1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/OverflowInstAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/InstCombine/InstCombiner.h"
42 #include <cassert>
43 #include <utility>
44 
45 #define DEBUG_TYPE "instcombine"
46 #include "llvm/Transforms/Utils/InstructionWorklist.h"
47 
48 using namespace llvm;
49 using namespace PatternMatch;
50 
51 
52 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
53                            SelectPatternFlavor SPF, Value *A, Value *B) {
54   CmpInst::Predicate Pred = getMinMaxPred(SPF);
55   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
56   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
57 }
58 
59 /// Replace a select operand based on an equality comparison with the identity
60 /// constant of a binop.
61 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
62                                             const TargetLibraryInfo &TLI,
63                                             InstCombinerImpl &IC) {
64   // The select condition must be an equality compare with a constant operand.
65   Value *X;
66   Constant *C;
67   CmpInst::Predicate Pred;
68   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
69     return nullptr;
70 
71   bool IsEq;
72   if (ICmpInst::isEquality(Pred))
73     IsEq = Pred == ICmpInst::ICMP_EQ;
74   else if (Pred == FCmpInst::FCMP_OEQ)
75     IsEq = true;
76   else if (Pred == FCmpInst::FCMP_UNE)
77     IsEq = false;
78   else
79     return nullptr;
80 
81   // A select operand must be a binop.
82   BinaryOperator *BO;
83   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
84     return nullptr;
85 
86   // The compare constant must be the identity constant for that binop.
87   // If this a floating-point compare with 0.0, any zero constant will do.
88   Type *Ty = BO->getType();
89   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
90   if (IdC != C) {
91     if (!IdC || !CmpInst::isFPPredicate(Pred))
92       return nullptr;
93     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
94       return nullptr;
95   }
96 
97   // Last, match the compare variable operand with a binop operand.
98   Value *Y;
99   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
100     return nullptr;
101   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
102     return nullptr;
103 
104   // +0.0 compares equal to -0.0, and so it does not behave as required for this
105   // transform. Bail out if we can not exclude that possibility.
106   if (isa<FPMathOperator>(BO))
107     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
108       return nullptr;
109 
110   // BO = binop Y, X
111   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
112   // =>
113   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
114   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
115 }
116 
117 /// This folds:
118 ///  select (icmp eq (and X, C1)), TC, FC
119 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
120 /// To something like:
121 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
122 /// Or:
123 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
124 /// With some variations depending if FC is larger than TC, or the shift
125 /// isn't needed, or the bit widths don't match.
126 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
127                                 InstCombiner::BuilderTy &Builder) {
128   const APInt *SelTC, *SelFC;
129   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
130       !match(Sel.getFalseValue(), m_APInt(SelFC)))
131     return nullptr;
132 
133   // If this is a vector select, we need a vector compare.
134   Type *SelType = Sel.getType();
135   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
136     return nullptr;
137 
138   Value *V;
139   APInt AndMask;
140   bool CreateAnd = false;
141   ICmpInst::Predicate Pred = Cmp->getPredicate();
142   if (ICmpInst::isEquality(Pred)) {
143     if (!match(Cmp->getOperand(1), m_Zero()))
144       return nullptr;
145 
146     V = Cmp->getOperand(0);
147     const APInt *AndRHS;
148     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
149       return nullptr;
150 
151     AndMask = *AndRHS;
152   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
153                                   Pred, V, AndMask)) {
154     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
155     if (!AndMask.isPowerOf2())
156       return nullptr;
157 
158     CreateAnd = true;
159   } else {
160     return nullptr;
161   }
162 
163   // In general, when both constants are non-zero, we would need an offset to
164   // replace the select. This would require more instructions than we started
165   // with. But there's one special-case that we handle here because it can
166   // simplify/reduce the instructions.
167   APInt TC = *SelTC;
168   APInt FC = *SelFC;
169   if (!TC.isNullValue() && !FC.isNullValue()) {
170     // If the select constants differ by exactly one bit and that's the same
171     // bit that is masked and checked by the select condition, the select can
172     // be replaced by bitwise logic to set/clear one bit of the constant result.
173     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
174       return nullptr;
175     if (CreateAnd) {
176       // If we have to create an 'and', then we must kill the cmp to not
177       // increase the instruction count.
178       if (!Cmp->hasOneUse())
179         return nullptr;
180       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
181     }
182     bool ExtraBitInTC = TC.ugt(FC);
183     if (Pred == ICmpInst::ICMP_EQ) {
184       // If the masked bit in V is clear, clear or set the bit in the result:
185       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
186       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
187       Constant *C = ConstantInt::get(SelType, TC);
188       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
189     }
190     if (Pred == ICmpInst::ICMP_NE) {
191       // If the masked bit in V is set, set or clear the bit in the result:
192       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
193       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
194       Constant *C = ConstantInt::get(SelType, FC);
195       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
196     }
197     llvm_unreachable("Only expecting equality predicates");
198   }
199 
200   // Make sure one of the select arms is a power-of-2.
201   if (!TC.isPowerOf2() && !FC.isPowerOf2())
202     return nullptr;
203 
204   // Determine which shift is needed to transform result of the 'and' into the
205   // desired result.
206   const APInt &ValC = !TC.isNullValue() ? TC : FC;
207   unsigned ValZeros = ValC.logBase2();
208   unsigned AndZeros = AndMask.logBase2();
209 
210   // Insert the 'and' instruction on the input to the truncate.
211   if (CreateAnd)
212     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
213 
214   // If types don't match, we can still convert the select by introducing a zext
215   // or a trunc of the 'and'.
216   if (ValZeros > AndZeros) {
217     V = Builder.CreateZExtOrTrunc(V, SelType);
218     V = Builder.CreateShl(V, ValZeros - AndZeros);
219   } else if (ValZeros < AndZeros) {
220     V = Builder.CreateLShr(V, AndZeros - ValZeros);
221     V = Builder.CreateZExtOrTrunc(V, SelType);
222   } else {
223     V = Builder.CreateZExtOrTrunc(V, SelType);
224   }
225 
226   // Okay, now we know that everything is set up, we just don't know whether we
227   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
228   bool ShouldNotVal = !TC.isNullValue();
229   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
230   if (ShouldNotVal)
231     V = Builder.CreateXor(V, ValC);
232 
233   return V;
234 }
235 
236 /// We want to turn code that looks like this:
237 ///   %C = or %A, %B
238 ///   %D = select %cond, %C, %A
239 /// into:
240 ///   %C = select %cond, %B, 0
241 ///   %D = or %A, %C
242 ///
243 /// Assuming that the specified instruction is an operand to the select, return
244 /// a bitmask indicating which operands of this instruction are foldable if they
245 /// equal the other incoming value of the select.
246 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
247   switch (I->getOpcode()) {
248   case Instruction::Add:
249   case Instruction::Mul:
250   case Instruction::And:
251   case Instruction::Or:
252   case Instruction::Xor:
253     return 3;              // Can fold through either operand.
254   case Instruction::Sub:   // Can only fold on the amount subtracted.
255   case Instruction::Shl:   // Can only fold on the shift amount.
256   case Instruction::LShr:
257   case Instruction::AShr:
258     return 1;
259   default:
260     return 0;              // Cannot fold
261   }
262 }
263 
264 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
265 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
266                                               Instruction *FI) {
267   // Don't break up min/max patterns. The hasOneUse checks below prevent that
268   // for most cases, but vector min/max with bitcasts can be transformed. If the
269   // one-use restrictions are eased for other patterns, we still don't want to
270   // obfuscate min/max.
271   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
272        match(&SI, m_SMax(m_Value(), m_Value())) ||
273        match(&SI, m_UMin(m_Value(), m_Value())) ||
274        match(&SI, m_UMax(m_Value(), m_Value()))))
275     return nullptr;
276 
277   // If this is a cast from the same type, merge.
278   Value *Cond = SI.getCondition();
279   Type *CondTy = Cond->getType();
280   if (TI->getNumOperands() == 1 && TI->isCast()) {
281     Type *FIOpndTy = FI->getOperand(0)->getType();
282     if (TI->getOperand(0)->getType() != FIOpndTy)
283       return nullptr;
284 
285     // The select condition may be a vector. We may only change the operand
286     // type if the vector width remains the same (and matches the condition).
287     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
288       if (!FIOpndTy->isVectorTy() ||
289           CondVTy->getElementCount() !=
290               cast<VectorType>(FIOpndTy)->getElementCount())
291         return nullptr;
292 
293       // TODO: If the backend knew how to deal with casts better, we could
294       // remove this limitation. For now, there's too much potential to create
295       // worse codegen by promoting the select ahead of size-altering casts
296       // (PR28160).
297       //
298       // Note that ValueTracking's matchSelectPattern() looks through casts
299       // without checking 'hasOneUse' when it matches min/max patterns, so this
300       // transform may end up happening anyway.
301       if (TI->getOpcode() != Instruction::BitCast &&
302           (!TI->hasOneUse() || !FI->hasOneUse()))
303         return nullptr;
304     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
305       // TODO: The one-use restrictions for a scalar select could be eased if
306       // the fold of a select in visitLoadInst() was enhanced to match a pattern
307       // that includes a cast.
308       return nullptr;
309     }
310 
311     // Fold this by inserting a select from the input values.
312     Value *NewSI =
313         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
314                              SI.getName() + ".v", &SI);
315     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
316                             TI->getType());
317   }
318 
319   // Cond ? -X : -Y --> -(Cond ? X : Y)
320   Value *X, *Y;
321   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
322       (TI->hasOneUse() || FI->hasOneUse())) {
323     // Intersect FMF from the fneg instructions and union those with the select.
324     FastMathFlags FMF = TI->getFastMathFlags();
325     FMF &= FI->getFastMathFlags();
326     FMF |= SI.getFastMathFlags();
327     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
328     if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
329       NewSelI->setFastMathFlags(FMF);
330     Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
331     NewFNeg->setFastMathFlags(FMF);
332     return NewFNeg;
333   }
334 
335   // Min/max intrinsic with a common operand can have the common operand pulled
336   // after the select. This is the same transform as below for binops, but
337   // specialized for intrinsic matching and without the restrictive uses clause.
338   auto *TII = dyn_cast<IntrinsicInst>(TI);
339   auto *FII = dyn_cast<IntrinsicInst>(FI);
340   if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() &&
341       (TII->hasOneUse() || FII->hasOneUse())) {
342     Value *T0, *T1, *F0, *F1;
343     if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) &&
344         match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) {
345       if (T0 == F0) {
346         Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI);
347         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
348       }
349       if (T0 == F1) {
350         Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI);
351         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
352       }
353       if (T1 == F0) {
354         Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI);
355         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
356       }
357       if (T1 == F1) {
358         Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI);
359         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
360       }
361     }
362   }
363 
364   // Only handle binary operators (including two-operand getelementptr) with
365   // one-use here. As with the cast case above, it may be possible to relax the
366   // one-use constraint, but that needs be examined carefully since it may not
367   // reduce the total number of instructions.
368   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
369       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
370       !TI->hasOneUse() || !FI->hasOneUse())
371     return nullptr;
372 
373   // Figure out if the operations have any operands in common.
374   Value *MatchOp, *OtherOpT, *OtherOpF;
375   bool MatchIsOpZero;
376   if (TI->getOperand(0) == FI->getOperand(0)) {
377     MatchOp  = TI->getOperand(0);
378     OtherOpT = TI->getOperand(1);
379     OtherOpF = FI->getOperand(1);
380     MatchIsOpZero = true;
381   } else if (TI->getOperand(1) == FI->getOperand(1)) {
382     MatchOp  = TI->getOperand(1);
383     OtherOpT = TI->getOperand(0);
384     OtherOpF = FI->getOperand(0);
385     MatchIsOpZero = false;
386   } else if (!TI->isCommutative()) {
387     return nullptr;
388   } else if (TI->getOperand(0) == FI->getOperand(1)) {
389     MatchOp  = TI->getOperand(0);
390     OtherOpT = TI->getOperand(1);
391     OtherOpF = FI->getOperand(0);
392     MatchIsOpZero = true;
393   } else if (TI->getOperand(1) == FI->getOperand(0)) {
394     MatchOp  = TI->getOperand(1);
395     OtherOpT = TI->getOperand(0);
396     OtherOpF = FI->getOperand(1);
397     MatchIsOpZero = true;
398   } else {
399     return nullptr;
400   }
401 
402   // If the select condition is a vector, the operands of the original select's
403   // operands also must be vectors. This may not be the case for getelementptr
404   // for example.
405   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
406                                !OtherOpF->getType()->isVectorTy()))
407     return nullptr;
408 
409   // If we reach here, they do have operations in common.
410   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
411                                       SI.getName() + ".v", &SI);
412   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
413   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
414   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
415     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
416     NewBO->copyIRFlags(TI);
417     NewBO->andIRFlags(FI);
418     return NewBO;
419   }
420   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
421     auto *FGEP = cast<GetElementPtrInst>(FI);
422     Type *ElementType = TGEP->getResultElementType();
423     return TGEP->isInBounds() && FGEP->isInBounds()
424                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
425                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
426   }
427   llvm_unreachable("Expected BinaryOperator or GEP");
428   return nullptr;
429 }
430 
431 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
432   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
433     return false;
434   return C1I.isOneValue() || C1I.isAllOnesValue() ||
435          C2I.isOneValue() || C2I.isAllOnesValue();
436 }
437 
438 /// Try to fold the select into one of the operands to allow further
439 /// optimization.
