1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/OverflowInstAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/InstCombine/InstCombiner.h"
42 #include <cassert>
43 #include <utility>
44 
45 #define DEBUG_TYPE "instcombine"
46 #include "llvm/Transforms/Utils/InstructionWorklist.h"
47 
48 using namespace llvm;
49 using namespace PatternMatch;
50 
51 
52 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
53                            SelectPatternFlavor SPF, Value *A, Value *B) {
54   CmpInst::Predicate Pred = getMinMaxPred(SPF);
55   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
56   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
57 }
58 
59 /// Replace a select operand based on an equality comparison with the identity
60 /// constant of a binop.
61 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
62                                             const TargetLibraryInfo &TLI,
63                                             InstCombinerImpl &IC) {
64   // The select condition must be an equality compare with a constant operand.
65   Value *X;
66   Constant *C;
67   CmpInst::Predicate Pred;
68   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
69     return nullptr;
70 
71   bool IsEq;
72   if (ICmpInst::isEquality(Pred))
73     IsEq = Pred == ICmpInst::ICMP_EQ;
74   else if (Pred == FCmpInst::FCMP_OEQ)
75     IsEq = true;
76   else if (Pred == FCmpInst::FCMP_UNE)
77     IsEq = false;
78   else
79     return nullptr;
80 
81   // A select operand must be a binop.
82   BinaryOperator *BO;
83   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
84     return nullptr;
85 
86   // The compare constant must be the identity constant for that binop.
87   // If this a floating-point compare with 0.0, any zero constant will do.
88   Type *Ty = BO->getType();
89   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
90   if (IdC != C) {
91     if (!IdC || !CmpInst::isFPPredicate(Pred))
92       return nullptr;
93     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
94       return nullptr;
95   }
96 
97   // Last, match the compare variable operand with a binop operand.
98   Value *Y;
99   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
100     return nullptr;
101   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
102     return nullptr;
103 
104   // +0.0 compares equal to -0.0, and so it does not behave as required for this
105   // transform. Bail out if we can not exclude that possibility.
106   if (isa<FPMathOperator>(BO))
107     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
108       return nullptr;
109 
110   // BO = binop Y, X
111   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
112   // =>
113   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
114   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
115 }
116 
117 /// This folds:
118 ///  select (icmp eq (and X, C1)), TC, FC
119 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
120 /// To something like:
121 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
122 /// Or:
123 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
124 /// With some variations depending if FC is larger than TC, or the shift
125 /// isn't needed, or the bit widths don't match.
126 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
127                                 InstCombiner::BuilderTy &Builder) {
128   const APInt *SelTC, *SelFC;
129   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
130       !match(Sel.getFalseValue(), m_APInt(SelFC)))
131     return nullptr;
132 
133   // If this is a vector select, we need a vector compare.
134   Type *SelType = Sel.getType();
135   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
136     return nullptr;
137 
138   Value *V;
139   APInt AndMask;
140   bool CreateAnd = false;
141   ICmpInst::Predicate Pred = Cmp->getPredicate();
142   if (ICmpInst::isEquality(Pred)) {
143     if (!match(Cmp->getOperand(1), m_Zero()))
144       return nullptr;
145 
146     V = Cmp->getOperand(0);
147     const APInt *AndRHS;
148     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
149       return nullptr;
150 
151     AndMask = *AndRHS;
152   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
153                                   Pred, V, AndMask)) {
154     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
155     if (!AndMask.isPowerOf2())
156       return nullptr;
157 
158     CreateAnd = true;
159   } else {
160     return nullptr;
161   }
162 
163   // In general, when both constants are non-zero, we would need an offset to
164   // replace the select. This would require more instructions than we started
165   // with. But there's one special-case that we handle here because it can
166   // simplify/reduce the instructions.
