1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitSelect function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/MDBuilder.h" 19 #include "llvm/IR/PatternMatch.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 static SelectPatternFlavor 26 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) { 27 switch (SPF) { 28 default: 29 llvm_unreachable("unhandled!"); 30 31 case SPF_SMIN: 32 return SPF_SMAX; 33 case SPF_UMIN: 34 return SPF_UMAX; 35 case SPF_SMAX: 36 return SPF_SMIN; 37 case SPF_UMAX: 38 return SPF_UMIN; 39 } 40 } 41 42 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF, 43 bool Ordered=false) { 44 switch (SPF) { 45 default: 46 llvm_unreachable("unhandled!"); 47 48 case SPF_SMIN: 49 return ICmpInst::ICMP_SLT; 50 case SPF_UMIN: 51 return ICmpInst::ICMP_ULT; 52 case SPF_SMAX: 53 return ICmpInst::ICMP_SGT; 54 case SPF_UMAX: 55 return ICmpInst::ICMP_UGT; 56 case SPF_FMINNUM: 57 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 58 case SPF_FMAXNUM: 59 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 60 } 61 } 62 63 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder, 64 SelectPatternFlavor SPF, Value *A, 65 Value *B) { 66 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF); 67 assert(CmpInst::isIntPredicate(Pred)); 68 return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B); 69 } 70 71 /// We want to turn code that looks like this: 72 /// %C = or %A, %B 73 /// %D = select %cond, %C, %A 74 /// into: 75 /// %C = select %cond, %B, 0 76 /// %D = or %A, %C 77 /// 78 /// Assuming that the specified instruction is an operand to the select, return 79 /// a bitmask indicating which operands of this instruction are foldable if they 80 /// equal the other incoming value of the select. 81 /// 82 static unsigned getSelectFoldableOperands(Instruction *I) { 83 switch (I->getOpcode()) { 84 case Instruction::Add: 85 case Instruction::Mul: 86 case Instruction::And: 87 case Instruction::Or: 88 case Instruction::Xor: 89 return 3; // Can fold through either operand. 90 case Instruction::Sub: // Can only fold on the amount subtracted. 91 case Instruction::Shl: // Can only fold on the shift amount. 92 case Instruction::LShr: 93 case Instruction::AShr: 94 return 1; 95 default: 96 return 0; // Cannot fold 97 } 98 } 99 100 /// For the same transformation as the previous function, return the identity 101 /// constant that goes into the select. 102 static Constant *getSelectFoldableConstant(Instruction *I) { 103 switch (I->getOpcode()) { 104 default: llvm_unreachable("This cannot happen!"); 105 case Instruction::Add: 106 case Instruction::Sub: 107 case Instruction::Or: 108 case Instruction::Xor: 109 case Instruction::Shl: 110 case Instruction::LShr: 111 case Instruction::AShr: 112 return Constant::getNullValue(I->getType()); 113 case Instruction::And: 114 return Constant::getAllOnesValue(I->getType()); 115 case Instruction::Mul: 116 return ConstantInt::get(I->getType(), 1); 117 } 118 } 119 120 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 121 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 122 Instruction *FI) { 123 // If this is a cast from the same type, merge. 124 if (TI->getNumOperands() == 1 && TI->isCast()) { 125 Type *FIOpndTy = FI->getOperand(0)->getType(); 126 if (TI->getOperand(0)->getType() != FIOpndTy) 127 return nullptr; 128 129 // The select condition may be a vector. We may only change the operand 130 // type if the vector width remains the same (and matches the condition). 131 Type *CondTy = SI.getCondition()->getType(); 132 if (CondTy->isVectorTy()) { 133 if (!FIOpndTy->isVectorTy()) 134 return nullptr; 135 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 136 return nullptr; 137 138 // TODO: If the backend knew how to deal with casts better, we could 139 // remove this limitation. For now, there's too much potential to create 140 // worse codegen by promoting the select ahead of size-altering casts 141 // (PR28160). 142 // 143 // Note that ValueTracking's matchSelectPattern() looks through casts 144 // without checking 'hasOneUse' when it matches min/max patterns, so this 145 // transform may end up happening anyway. 146 if (TI->getOpcode() != Instruction::BitCast && 147 (!TI->hasOneUse() || !FI->hasOneUse())) 148 return nullptr; 149 150 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 151 // TODO: The one-use restrictions for a scalar select could be eased if 152 // the fold of a select in visitLoadInst() was enhanced to match a pattern 153 // that includes a cast. 154 return nullptr; 155 } 156 157 // Fold this by inserting a select from the input values. 158 Value *NewSI = 159 Builder->CreateSelect(SI.getCondition(), TI->getOperand(0), 160 FI->getOperand(0), SI.getName() + ".v", &SI); 161 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 162 TI->getType()); 163 } 164 165 // Only handle binary operators with one-use here. As with the cast case 166 // above, it may be possible to relax the one-use constraint, but that needs 167 // be examined carefully since it may not reduce the total number of 168 // instructions. 169 BinaryOperator *BO = dyn_cast<BinaryOperator>(TI); 170 if (!BO || !TI->hasOneUse() || !FI->hasOneUse()) 171 return nullptr; 172 173 // Figure out if the operations have any operands in common. 174 Value *MatchOp, *OtherOpT, *OtherOpF; 175 bool MatchIsOpZero; 176 if (TI->getOperand(0) == FI->getOperand(0)) { 177 MatchOp = TI->getOperand(0); 178 OtherOpT = TI->getOperand(1); 179 OtherOpF = FI->getOperand(1); 180 MatchIsOpZero = true; 181 } else if (TI->getOperand(1) == FI->getOperand(1)) { 182 MatchOp = TI->getOperand(1); 183 OtherOpT = TI->getOperand(0); 184 OtherOpF = FI->getOperand(0); 185 MatchIsOpZero = false; 186 } else if (!TI->isCommutative()) { 187 return nullptr; 188 } else if (TI->getOperand(0) == FI->getOperand(1)) { 189 MatchOp = TI->getOperand(0); 190 OtherOpT = TI->getOperand(1); 191 OtherOpF = FI->getOperand(0); 192 MatchIsOpZero = true; 193 } else if (TI->getOperand(1) == FI->getOperand(0)) { 194 MatchOp = TI->getOperand(1); 195 OtherOpT = TI->getOperand(0); 196 OtherOpF = FI->getOperand(1); 197 MatchIsOpZero = true; 198 } else { 199 return nullptr; 200 } 201 202 // If we reach here, they do have operations in common. 203 Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, 204 SI.getName() + ".v", &SI); 205 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 206 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 207 return BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 208 } 209 210 static bool isSelect01(Constant *C1, Constant *C2) { 211 ConstantInt *C1I = dyn_cast<ConstantInt>(C1); 212 if (!C1I) 213 return false; 214 ConstantInt *C2I = dyn_cast<ConstantInt>(C2); 215 if (!C2I) 216 return false; 217 if (!C1I->isZero() && !C2I->isZero()) // One side must be zero. 218 return false; 219 return C1I->isOne() || C1I->isAllOnesValue() || 220 C2I->isOne() || C2I->isAllOnesValue(); 221 } 222 223 /// Try to fold the select into one of the operands to allow further 224 /// optimization. 