440 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
441                                                 Value *FalseVal) {
442   // See the comment above GetSelectFoldableOperands for a description of the
443   // transformation we are doing here.
444   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
445     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
446       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
447         unsigned OpToFold = 0;
448         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
449           OpToFold = 1;
450         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
451           OpToFold = 2;
452         }
453 
454         if (OpToFold) {
455           Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(),
456                                                        TVI->getType(), true);
457           Value *OOp = TVI->getOperand(2-OpToFold);
458           // Avoid creating select between 2 constants unless it's selecting
459           // between 0, 1 and -1.
460           const APInt *OOpC;
461           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
462           if (!isa<Constant>(OOp) ||
463               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
464             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
465             NewSel->takeName(TVI);
466             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
467                                                         FalseVal, NewSel);
468             BO->copyIRFlags(TVI);
469             return BO;
470           }
471         }
472       }
473     }
474   }
475 
476   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
477     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
478       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
479         unsigned OpToFold = 0;
480         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
481           OpToFold = 1;
482         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
483           OpToFold = 2;
484         }
485 
486         if (OpToFold) {
487           Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(),
488                                                        FVI->getType(), true);
489           Value *OOp = FVI->getOperand(2-OpToFold);
490           // Avoid creating select between 2 constants unless it's selecting
491           // between 0, 1 and -1.
492           const APInt *OOpC;
493           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
494           if (!isa<Constant>(OOp) ||
495               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
496             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
497             NewSel->takeName(FVI);
498             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
499                                                         TrueVal, NewSel);
500             BO->copyIRFlags(FVI);
501             return BO;
502           }
503         }
504       }
505     }
506   }
507 
508   return nullptr;
509 }
510 
511 /// We want to turn:
512 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
513 /// into:
514 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
515 /// Note:
516 ///   Z may be 0 if lshr is missing.
517 /// Worst-case scenario is that we will replace 5 instructions with 5 different
518 /// instructions, but we got rid of select.
519 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
520                                          Value *TVal, Value *FVal,
521                                          InstCombiner::BuilderTy &Builder) {
522   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
523         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
524         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
525     return nullptr;
526 
527   // The TrueVal has general form of:  and %B, 1
528   Value *B;
529   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
530     return nullptr;
531 
532   // Where %B may be optionally shifted:  lshr %X, %Z.
533   Value *X, *Z;
534   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
535   if (!HasShift)
536     X = B;
537 
538   Value *Y;
539   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
540     return nullptr;
541 
542   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
543   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
544   Constant *One = ConstantInt::get(SelType, 1);
545   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
546   Value *FullMask = Builder.CreateOr(Y, MaskB);
547   Value *MaskedX = Builder.CreateAnd(X, FullMask);
548   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
549   return new ZExtInst(ICmpNeZero, SelType);
550 }
551 
552 /// We want to turn:
553 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
554 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
555 /// into:
556 ///   ashr (X, Y)
557 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
558                                      Value *FalseVal,
559                                      InstCombiner::BuilderTy &Builder) {
560   ICmpInst::Predicate Pred = IC->getPredicate();
561   Value *CmpLHS = IC->getOperand(0);
562   Value *CmpRHS = IC->getOperand(1);
563   if (!CmpRHS->getType()->isIntOrIntVectorTy())
564     return nullptr;
565 
566   Value *X, *Y;
567   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
568   if ((Pred != ICmpInst::ICMP_SGT ||
569        !match(CmpRHS,
570               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
571       (Pred != ICmpInst::ICMP_SLT ||
572        !match(CmpRHS,
573               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
574     return nullptr;
575 
576   // Canonicalize so that ashr is in FalseVal.
577   if (Pred == ICmpInst::ICMP_SLT)
578     std::swap(TrueVal, FalseVal);
579 
580   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
581       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
582       match(CmpLHS, m_Specific(X))) {
583     const auto *Ashr = cast<Instruction>(FalseVal);
584     // if lshr is not exact and ashr is, this new ashr must not be exact.
585     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
586     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
587   }
588 
589   return nullptr;
590 }
591 
592 /// We want to turn:
593 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
594 /// into:
595 ///   (or (shl (and X, C1), C3), Y)
596 /// iff:
597 ///   C1 and C2 are both powers of 2
598 /// where:
599 ///   C3 = Log(C2) - Log(C1)
600 ///
601 /// This transform handles cases where:
602 /// 1. The icmp predicate is inverted
603 /// 2. The select operands are reversed
604 /// 3. The magnitude of C2 and C1 are flipped
605 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
606                                   Value *FalseVal,
607                                   InstCombiner::BuilderTy &Builder) {
608   // Only handle integer compares. Also, if this is a vector select, we need a
609   // vector compare.
610   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
611       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
612     return nullptr;
613 
614   Value *CmpLHS = IC->getOperand(0);
615   Value *CmpRHS = IC->getOperand(1);
616 
617   Value *V;
618   unsigned C1Log;
619   bool IsEqualZero;
620   bool NeedAnd = false;
621   if (IC->isEquality()) {
622     if (!match(CmpRHS, m_Zero()))
623       return nullptr;
624 
625     const APInt *C1;
626     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
627       return nullptr;
628 
629     V = CmpLHS;
630     C1Log = C1->logBase2();
631     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
632   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
633              IC->getPredicate() == ICmpInst::ICMP_SGT) {
634     // We also need to recognize (icmp slt (trunc (X)), 0) and
635     // (icmp sgt (trunc (X)), -1).
636     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
637     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
638         (!IsEqualZero && !match(CmpRHS, m_Zero())))
639       return nullptr;
640 
641     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
642       return nullptr;
643 
644     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
645     NeedAnd = true;
646   } else {
647     return nullptr;
648   }
649 
650   const APInt *C2;
651   bool OrOnTrueVal = false;
652   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
653   if (!OrOnFalseVal)
654     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
655 
656   if (!OrOnFalseVal && !OrOnTrueVal)
657     return nullptr;
658 
659   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
660 
661   unsigned C2Log = C2->logBase2();
662 
663   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
664   bool NeedShift = C1Log != C2Log;
665   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
666                        V->getType()->getScalarSizeInBits();
667 
668   // Make sure we don't create more instructions than we save.
669   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
670   if ((NeedShift + NeedXor + NeedZExtTrunc) >
671       (IC->hasOneUse() + Or->hasOneUse()))
672     return nullptr;
673 
674   if (NeedAnd) {
675     // Insert the AND instruction on the input to the truncate.
676     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
677     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
678   }
679 
680   if (C2Log > C1Log) {
681     V = Builder.CreateZExtOrTrunc(V, Y->getType());
682     V = Builder.CreateShl(V, C2Log - C1Log);
683   } else if (C1Log > C2Log) {
684     V = Builder.CreateLShr(V, C1Log - C2Log);
685     V = Builder.CreateZExtOrTrunc(V, Y->getType());
686   } else
687     V = Builder.CreateZExtOrTrunc(V, Y->getType());
688 
689   if (NeedXor)
690     V = Builder.CreateXor(V, *C2);
691 
692   return Builder.CreateOr(V, Y);
693 }
694 
695 /// Canonicalize a set or clear of a masked set of constant bits to
696 /// select-of-constants form.
697 static Instruction *foldSetClearBits(SelectInst &Sel,
698                                      InstCombiner::BuilderTy &Builder) {
699   Value *Cond = Sel.getCondition();
700   Value *T = Sel.getTrueValue();
701   Value *F = Sel.getFalseValue();
702   Type *Ty = Sel.getType();
703   Value *X;
704   const APInt *NotC, *C;
705 
706   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
707   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
708       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
709     Constant *Zero = ConstantInt::getNullValue(Ty);
710     Constant *OrC = ConstantInt::get(Ty, *C);
711     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
712     return BinaryOperator::CreateOr(T, NewSel);
713   }
714 
715   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
716   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
717       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
718     Constant *Zero = ConstantInt::getNullValue(Ty);
719     Constant *OrC = ConstantInt::get(Ty, *C);
720     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
721     return BinaryOperator::CreateOr(F, NewSel);
722   }
723 
724   return nullptr;
725 }
726 
727 //   select (x == 0), 0, x * y --> freeze(y) * x
728 //   select (y == 0), 0, x * y --> freeze(x) * y
729 //   select (x == 0), undef, x * y --> freeze(y) * x
730 //   select (x == undef), 0, x * y --> freeze(y) * x
731 // Usage of mul instead of 0 will make the result more poisonous,
732 // so the operand that was not checked in the condition should be frozen.
733 // The latter folding is applied only when a constant compared with x is
734 // is a vector consisting of 0 and undefs. If a constant compared with x
735 // is a scalar undefined value or undefined vector then an expression
736 // should be already folded into a constant.
737 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
738   auto *CondVal = SI.getCondition();
739   auto *TrueVal = SI.getTrueValue();
740   auto *FalseVal = SI.getFalseValue();
741   Value *X, *Y;
742   ICmpInst::Predicate Predicate;
743 
744   // Assuming that constant compared with zero is not undef (but it may be
745   // a vector with some undef elements). Otherwise (when a constant is undef)
746   // the select expression should be already simplified.
747   if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
748       !ICmpInst::isEquality(Predicate))
749     return nullptr;
750 
751   if (Predicate == ICmpInst::ICMP_NE)
752     std::swap(TrueVal, FalseVal);
753 
754   // Check that TrueVal is a constant instead of matching it with m_Zero()
755   // to handle the case when it is a scalar undef value or a vector containing
756   // non-zero elements that are masked by undef elements in the compare
757   // constant.
758   auto *TrueValC = dyn_cast<Constant>(TrueVal);
759   if (TrueValC == nullptr ||
760       !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
761       !isa<Instruction>(FalseVal))
762     return nullptr;
763 
764   auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
765   auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
766   // If X is compared with 0 then TrueVal could be either zero or undef.
767   // m_Zero match vectors containing some undef elements, but for scalars
768   // m_Undef should be used explicitly.
769   if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
770     return nullptr;
771 
772   auto *FalseValI = cast<Instruction>(FalseVal);
773   auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
774                                      *FalseValI);
775   IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
776   return IC.replaceInstUsesWith(SI, FalseValI);
777 }
778 
779 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
780 /// There are 8 commuted/swapped variants of this pattern.
781 /// TODO: Also support a - UMIN(a,b) patterns.
782 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
783                                             const Value *TrueVal,
784                                             const Value *FalseVal,
785                                             InstCombiner::BuilderTy &Builder) {
786   ICmpInst::Predicate Pred = ICI->getPredicate();
787   if (!ICmpInst::isUnsigned(Pred))
788     return nullptr;
789 
790   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
791   if (match(TrueVal, m_Zero())) {
792     Pred = ICmpInst::getInversePredicate(Pred);
793     std::swap(TrueVal, FalseVal);
794   }
795   if (!match(FalseVal, m_Zero()))
796     return nullptr;
797 
798   Value *A = ICI->getOperand(0);
799   Value *B = ICI->getOperand(1);
800   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
801     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
802     std::swap(A, B);
803     Pred = ICmpInst::getSwappedPredicate(Pred);
804   }
805 
806   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
807          "Unexpected isUnsigned predicate!");
808 
809   // Ensure the sub is of the form:
810   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
811   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
812   // Checking for both a-b and a+(-b) as a constant.
813   bool IsNegative = false;
814   const APInt *C;
815   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
816       (match(A, m_APInt(C)) &&
817        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
818     IsNegative = true;
819   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
820            !(match(B, m_APInt(C)) &&
821              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
822     return nullptr;
823 
824   // If we are adding a negate and the sub and icmp are used anywhere else, we
825   // would end up with more instructions.
826   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
827     return nullptr;
828 
829   // (a > b) ? a - b : 0 -> usub.sat(a, b)
830   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
831   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
832   if (IsNegative)
833     Result = Builder.CreateNeg(Result);
834   return Result;
835 }
836 
837 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
838                                        InstCombiner::BuilderTy &Builder) {
839   if (!Cmp->hasOneUse())
840     return nullptr;
841 
842   // Match unsigned saturated add with constant.
843   Value *Cmp0 = Cmp->getOperand(0);
844   Value *Cmp1 = Cmp->getOperand(1);
845   ICmpInst::Predicate Pred = Cmp->getPredicate();
846   Value *X;
847   const APInt *C, *CmpC;
848   if (Pred == ICmpInst::ICMP_ULT &&
849       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
850       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
851     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
852     return Builder.CreateBinaryIntrinsic(
853         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
854   }
855 
856   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
857   // There are 8 commuted variants.
858   // Canonicalize -1 (saturated result) to true value of the select.
