsesWith(SI, V); 1117 1118 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1119 return replaceInstUsesWith(SI, V); 1120 1121 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1122 return replaceInstUsesWith(SI, V); 1123 1124 return Changed ? &SI : nullptr; 1125 } 1126 1127 /// SI is a select whose condition is a PHI node (but the two may be in 1128 /// different blocks). See if the true/false values (V) are live in all of the 1129 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1130 /// 1131 /// X = phi [ C1, BB1], [C2, BB2] 1132 /// Y = add 1133 /// Z = select X, Y, 0 1134 /// 1135 /// because Y is not live in BB1/BB2. 1136 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1137 const SelectInst &SI) { 1138 // If the value is a non-instruction value like a constant or argument, it 1139 // can always be mapped. 1140 const Instruction *I = dyn_cast<Instruction>(V); 1141 if (!I) return true; 1142 1143 // If V is a PHI node defined in the same block as the condition PHI, we can 1144 // map the arguments. 1145 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1146 1147 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1148 if (VP->getParent() == CondPHI->getParent()) 1149 return true; 1150 1151 // Otherwise, if the PHI and select are defined in the same block and if V is 1152 // defined in a different block, then we can transform it. 1153 if (SI.getParent() == CondPHI->getParent() && 1154 I->getParent() != CondPHI->getParent()) 1155 return true; 1156 1157 // Otherwise we have a 'hard' case and we can't tell without doing more 1158 // detailed dominator based analysis, punt. 1159 return false; 1160 } 1161 1162 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1163 /// SPF2(SPF1(A, B), C) 1164 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 1165 SelectPatternFlavor SPF1, 1166 Value *A, Value *B, 1167 Instruction &Outer, 1168 SelectPatternFlavor SPF2, Value *C) { 1169 if (Outer.getType() != Inner->getType()) 1170 return nullptr; 1171 1172 if (C == A || C == B) { 1173 // MAX(MAX(A, B), B) -> MAX(A, B) 1174 // MIN(MIN(a, b), a) -> MIN(a, b) 1175 // TODO: This could be done in instsimplify. 1176 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1177 return replaceInstUsesWith(Outer, Inner); 1178 1179 // MAX(MIN(a, b), a) -> a 1180 // MIN(MAX(a, b), a) -> a 1181 // TODO: This could be done in instsimplify. 1182 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1183 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1184 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1185 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1186 return replaceInstUsesWith(Outer, C); 1187 } 1188 1189 if (SPF1 == SPF2) { 1190 const APInt *CB, *CC; 1191 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1192 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1193 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1194 // TODO: This could be done in instsimplify. 1195 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1196 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1197 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1198 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1199 return replaceInstUsesWith(Outer, Inner); 1200 1201 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1202 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1203 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1204 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1205 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1206 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1207 Outer.replaceUsesOfWith(Inner, A); 1208 return &Outer; 1209 } 1210 } 1211 } 1212 1213 // ABS(ABS(X)) -> ABS(X) 1214 // NABS(NABS(X)) -> NABS(X) 1215 // TODO: This could be done in instsimplify. 1216 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1217 return replaceInstUsesWith(Outer, Inner); 1218 } 1219 1220 // ABS(NABS(X)) -> ABS(X) 1221 // NABS(ABS(X)) -> NABS(X) 1222 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1223 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1224 SelectInst *SI = cast<SelectInst>(Inner); 1225 Value *NewSI = 1226 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1227 SI->getTrueValue(), SI->getName(), SI); 1228 return replaceInstUsesWith(Outer, NewSI); 1229 } 1230 1231 auto IsFreeOrProfitableToInvert = 1232 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1233 if (match(V, m_Not(m_Value(NotV)))) { 1234 // If V has at most 2 uses then we can get rid of the xor operation 1235 // entirely. 