225 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 226 Value *FalseVal) { 227 // See the comment above GetSelectFoldableOperands for a description of the 228 // transformation we are doing here. 229 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) { 230 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && 231 !isa<Constant>(FalseVal)) { 232 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 233 unsigned OpToFold = 0; 234 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 235 OpToFold = 1; 236 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 237 OpToFold = 2; 238 } 239 240 if (OpToFold) { 241 Constant *C = getSelectFoldableConstant(TVI); 242 Value *OOp = TVI->getOperand(2-OpToFold); 243 // Avoid creating select between 2 constants unless it's selecting 244 // between 0, 1 and -1. 245 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 246 Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C); 247 NewSel->takeName(TVI); 248 BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI); 249 BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(), 250 FalseVal, NewSel); 251 BO->copyIRFlags(TVI_BO); 252 return BO; 253 } 254 } 255 } 256 } 257 } 258 259 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) { 260 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && 261 !isa<Constant>(TrueVal)) { 262 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 263 unsigned OpToFold = 0; 264 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 265 OpToFold = 1; 266 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 267 OpToFold = 2; 268 } 269 270 if (OpToFold) { 271 Constant *C = getSelectFoldableConstant(FVI); 272 Value *OOp = FVI->getOperand(2-OpToFold); 273 // Avoid creating select between 2 constants unless it's selecting 274 // between 0, 1 and -1. 275 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 276 Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp); 277 NewSel->takeName(FVI); 278 BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI); 279 BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(), 280 TrueVal, NewSel); 281 BO->copyIRFlags(FVI_BO); 282 return BO; 283 } 284 } 285 } 286 } 287 } 288 289 return nullptr; 290 } 291 292 /// We want to turn: 293 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 294 /// into: 295 /// (or (shl (and X, C1), C3), y) 296 /// iff: 297 /// C1 and C2 are both powers of 2 298 /// where: 299 /// C3 = Log(C2) - Log(C1) 300 /// 301 /// This transform handles cases where: 302 /// 1. The icmp predicate is inverted 303 /// 2. The select operands are reversed 304 /// 3. The magnitude of C2 and C1 are flipped 305 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal, 306 Value *FalseVal, 307 InstCombiner::BuilderTy *Builder) { 308 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 309 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 310 return nullptr; 311 312 Value *CmpLHS = IC->getOperand(0); 313 Value *CmpRHS = IC->getOperand(1); 314 315 if (!match(CmpRHS, m_Zero())) 316 return nullptr; 317 318 Value *X; 319 const APInt *C1; 320 if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1)))) 321 return nullptr; 322 323 const APInt *C2; 324 bool OrOnTrueVal = false; 325 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 326 if (!OrOnFalseVal) 327 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 328 329 if (!OrOnFalseVal && !OrOnTrueVal) 330 return nullptr; 331 332 Value *V = CmpLHS; 333 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 334 335 unsigned C1Log = C1->logBase2(); 336 unsigned C2Log = C2->logBase2(); 337 if (C2Log > C1Log) { 338 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 339 V = Builder->CreateShl(V, C2Log - C1Log); 340 } else if (C1Log > C2Log) { 341 V = Builder->CreateLShr(V, C1Log - C2Log); 342 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 343 } else 344 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 345 346 ICmpInst::Predicate Pred = IC->getPredicate(); 347 if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) || 348 (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal)) 349 V = Builder->CreateXor(V, *C2); 350 351 return Builder->CreateOr(V, Y); 352 } 353 354 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 355 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 356 /// 357 /// For example, we can fold the following code sequence: 358 /// \code 359 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 360 /// %1 = icmp ne i32 %x, 0 361 /// %2 = select i1 %1, i32 %0, i32 32 362 /// \code 363 /// 364 /// into: 365 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 366 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 367 InstCombiner::BuilderTy *Builder) { 368 ICmpInst::Predicate Pred = ICI->getPredicate(); 369 Value *CmpLHS = ICI->getOperand(0); 370 Value *CmpRHS = ICI->getOperand(1); 371 372 // Check if the condition value compares a value for equality against zero. 373 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 374 return nullptr; 375 376 Value *Count = FalseVal; 377 Value *ValueOnZero = TrueVal; 378 if (Pred == ICmpInst::ICMP_NE) 379 std::swap(Count, ValueOnZero); 380 381 // Skip zero extend/truncate. 382 Value *V = nullptr; 383 if (match(Count, m_ZExt(m_Value(V))) || 384 match(Count, m_Trunc(m_Value(V)))) 385 Count = V; 386 387 // Check if the value propagated on zero is a constant number equal to the 388 // sizeof in bits of 'Count'. 389 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 390 if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) 391 return nullptr; 392 393 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 394 // input to the cttz/ctlz is used as LHS for the compare instruction. 395 if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) || 396 match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) { 397 IntrinsicInst *II = cast<IntrinsicInst>(Count); 398 // Explicitly clear the 'undef_on_zero' flag. 399 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 400 Type *Ty = NewI->getArgOperand(1)->getType(); 401 NewI->setArgOperand(1, Constant::getNullValue(Ty)); 402 Builder->Insert(NewI); 403 return Builder->CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 404 } 405 406 return nullptr; 407 } 408 409 /// Return true if we find and adjust an icmp+select pattern where the compare 410 /// is with a constant that can be incremented or decremented to match the 411 /// minimum or maximum idiom. 