859   if (match(FVal, m_AllOnes())) {
860     std::swap(TVal, FVal);
861     Pred = CmpInst::getInversePredicate(Pred);
862   }
863   if (!match(TVal, m_AllOnes()))
864     return nullptr;
865 
866   // Canonicalize predicate to less-than or less-or-equal-than.
867   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
868     std::swap(Cmp0, Cmp1);
869     Pred = CmpInst::getSwappedPredicate(Pred);
870   }
871   if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
872     return nullptr;
873 
874   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
875   // Strictness of the comparison is irrelevant.
876   Value *Y;
877   if (match(Cmp0, m_Not(m_Value(X))) &&
878       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
879     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
880     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
881     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
882   }
883   // The 'not' op may be included in the sum but not the compare.
884   // Strictness of the comparison is irrelevant.
885   X = Cmp0;
886   Y = Cmp1;
887   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
888     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
889     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
890     BinaryOperator *BO = cast<BinaryOperator>(FVal);
891     return Builder.CreateBinaryIntrinsic(
892         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
893   }
894   // The overflow may be detected via the add wrapping round.
895   // This is only valid for strict comparison!
896   if (Pred == ICmpInst::ICMP_ULT &&
897       match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
898       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
899     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
900     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
901     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
902   }
903 
904   return nullptr;
905 }
906 
907 /// Fold the following code sequence:
908 /// \code
909 ///   int a = ctlz(x & -x);
910 //    x ? 31 - a : a;
911 /// \code
912 ///
913 /// into:
914 ///   cttz(x)
915 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
916                                          Value *FalseVal,
917                                          InstCombiner::BuilderTy &Builder) {
918   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
919   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
920     return nullptr;
921 
922   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
923     std::swap(TrueVal, FalseVal);
924 
925   if (!match(FalseVal,
926              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
927     return nullptr;
928 
929   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
930     return nullptr;
931 
932   Value *X = ICI->getOperand(0);
933   auto *II = cast<IntrinsicInst>(TrueVal);
934   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
935     return nullptr;
936 
937   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
938                                           II->getType());
939   return CallInst::Create(F, {X, II->getArgOperand(1)});
940 }
941 
942 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
943 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
944 ///
945 /// For example, we can fold the following code sequence:
946 /// \code
947 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
948 ///   %1 = icmp ne i32 %x, 0
949 ///   %2 = select i1 %1, i32 %0, i32 32
950 /// \code
951 ///
952 /// into:
953 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
954 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
955                                  InstCombiner::BuilderTy &Builder) {
956   ICmpInst::Predicate Pred = ICI->getPredicate();
957   Value *CmpLHS = ICI->getOperand(0);
958   Value *CmpRHS = ICI->getOperand(1);
959 
960   // Check if the condition value compares a value for equality against zero.
961   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
962     return nullptr;
963 
964   Value *SelectArg = FalseVal;
965   Value *ValueOnZero = TrueVal;
966   if (Pred == ICmpInst::ICMP_NE)
967     std::swap(SelectArg, ValueOnZero);
968 
969   // Skip zero extend/truncate.
970   Value *Count = nullptr;
971   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
972       !match(SelectArg, m_Trunc(m_Value(Count))))
973     Count = SelectArg;
974 
975   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
976   // input to the cttz/ctlz is used as LHS for the compare instruction.
977   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
978       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
979     return nullptr;
980 
981   IntrinsicInst *II = cast<IntrinsicInst>(Count);
982 
983   // Check if the value propagated on zero is a constant number equal to the
984   // sizeof in bits of 'Count'.
985   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
986   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
987     // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from
988     // true to false on this flag, so we can replace it for all users.
989     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
990     return SelectArg;
991   }
992 
993   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
994   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
995   // not be used if the input is zero. Relax to 'undef_on_zero' for that case.
996   if (II->hasOneUse() && SelectArg->hasOneUse() &&
997       !match(II->getArgOperand(1), m_One()))
998     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
999 
1000   return nullptr;
1001 }
1002 
1003 /// Return true if we find and adjust an icmp+select pattern where the compare
1004 /// is with a constant that can be incremented or decremented to match the
1005 /// minimum or maximum idiom.
1006 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
1007   ICmpInst::Predicate Pred = Cmp.getPredicate();
1008   Value *CmpLHS = Cmp.getOperand(0);
1009   Value *CmpRHS = Cmp.getOperand(1);
1010   Value *TrueVal = Sel.getTrueValue();
1011   Value *FalseVal = Sel.getFalseValue();
1012 
1013   // We may move or edit the compare, so make sure the select is the only user.
1014   const APInt *CmpC;
1015   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
1016     return false;
1017 
1018   // These transforms only work for selects of integers or vector selects of
1019   // integer vectors.
1020   Type *SelTy = Sel.getType();
1021   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
1022   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
1023     return false;
1024 
1025   Constant *AdjustedRHS;
1026   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
1027     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
1028   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
1029     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
1030   else
1031     return false;
1032 
1033   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
1034   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
1035   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
1036       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
1037     ; // Nothing to do here. Values match without any sign/zero extension.
1038   }
1039   // Types do not match. Instead of calculating this with mixed types, promote
1040   // all to the larger type. This enables scalar evolution to analyze this
1041   // expression.
1042   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
1043     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
1044 
1045     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
1046     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
1047     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
1048     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
1049     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
1050       CmpLHS = TrueVal;
1051       AdjustedRHS = SextRHS;
1052     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
1053                SextRHS == TrueVal) {
1054       CmpLHS = FalseVal;
1055       AdjustedRHS = SextRHS;
1056     } else if (Cmp.isUnsigned()) {
1057       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
1058       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
1059       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
1060       // zext + signed compare cannot be changed:
1061       //    0xff <s 0x00, but 0x00ff >s 0x0000
1062       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
1063         CmpLHS = TrueVal;
1064         AdjustedRHS = ZextRHS;
1065       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
1066                  ZextRHS == TrueVal) {
1067         CmpLHS = FalseVal;
1068         AdjustedRHS = ZextRHS;
1069       } else {
1070         return false;
1071       }
1072     } else {
1073       return false;
1074     }
1075   } else {
1076     return false;
1077   }
1078 
1079   Pred = ICmpInst::getSwappedPredicate(Pred);
1080   CmpRHS = AdjustedRHS;
1081   std::swap(FalseVal, TrueVal);
1082   Cmp.setPredicate(Pred);
1083   Cmp.setOperand(0, CmpLHS);
1084   Cmp.setOperand(1, CmpRHS);
1085   Sel.setOperand(1, TrueVal);
1086   Sel.setOperand(2, FalseVal);
1087   Sel.swapProfMetadata();
1088 
1089   // Move the compare instruction right before the select instruction. Otherwise
1090   // the sext/zext value may be defined after the compare instruction uses it.
1091   Cmp.moveBefore(&Sel);
1092 
1093   return true;
1094 }
1095 
1096 /// If this is an integer min/max (icmp + select) with a constant operand,
1097 /// create the canonical icmp for the min/max operation and canonicalize the
1098 /// constant to the 'false' operand of the select:
1099 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
1100 /// Note: if C1 != C2, this will change the icmp constant to the existing
1101 /// constant operand of the select.
1102 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel,
1103                                                    ICmpInst &Cmp,
1104                                                    InstCombinerImpl &IC) {
1105   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1106     return nullptr;
1107 
1108   // Canonicalize the compare predicate based on whether we have min or max.
1109   Value *LHS, *RHS;
1110   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
1111   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
1112     return nullptr;
1113 
1114   // Is this already canonical?
1115   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
1116   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
1117       Cmp.getPredicate() == CanonicalPred)
1118     return nullptr;
1119 
1120   // Bail out on unsimplified X-0 operand (due to some worklist management bug),
1121   // as this may cause an infinite combine loop. Let the sub be folded first.
1122   if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
1123       match(RHS, m_Sub(m_Value(), m_Zero())))
1124     return nullptr;
1125 
1126   // Create the canonical compare and plug it into the select.
1127   IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS));
1128 
1129   // If the select operands did not change, we're done.
1130   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1131     return &Sel;
1132 
1133   // If we are swapping the select operands, swap the metadata too.
1134   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
1135          "Unexpected results from matchSelectPattern");
1136   Sel.swapValues();
1137   Sel.swapProfMetadata();
1138   return &Sel;
1139 }
1140 
1141 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1142                                         InstCombinerImpl &IC) {
1143   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1144     return nullptr;
1145 
1146   Value *LHS, *RHS;
1147   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1148   if (SPF != SelectPatternFlavor::SPF_ABS &&
1149       SPF != SelectPatternFlavor::SPF_NABS)
1150     return nullptr;
1151 
1152   // Note that NSW flag can only be propagated for normal, non-negated abs!
1153   bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1154                         match(RHS, m_NSWNeg(m_Specific(LHS)));
1155   Constant *IntMinIsPoisonC =
1156       ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
1157   Instruction *Abs =
1158       IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1159 
1160   if (SPF == SelectPatternFlavor::SPF_NABS)
1161     return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
1162 
1163   return IC.replaceInstUsesWith(Sel, Abs);
1164 }
1165 
1166 /// If we have a select with an equality comparison, then we know the value in
1167 /// one of the arms of the select. See if substituting this value into an arm
1168 /// and simplifying the result yields the same value as the other arm.
1169 ///
1170 /// To make this transform safe, we must drop poison-generating flags
1171 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1172 /// that poison from propagating. If the existing binop already had no
1173 /// poison-generating flags, then this transform can be done by instsimplify.
1174 ///
1175 /// Consider:
1176 ///   %cmp = icmp eq i32 %x, 2147483647
1177 ///   %add = add nsw i32 %x, 1
1178 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1179 ///
1180 /// We can't replace %sel with %add unless we strip away the flags.
1181 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1182 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1183                                                           ICmpInst &Cmp) {
1184   // Value equivalence substitution requires an all-or-nothing replacement.
1185   // It does not make sense for a vector compare where each lane is chosen
1186   // independently.
1187   if (!Cmp.isEquality() || Cmp.getType()->isVectorTy())
1188     return nullptr;
1189 
1190   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1191   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1192   bool Swapped = false;
1193   if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1194     std::swap(TrueVal, FalseVal);
1195     Swapped = true;
1196   }
1197 
1198   // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1199   // Make sure Y cannot be undef though, as we might pick different values for
1200   // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1201   // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1202   // replacement cycle.
1203   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1204   if (TrueVal != CmpLHS &&
1205       isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1206     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1207                                           /* AllowRefinement */ true))
1208       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1209 
1210     // Even if TrueVal does not simplify, we can directly replace a use of
1211     // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1212     // else and is safe to speculatively execute (we may end up executing it
1213     // with different operands, which should not cause side-effects or trigger
1214     // undefined behavior). Only do this if CmpRHS is a constant, as
1215     // profitability is not clear for other cases.
1216     // FIXME: The replacement could be performed recursively.
1217     if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()))
1218       if (auto *I = dyn_cast<Instruction>(TrueVal))
1219         if (I->hasOneUse() && isSafeToSpeculativelyExecute(I))
1220           for (Use &U : I->operands())
1221             if (U == CmpLHS) {
1222               replaceUse(U, CmpRHS);
1223               return &Sel;
1224             }
1225   }
1226   if (TrueVal != CmpRHS &&
1227       isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1228     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1229                                           /* AllowRefinement */ true))
1230       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1231 
1232   auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1233   if (!FalseInst)
1234     return nullptr;
1235 
1236   // InstSimplify already performed this fold if it was possible subject to
1237   // current poison-generating flags. Try the transform again with
1238   // poison-generating flags temporarily dropped.
1239   bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1240   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1241     WasNUW = OBO->hasNoUnsignedWrap();
1242     WasNSW = OBO->hasNoSignedWrap();
1243     FalseInst->setHasNoUnsignedWrap(false);
1244     FalseInst->setHasNoSignedWrap(false);
1245   }
1246   if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1247     WasExact = PEO->isExact();
1248     FalseInst->setIsExact(false);
1249   }
1250   if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1251     WasInBounds = GEP->isInBounds();
1252     GEP->setIsInBounds(false);
1253   }
1254 
1255   // Try each equivalence substitution possibility.
1256   // We have an 'EQ' comparison, so the select's false value will propagate.
1257   // Example:
1258   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1259   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1260                              /* AllowRefinement */ false) == TrueVal ||
1261       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1262                              /* AllowRefinement */ false) == TrueVal) {
1263     return replaceInstUsesWith(Sel, FalseVal);
1264   }
1265 
1266   // Restore poison-generating flags if the transform did not apply.
1267   if (WasNUW)
1268     FalseInst->setHasNoUnsignedWrap();
1269   if (WasNSW)
1270     FalseInst->setHasNoSignedWrap();
1271   if (WasExact)
1272     FalseInst->setIsExact();
1273   if (WasInBounds)
1274     cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1275 
1276   return nullptr;
1277 }
1278 
1279 // See if this is a pattern like:
1280 //   %old_cmp1 = icmp slt i32 %x, C2
1281 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1282 //   %old_x_offseted = add i32 %x, C1
1283 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1284 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1285 // This can be rewritten as more canonical pattern:
1286 //   %new_cmp1 = icmp slt i32 %x, -C1
1287 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1288 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1289 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1290 // Iff -C1 s<= C2 s<= C0-C1
1291 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1292 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1293 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1294                                           InstCombiner::BuilderTy &Builder) {
1295   Value *X = Sel0.getTrueValue();
1296   Value *Sel1 = Sel0.getFalseValue();
1297 
1298   // First match the condition of the outermost select.