1236 ElidesXor |= !V->hasNUsesOrMore(3); 1237 return true; 1238 } 1239 1240 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1241 NotV = nullptr; 1242 return true; 1243 } 1244 1245 return false; 1246 }; 1247 1248 Value *NotA, *NotB, *NotC; 1249 bool ElidesXor = false; 1250 1251 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1252 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1253 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1254 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1255 // 1256 // This transform is performance neutral if we can elide at least one xor from 1257 // the set of three operands, since we'll be tacking on an xor at the very 1258 // end. 1259 if (SelectPatternResult::isMinOrMax(SPF1) && 1260 SelectPatternResult::isMinOrMax(SPF2) && 1261 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1262 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1263 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1264 if (!NotA) 1265 NotA = Builder.CreateNot(A); 1266 if (!NotB) 1267 NotB = Builder.CreateNot(B); 1268 if (!NotC) 1269 NotC = Builder.CreateNot(C); 1270 1271 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1272 NotB); 1273 Value *NewOuter = Builder.CreateNot( 1274 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1275 return replaceInstUsesWith(Outer, NewOuter); 1276 } 1277 1278 return nullptr; 1279 } 1280 1281 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1282 /// This is even legal for FP. 1283 static Instruction *foldAddSubSelect(SelectInst &SI, 1284 InstCombiner::BuilderTy &Builder) { 1285 Value *CondVal = SI.getCondition(); 1286 Value *TrueVal = SI.getTrueValue(); 1287 Value *FalseVal = SI.getFalseValue(); 1288 auto *TI = dyn_cast<Instruction>(TrueVal); 1289 auto *FI = dyn_cast<Instruction>(FalseVal); 1290 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1291 return nullptr; 1292 1293 Instruction *AddOp = nullptr, *SubOp = nullptr; 1294 if ((TI->getOpcode() == Instruction::Sub && 1295 FI->getOpcode() == Instruction::Add) || 1296 (TI->getOpcode() == Instruction::FSub && 1297 FI->getOpcode() == Instruction::FAdd)) { 1298 AddOp = FI; 1299 SubOp = TI; 1300 } else if ((FI->getOpcode() == Instruction::Sub && 1301 TI->getOpcode() == Instruction::Add) || 1302 (FI->getOpcode() == Instruction::FSub && 1303 TI->getOpcode() == Instruction::FAdd)) { 1304 AddOp = TI; 1305 SubOp = FI; 1306 } 1307 1308 if (AddOp) { 1309 Value *OtherAddOp = nullptr; 1310 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1311 OtherAddOp = AddOp->getOperand(1); 1312 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1313 OtherAddOp = AddOp->getOperand(0); 1314 } 1315 1316 if (OtherAddOp) { 1317 // So at this point we know we have (Y -> OtherAddOp): 1318 // select C, (add X, Y), (sub X, Z) 1319 Value *NegVal; // Compute -Z 1320 if (SI.getType()->isFPOrFPVectorTy()) { 1321 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1322 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1323 FastMathFlags Flags = AddOp->getFastMathFlags(); 1324 Flags &= SubOp->getFastMathFlags(); 1325 NegInst->setFastMathFlags(Flags); 1326 } 1327 } else { 1328 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1329 } 1330 1331 Value *NewTrueOp = OtherAddOp; 1332 Value *NewFalseOp = NegVal; 1333 if (AddOp != TI) 1334 std::swap(NewTrueOp, NewFalseOp); 1335 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1336 SI.getName() + ".p", &SI); 1337 1338 if (SI.getType()->isFPOrFPVectorTy()) { 1339 Instruction *RI = 1340 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1341 1342 FastMathFlags Flags = AddOp->getFastMathFlags(); 1343 Flags &= SubOp->getFastMathFlags(); 1344 RI->setFastMathFlags(Flags); 1345 return RI; 1346 } else 1347 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1348 } 1349 } 1350 return nullptr; 1351 } 1352 1353 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1354 Constant *C; 1355 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1356 !match(Sel.getFalseValue(), m_Constant(C))) 1357 return nullptr; 1358 1359 Instruction *ExtInst; 1360 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1361 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1362 return nullptr; 1363 1364 auto ExtOpcode = ExtInst->getOpcode(); 1365 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1366 return nullptr; 1367 1368 // If we are extending from a boolean type or if we can create a select that 1369 // has the same size operands as its condition, try to narrow the select. 1370 Value *X = ExtInst->getOperand(0); 1371 Type *SmallType = X->getType(); 1372 Value *Cond = Sel.getCondition(); 1373 auto *Cmp = dyn_cast<CmpInst>(Cond); 1374 if (!SmallType->isIntOrIntVectorTy(1) && 1375 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1376 return nullptr; 1377 1378 // If the constant is the same after truncation to the smaller type and 1379 // extension to the original type, we can narrow the select. 1380 Type *SelType = Sel.getType(); 1381 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1382 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1383 if (ExtC == C) { 1384 Value *TruncCVal = cast<Value>(TruncC); 1385 if (ExtInst == Sel.getFalseValue()) 1386 std::swap(X, TruncCVal); 1387 1388 // select Cond, (ext X), C --> ext(select Cond, X, C') 1389 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1390 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1391 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1392 } 1393 1394 // If one arm of the select is the extend of the condition, replace that arm 1395 // with the extension of the appropriate known bool value. 