412 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 413 ICmpInst::Predicate Pred = Cmp.getPredicate(); 414 Value *CmpLHS = Cmp.getOperand(0); 415 Value *CmpRHS = Cmp.getOperand(1); 416 Value *TrueVal = Sel.getTrueValue(); 417 Value *FalseVal = Sel.getFalseValue(); 418 419 // We may move or edit the compare, so make sure the select is the only user. 420 const APInt *CmpC; 421 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 422 return false; 423 424 // These transforms only work for selects of integers or vector selects of 425 // integer vectors. 426 Type *SelTy = Sel.getType(); 427 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 428 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 429 return false; 430 431 Constant *AdjustedRHS; 432 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 433 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 434 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 435 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 436 else 437 return false; 438 439 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 440 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 441 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 442 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 443 ; // Nothing to do here. Values match without any sign/zero extension. 444 } 445 // Types do not match. Instead of calculating this with mixed types, promote 446 // all to the larger type. This enables scalar evolution to analyze this 447 // expression. 448 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 449 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 450 451 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 452 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 453 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 454 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 455 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 456 CmpLHS = TrueVal; 457 AdjustedRHS = SextRHS; 458 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 459 SextRHS == TrueVal) { 460 CmpLHS = FalseVal; 461 AdjustedRHS = SextRHS; 462 } else if (Cmp.isUnsigned()) { 463 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 464 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 465 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 466 // zext + signed compare cannot be changed: 467 // 0xff <s 0x00, but 0x00ff >s 0x0000 468 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 469 CmpLHS = TrueVal; 470 AdjustedRHS = ZextRHS; 471 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 472 ZextRHS == TrueVal) { 473 CmpLHS = FalseVal; 474 AdjustedRHS = ZextRHS; 475 } else { 476 return false; 477 } 478 } else { 479 return false; 480 } 481 } else { 482 return false; 483 } 484 485 Pred = ICmpInst::getSwappedPredicate(Pred); 486 CmpRHS = AdjustedRHS; 487 std::swap(FalseVal, TrueVal); 488 Cmp.setPredicate(Pred); 489 Cmp.setOperand(0, CmpLHS); 490 Cmp.setOperand(1, CmpRHS); 491 Sel.setOperand(1, TrueVal); 492 Sel.setOperand(2, FalseVal); 493 Sel.swapProfMetadata(); 494 495 // Move the compare instruction right before the select instruction. Otherwise 496 // the sext/zext value may be defined after the compare instruction uses it. 497 Cmp.moveBefore(&Sel); 498 499 return true; 500 } 501 502 /// If this is an integer min/max where the select's 'true' operand is a 503 /// constant, canonicalize that constant to the 'false' operand: 504 /// select (icmp Pred X, C), C, X --> select (icmp Pred' X, C), X, C 505 static Instruction * 506 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 507 InstCombiner::BuilderTy &Builder) { 508 // TODO: We should also canonicalize min/max when the select has a different 509 // constant value than the cmp constant, but we need to fix the backend first. 510 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)) || 511 !isa<Constant>(Sel.getTrueValue()) || 512 isa<Constant>(Sel.getFalseValue()) || 513 Cmp.getOperand(1) != Sel.getTrueValue()) 514 return nullptr; 515 516 // Canonicalize the compare predicate based on whether we have min or max. 517 Value *LHS, *RHS; 518 ICmpInst::Predicate NewPred; 519 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 520 switch (SPR.Flavor) { 521 case SPF_SMIN: NewPred = ICmpInst::ICMP_SLT; break; 522 case SPF_UMIN: NewPred = ICmpInst::ICMP_ULT; break; 523 case SPF_SMAX: NewPred = ICmpInst::ICMP_SGT; break; 524 case SPF_UMAX: NewPred = ICmpInst::ICMP_UGT; break; 525 default: return nullptr; 526 } 527 528 // Canonicalize the constant to the right side. 529 if (isa<Constant>(LHS)) 530 std::swap(LHS, RHS); 531 532 Value *NewCmp = Builder.CreateICmp(NewPred, LHS, RHS); 533 SelectInst *NewSel = SelectInst::Create(NewCmp, LHS, RHS, "", nullptr, &Sel); 534 535 // We swapped the select operands, so swap the metadata too. 536 NewSel->swapProfMetadata(); 537 return NewSel; 538 } 539 540 /// Visit a SelectInst that has an ICmpInst as its first operand. 541 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 542 ICmpInst *ICI) { 543 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *Builder)) 544 return NewSel; 545 546 bool Changed = adjustMinMax(SI, *ICI); 547 548 ICmpInst::Predicate Pred = ICI->getPredicate(); 549 Value *CmpLHS = ICI->getOperand(0); 550 Value *CmpRHS = ICI->getOperand(1); 551 Value *TrueVal = SI.getTrueValue(); 552 Value *FalseVal = SI.getFalseValue(); 553 554 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 555 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 556 // FIXME: Type and constness constraints could be lifted, but we have to 557 // watch code size carefully. We should consider xor instead of 558 // sub/add when we decide to do that. 559 if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) { 560 if (TrueVal->getType() == Ty) { 561 if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) { 562 ConstantInt *C1 = nullptr, *C2 = nullptr; 563 if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) { 564 C1 = dyn_cast<ConstantInt>(TrueVal); 565 C2 = dyn_cast<ConstantInt>(FalseVal); 566 } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) { 567 C1 = dyn_cast<ConstantInt>(FalseVal); 568 C2 = dyn_cast<ConstantInt>(TrueVal); 569 } 570 if (C1 && C2) { 571 // This shift results in either -1 or 0. 