1299   // Said condition must be one-use.
1300   if (!Cmp0.hasOneUse())
1301     return nullptr;
1302   Value *Cmp00 = Cmp0.getOperand(0);
1303   Constant *C0;
1304   if (!match(Cmp0.getOperand(1),
1305              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1306     return nullptr;
1307   // Canonicalize Cmp0 into the form we expect.
1308   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1309   switch (Cmp0.getPredicate()) {
1310   case ICmpInst::Predicate::ICMP_ULT:
1311     break; // Great!
1312   case ICmpInst::Predicate::ICMP_ULE:
1313     // We'd have to increment C0 by one, and for that it must not have all-ones
1314     // element, but then it would have been canonicalized to 'ult' before
1315     // we get here. So we can't do anything useful with 'ule'.
1316     return nullptr;
1317   case ICmpInst::Predicate::ICMP_UGT:
1318     // We want to canonicalize it to 'ult', so we'll need to increment C0,
1319     // which again means it must not have any all-ones elements.
1320     if (!match(C0,
1321                m_SpecificInt_ICMP(
1322                    ICmpInst::Predicate::ICMP_NE,
1323                    APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1324       return nullptr; // Can't do, have all-ones element[s].
1325     C0 = InstCombiner::AddOne(C0);
1326     std::swap(X, Sel1);
1327     break;
1328   case ICmpInst::Predicate::ICMP_UGE:
1329     // The only way we'd get this predicate if this `icmp` has extra uses,
1330     // but then we won't be able to do this fold.
1331     return nullptr;
1332   default:
1333     return nullptr; // Unknown predicate.
1334   }
1335 
1336   // Now that we've canonicalized the ICmp, we know the X we expect;
1337   // the select in other hand should be one-use.
1338   if (!Sel1->hasOneUse())
1339     return nullptr;
1340 
1341   // We now can finish matching the condition of the outermost select:
1342   // it should either be the X itself, or an addition of some constant to X.
1343   Constant *C1;
1344   if (Cmp00 == X)
1345     C1 = ConstantInt::getNullValue(Sel0.getType());
1346   else if (!match(Cmp00,
1347                   m_Add(m_Specific(X),
1348                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1349     return nullptr;
1350 
1351   Value *Cmp1;
1352   ICmpInst::Predicate Pred1;
1353   Constant *C2;
1354   Value *ReplacementLow, *ReplacementHigh;
1355   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1356                             m_Value(ReplacementHigh))) ||
1357       !match(Cmp1,
1358              m_ICmp(Pred1, m_Specific(X),
1359                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1360     return nullptr;
1361 
1362   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1363     return nullptr; // Not enough one-use instructions for the fold.
1364   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1365   //        two comparisons we'll need to build.
1366 
1367   // Canonicalize Cmp1 into the form we expect.
1368   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1369   switch (Pred1) {
1370   case ICmpInst::Predicate::ICMP_SLT:
1371     break;
1372   case ICmpInst::Predicate::ICMP_SLE:
1373     // We'd have to increment C2 by one, and for that it must not have signed
1374     // max element, but then it would have been canonicalized to 'slt' before
1375     // we get here. So we can't do anything useful with 'sle'.
1376     return nullptr;
1377   case ICmpInst::Predicate::ICMP_SGT:
1378     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1379     // which again means it must not have any signed max elements.
1380     if (!match(C2,
1381                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1382                                   APInt::getSignedMaxValue(
1383                                       C2->getType()->getScalarSizeInBits()))))
1384       return nullptr; // Can't do, have signed max element[s].
1385     C2 = InstCombiner::AddOne(C2);
1386     LLVM_FALLTHROUGH;
1387   case ICmpInst::Predicate::ICMP_SGE:
1388     // Also non-canonical, but here we don't need to change C2,
1389     // so we don't have any restrictions on C2, so we can just handle it.
1390     std::swap(ReplacementLow, ReplacementHigh);
1391     break;
1392   default:
1393     return nullptr; // Unknown predicate.
1394   }
1395 
1396   // The thresholds of this clamp-like pattern.
1397   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1398   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1399 
1400   // The fold has a precondition 1: C2 s>= ThresholdLow
1401   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1402                                          ThresholdLowIncl);
1403   if (!match(Precond1, m_One()))
1404     return nullptr;
1405   // The fold has a precondition 2: C2 s<= ThresholdHigh
1406   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1407                                          ThresholdHighExcl);
1408   if (!match(Precond2, m_One()))
1409     return nullptr;
1410 
1411   // All good, finally emit the new pattern.
1412   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1413   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1414   Value *MaybeReplacedLow =
1415       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1416   Instruction *MaybeReplacedHigh =
1417       SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1418 
1419   return MaybeReplacedHigh;
1420 }
1421 
1422 // If we have
1423 //  %cmp = icmp [canonical predicate] i32 %x, C0
1424 //  %r = select i1 %cmp, i32 %y, i32 C1
1425 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1426 // will have if we flip the strictness of the predicate (i.e. without changing
1427 // the result) is identical to the C1 in select. If it matches we can change
1428 // original comparison to one with swapped predicate, reuse the constant,
1429 // and swap the hands of select.
1430 static Instruction *
1431 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1432                                          InstCombinerImpl &IC) {
1433   ICmpInst::Predicate Pred;
1434   Value *X;
1435   Constant *C0;
1436   if (!match(&Cmp, m_OneUse(m_ICmp(
1437                        Pred, m_Value(X),
1438                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1439     return nullptr;
1440 
1441   // If comparison predicate is non-relational, we won't be able to do anything.
1442   if (ICmpInst::isEquality(Pred))
1443     return nullptr;
1444 
1445   // If comparison predicate is non-canonical, then we certainly won't be able
1446   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1447   if (!InstCombiner::isCanonicalPredicate(Pred))
1448     return nullptr;
1449 
1450   // If the [input] type of comparison and select type are different, lets abort
1451   // for now. We could try to compare constants with trunc/[zs]ext though.
1452   if (C0->getType() != Sel.getType())
1453     return nullptr;
1454 
1455   // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1456 
1457   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1458   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1459   // At least one of these values we are selecting between must be a constant
1460   // else we'll never succeed.
1461   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1462       !match(SelVal1, m_AnyIntegralConstant()))
1463     return nullptr;
1464 
1465   // Does this constant C match any of the `select` values?
1466   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1467     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1468   };
1469 
1470   // If C0 *already* matches true/false value of select, we are done.
1471   if (MatchesSelectValue(C0))
1472     return nullptr;
1473 
1474   // Check the constant we'd have with flipped-strictness predicate.
1475   auto FlippedStrictness =
1476       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1477   if (!FlippedStrictness)
1478     return nullptr;
1479 
1480   // If said constant doesn't match either, then there is no hope,
1481   if (!MatchesSelectValue(FlippedStrictness->second))
1482     return nullptr;
1483 
1484   // It matched! Lets insert the new comparison just before select.
1485   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1486   IC.Builder.SetInsertPoint(&Sel);
1487 
1488   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1489   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1490                                         Cmp.getName() + ".inv");
1491   IC.replaceOperand(Sel, 0, NewCmp);
1492   Sel.swapValues();
1493   Sel.swapProfMetadata();
1494 
1495   return &Sel;
1496 }
1497 
1498 /// Visit a SelectInst that has an ICmpInst as its first operand.
1499 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1500                                                       ICmpInst *ICI) {
1501   if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1502     return NewSel;
1503 
1504   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this))
1505     return NewSel;
1506 
1507   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this))
1508     return NewAbs;
1509 
1510   if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
1511     return NewAbs;
1512 
1513   if (Instruction *NewSel =
1514           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1515     return NewSel;
1516 
1517   bool Changed = adjustMinMax(SI, *ICI);
1518 
1519   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1520     return replaceInstUsesWith(SI, V);
1521 
1522   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1523   Value *TrueVal = SI.getTrueValue();
1524   Value *FalseVal = SI.getFalseValue();
1525   ICmpInst::Predicate Pred = ICI->getPredicate();
1526   Value *CmpLHS = ICI->getOperand(0);
1527   Value *CmpRHS = ICI->getOperand(1);
1528   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1529     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1530       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1531       SI.setOperand(1, CmpRHS);
1532       Changed = true;
1533     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1534       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1535       SI.setOperand(2, CmpRHS);
1536       Changed = true;
1537     }
1538   }
1539 
1540   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1541   // decomposeBitTestICmp() might help.
1542   {
1543     unsigned BitWidth =
1544         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1545     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1546     Value *X;
1547     const APInt *Y, *C;
1548     bool TrueWhenUnset;
1549     bool IsBitTest = false;
1550     if (ICmpInst::isEquality(Pred) &&
1551         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1552         match(CmpRHS, m_Zero())) {
1553       IsBitTest = true;
1554       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1555     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1556       X = CmpLHS;
1557       Y = &MinSignedValue;
1558       IsBitTest = true;
1559       TrueWhenUnset = false;
1560     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1561       X = CmpLHS;
1562       Y = &MinSignedValue;
1563       IsBitTest = true;
1564       TrueWhenUnset = true;
1565     }
1566     if (IsBitTest) {
1567       Value *V = nullptr;
1568       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1569       if (TrueWhenUnset && TrueVal == X &&
1570           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1571         V = Builder.CreateAnd(X, ~(*Y));
1572       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1573       else if (!TrueWhenUnset && FalseVal == X &&
1574                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1575         V = Builder.CreateAnd(X, ~(*Y));
1576       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1577       else if (TrueWhenUnset && FalseVal == X &&
1578                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1579         V = Builder.CreateOr(X, *Y);
1580       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1581       else if (!TrueWhenUnset && TrueVal == X &&
1582                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1583         V = Builder.CreateOr(X, *Y);
1584 
1585       if (V)
1586         return replaceInstUsesWith(SI, V);
1587     }
1588   }
1589 
1590   if (Instruction *V =
1591           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1592     return V;
1593 
1594   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1595     return V;
1596 
1597   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1598     return replaceInstUsesWith(SI, V);
1599 
1600   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1601     return replaceInstUsesWith(SI, V);
1602 
1603   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1604     return replaceInstUsesWith(SI, V);
1605 
1606   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1607     return replaceInstUsesWith(SI, V);
1608 
1609   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1610     return replaceInstUsesWith(SI, V);
1611 
1612   return Changed ? &SI : nullptr;
1613 }
1614 
1615 /// SI is a select whose condition is a PHI node (but the two may be in
1616 /// different blocks). See if the true/false values (V) are live in all of the
1617 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1618 ///
1619 ///   X = phi [ C1, BB1], [C2, BB2]
1620 ///   Y = add
1621 ///   Z = select X, Y, 0
1622 ///
1623 /// because Y is not live in BB1/BB2.
1624 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1625                                                    const SelectInst &SI) {
1626   // If the value is a non-instruction value like a constant or argument, it
1627   // can always be mapped.
1628   const Instruction *I = dyn_cast<Instruction>(V);
1629   if (!I) return true;
1630 
1631   // If V is a PHI node defined in the same block as the condition PHI, we can
1632   // map the arguments.
1633   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1634 
1635   if (const PHINode *VP = dyn_cast<PHINode>(I))
1636     if (VP->getParent() == CondPHI->getParent())
1637       return true;
1638 
1639   // Otherwise, if the PHI and select are defined in the same block and if V is
1640   // defined in a different block, then we can transform it.
1641   if (SI.getParent() == CondPHI->getParent() &&
1642       I->getParent() != CondPHI->getParent())
1643     return true;
1644 
1645   // Otherwise we have a 'hard' case and we can't tell without doing more
1646   // detailed dominator based analysis, punt.
1647   return false;
1648 }
1649 
1650 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1651 ///   SPF2(SPF1(A, B), C)
1652 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1653                                             SelectPatternFlavor SPF1, Value *A,
1654                                             Value *B, Instruction &Outer,
1655                                             SelectPatternFlavor SPF2,
1656                                             Value *C) {
1657   if (Outer.getType() != Inner->getType())
1658     return nullptr;
1659 
1660   if (C == A || C == B) {
1661     // MAX(MAX(A, B), B) -> MAX(A, B)
1662     // MIN(MIN(a, b), a) -> MIN(a, b)
1663     // TODO: This could be done in instsimplify.
1664     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1665       return replaceInstUsesWith(Outer, Inner);
1666 
1667     // MAX(MIN(a, b), a) -> a
1668     // MIN(MAX(a, b), a) -> a
1669     // TODO: This could be done in instsimplify.
1670     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1671         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1672         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1673         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1674       return replaceInstUsesWith(Outer, C);
1675   }
1676 
1677   if (SPF1 == SPF2) {
1678     const APInt *CB, *CC;
1679     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1680       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1681       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1682       // TODO: This could be done in instsimplify.