1396 if (Cond == X) { 1397 if (ExtInst == Sel.getTrueValue()) { 1398 // select X, (sext X), C --> select X, -1, C 1399 // select X, (zext X), C --> select X, 1, C 1400 Constant *One = ConstantInt::getTrue(SmallType); 1401 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1402 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1403 } else { 1404 // select X, C, (sext X) --> select X, C, 0 1405 // select X, C, (zext X) --> select X, C, 0 1406 Constant *Zero = ConstantInt::getNullValue(SelType); 1407 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1408 } 1409 } 1410 1411 return nullptr; 1412 } 1413 1414 /// Try to transform a vector select with a constant condition vector into a 1415 /// shuffle for easier combining with other shuffles and insert/extract. 1416 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1417 Value *CondVal = SI.getCondition(); 1418 Constant *CondC; 1419 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1420 return nullptr; 1421 1422 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1423 SmallVector<Constant *, 16> Mask; 1424 Mask.reserve(NumElts); 1425 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1426 for (unsigned i = 0; i != NumElts; ++i) { 1427 Constant *Elt = CondC->getAggregateElement(i); 1428 if (!Elt) 1429 return nullptr; 1430 1431 if (Elt->isOneValue()) { 1432 // If the select condition element is true, choose from the 1st vector. 1433 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1434 } else if (Elt->isNullValue()) { 1435 // If the select condition element is false, choose from the 2nd vector. 1436 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1437 } else if (isa<UndefValue>(Elt)) { 1438 // Undef in a select condition (choose one of the operands) does not mean 1439 // the same thing as undef in a shuffle mask (any value is acceptable), so 1440 // give up. 1441 return nullptr; 1442 } else { 1443 // Bail out on a constant expression. 1444 return nullptr; 1445 } 1446 } 1447 1448 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1449 ConstantVector::get(Mask)); 1450 } 1451 1452 /// Reuse bitcasted operands between a compare and select: 1453 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1454 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1455 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1456 InstCombiner::BuilderTy &Builder) { 1457 Value *Cond = Sel.getCondition(); 1458 Value *TVal = Sel.getTrueValue(); 1459 Value *FVal = Sel.getFalseValue(); 1460 1461 CmpInst::Predicate Pred; 1462 Value *A, *B; 1463 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1464 return nullptr; 1465 1466 // The select condition is a compare instruction. If the select's true/false 1467 // values are already the same as the compare operands, there's nothing to do. 1468 if (TVal == A || TVal == B || FVal == A || FVal == B) 1469 return nullptr; 1470 1471 Value *C, *D; 1472 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1473 return nullptr; 1474 1475 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1476 Value *TSrc, *FSrc; 1477 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1478 !match(FVal, m_BitCast(m_Value(FSrc)))) 1479 return nullptr; 1480 1481 // If the select true/false values are *different bitcasts* of the same source 1482 // operands, make the select operands the same as the compare operands and 1483 // cast the result. This is the canonical select form for min/max. 1484 Value *NewSel; 1485 if (TSrc == C && FSrc == D) { 1486 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1487 // bitcast (select (cmp A, B), A, B) 1488 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1489 } else if (TSrc == D && FSrc == C) { 1490 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1491 // bitcast (select (cmp A, B), B, A) 1492 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1493 } else { 1494 return nullptr; 1495 } 1496 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1497 } 1498 1499 /// Try to eliminate select instructions that test the returned flag of cmpxchg 1500 /// instructions. 1501 /// 1502 /// If a select instruction tests the returned flag of a cmpxchg instruction and 1503 /// selects between the returned value of the cmpxchg instruction its compare 1504 /// operand, the result of the select will always be equal to its false value. 