572 Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1); 573 574 // Check if we can express the operation with a single or. 575 if (C2->isAllOnesValue()) 576 return replaceInstUsesWith(SI, Builder->CreateOr(AShr, C1)); 577 578 Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue()); 579 return replaceInstUsesWith(SI, Builder->CreateAdd(And, C1)); 580 } 581 } 582 } 583 } 584 585 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 586 587 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 588 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 589 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 590 SI.setOperand(1, CmpRHS); 591 Changed = true; 592 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 593 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 594 SI.setOperand(2, CmpRHS); 595 Changed = true; 596 } 597 } 598 599 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 600 // decomposeBitTestICmp() might help. 601 { 602 unsigned BitWidth = 603 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 604 APInt MinSignedValue = APInt::getSignBit(BitWidth); 605 Value *X; 606 const APInt *Y, *C; 607 bool TrueWhenUnset; 608 bool IsBitTest = false; 609 if (ICmpInst::isEquality(Pred) && 610 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 611 match(CmpRHS, m_Zero())) { 612 IsBitTest = true; 613 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 614 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 615 X = CmpLHS; 616 Y = &MinSignedValue; 617 IsBitTest = true; 618 TrueWhenUnset = false; 619 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 620 X = CmpLHS; 621 Y = &MinSignedValue; 622 IsBitTest = true; 623 TrueWhenUnset = true; 624 } 625 if (IsBitTest) { 626 Value *V = nullptr; 627 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 628 if (TrueWhenUnset && TrueVal == X && 629 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 630 V = Builder->CreateAnd(X, ~(*Y)); 631 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 632 else if (!TrueWhenUnset && FalseVal == X && 633 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 634 V = Builder->CreateAnd(X, ~(*Y)); 635 // (X & Y) == 0 ? X ^ Y : X --> X | Y 636 else if (TrueWhenUnset && FalseVal == X && 637 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 638 V = Builder->CreateOr(X, *Y); 639 // (X & Y) != 0 ? X : X ^ Y --> X | Y 640 else if (!TrueWhenUnset && TrueVal == X && 641 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 642 V = Builder->CreateOr(X, *Y); 643 644 if (V) 645 return replaceInstUsesWith(SI, V); 646 } 647 } 648 649 if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder)) 650 return replaceInstUsesWith(SI, V); 651 652 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 653 return replaceInstUsesWith(SI, V); 654 655 return Changed ? &SI : nullptr; 656 } 657 658 659 /// SI is a select whose condition is a PHI node (but the two may be in 660 /// different blocks). See if the true/false values (V) are live in all of the 661 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 662 /// 663 /// X = phi [ C1, BB1], [C2, BB2] 664 /// Y = add 665 /// Z = select X, Y, 0 666 /// 667 /// because Y is not live in BB1/BB2. 668 /// 669 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 670 const SelectInst &SI) { 671 // If the value is a non-instruction value like a constant or argument, it 672 // can always be mapped. 673 const Instruction *I = dyn_cast<Instruction>(V); 674 if (!I) return true; 675 676 // If V is a PHI node defined in the same block as the condition PHI, we can 677 // map the arguments. 678 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 679 680 if (const PHINode *VP = dyn_cast<PHINode>(I)) 681 if (VP->getParent() == CondPHI->getParent()) 682 return true; 683 684 // Otherwise, if the PHI and select are defined in the same block and if V is 685 // defined in a different block, then we can transform it. 686 if (SI.getParent() == CondPHI->getParent() && 687 I->getParent() != CondPHI->getParent()) 688 return true; 689 690 // Otherwise we have a 'hard' case and we can't tell without doing more 691 // detailed dominator based analysis, punt. 692 return false; 693 } 694 695 /// We have an SPF (e.g. a min or max) of an SPF of the form: 696 /// SPF2(SPF1(A, B), C) 697 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 698 SelectPatternFlavor SPF1, 699 Value *A, Value *B, 700 Instruction &Outer, 701 SelectPatternFlavor SPF2, Value *C) { 702 if (Outer.getType() != Inner->getType()) 703 return nullptr; 704 705 if (C == A || C == B) { 706 // MAX(MAX(A, B), B) -> MAX(A, B) 707 // MIN(MIN(a, b), a) -> MIN(a, b) 708 if (SPF1 == SPF2) 709 return replaceInstUsesWith(Outer, Inner); 710 711 // MAX(MIN(a, b), a) -> a 712 // MIN(MAX(a, b), a) -> a 713 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 714 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 715 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 716 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 717 return replaceInstUsesWith(Outer, C); 718 } 719 720 if (SPF1 == SPF2) { 721 const APInt *CB, *CC; 722 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 723 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 724 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 725 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 726 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 727 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 728 (SPF1 == SPF_SMAX && CB->sge(*CC))) 729 return replaceInstUsesWith(Outer, Inner); 730 731 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 732 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 733 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 734 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 735 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 736 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 737 Outer.replaceUsesOfWith(Inner, A); 738 return &Outer; 739 } 740 } 741 } 742 743 // ABS(ABS(X)) -> ABS(X) 744 // NABS(NABS(X)) -> NABS(X) 745 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 746 return replaceInstUsesWith(Outer, Inner); 747 } 748 749 // ABS(NABS(X)) -> ABS(X) 750 // NABS(ABS(X)) -> NABS(X) 751 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 752 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 753 SelectInst *SI = cast<SelectInst>(Inner); 754 Value *NewSI = 755 Builder->CreateSelect(SI->getCondition(), SI->getFalseValue(), 756 SI->getTrueValue(), SI->getName(), SI); 757 return replaceInstUsesWith(Outer, NewSI); 758 } 759 760 auto IsFreeOrProfitableToInvert = 761 [&](Value *V, Value *&NotV, bool &ElidesXor) { 762 if (match(V, m_Not(m_Value(NotV)))) { 763 // If V has at most 2 uses then we can get rid of the xor operation 764 // entirely. 