1683       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1684           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1685           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1686           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1687         return replaceInstUsesWith(Outer, Inner);
1688 
1689       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1690       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1691       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1692           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1693           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1694           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1695         Outer.replaceUsesOfWith(Inner, A);
1696         return &Outer;
1697       }
1698     }
1699   }
1700 
1701   // max(max(A, B), min(A, B)) --> max(A, B)
1702   // min(min(A, B), max(A, B)) --> min(A, B)
1703   // TODO: This could be done in instsimplify.
1704   if (SPF1 == SPF2 &&
1705       ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1706        (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1707        (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1708        (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1709     return replaceInstUsesWith(Outer, Inner);
1710 
1711   // ABS(ABS(X)) -> ABS(X)
1712   // NABS(NABS(X)) -> NABS(X)
1713   // TODO: This could be done in instsimplify.
1714   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1715     return replaceInstUsesWith(Outer, Inner);
1716   }
1717 
1718   // ABS(NABS(X)) -> ABS(X)
1719   // NABS(ABS(X)) -> NABS(X)
1720   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1721       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1722     SelectInst *SI = cast<SelectInst>(Inner);
1723     Value *NewSI =
1724         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1725                              SI->getTrueValue(), SI->getName(), SI);
1726     return replaceInstUsesWith(Outer, NewSI);
1727   }
1728 
1729   auto IsFreeOrProfitableToInvert =
1730       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1731     if (match(V, m_Not(m_Value(NotV)))) {
1732       // If V has at most 2 uses then we can get rid of the xor operation
1733       // entirely.
1734       ElidesXor |= !V->hasNUsesOrMore(3);
1735       return true;
1736     }
1737 
1738     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1739       NotV = nullptr;
1740       return true;
1741     }
1742 
1743     return false;
1744   };
1745 
1746   Value *NotA, *NotB, *NotC;
1747   bool ElidesXor = false;
1748 
1749   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1750   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1751   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1752   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1753   //
1754   // This transform is performance neutral if we can elide at least one xor from
1755   // the set of three operands, since we'll be tacking on an xor at the very
1756   // end.
1757   if (SelectPatternResult::isMinOrMax(SPF1) &&
1758       SelectPatternResult::isMinOrMax(SPF2) &&
1759       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1760       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1761       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1762     if (!NotA)
1763       NotA = Builder.CreateNot(A);
1764     if (!NotB)
1765       NotB = Builder.CreateNot(B);
1766     if (!NotC)
1767       NotC = Builder.CreateNot(C);
1768 
1769     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1770                                    NotB);
1771     Value *NewOuter = Builder.CreateNot(
1772         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1773     return replaceInstUsesWith(Outer, NewOuter);
1774   }
1775 
1776   return nullptr;
1777 }
1778 
1779 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1780 /// This is even legal for FP.
1781 static Instruction *foldAddSubSelect(SelectInst &SI,
1782                                      InstCombiner::BuilderTy &Builder) {
1783   Value *CondVal = SI.getCondition();
1784   Value *TrueVal = SI.getTrueValue();
1785   Value *FalseVal = SI.getFalseValue();
1786   auto *TI = dyn_cast<Instruction>(TrueVal);
1787   auto *FI = dyn_cast<Instruction>(FalseVal);
1788   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1789     return nullptr;
1790 
1791   Instruction *AddOp = nullptr, *SubOp = nullptr;
1792   if ((TI->getOpcode() == Instruction::Sub &&
1793        FI->getOpcode() == Instruction::Add) ||
1794       (TI->getOpcode() == Instruction::FSub &&
1795        FI->getOpcode() == Instruction::FAdd)) {
1796     AddOp = FI;
1797     SubOp = TI;
1798   } else if ((FI->getOpcode() == Instruction::Sub &&
1799               TI->getOpcode() == Instruction::Add) ||
1800              (FI->getOpcode() == Instruction::FSub &&
1801               TI->getOpcode() == Instruction::FAdd)) {
1802     AddOp = TI;
1803     SubOp = FI;
1804   }
1805 
1806   if (AddOp) {
1807     Value *OtherAddOp = nullptr;
1808     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1809       OtherAddOp = AddOp->getOperand(1);
1810     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1811       OtherAddOp = AddOp->getOperand(0);
1812     }
1813 
1814     if (OtherAddOp) {
1815       // So at this point we know we have (Y -> OtherAddOp):
1816       //        select C, (add X, Y), (sub X, Z)
1817       Value *NegVal; // Compute -Z
1818       if (SI.getType()->isFPOrFPVectorTy()) {
1819         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1820         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1821           FastMathFlags Flags = AddOp->getFastMathFlags();
1822           Flags &= SubOp->getFastMathFlags();
1823           NegInst->setFastMathFlags(Flags);
1824         }
1825       } else {
1826         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1827       }
1828 
1829       Value *NewTrueOp = OtherAddOp;
1830       Value *NewFalseOp = NegVal;
1831       if (AddOp != TI)
1832         std::swap(NewTrueOp, NewFalseOp);
1833       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1834                                            SI.getName() + ".p", &SI);
1835 
1836       if (SI.getType()->isFPOrFPVectorTy()) {
1837         Instruction *RI =
1838             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1839 
1840         FastMathFlags Flags = AddOp->getFastMathFlags();
1841         Flags &= SubOp->getFastMathFlags();
1842         RI->setFastMathFlags(Flags);
1843         return RI;
1844       } else
1845         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1846     }
1847   }
1848   return nullptr;
1849 }
1850 
1851 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1852 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1853 /// Along with a number of patterns similar to:
1854 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1855 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1856 static Instruction *
1857 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1858   Value *CondVal = SI.getCondition();
1859   Value *TrueVal = SI.getTrueValue();
1860   Value *FalseVal = SI.getFalseValue();
1861 
1862   WithOverflowInst *II;
1863   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1864       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1865     return nullptr;
1866 
1867   Value *X = II->getLHS();
1868   Value *Y = II->getRHS();
1869 
1870   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1871     Type *Ty = Limit->getType();
1872 
1873     ICmpInst::Predicate Pred;
1874     Value *TrueVal, *FalseVal, *Op;
1875     const APInt *C;
1876     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1877                                m_Value(TrueVal), m_Value(FalseVal))))
1878       return false;
1879 
1880     auto IsZeroOrOne = [](const APInt &C) {
1881       return C.isNullValue() || C.isOneValue();
1882     };
1883     auto IsMinMax = [&](Value *Min, Value *Max) {
1884       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1885       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1886       return match(Min, m_SpecificInt(MinVal)) &&
1887              match(Max, m_SpecificInt(MaxVal));
1888     };
1889 
1890     if (Op != X && Op != Y)
1891       return false;
1892 
1893     if (IsAdd) {
1894       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1895       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1896       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1897       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1898       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1899           IsMinMax(TrueVal, FalseVal))
1900         return true;
1901       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1902       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1903       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1904       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1905       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1906           IsMinMax(FalseVal, TrueVal))
1907         return true;
1908     } else {
1909       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1910       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1911       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1912           IsMinMax(TrueVal, FalseVal))
1913         return true;
1914       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1915       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1916       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1917           IsMinMax(FalseVal, TrueVal))
1918         return true;
1919       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1920       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1921       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1922           IsMinMax(FalseVal, TrueVal))
1923         return true;
1924       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1925       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1926       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1927           IsMinMax(TrueVal, FalseVal))
1928         return true;
1929     }
1930 
1931     return false;
1932   };
1933 
1934   Intrinsic::ID NewIntrinsicID;
1935   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1936       match(TrueVal, m_AllOnes()))
1937     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1938     NewIntrinsicID = Intrinsic::uadd_sat;
1939   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1940            match(TrueVal, m_Zero()))
1941     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1942     NewIntrinsicID = Intrinsic::usub_sat;
1943   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1944            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1945     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1946     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1947     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1948     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1949     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1950     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1951     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1952     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1953     NewIntrinsicID = Intrinsic::sadd_sat;
1954   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1955            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1956     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1957     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1958     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1959     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1960     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1961     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1962     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1963     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1964     NewIntrinsicID = Intrinsic::ssub_sat;
1965   else
1966     return nullptr;
1967 
1968   Function *F =
1969       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1970   return CallInst::Create(F, {X, Y});
1971 }
1972 
1973 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
1974   Constant *C;
1975   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1976       !match(Sel.getFalseValue(), m_Constant(C)))
1977     return nullptr;
1978 
1979   Instruction *ExtInst;
1980   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1981       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1982     return nullptr;
1983 
1984   auto ExtOpcode = ExtInst->getOpcode();
1985   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1986     return nullptr;
1987 
1988   // If we are extending from a boolean type or if we can create a select that
1989   // has the same size operands as its condition, try to narrow the select.
1990   Value *X = ExtInst->getOperand(0);
1991   Type *SmallType = X->getType();
1992   Value *Cond = Sel.getCondition();
1993   auto *Cmp = dyn_cast<CmpInst>(Cond);
1994   if (!SmallType->isIntOrIntVectorTy(1) &&
1995       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1996     return nullptr;
1997 
1998   // If the constant is the same after truncation to the smaller type and
1999   // extension to the original type, we can narrow the select.
2000   Type *SelType = Sel.getType();
2001   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
2002   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
2003   if (ExtC == C && ExtInst->hasOneUse()) {
2004     Value *TruncCVal = cast<Value>(TruncC);
2005     if (ExtInst == Sel.getFalseValue())
2006       std::swap(X, TruncCVal);
2007 
2008     // select Cond, (ext X), C --> ext(select Cond, X, C')
2009     // select Cond, C, (ext X) --> ext(select Cond, C', X)
2010     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2011     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2012   }
2013 
2014   // If one arm of the select is the extend of the condition, replace that arm
2015   // with the extension of the appropriate known bool value.
2016   if (Cond == X) {
2017     if (ExtInst == Sel.getTrueValue()) {
2018       // select X, (sext X), C --> select X, -1, C
2019       // select X, (zext X), C --> select X,  1, C
2020       Constant *One = ConstantInt::getTrue(SmallType);
2021       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
2022       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
2023     } else {
2024       // select X, C, (sext X) --> select X, C, 0
2025       // select X, C, (zext X) --> select X, C, 0
2026       Constant *Zero = ConstantInt::getNullValue(SelType);
2027       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
2028     }
2029   }
2030 
2031   return nullptr;
2032 }
2033 
2034 /// Try to transform a vector select with a constant condition vector into a
2035 /// shuffle for easier combining with other shuffles and insert/extract.
2036 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2037   Value *CondVal = SI.getCondition();
2038   Constant *CondC;
2039   auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2040   if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2041     return nullptr;
2042 
2043   unsigned NumElts = CondValTy->getNumElements();
2044   SmallVector<int, 16> Mask;
2045   Mask.reserve(NumElts);
2046   for (unsigned i = 0; i != NumElts; ++i) {
2047     Constant *Elt = CondC->getAggregateElement(i);
2048     if (!Elt)
2049       return nullptr;
2050 
2051     if (Elt->isOneValue()) {
2052       // If the select condition element is true, choose from the 1st vector.
2053       Mask.push_back(i);
2054     } else if (Elt->isNullValue()) {
2055       // If the select condition element is false, choose from the 2nd vector.
2056       Mask.push_back(i + NumElts);
2057     } else if (isa<UndefValue>(Elt)) {
2058       // Undef in a select condition (choose one of the operands) does not mean
2059       // the same thing as undef in a shuffle mask (any value is acceptable), so
2060       // give up.
2061       return nullptr;
2062     } else {
2063       // Bail out on a constant expression.
2064       return nullptr;
2065     }
2066   }
2067 
2068   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2069 }
2070 
2071 /// If we have a select of vectors with a scalar condition, try to convert that
2072 /// to a vector select by splatting the condition. A splat may get folded with
2073 /// other operations in IR and having all operands of a select be vector types
2074 /// is likely better for vector codegen.
2075 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2076                                                    InstCombinerImpl &IC) {
2077   auto *Ty = dyn_cast<VectorType>(Sel.getType());
2078   if (!Ty)
2079     return nullptr;
2080 
2081   // We can replace a single-use extract with constant index.
2082   Value *Cond = Sel.getCondition();
2083   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2084     return nullptr;
2085 
2086   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2087   // Splatting the extracted condition reduces code (we could directly create a
2088   // splat shuffle of the source vector to eliminate the intermediate step).
2089   return IC.replaceOperand(
2090       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2091 }
2092 
2093 /// Reuse bitcasted operands between a compare and select:
2094 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2095 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2096 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2097                                           InstCombiner::BuilderTy &Builder) {
2098   Value *Cond = Sel.getCondition();
2099   Value *TVal = Sel.getTrueValue();
2100   Value *FVal = Sel.getFalseValue();
2101 
2102   CmpInst::Predicate Pred;
2103   Value *A, *B;
2104   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2105     return nullptr;
2106 
2107   // The select condition is a compare instruction. If the select's true/false
2108   // values are already the same as the compare operands, there's nothing to do.