1505 /// For example: 1506 /// 1507 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1508 /// %1 = extractvalue { i64, i1 } %0, 1 1509 /// %2 = extractvalue { i64, i1 } %0, 0 1510 /// %3 = select i1 %1, i64 %compare, i64 %2 1511 /// ret i64 %3 1512 /// 1513 /// The returned value of the cmpxchg instruction (%2) is the original value 1514 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 1515 /// must have been equal to %compare. Thus, the result of the select is always 1516 /// equal to %2, and the code can be simplified to: 1517 /// 1518 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1519 /// %1 = extractvalue { i64, i1 } %0, 0 1520 /// ret i64 %1 1521 /// 1522 static Instruction *foldSelectCmpXchg(SelectInst &SI) { 1523 // A helper that determines if V is an extractvalue instruction whose 1524 // aggregate operand is a cmpxchg instruction and whose single index is equal 1525 // to I. If such conditions are true, the helper returns the cmpxchg 1526 // instruction; otherwise, a nullptr is returned. 1527 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 1528 auto *Extract = dyn_cast<ExtractValueInst>(V); 1529 if (!Extract) 1530 return nullptr; 1531 if (Extract->getIndices()[0] != I) 1532 return nullptr; 1533 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 1534 }; 1535 1536 // If the select has a single user, and this user is a select instruction that 1537 // we can simplify, skip the cmpxchg simplification for now. 1538 if (SI.hasOneUse()) 1539 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 1540 if (Select->getCondition() == SI.getCondition()) 1541 if (Select->getFalseValue() == SI.getTrueValue() || 1542 Select->getTrueValue() == SI.getFalseValue()) 1543 return nullptr; 1544 1545 // Ensure the select condition is the returned flag of a cmpxchg instruction. 1546 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 1547 if (!CmpXchg) 1548 return nullptr; 1549 1550 // Check the true value case: The true value of the select is the returned 1551 // value of the same cmpxchg used by the condition, and the false value is the 1552 // cmpxchg instruction's compare operand. 1553 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 1554 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) { 1555 SI.setTrueValue(SI.getFalseValue()); 1556 return &SI; 1557 } 1558 1559 // Check the false value case: The false value of the select is the returned 1560 // value of the same cmpxchg used by the condition, and the true value is the 1561 // cmpxchg instruction's compare operand. 1562 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 1563 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) { 1564 SI.setTrueValue(SI.getFalseValue()); 1565 return &SI; 1566 } 1567 1568 return nullptr; 1569 } 1570 1571 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 1572 Value *Y, 1573 InstCombiner::BuilderTy &Builder) { 1574 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 1575 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 1576 SPF == SelectPatternFlavor::SPF_UMAX; 1577 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 1578 // the constant value check to an assert. 1579 Value *A; 1580 const APInt *C1, *C2; 1581 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 1582 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 1583 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 1584 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 1585 Value *NewMinMax = createMinMax(Builder, SPF, A, 1586 ConstantInt::get(X->getType(), *C2 - *C1)); 1587 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 1588 ConstantInt::get(X->getType(), *C1)); 1589 } 1590 1591 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 1592 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 1593 bool Overflow; 1594 APInt Diff = C2->ssub_ov(*C1, Overflow); 1595 if (!Overflow) { 1596 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 1597 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 1598 Value *NewMinMax = createMinMax(Builder, SPF, A, 1599 ConstantInt::get(X->getType(), Diff)); 1600 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 1601 ConstantInt::get(X->getType(), *C1)); 1602 } 1603 } 1604 1605 return nullptr; 1606 } 1607 1608 /// Reduce a sequence of min/max with a common operand. 1609 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 1610 Value *RHS, 1611 InstCombiner::BuilderTy &Builder) { 1612 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 1613 // TODO: Allow FP min/max with nnan/nsz. 1614 if (!LHS->getType()->isIntOrIntVectorTy()) 1615 return nullptr; 1616 1617 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 1618 Value *A, *B, *C, *D; 1619 SelectPatternResult L = matchSelectPattern(LHS, A, B); 1620 SelectPatternResult R = matchSelectPattern(RHS, C, D); 1621 if (SPF != L.Flavor || L.Flavor != R.Flavor) 1622 return nullptr; 1623 1624 // Look for a common operand. The use checks are different than usual because 1625 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 1626 // the select. 