765 ElidesXor |= !V->hasNUsesOrMore(3); 766 return true; 767 } 768 769 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 770 NotV = nullptr; 771 return true; 772 } 773 774 return false; 775 }; 776 777 Value *NotA, *NotB, *NotC; 778 bool ElidesXor = false; 779 780 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 781 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 782 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 783 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 784 // 785 // This transform is performance neutral if we can elide at least one xor from 786 // the set of three operands, since we'll be tacking on an xor at the very 787 // end. 788 if (IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 789 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 790 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 791 if (!NotA) 792 NotA = Builder->CreateNot(A); 793 if (!NotB) 794 NotB = Builder->CreateNot(B); 795 if (!NotC) 796 NotC = Builder->CreateNot(C); 797 798 Value *NewInner = generateMinMaxSelectPattern( 799 Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB); 800 Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern( 801 Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC)); 802 return replaceInstUsesWith(Outer, NewOuter); 803 } 804 805 return nullptr; 806 } 807 808 /// If one of the constants is zero (we know they can't both be) and we have an 809 /// icmp instruction with zero, and we have an 'and' with the non-constant value 810 /// and a power of two we can turn the select into a shift on the result of the 811 /// 'and'. 812 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal, 813 ConstantInt *FalseVal, 814 InstCombiner::BuilderTy *Builder) { 815 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 816 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 817 return nullptr; 818 819 if (!match(IC->getOperand(1), m_Zero())) 820 return nullptr; 821 822 ConstantInt *AndRHS; 823 Value *LHS = IC->getOperand(0); 824 if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS)))) 825 return nullptr; 826 827 // If both select arms are non-zero see if we have a select of the form 828 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic 829 // for 'x ? 2^n : 0' and fix the thing up at the end. 830 ConstantInt *Offset = nullptr; 831 if (!TrueVal->isZero() && !FalseVal->isZero()) { 832 if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2()) 833 Offset = FalseVal; 834 else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2()) 835 Offset = TrueVal; 836 else 837 return nullptr; 838 839 // Adjust TrueVal and FalseVal to the offset. 840 TrueVal = ConstantInt::get(Builder->getContext(), 841 TrueVal->getValue() - Offset->getValue()); 842 FalseVal = ConstantInt::get(Builder->getContext(), 843 FalseVal->getValue() - Offset->getValue()); 844 } 845 846 // Make sure the mask in the 'and' and one of the select arms is a power of 2. 847 if (!AndRHS->getValue().isPowerOf2() || 848 (!TrueVal->getValue().isPowerOf2() && 849 !FalseVal->getValue().isPowerOf2())) 850 return nullptr; 851 852 // Determine which shift is needed to transform result of the 'and' into the 853 // desired result. 854 ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal; 855 unsigned ValZeros = ValC->getValue().logBase2(); 856 unsigned AndZeros = AndRHS->getValue().logBase2(); 857 858 // If types don't match we can still convert the select by introducing a zext 859 // or a trunc of the 'and'. The trunc case requires that all of the truncated 860 // bits are zero, we can figure that out by looking at the 'and' mask. 861 if (AndZeros >= ValC->getBitWidth()) 862 return nullptr; 863 864 Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType()); 865 if (ValZeros > AndZeros) 866 V = Builder->CreateShl(V, ValZeros - AndZeros); 867 else if (ValZeros < AndZeros) 868 V = Builder->CreateLShr(V, AndZeros - ValZeros); 869 870 // Okay, now we know that everything is set up, we just don't know whether we 871 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 872 bool ShouldNotVal = !TrueVal->isZero(); 873 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; 874 if (ShouldNotVal) 875 V = Builder->CreateXor(V, ValC); 876 877 // Apply an offset if needed. 878 if (Offset) 879 V = Builder->CreateAdd(V, Offset); 880 return V; 881 } 882 883 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 884 /// This is even legal for FP. 885 static Instruction *foldAddSubSelect(SelectInst &SI, 886 InstCombiner::BuilderTy &Builder) { 887 Value *CondVal = SI.getCondition(); 888 Value *TrueVal = SI.getTrueValue(); 889 Value *FalseVal = SI.getFalseValue(); 890 auto *TI = dyn_cast<Instruction>(TrueVal); 891 auto *FI = dyn_cast<Instruction>(FalseVal); 892 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 893 return nullptr; 894 895 Instruction *AddOp = nullptr, *SubOp = nullptr; 896 if ((TI->getOpcode() == Instruction::Sub && 897 FI->getOpcode() == Instruction::Add) || 898 (TI->getOpcode() == Instruction::FSub && 899 FI->getOpcode() == Instruction::FAdd)) { 900 AddOp = FI; 901 SubOp = TI; 902 } else if ((FI->getOpcode() == Instruction::Sub && 903 TI->getOpcode() == Instruction::Add) || 904 (FI->getOpcode() == Instruction::FSub && 905 TI->getOpcode() == Instruction::FAdd)) { 906 AddOp = TI; 907 SubOp = FI; 908 } 909 910 if (AddOp) { 911 Value *OtherAddOp = nullptr; 912 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 913 OtherAddOp = AddOp->getOperand(1); 914 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 915 OtherAddOp = AddOp->getOperand(0); 916 } 917 918 if (OtherAddOp) { 919 // So at this point we know we have (Y -> OtherAddOp): 920 // select C, (add X, Y), (sub X, Z) 921 Value *NegVal; // Compute -Z 922 if (SI.getType()->isFPOrFPVectorTy()) { 923 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 924 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 925 FastMathFlags Flags = AddOp->getFastMathFlags(); 926 Flags &= SubOp->getFastMathFlags(); 927 NegInst->setFastMathFlags(Flags); 928 } 929 } else { 930 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 931 } 932 933 Value *NewTrueOp = OtherAddOp; 934 Value *NewFalseOp = NegVal; 935 if (AddOp != TI) 936 std::swap(NewTrueOp, NewFalseOp); 937 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 938 SI.getName() + ".p", &SI); 939 940 if (SI.getType()->isFPOrFPVectorTy()) { 941 Instruction *RI = 942 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 943 944 FastMathFlags Flags = AddOp->getFastMathFlags(); 945 Flags &= SubOp->getFastMathFlags(); 946 RI->setFastMathFlags(Flags); 947 return RI; 948 } else 949 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 950 } 951 } 952 return nullptr; 953 } 954 955 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 956 Instruction *ExtInst; 957 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 958 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 959 return nullptr; 960 961 auto ExtOpcode = ExtInst->getOpcode(); 962 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 963 return nullptr; 964 965 // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too. 966 Value *X = ExtInst->getOperand(0); 967 Type *SmallType = X->getType(); 968 if (!SmallType->getScalarType()->isIntegerTy(1)) 969 return nullptr; 970 971 Constant *C; 972 if (!match(Sel.getTrueValue(), m_Constant(C)) && 973 !match(Sel.getFalseValue(), m_Constant(C))) 974 return nullptr; 975 976 // If the constant is the same after truncation to the smaller type and 977 // extension to the original type, we can narrow the select. 