2109   if (TVal == A || TVal == B || FVal == A || FVal == B)
2110     return nullptr;
2111 
2112   Value *C, *D;
2113   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2114     return nullptr;
2115 
2116   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2117   Value *TSrc, *FSrc;
2118   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2119       !match(FVal, m_BitCast(m_Value(FSrc))))
2120     return nullptr;
2121 
2122   // If the select true/false values are *different bitcasts* of the same source
2123   // operands, make the select operands the same as the compare operands and
2124   // cast the result. This is the canonical select form for min/max.
2125   Value *NewSel;
2126   if (TSrc == C && FSrc == D) {
2127     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2128     // bitcast (select (cmp A, B), A, B)
2129     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2130   } else if (TSrc == D && FSrc == C) {
2131     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2132     // bitcast (select (cmp A, B), B, A)
2133     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2134   } else {
2135     return nullptr;
2136   }
2137   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2138 }
2139 
2140 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2141 /// instructions.
2142 ///
2143 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2144 /// selects between the returned value of the cmpxchg instruction its compare
2145 /// operand, the result of the select will always be equal to its false value.
2146 /// For example:
2147 ///
2148 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2149 ///   %1 = extractvalue { i64, i1 } %0, 1
2150 ///   %2 = extractvalue { i64, i1 } %0, 0
2151 ///   %3 = select i1 %1, i64 %compare, i64 %2
2152 ///   ret i64 %3
2153 ///
2154 /// The returned value of the cmpxchg instruction (%2) is the original value
2155 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2156 /// must have been equal to %compare. Thus, the result of the select is always
2157 /// equal to %2, and the code can be simplified to:
2158 ///
2159 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2160 ///   %1 = extractvalue { i64, i1 } %0, 0
2161 ///   ret i64 %1
2162 ///
2163 static Value *foldSelectCmpXchg(SelectInst &SI) {
2164   // A helper that determines if V is an extractvalue instruction whose
2165   // aggregate operand is a cmpxchg instruction and whose single index is equal
2166   // to I. If such conditions are true, the helper returns the cmpxchg
2167   // instruction; otherwise, a nullptr is returned.
2168   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2169     auto *Extract = dyn_cast<ExtractValueInst>(V);
2170     if (!Extract)
2171       return nullptr;
2172     if (Extract->getIndices()[0] != I)
2173       return nullptr;
2174     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2175   };
2176 
2177   // If the select has a single user, and this user is a select instruction that
2178   // we can simplify, skip the cmpxchg simplification for now.
2179   if (SI.hasOneUse())
2180     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2181       if (Select->getCondition() == SI.getCondition())
2182         if (Select->getFalseValue() == SI.getTrueValue() ||
2183             Select->getTrueValue() == SI.getFalseValue())
2184           return nullptr;
2185 
2186   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2187   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2188   if (!CmpXchg)
2189     return nullptr;
2190 
2191   // Check the true value case: The true value of the select is the returned
2192   // value of the same cmpxchg used by the condition, and the false value is the
2193   // cmpxchg instruction's compare operand.
2194   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2195     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2196       return SI.getFalseValue();
2197 
2198   // Check the false value case: The false value of the select is the returned
2199   // value of the same cmpxchg used by the condition, and the true value is the
2200   // cmpxchg instruction's compare operand.
2201   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2202     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2203       return SI.getFalseValue();
2204 
2205   return nullptr;
2206 }
2207 
2208 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2209                                        Value *Y,
2210                                        InstCombiner::BuilderTy &Builder) {
2211   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
2212   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2213                     SPF == SelectPatternFlavor::SPF_UMAX;
2214   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2215   // the constant value check to an assert.
2216   Value *A;
2217   const APInt *C1, *C2;
2218   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2219       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2220     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2221     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2222     Value *NewMinMax = createMinMax(Builder, SPF, A,
2223                                     ConstantInt::get(X->getType(), *C2 - *C1));
2224     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2225                                      ConstantInt::get(X->getType(), *C1));
2226   }
2227 
2228   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2229       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2230     bool Overflow;
2231     APInt Diff = C2->ssub_ov(*C1, Overflow);
2232     if (!Overflow) {
2233       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2234       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2235       Value *NewMinMax = createMinMax(Builder, SPF, A,
2236                                       ConstantInt::get(X->getType(), Diff));
2237       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2238                                        ConstantInt::get(X->getType(), *C1));
2239     }
2240   }
2241 
2242   return nullptr;
2243 }
2244 
2245 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2246 Instruction *InstCombinerImpl::matchSAddSubSat(Instruction &MinMax1) {
2247   Type *Ty = MinMax1.getType();
2248 
2249   // We are looking for a tree of:
2250   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2251   // Where the min and max could be reversed
2252   Instruction *MinMax2;
2253   BinaryOperator *AddSub;
2254   const APInt *MinValue, *MaxValue;
2255   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2256     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2257       return nullptr;
2258   } else if (match(&MinMax1,
2259                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2260     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2261       return nullptr;
2262   } else
2263     return nullptr;
2264 
2265   // Check that the constants clamp a saturate, and that the new type would be
2266   // sensible to convert to.
2267   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2268     return nullptr;
2269   // In what bitwidth can this be treated as saturating arithmetics?
2270   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2271   // FIXME: This isn't quite right for vectors, but using the scalar type is a
2272   // good first approximation for what should be done there.
2273   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2274     return nullptr;
2275 
2276   // Also make sure that the number of uses is as expected. The 3 is for the
2277   // the two items of the compare and the select, or 2 from a min/max.
2278   unsigned ExpUses = isa<IntrinsicInst>(MinMax1) ? 2 : 3;
2279   if (MinMax2->hasNUsesOrMore(ExpUses) || AddSub->hasNUsesOrMore(ExpUses))
2280     return nullptr;
2281 
2282   // Create the new type (which can be a vector type)
2283   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2284   // Match the two extends from the add/sub
2285   Value *A, *B;
2286   if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
2287     return nullptr;
2288   // And check the incoming values are of a type smaller than or equal to the
2289   // size of the saturation. Otherwise the higher bits can cause different
2290   // results.
2291   if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
2292       B->getType()->getScalarSizeInBits() > NewBitWidth)
2293     return nullptr;
2294 
2295   Intrinsic::ID IntrinsicID;
2296   if (AddSub->getOpcode() == Instruction::Add)
2297     IntrinsicID = Intrinsic::sadd_sat;
2298   else if (AddSub->getOpcode() == Instruction::Sub)
2299     IntrinsicID = Intrinsic::ssub_sat;
2300   else
2301     return nullptr;
2302 
2303   // Finally create and return the sat intrinsic, truncated to the new type
2304   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2305   Value *AT = Builder.CreateSExt(A, NewTy);
2306   Value *BT = Builder.CreateSExt(B, NewTy);
2307   Value *Sat = Builder.CreateCall(F, {AT, BT});
2308   return CastInst::Create(Instruction::SExt, Sat, Ty);
2309 }
2310 
2311 /// Reduce a sequence of min/max with a common operand.
2312 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2313                                         Value *RHS,
2314                                         InstCombiner::BuilderTy &Builder) {
2315   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2316   // TODO: Allow FP min/max with nnan/nsz.
2317   if (!LHS->getType()->isIntOrIntVectorTy())
2318     return nullptr;
2319 
2320   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2321   Value *A, *B, *C, *D;
2322   SelectPatternResult L = matchSelectPattern(LHS, A, B);
2323   SelectPatternResult R = matchSelectPattern(RHS, C, D);
2324   if (SPF != L.Flavor || L.Flavor != R.Flavor)
2325     return nullptr;
2326 
2327   // Look for a common operand. The use checks are different than usual because
2328   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2329   // the select.
2330   Value *MinMaxOp = nullptr;
2331   Value *ThirdOp = nullptr;
2332   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2333     // If the LHS is only used in this chain and the RHS is used outside of it,
2334     // reuse the RHS min/max because that will eliminate the LHS.
2335     if (D == A || C == A) {
2336       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2337       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2338       MinMaxOp = RHS;
2339       ThirdOp = B;
2340     } else if (D == B || C == B) {
2341       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2342       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2343       MinMaxOp = RHS;
2344       ThirdOp = A;
2345     }
2346   } else if (!RHS->hasNUsesOrMore(3)) {
2347     // Reuse the LHS. This will eliminate the RHS.
2348     if (D == A || D == B) {
2349       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2350       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2351       MinMaxOp = LHS;
2352       ThirdOp = C;
2353     } else if (C == A || C == B) {
2354       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2355       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2356       MinMaxOp = LHS;
2357       ThirdOp = D;
2358     }
2359   }
2360   if (!MinMaxOp || !ThirdOp)
2361     return nullptr;
2362 
2363   CmpInst::Predicate P = getMinMaxPred(SPF);
2364   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2365   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2366 }
2367 
2368 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2369 /// into a funnel shift intrinsic. Example:
2370 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2371 ///              --> call llvm.fshl.i32(a, a, b)
2372 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2373 ///                 --> call llvm.fshl.i32(a, b, c)
2374 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2375 ///                 --> call llvm.fshr.i32(a, b, c)
2376 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2377                                           InstCombiner::BuilderTy &Builder) {
2378   // This must be a power-of-2 type for a bitmasking transform to be valid.
2379   unsigned Width = Sel.getType()->getScalarSizeInBits();
2380   if (!isPowerOf2_32(Width))
2381     return nullptr;
2382 
2383   BinaryOperator *Or0, *Or1;
2384   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2385     return nullptr;
2386 
2387   Value *SV0, *SV1, *SA0, *SA1;
2388   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2389                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2390       !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2391                                           m_ZExtOrSelf(m_Value(SA1))))) ||
2392       Or0->getOpcode() == Or1->getOpcode())
2393     return nullptr;
2394 
2395   // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2396   if (Or0->getOpcode() == BinaryOperator::LShr) {
2397     std::swap(Or0, Or1);
2398     std::swap(SV0, SV1);
2399     std::swap(SA0, SA1);
2400   }
2401   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2402          Or1->getOpcode() == BinaryOperator::LShr &&
2403          "Illegal or(shift,shift) pair");
2404 
2405   // Check the shift amounts to see if they are an opposite pair.
2406   Value *ShAmt;
2407   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2408     ShAmt = SA0;
2409   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2410     ShAmt = SA1;
2411   else
2412     return nullptr;
2413 
2414   // We should now have this pattern:
2415   // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2416   // The false value of the select must be a funnel-shift of the true value:
2417   // IsFShl -> TVal must be SV0 else TVal must be SV1.
2418   bool IsFshl = (ShAmt == SA0);
2419   Value *TVal = Sel.getTrueValue();
2420   if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2421     return nullptr;
2422 
2423   // Finally, see if the select is filtering out a shift-by-zero.
2424   Value *Cond = Sel.getCondition();
2425   ICmpInst::Predicate Pred;
2426   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2427       Pred != ICmpInst::ICMP_EQ)
2428     return nullptr;
2429 
2430   // If this is not a rotate then the select was blocking poison from the
2431   // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2432   if (SV0 != SV1) {
2433     if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2434       SV1 = Builder.CreateFreeze(SV1);
2435     else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2436       SV0 = Builder.CreateFreeze(SV0);
2437   }
2438 
2439   // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2440   // Convert to funnel shift intrinsic.
2441   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2442   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2443   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2444   return CallInst::Create(F, { SV0, SV1, ShAmt });
2445 }
2446 
2447 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2448                                          InstCombiner::BuilderTy &Builder) {
2449   Value *Cond = Sel.getCondition();
2450   Value *TVal = Sel.getTrueValue();
2451   Value *FVal = Sel.getFalseValue();
2452   Type *SelType = Sel.getType();
2453 
2454   // Match select ?, TC, FC where the constants are equal but negated.
2455   // TODO: Generalize to handle a negated variable operand?
2456   const APFloat *TC, *FC;
2457   if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
2458       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2459     return nullptr;
2460 
2461   assert(TC != FC && "Expected equal select arms to simplify");
2462 
2463   Value *X;
2464   const APInt *C;
2465   bool IsTrueIfSignSet;
2466   ICmpInst::Predicate Pred;
2467   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2468       !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2469       X->getType() != SelType)
2470     return nullptr;
2471 
2472   // If needed, negate the value that will be the sign argument of the copysign:
2473   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2474   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2475   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2476   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2477   if (IsTrueIfSignSet ^ TC->isNegative())
2478     X = Builder.CreateFNegFMF(X, &Sel);
2479 
2480   // Canonicalize the magnitude argument as the positive constant since we do
2481   // not care about its sign.
2482   Value *MagArg = TC->isNegative() ? FVal : TVal;
2483   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2484                                           Sel.getType());
2485   Instruction *CopySign = CallInst::Create(F, { MagArg, X });
2486   CopySign->setFastMathFlags(Sel.getFastMathFlags());
2487   return CopySign;
2488 }
2489 
2490 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2491   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2492   if (!VecTy)
2493     return nullptr;
2494 
2495   unsigned NumElts = VecTy->getNumElements();
2496   APInt UndefElts(NumElts, 0);
2497   APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2498   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2499     if (V != &Sel)
2500       return replaceInstUsesWith(Sel, V);
2501     return &Sel;
2502   }
2503 
2504   // A select of a "select shuffle" with a common operand can be rearranged
2505   // to select followed by "select shuffle". Because of poison, this only works
2506   // in the case of a shuffle with no undefined mask elements.