1627 Value *MinMaxOp = nullptr; 1628 Value *ThirdOp = nullptr; 1629 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 1630 // If the LHS is only used in this chain and the RHS is used outside of it, 1631 // reuse the RHS min/max because that will eliminate the LHS. 1632 if (D == A || C == A) { 1633 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 1634 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 1635 MinMaxOp = RHS; 1636 ThirdOp = B; 1637 } else if (D == B || C == B) { 1638 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 1639 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 1640 MinMaxOp = RHS; 1641 ThirdOp = A; 1642 } 1643 } else if (!RHS->hasNUsesOrMore(3)) { 1644 // Reuse the LHS. This will eliminate the RHS. 1645 if (D == A || D == B) { 1646 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 1647 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 1648 MinMaxOp = LHS; 1649 ThirdOp = C; 1650 } else if (C == A || C == B) { 1651 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 1652 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 1653 MinMaxOp = LHS; 1654 ThirdOp = D; 1655 } 1656 } 1657 if (!MinMaxOp || !ThirdOp) 1658 return nullptr; 1659 1660 CmpInst::Predicate P = getMinMaxPred(SPF); 1661 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 1662 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 1663 } 1664 1665 /// Try to reduce a rotate pattern that includes a compare and select into a 1666 /// funnel shift intrinsic. Example: 1667 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 1668 /// --> call llvm.fshl.i32(a, a, b) 1669 static Instruction *foldSelectRotate(SelectInst &Sel) { 1670 // The false value of the select must be a rotate of the true value. 1671 Value *Or0, *Or1; 1672 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 1673 return nullptr; 1674 1675 Value *TVal = Sel.getTrueValue(); 1676 Value *SA0, *SA1; 1677 if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) || 1678 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1))))) 1679 return nullptr; 1680 1681 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 1682 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 1683 if (ShiftOpcode0 == ShiftOpcode1) 1684 return nullptr; 1685 1686 // We have one of these patterns so far: 1687 // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1)) 1688 // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1)) 1689 // This must be a power-of-2 rotate for a bitmasking transform to be valid. 1690 unsigned Width = Sel.getType()->getScalarSizeInBits(); 1691 if (!isPowerOf2_32(Width)) 1692 return nullptr; 1693 1694 // Check the shift amounts to see if they are an opposite pair. 1695 Value *ShAmt; 1696 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 1697 ShAmt = SA0; 1698 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 1699 ShAmt = SA1; 1700 else 1701 return nullptr; 1702 1703 // Finally, see if the select is filtering out a shift-by-zero. 1704 Value *Cond = Sel.getCondition(); 1705 ICmpInst::Predicate Pred; 1706 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 1707 Pred != ICmpInst::ICMP_EQ) 1708 return nullptr; 1709 1710 // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way. 1711 // Convert to funnel shift intrinsic. 1712 bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) || 1713 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl); 1714 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 1715 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 1716 return IntrinsicInst::Create(F, { TVal, TVal, ShAmt }); 1717 } 1718 1719 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1720 Value *CondVal = SI.getCondition(); 1721 Value *TrueVal = SI.getTrueValue(); 1722 Value *FalseVal = SI.getFalseValue(); 1723 Type *SelType = SI.getType(); 1724 1725 // FIXME: Remove this workaround when freeze related patches are done. 1726 // For select with undef operand which feeds into an equality comparison, 1727 // don't simplify it so loop unswitch can know the equality comparison 1728 // may have an undef operand. This is a workaround for PR31652 caused by 1729 // descrepancy about branch on undef between LoopUnswitch and GVN. 1730 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 1731 if (llvm::any_of(SI.users(), [&](User *U) { 1732 ICmpInst *CI = dyn_cast<ICmpInst>(U); 1733 if (CI && CI->isEquality()) 1734 return true; 1735 return false; 1736 })) { 1737 return nullptr; 1738 } 1739 } 1740 1741 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 1742 SQ.getWithInstruction(&SI))) 1743 return replaceInstUsesWith(SI, V); 1744 1745 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1746 return I; 1747 1748 // Canonicalize a one-use integer compare with a non-canonical predicate by 1749 // inverting the predicate and swapping the select operands. This matches a 1750 // compare canonicalization for conditional branches. 1751 // TODO: Should we do the same for FP compares? 1752 CmpInst::Predicate Pred; 1753 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && 1754 !isCanonicalPredicate(Pred)) { 1755 // Swap true/false values and condition. 