978 Value *Cond = Sel.getCondition(); 979 Type *SelType = Sel.getType(); 980 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 981 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 982 if (ExtC == C) { 983 Value *TruncCVal = cast<Value>(TruncC); 984 if (ExtInst == Sel.getFalseValue()) 985 std::swap(X, TruncCVal); 986 987 // select Cond, (ext X), C --> ext(select Cond, X, C') 988 // select Cond, C, (ext X) --> ext(select Cond, C', X) 989 Value *NewSel = Builder->CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 990 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 991 } 992 993 // If one arm of the select is the extend of the condition, replace that arm 994 // with the extension of the appropriate known bool value. 995 if (Cond == X) { 996 if (ExtInst == Sel.getTrueValue()) { 997 // select X, (sext X), C --> select X, -1, C 998 // select X, (zext X), C --> select X, 1, C 999 Constant *One = ConstantInt::getTrue(SmallType); 1000 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1001 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1002 } else { 1003 // select X, C, (sext X) --> select X, C, 0 1004 // select X, C, (zext X) --> select X, C, 0 1005 Constant *Zero = ConstantInt::getNullValue(SelType); 1006 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1007 } 1008 } 1009 1010 return nullptr; 1011 } 1012 1013 /// Try to transform a vector select with a constant condition vector into a 1014 /// shuffle for easier combining with other shuffles and insert/extract. 1015 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1016 Value *CondVal = SI.getCondition(); 1017 Constant *CondC; 1018 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1019 return nullptr; 1020 1021 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1022 SmallVector<Constant *, 16> Mask; 1023 Mask.reserve(NumElts); 1024 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1025 for (unsigned i = 0; i != NumElts; ++i) { 1026 Constant *Elt = CondC->getAggregateElement(i); 1027 if (!Elt) 1028 return nullptr; 1029 1030 if (Elt->isOneValue()) { 1031 // If the select condition element is true, choose from the 1st vector. 1032 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1033 } else if (Elt->isNullValue()) { 1034 // If the select condition element is false, choose from the 2nd vector. 1035 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1036 } else if (isa<UndefValue>(Elt)) { 1037 // If the select condition element is undef, the shuffle mask is undef. 1038 Mask.push_back(UndefValue::get(Int32Ty)); 1039 } else { 1040 // Bail out on a constant expression. 1041 return nullptr; 1042 } 1043 } 1044 1045 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1046 ConstantVector::get(Mask)); 1047 } 1048 1049 /// Reuse bitcasted operands between a compare and select: 1050 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1051 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1052 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1053 InstCombiner::BuilderTy &Builder) { 1054 Value *Cond = Sel.getCondition(); 1055 Value *TVal = Sel.getTrueValue(); 1056 Value *FVal = Sel.getFalseValue(); 1057 1058 CmpInst::Predicate Pred; 1059 Value *A, *B; 1060 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1061 return nullptr; 1062 1063 // The select condition is a compare instruction. If the select's true/false 1064 // values are already the same as the compare operands, there's nothing to do. 1065 if (TVal == A || TVal == B || FVal == A || FVal == B) 1066 return nullptr; 1067 1068 Value *C, *D; 1069 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1070 return nullptr; 1071 1072 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1073 Value *TSrc, *FSrc; 1074 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1075 !match(FVal, m_BitCast(m_Value(FSrc)))) 1076 return nullptr; 1077 1078 // If the select true/false values are *different bitcasts* of the same source 1079 // operands, make the select operands the same as the compare operands and 1080 // cast the result. This is the canonical select form for min/max. 1081 Value *NewSel; 1082 if (TSrc == C && FSrc == D) { 1083 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1084 // bitcast (select (cmp A, B), A, B) 1085 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1086 } else if (TSrc == D && FSrc == C) { 1087 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1088 // bitcast (select (cmp A, B), B, A) 1089 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1090 } else { 1091 return nullptr; 1092 } 1093 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1094 } 1095 1096 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1097 Value *CondVal = SI.getCondition(); 1098 Value *TrueVal = SI.getTrueValue(); 1099 Value *FalseVal = SI.getFalseValue(); 1100 Type *SelType = SI.getType(); 1101 1102 if (Value *V = 1103 SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, &TLI, &DT, &AC)) 1104 return replaceInstUsesWith(SI, V); 1105 1106 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1107 return I; 1108 1109 if (SelType->getScalarType()->isIntegerTy(1) && 1110 TrueVal->getType() == CondVal->getType()) { 1111 if (match(TrueVal, m_One())) { 1112 // Change: A = select B, true, C --> A = or B, C 1113 return BinaryOperator::CreateOr(CondVal, FalseVal); 1114 } 1115 if (match(TrueVal, m_Zero())) { 1116 // Change: A = select B, false, C --> A = and !B, C 1117 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 1118 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1119 } 1120 if (match(FalseVal, m_Zero())) { 1121 // Change: A = select B, C, false --> A = and B, C 1122 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1123 } 1124 if (match(FalseVal, m_One())) { 1125 // Change: A = select B, C, true --> A = or !B, C 1126 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 1127 return BinaryOperator::CreateOr(NotCond, TrueVal); 1128 } 1129 1130 // select a, a, b -> a | b 1131 // select a, b, a -> a & b 1132 if (CondVal == TrueVal) 1133 return BinaryOperator::CreateOr(CondVal, FalseVal); 1134 if (CondVal == FalseVal) 1135 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1136 1137 // select a, ~a, b -> (~a) & b 1138 // select a, b, ~a -> (~a) | b 1139 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1140 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1141 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1142 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1143 } 1144 1145 // Selecting between two integer or vector splat integer constants? 