2507   Value *Cond = Sel.getCondition();
2508   Value *TVal = Sel.getTrueValue();
2509   Value *FVal = Sel.getFalseValue();
2510   Value *X, *Y;
2511   ArrayRef<int> Mask;
2512   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2513       !is_contained(Mask, UndefMaskElem) &&
2514       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2515     if (X == FVal) {
2516       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2517       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2518       return new ShuffleVectorInst(X, NewSel, Mask);
2519     }
2520     if (Y == FVal) {
2521       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2522       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2523       return new ShuffleVectorInst(NewSel, Y, Mask);
2524     }
2525   }
2526   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2527       !is_contained(Mask, UndefMaskElem) &&
2528       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2529     if (X == TVal) {
2530       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2531       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2532       return new ShuffleVectorInst(X, NewSel, Mask);
2533     }
2534     if (Y == TVal) {
2535       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2536       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2537       return new ShuffleVectorInst(NewSel, Y, Mask);
2538     }
2539   }
2540 
2541   return nullptr;
2542 }
2543 
2544 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2545                                         const DominatorTree &DT,
2546                                         InstCombiner::BuilderTy &Builder) {
2547   // Find the block's immediate dominator that ends with a conditional branch
2548   // that matches select's condition (maybe inverted).
2549   auto *IDomNode = DT[BB]->getIDom();
2550   if (!IDomNode)
2551     return nullptr;
2552   BasicBlock *IDom = IDomNode->getBlock();
2553 
2554   Value *Cond = Sel.getCondition();
2555   Value *IfTrue, *IfFalse;
2556   BasicBlock *TrueSucc, *FalseSucc;
2557   if (match(IDom->getTerminator(),
2558             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2559                  m_BasicBlock(FalseSucc)))) {
2560     IfTrue = Sel.getTrueValue();
2561     IfFalse = Sel.getFalseValue();
2562   } else if (match(IDom->getTerminator(),
2563                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2564                         m_BasicBlock(FalseSucc)))) {
2565     IfTrue = Sel.getFalseValue();
2566     IfFalse = Sel.getTrueValue();
2567   } else
2568     return nullptr;
2569 
2570   // Make sure the branches are actually different.
2571   if (TrueSucc == FalseSucc)
2572     return nullptr;
2573 
2574   // We want to replace select %cond, %a, %b with a phi that takes value %a
2575   // for all incoming edges that are dominated by condition `%cond == true`,
2576   // and value %b for edges dominated by condition `%cond == false`. If %a
2577   // or %b are also phis from the same basic block, we can go further and take
2578   // their incoming values from the corresponding blocks.
2579   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2580   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2581   DenseMap<BasicBlock *, Value *> Inputs;
2582   for (auto *Pred : predecessors(BB)) {
2583     // Check implication.
2584     BasicBlockEdge Incoming(Pred, BB);
2585     if (DT.dominates(TrueEdge, Incoming))
2586       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2587     else if (DT.dominates(FalseEdge, Incoming))
2588       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2589     else
2590       return nullptr;
2591     // Check availability.
2592     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2593       if (!DT.dominates(Insn, Pred->getTerminator()))
2594         return nullptr;
2595   }
2596 
2597   Builder.SetInsertPoint(&*BB->begin());
2598   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2599   for (auto *Pred : predecessors(BB))
2600     PN->addIncoming(Inputs[Pred], Pred);
2601   PN->takeName(&Sel);
2602   return PN;
2603 }
2604 
2605 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2606                                     InstCombiner::BuilderTy &Builder) {
2607   // Try to replace this select with Phi in one of these blocks.
2608   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2609   CandidateBlocks.insert(Sel.getParent());
2610   for (Value *V : Sel.operands())
2611     if (auto *I = dyn_cast<Instruction>(V))
2612       CandidateBlocks.insert(I->getParent());
2613 
2614   for (BasicBlock *BB : CandidateBlocks)
2615     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2616       return PN;
2617   return nullptr;
2618 }
2619 
2620 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2621   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2622   if (!FI)
2623     return nullptr;
2624 
2625   Value *Cond = FI->getOperand(0);
2626   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2627 
2628   //   select (freeze(x == y)), x, y --> y
2629   //   select (freeze(x != y)), x, y --> x
2630   // The freeze should be only used by this select. Otherwise, remaining uses of
2631   // the freeze can observe a contradictory value.
2632   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2633   //   a = select c, x, y   ;
2634   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2635   //                        ; to y, this can happen.
2636   CmpInst::Predicate Pred;
2637   if (FI->hasOneUse() &&
2638       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2639       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2640     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2641   }
2642 
2643   return nullptr;
2644 }
2645 
2646 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2647                                                                  SelectInst &SI,
2648                                                                  bool IsAnd) {
2649   Value *CondVal = SI.getCondition();
2650   Value *A = SI.getTrueValue();
2651   Value *B = SI.getFalseValue();
2652 
2653   assert(Op->getType()->isIntOrIntVectorTy(1) &&
2654          "Op must be either i1 or vector of i1.");
2655 
2656   Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2657   if (!Res)
2658     return nullptr;
2659 
2660   Value *Zero = Constant::getNullValue(A->getType());
2661   Value *One = Constant::getAllOnesValue(A->getType());
2662 
2663   if (*Res == true) {
2664     if (IsAnd)
2665       // select op, (select cond, A, B), false => select op, A, false
2666       // and    op, (select cond, A, B)        => select op, A, false
2667       //   if op = true implies condval = true.
2668       return SelectInst::Create(Op, A, Zero);
2669     else
2670       // select op, true, (select cond, A, B) => select op, true, A
2671       // or     op, (select cond, A, B)       => select op, true, A
2672       //   if op = false implies condval = true.
2673       return SelectInst::Create(Op, One, A);
2674   } else {
2675     if (IsAnd)
2676       // select op, (select cond, A, B), false => select op, B, false
2677       // and    op, (select cond, A, B)        => select op, B, false
2678       //   if op = true implies condval = false.
2679       return SelectInst::Create(Op, B, Zero);
2680     else
2681       // select op, true, (select cond, A, B) => select op, true, B
2682       // or     op, (select cond, A, B)       => select op, true, B
2683       //   if op = false implies condval = false.
2684       return SelectInst::Create(Op, One, B);
2685   }
2686 }
2687 
2688 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
2689   Value *CondVal = SI.getCondition();
2690   Value *TrueVal = SI.getTrueValue();
2691   Value *FalseVal = SI.getFalseValue();
2692   Type *SelType = SI.getType();
2693 
2694   // FIXME: Remove this workaround when freeze related patches are done.
2695   // For select with undef operand which feeds into an equality comparison,
2696   // don't simplify it so loop unswitch can know the equality comparison
2697   // may have an undef operand. This is a workaround for PR31652 caused by
2698   // descrepancy about branch on undef between LoopUnswitch and GVN.
2699   if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) {
2700     if (llvm::any_of(SI.users(), [&](User *U) {
2701           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2702           if (CI && CI->isEquality())
2703             return true;
2704           return false;
2705         })) {
2706       return nullptr;
2707     }
2708   }
2709 
2710   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2711                                     SQ.getWithInstruction(&SI)))
2712     return replaceInstUsesWith(SI, V);
2713 
2714   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2715     return I;
2716 
2717   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
2718     return I;
2719 
2720   CmpInst::Predicate Pred;
2721 
2722   // Avoid potential infinite loops by checking for non-constant condition.
2723   // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2724   //       Scalar select must have simplified?
2725   if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) &&
2726       TrueVal->getType() == CondVal->getType()) {
2727     // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2728     // checks whether folding it does not convert a well-defined value into
2729     // poison.
2730     if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) {
2731       // Change: A = select B, true, C --> A = or B, C
2732       return BinaryOperator::CreateOr(CondVal, FalseVal);
2733     }
2734     if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) {
2735       // Change: A = select B, C, false --> A = and B, C
2736       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2737     }
2738 
2739     auto *One = ConstantInt::getTrue(SelType);
2740     auto *Zero = ConstantInt::getFalse(SelType);
2741 
2742     // We match the "full" 0 or 1 constant here to avoid a potential infinite
2743     // loop with vectors that may have undefined/poison elements.
2744     // select a, false, b -> select !a, b, false
2745     if (match(TrueVal, m_Specific(Zero))) {
2746       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2747       return SelectInst::Create(NotCond, FalseVal, Zero);
2748     }
2749     // select a, b, true -> select !a, true, b
2750     if (match(FalseVal, m_Specific(One))) {
2751       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2752       return SelectInst::Create(NotCond, One, TrueVal);
2753     }
2754 
2755     // select a, a, b -> select a, true, b
2756     if (CondVal == TrueVal)
2757       return replaceOperand(SI, 1, One);
2758     // select a, b, a -> select a, b, false
2759     if (CondVal == FalseVal)
2760       return replaceOperand(SI, 2, Zero);
2761 
2762     // select a, !a, b -> select !a, b, false
2763     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2764       return SelectInst::Create(TrueVal, FalseVal, Zero);
2765     // select a, b, !a -> select !a, true, b
2766     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2767       return SelectInst::Create(FalseVal, One, TrueVal);
2768 
2769     Value *A, *B;
2770 
2771     // DeMorgan in select form: !a && !b --> !(a || b)
2772     // select !a, !b, false --> not (select a, true, b)
2773     if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2774         (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
2775         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2776       return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
2777 
2778     // DeMorgan in select form: !a || !b --> !(a && b)
2779     // select !a, true, !b --> not (select a, b, false)
2780     if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2781         (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
2782         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2783       return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
2784 
2785     // select (select a, true, b), true, b -> select a, true, b
2786     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2787         match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
2788       return replaceOperand(SI, 0, A);
2789     // select (select a, b, false), b, false -> select a, b, false
2790     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2791         match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
2792       return replaceOperand(SI, 0, A);
2793 
2794     if (!SelType->isVectorTy()) {
2795       if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ,
2796                                             /* AllowRefinement */ true))
2797         return replaceOperand(SI, 1, S);
2798       if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ,
2799                                             /* AllowRefinement */ true))
2800         return replaceOperand(SI, 2, S);
2801     }
2802 
2803     if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
2804       Use *Y = nullptr;
2805       bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
2806       Value *Op1 = IsAnd ? TrueVal : FalseVal;
2807       if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
2808         auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
2809         InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
2810         replaceUse(*Y, FI);
2811         return replaceInstUsesWith(SI, Op1);
2812       }
2813 
2814       if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
2815         if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
2816                                                         /* IsAnd */ IsAnd))
2817           return I;
2818 
2819       if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) {
2820         if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) {
2821           if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd,
2822                                                       /* IsLogical */ true))
2823             return replaceInstUsesWith(SI, V);
2824 
2825           if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd))
2826             return replaceInstUsesWith(SI, V);
2827         }
2828       }
2829     }
2830 
2831     // select (select a, true, b), c, false -> select a, c, false
2832     // select c, (select a, true, b), false -> select c, a, false
2833     //   if c implies that b is false.
2834     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2835         match(FalseVal, m_Zero())) {
2836       Optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
2837       if (Res && *Res == false)
2838         return replaceOperand(SI, 0, A);
2839     }
2840     if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2841         match(FalseVal, m_Zero())) {
2842       Optional<bool> Res = isImpliedCondition(CondVal, B, DL);
2843       if (Res && *Res == false)
2844         return replaceOperand(SI, 1, A);
2845     }
2846     // select c, true, (select a, b, false)  -> select c, true, a
2847     // select (select a, b, false), true, c  -> select a, true, c
2848     //   if c = false implies that b = true
2849     if (match(TrueVal, m_One()) &&
2850         match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) {
2851       Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
2852       if (Res && *Res == true)
2853         return replaceOperand(SI, 2, A);
2854     }
2855     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2856         match(TrueVal, m_One())) {
2857       Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
2858       if (Res && *Res == true)
2859         return replaceOperand(SI, 0, A);
2860     }
2861 
2862     // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b
2863     // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a
2864     Value *C1, *C2;
2865     if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) &&
2866         match(TrueVal, m_One()) &&
2867         match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) {
2868       if (match(C2, m_Not(m_Specific(C1)))) // first case
2869         return SelectInst::Create(C1, A, B);
2870       else if (match(C1, m_Not(m_Specific(C2)))) // second case
2871         return SelectInst::Create(C2, B, A);
2872     }
2873   }
2874 
2875   // Selecting between two integer or vector splat integer constants?
2876   //
2877   // Note that we don't handle a scalar select of vectors:
2878   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2879   // because that may need 3 instructions to splat the condition value:
2880   // extend, insertelement, shufflevector.
2881   //
2882   // Do not handle i1 TrueVal and FalseVal otherwise would result in
2883   // zext/sext i1 to i1.