1756 CmpInst *Cond = cast<CmpInst>(CondVal); 1757 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 1758 SI.setOperand(1, FalseVal); 1759 SI.setOperand(2, TrueVal); 1760 SI.swapProfMetadata(); 1761 Worklist.Add(Cond); 1762 return &SI; 1763 } 1764 1765 if (SelType->isIntOrIntVectorTy(1) && 1766 TrueVal->getType() == CondVal->getType()) { 1767 if (match(TrueVal, m_One())) { 1768 // Change: A = select B, true, C --> A = or B, C 1769 return BinaryOperator::CreateOr(CondVal, FalseVal); 1770 } 1771 if (match(TrueVal, m_Zero())) { 1772 // Change: A = select B, false, C --> A = and !B, C 1773 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1774 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1775 } 1776 if (match(FalseVal, m_Zero())) { 1777 // Change: A = select B, C, false --> A = and B, C 1778 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1779 } 1780 if (match(FalseVal, m_One())) { 1781 // Change: A = select B, C, true --> A = or !B, C 1782 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1783 return BinaryOperator::CreateOr(NotCond, TrueVal); 1784 } 1785 1786 // select a, a, b -> a | b 1787 // select a, b, a -> a & b 1788 if (CondVal == TrueVal) 1789 return BinaryOperator::CreateOr(CondVal, FalseVal); 1790 if (CondVal == FalseVal) 1791 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1792 1793 // select a, ~a, b -> (~a) & b 1794 // select a, b, ~a -> (~a) | b 1795 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1796 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1797 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1798 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1799 } 1800 1801 // Selecting between two integer or vector splat integer constants? 1802 // 1803 // Note that we don't handle a scalar select of vectors: 1804 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1805 // because that may need 3 instructions to splat the condition value: 1806 // extend, insertelement, shufflevector. 1807 if (SelType->isIntOrIntVectorTy() && 1808 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1809 // select C, 1, 0 -> zext C to int 1810 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1811 return new ZExtInst(CondVal, SelType); 1812 1813 // select C, -1, 0 -> sext C to int 1814 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1815 return new SExtInst(CondVal, SelType); 1816 1817 // select C, 0, 1 -> zext !C to int 1818 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1819 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1820 return new ZExtInst(NotCond, SelType); 1821 } 1822 1823 // select C, 0, -1 -> sext !C to int 1824 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1825 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1826 return new SExtInst(NotCond, SelType); 1827 } 1828 } 1829 1830 // See if we are selecting two values based on a comparison of the two values. 1831 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1832 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1833 // Canonicalize to use ordered comparisons by swapping the select 1834 // operands. 1835 // 1836 // e.g. 1837 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1838 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1839 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1840 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1841 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1842 Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, 1843 FCI->getName() + ".inv"); 1844 1845 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1846 SI.getName() + ".p"); 1847 } 1848 1849 // NOTE: if we wanted to, this is where to detect MIN/MAX 1850 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1851 // Canonicalize to use ordered comparisons by swapping the select 1852 // operands. 1853 // 1854 // e.g. 1855 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1856 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1857 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1858 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1859 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1860 Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, 1861 FCI->getName() + ".inv"); 1862 1863 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1864 SI.getName() + ".p"); 1865 } 1866 1867 // NOTE: if we wanted to, this is where to detect MIN/MAX 1868 } 1869 1870 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 1871 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 1872 // also require nnan because we do not want to unintentionally change the 1873 // sign of a NaN value. 