1146 // 1147 // Note that we don't handle a scalar select of vectors: 1148 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1149 // because that may need 3 instructions to splat the condition value: 1150 // extend, insertelement, shufflevector. 1151 if (CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1152 // select C, 1, 0 -> zext C to int 1153 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1154 return new ZExtInst(CondVal, SelType); 1155 1156 // select C, -1, 0 -> sext C to int 1157 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1158 return new SExtInst(CondVal, SelType); 1159 1160 // select C, 0, 1 -> zext !C to int 1161 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1162 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 1163 return new ZExtInst(NotCond, SelType); 1164 } 1165 1166 // select C, 0, -1 -> sext !C to int 1167 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1168 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 1169 return new SExtInst(NotCond, SelType); 1170 } 1171 } 1172 1173 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) 1174 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) 1175 if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder)) 1176 return replaceInstUsesWith(SI, V); 1177 1178 // See if we are selecting two values based on a comparison of the two values. 1179 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1180 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1181 // Transform (X == Y) ? X : Y -> Y 1182 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1183 // This is not safe in general for floating point: 1184 // consider X== -0, Y== +0. 1185 // It becomes safe if either operand is a nonzero constant. 1186 ConstantFP *CFPt, *CFPf; 1187 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1188 !CFPt->getValueAPF().isZero()) || 1189 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1190 !CFPf->getValueAPF().isZero())) 1191 return replaceInstUsesWith(SI, FalseVal); 1192 } 1193 // Transform (X une Y) ? X : Y -> X 1194 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1195 // This is not safe in general for floating point: 1196 // consider X== -0, Y== +0. 1197 // It becomes safe if either operand is a nonzero constant. 1198 ConstantFP *CFPt, *CFPf; 1199 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1200 !CFPt->getValueAPF().isZero()) || 1201 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1202 !CFPf->getValueAPF().isZero())) 1203 return replaceInstUsesWith(SI, TrueVal); 1204 } 1205 1206 // Canonicalize to use ordered comparisons by swapping the select 1207 // operands. 1208 // 1209 // e.g. 1210 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1211 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1212 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1213 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1214 Builder->setFastMathFlags(FCI->getFastMathFlags()); 1215 Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal, 1216 FCI->getName() + ".inv"); 1217 1218 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1219 SI.getName() + ".p"); 1220 } 1221 1222 // NOTE: if we wanted to, this is where to detect MIN/MAX 1223 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1224 // Transform (X == Y) ? Y : X -> X 1225 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1226 // This is not safe in general for floating point: 1227 // consider X== -0, Y== +0. 1228 // It becomes safe if either operand is a nonzero constant. 1229 ConstantFP *CFPt, *CFPf; 1230 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1231 !CFPt->getValueAPF().isZero()) || 1232 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1233 !CFPf->getValueAPF().isZero())) 1234 return replaceInstUsesWith(SI, FalseVal); 1235 } 1236 // Transform (X une Y) ? Y : X -> Y 1237 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1238 // This is not safe in general for floating point: 1239 // consider X== -0, Y== +0. 1240 // It becomes safe if either operand is a nonzero constant. 1241 ConstantFP *CFPt, *CFPf; 1242 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1243 !CFPt->getValueAPF().isZero()) || 1244 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1245 !CFPf->getValueAPF().isZero())) 1246 return replaceInstUsesWith(SI, TrueVal); 1247 } 1248 1249 // Canonicalize to use ordered comparisons by swapping the select 1250 // operands. 1251 // 1252 // e.g. 1253 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1254 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1255 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1256 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1257 Builder->setFastMathFlags(FCI->getFastMathFlags()); 1258 Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal, 1259 FCI->getName() + ".inv"); 1260 1261 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1262 SI.getName() + ".p"); 1263 } 1264 1265 // NOTE: if we wanted to, this is where to detect MIN/MAX 1266 } 1267 // NOTE: if we wanted to, this is where to detect ABS 1268 } 1269 1270 // See if we are selecting two values based on a comparison of the two values. 1271 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1272 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1273 return Result; 1274 1275 if (Instruction *Add = foldAddSubSelect(SI, *Builder)) 1276 return Add; 1277 1278 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1279 auto *TI = dyn_cast<Instruction>(TrueVal); 1280 auto *FI = dyn_cast<Instruction>(FalseVal); 1281 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1282 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1283 return IV; 1284 1285 if (Instruction *I = foldSelectExtConst(SI)) 1286 return I; 1287 1288 // See if we can fold the select into one of our operands. 