2884   if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
2885       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2886     // select C, 1, 0 -> zext C to int
2887     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2888       return new ZExtInst(CondVal, SelType);
2889 
2890     // select C, -1, 0 -> sext C to int
2891     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2892       return new SExtInst(CondVal, SelType);
2893 
2894     // select C, 0, 1 -> zext !C to int
2895     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2896       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2897       return new ZExtInst(NotCond, SelType);
2898     }
2899 
2900     // select C, 0, -1 -> sext !C to int
2901     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2902       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2903       return new SExtInst(NotCond, SelType);
2904     }
2905   }
2906 
2907   if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
2908     Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
2909     // Are we selecting a value based on a comparison of the two values?
2910     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2911         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2912       // Canonicalize to use ordered comparisons by swapping the select
2913       // operands.
2914       //
2915       // e.g.
2916       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2917       if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
2918         FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
2919         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2920         // FIXME: The FMF should propagate from the select, not the fcmp.
2921         Builder.setFastMathFlags(FCmp->getFastMathFlags());
2922         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2923                                             FCmp->getName() + ".inv");
2924         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2925         return replaceInstUsesWith(SI, NewSel);
2926       }
2927 
2928       // NOTE: if we wanted to, this is where to detect MIN/MAX
2929     }
2930   }
2931 
2932   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2933   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2934   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2935   Instruction *FSub;
2936   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2937       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2938       match(TrueVal, m_Instruction(FSub)) &&
2939       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2940     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2941     return replaceInstUsesWith(SI, Fabs);
2942   }
2943   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2944   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2945       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2946       match(FalseVal, m_Instruction(FSub)) &&
2947       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2948     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2949     return replaceInstUsesWith(SI, Fabs);
2950   }
2951   // With nnan and nsz:
2952   // (X <  +/-0.0) ? -X : X --> fabs(X)
2953   // (X <= +/-0.0) ? -X : X --> fabs(X)
2954   Instruction *FNeg;
2955   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2956       match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
2957       match(TrueVal, m_Instruction(FNeg)) && SI.hasNoSignedZeros() &&
2958       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2959        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2960     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2961     return replaceInstUsesWith(SI, Fabs);
2962   }
2963   // With nnan and nsz:
2964   // (X >  +/-0.0) ? X : -X --> fabs(X)
2965   // (X >= +/-0.0) ? X : -X --> fabs(X)
2966   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2967       match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
2968       match(FalseVal, m_Instruction(FNeg)) && SI.hasNoSignedZeros() &&
2969       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2970        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2971     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2972     return replaceInstUsesWith(SI, Fabs);
2973   }
2974 
2975   // See if we are selecting two values based on a comparison of the two values.
2976   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2977     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2978       return Result;
2979 
2980   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2981     return Add;
2982   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2983     return Add;
2984   if (Instruction *Or = foldSetClearBits(SI, Builder))
2985     return Or;
2986   if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
2987     return Mul;
2988 
2989   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2990   auto *TI = dyn_cast<Instruction>(TrueVal);
2991   auto *FI = dyn_cast<Instruction>(FalseVal);
2992   if (TI && FI && TI->getOpcode() == FI->getOpcode())
2993     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2994       return IV;
2995 
2996   if (Instruction *I = foldSelectExtConst(SI))
2997     return I;
2998 
2999   // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
3000   // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
3001   auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
3002                                bool Swap) -> GetElementPtrInst * {
3003     Value *Ptr = Gep->getPointerOperand();
3004     if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
3005         !Gep->hasOneUse())
3006       return nullptr;
3007     Value *Idx = Gep->getOperand(1);
3008     if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
3009       return nullptr;
3010     Type *ElementType = Gep->getResultElementType();
3011     Value *NewT = Idx;
3012     Value *NewF = Constant::getNullValue(Idx->getType());
3013     if (Swap)
3014       std::swap(NewT, NewF);
3015     Value *NewSI =
3016         Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
3017     return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
3018   };
3019   if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
3020     if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
3021       return NewGep;
3022   if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
3023     if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
3024       return NewGep;
3025 
3026   // See if we can fold the select into one of our operands.
3027   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
3028     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
3029       return FoldI;
3030 
3031     Value *LHS, *RHS;
3032     Instruction::CastOps CastOp;
3033     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
3034     auto SPF = SPR.Flavor;
3035     if (SPF) {
3036       Value *LHS2, *RHS2;
3037       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
3038         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
3039                                           RHS2, SI, SPF, RHS))
3040           return R;
3041       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
3042         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
3043                                           RHS2, SI, SPF, LHS))
3044           return R;
3045       // TODO.
3046       // ABS(-X) -> ABS(X)
3047     }
3048 
3049     if (SelectPatternResult::isMinOrMax(SPF)) {
3050       // Canonicalize so that
3051       // - type casts are outside select patterns.
3052       // - float clamp is transformed to min/max pattern
3053 
3054       bool IsCastNeeded = LHS->getType() != SelType;
3055       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
3056       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
3057       if (IsCastNeeded ||
3058           (LHS->getType()->isFPOrFPVectorTy() &&
3059            ((CmpLHS != LHS && CmpLHS != RHS) ||
3060             (CmpRHS != LHS && CmpRHS != RHS)))) {
3061         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
3062 
3063         Value *Cmp;
3064         if (CmpInst::isIntPredicate(MinMaxPred)) {
3065           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
3066         } else {
3067           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3068           auto FMF =
3069               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
3070           Builder.setFastMathFlags(FMF);
3071           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
3072         }
3073 
3074         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
3075         if (!IsCastNeeded)
3076           return replaceInstUsesWith(SI, NewSI);
3077 
3078         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
3079         return replaceInstUsesWith(SI, NewCast);
3080       }
3081 
3082       // MAX(~a, ~b) -> ~MIN(a, b)
3083       // MAX(~a, C)  -> ~MIN(a, ~C)
3084       // MIN(~a, ~b) -> ~MAX(a, b)
3085       // MIN(~a, C)  -> ~MAX(a, ~C)
3086       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
3087         Value *A;
3088         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
3089             !isFreeToInvert(A, A->hasOneUse()) &&
3090             // Passing false to only consider m_Not and constants.
3091             isFreeToInvert(Y, false)) {
3092           Value *B = Builder.CreateNot(Y);
3093           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
3094                                           A, B);
3095           // Copy the profile metadata.
3096           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
3097             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
3098             // Swap the metadata if the operands are swapped.
3099             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
3100               cast<SelectInst>(NewMinMax)->swapProfMetadata();
3101           }
3102 
3103           return BinaryOperator::CreateNot(NewMinMax);
3104         }
3105 
3106         return nullptr;
3107       };
3108 
3109       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
3110         return I;
3111       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
3112         return I;
3113 
3114       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
3115         return I;
3116 
3117       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
3118         return I;
3119       if (Instruction *I = matchSAddSubSat(SI))
3120         return I;
3121     }
3122   }
3123 
3124   // Canonicalize select of FP values where NaN and -0.0 are not valid as
3125   // minnum/maxnum intrinsics.
3126   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
3127     Value *X, *Y;
3128     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
3129       return replaceInstUsesWith(
3130           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
3131 
3132     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
3133       return replaceInstUsesWith(
3134           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
3135   }
3136 
3137   // See if we can fold the select into a phi node if the condition is a select.
3138   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
3139     // The true/false values have to be live in the PHI predecessor's blocks.
3140     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
3141         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
3142       if (Instruction *NV = foldOpIntoPhi(SI, PN))
3143         return NV;
3144 
3145   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
3146     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
3147       // select(C, select(C, a, b), c) -> select(C, a, c)
3148       if (TrueSI->getCondition() == CondVal) {
3149         if (SI.getTrueValue() == TrueSI->getTrueValue())
3150           return nullptr;
3151         return replaceOperand(SI, 1, TrueSI->getTrueValue());
3152       }
3153       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
3154       // We choose this as normal form to enable folding on the And and
3155       // shortening paths for the values (this helps getUnderlyingObjects() for
3156       // example).
3157       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
3158         Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
3159         replaceOperand(SI, 0, And);
3160         replaceOperand(SI, 1, TrueSI->getTrueValue());
3161         return &SI;
3162       }
3163     }
3164   }
3165   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
3166     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
3167       // select(C, a, select(C, b, c)) -> select(C, a, c)
3168       if (FalseSI->getCondition() == CondVal) {
3169         if (SI.getFalseValue() == FalseSI->getFalseValue())
3170           return nullptr;
3171         return replaceOperand(SI, 2, FalseSI->getFalseValue());
3172       }
3173       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3174       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
3175         Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
3176         replaceOperand(SI, 0, Or);
3177         replaceOperand(SI, 2, FalseSI->getFalseValue());
3178         return &SI;
3179       }
3180     }
3181   }
3182 
3183   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
3184     // The select might be preventing a division by 0.
3185     switch (BO->getOpcode()) {
3186     default:
3187       return true;
3188     case Instruction::SRem:
3189     case Instruction::URem:
3190     case Instruction::SDiv:
3191     case Instruction::UDiv:
3192       return false;
3193     }
3194   };
3195 
3196   // Try to simplify a binop sandwiched between 2 selects with the same
3197   // condition.
3198   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3199   BinaryOperator *TrueBO;
3200   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
3201       canMergeSelectThroughBinop(TrueBO)) {
3202     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
3203       if (TrueBOSI->getCondition() == CondVal) {
3204         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
3205         Worklist.push(TrueBO);
3206         return &SI;
3207       }
3208     }
3209     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
3210       if (TrueBOSI->getCondition() == CondVal) {
3211         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
3212         Worklist.push(TrueBO);
3213         return &SI;
3214       }
3215     }
3216   }
3217 
3218   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3219   BinaryOperator *FalseBO;
3220   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
3221       canMergeSelectThroughBinop(FalseBO)) {
3222     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3223       if (FalseBOSI->getCondition() == CondVal) {
3224         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3225         Worklist.push(FalseBO);
3226         return &SI;
3227       }
3228     }
3229     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3230       if (FalseBOSI->getCondition() == CondVal) {
3231         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3232         Worklist.push(FalseBO);
3233         return &SI;
3234       }
3235     }
3236   }
3237 
3238   Value *NotCond;
3239   if (match(CondVal, m_Not(m_Value(NotCond))) &&
3240       !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3241     replaceOperand(SI, 0, NotCond);
3242     SI.swapValues();
3243     SI.swapProfMetadata();
3244     return &SI;
3245   }
3246 
3247   if (Instruction *I = foldVectorSelect(SI))
3248     return I;
3249 
3250   // If we can compute the condition, there's no need for a select.
3251   // Like the above fold, we are attempting to reduce compile-time cost by
3252   // putting this fold here with limitations rather than in InstSimplify.
3253   // The motivation for this call into value tracking is to take advantage of
3254   // the assumption cache, so make sure that is populated.
3255   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3256     KnownBits Known(1);
3257     computeKnownBits(CondVal, Known, 0, &SI);
3258     if (Known.One.isOneValue())
3259       return replaceInstUsesWith(SI, TrueVal);
3260     if (Known.Zero.isOneValue())
3261       return replaceInstUsesWith(SI, FalseVal);
3262   }
3263 
3264   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3265     return BitCastSel;
3266 
3267   // Simplify selects that test the returned flag of cmpxchg instructions.
3268   if (Value *V = foldSelectCmpXchg(SI))
3269     return replaceInstUsesWith(SI, V);
3270 
3271   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3272     return Select;
3273 
3274   if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3275     return Funnel;
3276 
3277   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3278     return Copysign;
3279 
3280   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3281     return replaceInstUsesWith(SI, PN);
3282 
3283   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3284     return replaceInstUsesWith(SI, Fr);
3285 
3286   // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3287   // Load inst is intentionally not checked for hasOneUse()
3288   if (match(FalseVal, m_Zero()) &&
3289       match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3290                                   m_CombineOr(m_Undef(), m_Zero())))) {
3291     auto *MaskedLoad = cast<IntrinsicInst>(TrueVal);
3292     if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
3293       MaskedLoad->setArgOperand(3, FalseVal /* Zero */);
3294     return replaceInstUsesWith(SI, MaskedLoad);
3295   }
3296 
3297   Value *Mask;
3298   if (match(TrueVal, m_Zero()) &&
3299       match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3300                                    m_CombineOr(m_Undef(), m_Zero()))) &&
3301       (CondVal->getType() == Mask->getType())) {
3302     // We can remove the select by ensuring the load zeros all lanes the
3303     // select would have.  We determine this by proving there is no overlap
3304     // between the load and select masks.
3305     // (i.e (load_mask & select_mask) == 0 == no overlap)
3306     bool CanMergeSelectIntoLoad = false;
3307     if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3308       CanMergeSelectIntoLoad = match(V, m_Zero());
3309 
3310     if (CanMergeSelectIntoLoad) {
3311       auto *MaskedLoad = cast<IntrinsicInst>(FalseVal);
3312       if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
3313         MaskedLoad->setArgOperand(3, TrueVal /* Zero */);
3314       return replaceInstUsesWith(SI, MaskedLoad);
3315     }
3316   }
3317 
3318   return nullptr;
3319 }
3320