1874 Value *X = FCI->getOperand(0); 1875 FCmpInst::Predicate Pred = FCI->getPredicate(); 1876 if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) { 1877 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 1878 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 1879 if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE && 1880 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) || 1881 (X == TrueVal && Pred == FCmpInst::FCMP_OGT && 1882 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) { 1883 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); 1884 return replaceInstUsesWith(SI, Fabs); 1885 } 1886 // With nsz: 1887 // (X < +/-0.0) ? -X : X --> fabs(X) 1888 // (X <= +/-0.0) ? -X : X --> fabs(X) 1889 // (X > +/-0.0) ? X : -X --> fabs(X) 1890 // (X >= +/-0.0) ? X : -X --> fabs(X) 1891 if (FCI->hasNoSignedZeros() && 1892 ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) && 1893 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) || 1894 (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) && 1895 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) { 1896 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); 1897 return replaceInstUsesWith(SI, Fabs); 1898 } 1899 } 1900 } 1901 1902 // See if we are selecting two values based on a comparison of the two values. 1903 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1904 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1905 return Result; 1906 1907 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 1908 return Add; 1909 1910 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1911 auto *TI = dyn_cast<Instruction>(TrueVal); 1912 auto *FI = dyn_cast<Instruction>(FalseVal); 1913 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1914 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1915 return IV; 1916 1917 if (Instruction *I = foldSelectExtConst(SI)) 1918 return I; 1919 1920 // See if we can fold the select into one of our operands. 1921 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1922 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1923 return FoldI; 1924 1925 Value *LHS, *RHS; 1926 Instruction::CastOps CastOp; 1927 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1928 auto SPF = SPR.Flavor; 1929 if (SPF) { 1930 Value *LHS2, *RHS2; 1931 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1932 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 1933 RHS2, SI, SPF, RHS)) 1934 return R; 1935 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1936 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 1937 RHS2, SI, SPF, LHS)) 1938 return R; 1939 // TODO. 1940 // ABS(-X) -> ABS(X) 1941 } 1942 1943 if (SelectPatternResult::isMinOrMax(SPF)) { 1944 // Canonicalize so that 1945 // - type casts are outside select patterns. 1946 // - float clamp is transformed to min/max pattern 1947 1948 bool IsCastNeeded = LHS->getType() != SelType; 1949 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 1950 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 1951 if (IsCastNeeded || 1952 (LHS->getType()->isFPOrFPVectorTy() && 1953 ((CmpLHS != LHS && CmpLHS != RHS) || 1954 (CmpRHS != LHS && CmpRHS != RHS)))) { 1955 CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered); 1956 1957 Value *Cmp; 1958 if (CmpInst::isIntPredicate(Pred)) { 1959 Cmp = Builder.CreateICmp(Pred, LHS, RHS); 1960 } else { 1961 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1962 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1963 Builder.setFastMathFlags(FMF); 1964 Cmp = Builder.CreateFCmp(Pred, LHS, RHS); 1965 } 1966 1967 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 1968 if (!IsCastNeeded) 1969 return replaceInstUsesWith(SI, NewSI); 1970 1971 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 1972 return replaceInstUsesWith(SI, NewCast); 1973 } 1974 1975 // MAX(~a, ~b) -> ~MIN(a, b) 1976 // MAX(~a, C) -> ~MIN(a, ~C) 1977 // MIN(~a, ~b) -> ~MAX(a, b) 1978 // MIN(~a, C) -> ~MAX(a, ~C) 1979 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 1980 Value *A; 1981 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 1982 !IsFreeToInvert(A, A->hasOneUse()) && 1983 // Passing false to only consider m_Not and constants. 1984 IsFreeToInvert(Y, false)) { 1985 Value *B = Builder.CreateNot(Y); 1986 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 1987 A, B); 1988 // Copy the profile metadata. 1989 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 1990 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 1991 // Swap the metadata if the operands are swapped. 1992 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 1993 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 1994 } 1995 1996 return BinaryOperator::CreateNot(NewMinMax); 1997 } 1998 1999 return nullptr; 2000 }; 2001 2002 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 2003 return I; 2004 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 2005 return I; 2006 2007 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 2008 return I; 2009 2010 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 2011 return I; 2012 } 2013 } 2014 2015 // See if we can fold the select into a phi node if the condition is a select. 2016 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2017 // The true/false values have to be live in the PHI predecessor's blocks. 