1289 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1290 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1291 return FoldI; 1292 1293 Value *LHS, *RHS, *LHS2, *RHS2; 1294 Instruction::CastOps CastOp; 1295 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1296 auto SPF = SPR.Flavor; 1297 1298 if (SelectPatternResult::isMinOrMax(SPF)) { 1299 // Canonicalize so that type casts are outside select patterns. 1300 if (LHS->getType()->getPrimitiveSizeInBits() != 1301 SelType->getPrimitiveSizeInBits()) { 1302 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered); 1303 1304 Value *Cmp; 1305 if (CmpInst::isIntPredicate(Pred)) { 1306 Cmp = Builder->CreateICmp(Pred, LHS, RHS); 1307 } else { 1308 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1309 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1310 Builder->setFastMathFlags(FMF); 1311 Cmp = Builder->CreateFCmp(Pred, LHS, RHS); 1312 } 1313 1314 Value *NewSI = Builder->CreateCast( 1315 CastOp, Builder->CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI), 1316 SelType); 1317 return replaceInstUsesWith(SI, NewSI); 1318 } 1319 } 1320 1321 if (SPF) { 1322 // MAX(MAX(a, b), a) -> MAX(a, b) 1323 // MIN(MIN(a, b), a) -> MIN(a, b) 1324 // MAX(MIN(a, b), a) -> a 1325 // MIN(MAX(a, b), a) -> a 1326 // ABS(ABS(a)) -> ABS(a) 1327 // NABS(NABS(a)) -> NABS(a) 1328 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1329 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 1330 SI, SPF, RHS)) 1331 return R; 1332 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1333 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, 1334 SI, SPF, LHS)) 1335 return R; 1336 } 1337 1338 // MAX(~a, ~b) -> ~MIN(a, b) 1339 if ((SPF == SPF_SMAX || SPF == SPF_UMAX) && 1340 IsFreeToInvert(LHS, LHS->hasNUses(2)) && 1341 IsFreeToInvert(RHS, RHS->hasNUses(2))) { 1342 // For this transform to be profitable, we need to eliminate at least two 1343 // 'not' instructions if we're going to add one 'not' instruction. 1344 int NumberOfNots = 1345 (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) + 1346 (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) + 1347 (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value()))); 1348 1349 if (NumberOfNots >= 2) { 1350 Value *NewLHS = Builder->CreateNot(LHS); 1351 Value *NewRHS = Builder->CreateNot(RHS); 1352 Value *NewCmp = SPF == SPF_SMAX 1353 ? Builder->CreateICmpSLT(NewLHS, NewRHS) 1354 : Builder->CreateICmpULT(NewLHS, NewRHS); 1355 Value *NewSI = 1356 Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS)); 1357 return replaceInstUsesWith(SI, NewSI); 1358 } 1359 } 1360 1361 // TODO. 1362 // ABS(-X) -> ABS(X) 1363 } 1364 1365 // See if we can fold the select into a phi node if the condition is a select. 1366 if (isa<PHINode>(SI.getCondition())) 1367 // The true/false values have to be live in the PHI predecessor's blocks. 1368 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1369 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1370 if (Instruction *NV = FoldOpIntoPhi(SI)) 1371 return NV; 1372 1373 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1374 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 1375 // select(C, select(C, a, b), c) -> select(C, a, c) 1376 if (TrueSI->getCondition() == CondVal) { 1377 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1378 return nullptr; 1379 SI.setOperand(1, TrueSI->getTrueValue()); 1380 return &SI; 1381 } 1382 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1383 // We choose this as normal form to enable folding on the And and shortening 1384 // paths for the values (this helps GetUnderlyingObjects() for example). 1385 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1386 Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition()); 1387 SI.setOperand(0, And); 1388 SI.setOperand(1, TrueSI->getTrueValue()); 1389 return &SI; 1390 } 1391 } 1392 } 1393 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1394 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 1395 // select(C, a, select(C, b, c)) -> select(C, a, c) 1396 if (FalseSI->getCondition() == CondVal) { 1397 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1398 return nullptr; 1399 SI.setOperand(2, FalseSI->getFalseValue()); 1400 return &SI; 1401 } 1402 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1403 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1404 Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition()); 1405 SI.setOperand(0, Or); 1406 SI.setOperand(2, FalseSI->getFalseValue()); 1407 return &SI; 1408 } 1409 } 1410 } 1411 1412 if (BinaryOperator::isNot(CondVal)) { 1413 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); 1414 SI.setOperand(1, FalseVal); 1415 SI.setOperand(2, TrueVal); 1416 return &SI; 1417 } 1418 1419 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 1420 unsigned VWidth = VecTy->getNumElements(); 1421 APInt UndefElts(VWidth, 0); 1422 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1423 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 1424 if (V != &SI) 1425 return replaceInstUsesWith(SI, V); 1426 return &SI; 1427 } 1428 1429 if (isa<ConstantAggregateZero>(CondVal)) { 1430 return replaceInstUsesWith(SI, FalseVal); 1431 } 1432 } 1433 1434 // See if we can determine the result of this select based on a dominating 1435 // condition. 1436 BasicBlock *Parent = SI.getParent(); 1437 if (BasicBlock *Dom = Parent->getSinglePredecessor()) { 1438 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 1439 if (PBI && PBI->isConditional() && 1440 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 1441 (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) { 1442 bool CondIsFalse = PBI->getSuccessor(1) == Parent; 1443 Optional<bool> Implication = isImpliedCondition( 1444 PBI->getCondition(), SI.getCondition(), DL, CondIsFalse); 1445 if (Implication) { 1446 Value *V = *Implication ? TrueVal : FalseVal; 1447 return replaceInstUsesWith(SI, V); 1448 } 1449 } 1450 } 1451 1452 // If we can compute the condition, there's no need for a select. 1453 // Like the above fold, we are attempting to reduce compile-time cost by 1454 // putting this fold here with limitations rather than in InstSimplify. 1455 // The motivation for this call into value tracking is to take advantage of 1456 // the assumption cache, so make sure that is populated. 1457 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 1458 APInt KnownOne(1, 0), KnownZero(1, 0); 1459 computeKnownBits(CondVal, KnownZero, KnownOne, 0, &SI); 1460 if (KnownOne == 1) 1461 return replaceInstUsesWith(SI, TrueVal); 1462 if (KnownZero == 1) 1463 return replaceInstUsesWith(SI, FalseVal); 1464 } 1465 1466 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, *Builder)) 1467 return BitCastSel; 1468 1469 return nullptr; 1470 } 1471