2018 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2019 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2020 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2021 return NV; 2022 2023 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2024 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2025 // select(C, select(C, a, b), c) -> select(C, a, c) 2026 if (TrueSI->getCondition() == CondVal) { 2027 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2028 return nullptr; 2029 SI.setOperand(1, TrueSI->getTrueValue()); 2030 return &SI; 2031 } 2032 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2033 // We choose this as normal form to enable folding on the And and shortening 2034 // paths for the values (this helps GetUnderlyingObjects() for example). 2035 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 2036 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 2037 SI.setOperand(0, And); 2038 SI.setOperand(1, TrueSI->getTrueValue()); 2039 return &SI; 2040 } 2041 } 2042 } 2043 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 2044 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 2045 // select(C, a, select(C, b, c)) -> select(C, a, c) 2046 if (FalseSI->getCondition() == CondVal) { 2047 if (SI.getFalseValue() == FalseSI->getFalseValue()) 2048 return nullptr; 2049 SI.setOperand(2, FalseSI->getFalseValue()); 2050 return &SI; 2051 } 2052 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 2053 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 2054 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 2055 SI.setOperand(0, Or); 2056 SI.setOperand(2, FalseSI->getFalseValue()); 2057 return &SI; 2058 } 2059 } 2060 } 2061 2062 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 2063 // The select might be preventing a division by 0. 2064 switch (BO->getOpcode()) { 2065 default: 2066 return true; 2067 case Instruction::SRem: 2068 case Instruction::URem: 2069 case Instruction::SDiv: 2070 case Instruction::UDiv: 2071 return false; 2072 } 2073 }; 2074 2075 // Try to simplify a binop sandwiched between 2 selects with the same 2076 // condition. 2077 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 2078 BinaryOperator *TrueBO; 2079 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 2080 canMergeSelectThroughBinop(TrueBO)) { 2081 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 2082 if (TrueBOSI->getCondition() == CondVal) { 2083 TrueBO->setOperand(0, TrueBOSI->getTrueValue()); 2084 Worklist.Add(TrueBO); 2085 return &SI; 2086 } 2087 } 2088 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 2089 if (TrueBOSI->getCondition() == CondVal) { 2090 TrueBO->setOperand(1, TrueBOSI->getTrueValue()); 2091 Worklist.Add(TrueBO); 2092 return &SI; 2093 } 2094 } 2095 } 2096 2097 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 2098 BinaryOperator *FalseBO; 2099 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 2100 canMergeSelectThroughBinop(FalseBO)) { 2101 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 2102 if (FalseBOSI->getCondition() == CondVal) { 2103 FalseBO->setOperand(0, FalseBOSI->getFalseValue()); 2104 Worklist.Add(FalseBO); 2105 return &SI; 2106 } 2107 } 2108 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 2109 if (FalseBOSI->getCondition() == CondVal) { 2110 FalseBO->setOperand(1, FalseBOSI->getFalseValue()); 2111 Worklist.Add(FalseBO); 2112 return &SI; 2113 } 2114 } 2115 } 2116 2117 Value *NotCond; 2118 if (match(CondVal, m_Not(m_Value(NotCond)))) { 2119 SI.setOperand(0, NotCond); 2120 SI.setOperand(1, FalseVal); 2121 SI.setOperand(2, TrueVal); 2122 SI.swapProfMetadata(); 2123 return &SI; 2124 } 2125 2126 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 2127 unsigned VWidth = VecTy->getNumElements(); 2128 APInt UndefElts(VWidth, 0); 2129 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2130 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 2131 if (V != &SI) 2132 return replaceInstUsesWith(SI, V); 2133 return &SI; 2134 } 2135 } 2136 2137 // If we can compute the condition, there's no need for a select. 2138 // Like the above fold, we are attempting to reduce compile-time cost by 2139 // putting this fold here with limitations rather than in InstSimplify. 2140 // The motivation for this call into value tracking is to take advantage of 2141 // the assumption cache, so make sure that is populated. 2142 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 2143 KnownBits Known(1); 2144 computeKnownBits(CondVal, Known, 0, &SI); 2145 if (Known.One.isOneValue()) 2146 return replaceInstUsesWith(SI, TrueVal); 2147 if (Known.Zero.isOneValue()) 2148 return replaceInstUsesWith(SI, FalseVal); 2149 } 2150 2151 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 2152 return BitCastSel; 2153 2154 // Simplify selects that test the returned flag of cmpxchg instructions. 2155 if (Instruction *Select = foldSelectCmpXchg(SI)) 2156 return Select; 2157 2158 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI)) 2159 return Select; 2160 2161 if (Instruction *Rot = foldSelectRotate(SI)) 2162 return Rot; 2163 2164 return nullptr; 2165 } 2166