167   APInt TC = *SelTC;
168   APInt FC = *SelFC;
169   if (!TC.isZero() && !FC.isZero()) {
170     // If the select constants differ by exactly one bit and that's the same
171     // bit that is masked and checked by the select condition, the select can
172     // be replaced by bitwise logic to set/clear one bit of the constant result.
173     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
174       return nullptr;
175     if (CreateAnd) {
176       // If we have to create an 'and', then we must kill the cmp to not
177       // increase the instruction count.
178       if (!Cmp->hasOneUse())
179         return nullptr;
180       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
181     }
182     bool ExtraBitInTC = TC.ugt(FC);
183     if (Pred == ICmpInst::ICMP_EQ) {
184       // If the masked bit in V is clear, clear or set the bit in the result:
185       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
186       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
187       Constant *C = ConstantInt::get(SelType, TC);
188       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
189     }
190     if (Pred == ICmpInst::ICMP_NE) {
191       // If the masked bit in V is set, set or clear the bit in the result:
192       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
193       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
194       Constant *C = ConstantInt::get(SelType, FC);
195       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
196     }
197     llvm_unreachable("Only expecting equality predicates");
198   }
199 
200   // Make sure one of the select arms is a power-of-2.
201   if (!TC.isPowerOf2() && !FC.isPowerOf2())
202     return nullptr;
203 
204   // Determine which shift is needed to transform result of the 'and' into the
205   // desired result.
206   const APInt &ValC = !TC.isZero() ? TC : FC;
207   unsigned ValZeros = ValC.logBase2();
208   unsigned AndZeros = AndMask.logBase2();
209 
210   // Insert the 'and' instruction on the input to the truncate.
211   if (CreateAnd)
212     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
213 
214   // If types don't match, we can still convert the select by introducing a zext
215   // or a trunc of the 'and'.
216   if (ValZeros > AndZeros) {
217     V = Builder.CreateZExtOrTrunc(V, SelType);
218     V = Builder.CreateShl(V, ValZeros - AndZeros);
219   } else if (ValZeros < AndZeros) {
220     V = Builder.CreateLShr(V, AndZeros - ValZeros);
221     V = Builder.CreateZExtOrTrunc(V, SelType);
222   } else {
223     V = Builder.CreateZExtOrTrunc(V, SelType);
224   }
225 
226   // Okay, now we know that everything is set up, we just don't know whether we
227   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
228   bool ShouldNotVal = !TC.isZero();
229   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
230   if (ShouldNotVal)
231     V = Builder.CreateXor(V, ValC);
232 
233   return V;
234 }
235 
236 /// We want to turn code that looks like this:
237 ///   %C = or %A, %B
238 ///   %D = select %cond, %C, %A
239 /// into:
240 ///   %C = select %cond, %B, 0
241 ///   %D = or %A, %C
242 ///
243 /// Assuming that the specified instruction is an operand to the select, return
244 /// a bitmask indicating which operands of this instruction are foldable if they
245 /// equal the other incoming value of the select.
246 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
247   switch (I->getOpcode()) {
248   case Instruction::Add:
249   case Instruction::FAdd:
250   case Instruction::Mul:
251   case Instruction::FMul:
252   case Instruction::And:
253   case Instruction::Or:
254   case Instruction::Xor:
255     return 3;              // Can fold through either operand.
256   case Instruction::Sub:   // Can only fold on the amount subtracted.
257   case Instruction::FSub:
258   case Instruction::FDiv:  // Can only fold on the divisor amount.
259   case Instruction::Shl:   // Can only fold on the shift amount.
260   case Instruction::LShr:
261   case Instruction::AShr:
262     return 1;
263   default:
264     return 0;              // Cannot fold
265   }
266 }
267 
268 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
269 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
270                                               Instruction *FI) {
271   // Don't break up min/max patterns. The hasOneUse checks below prevent that
272   // for most cases, but vector min/max with bitcasts can be transformed. If the
273   // one-use restrictions are eased for other patterns, we still don't want to
274   // obfuscate min/max.
275   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
276        match(&SI, m_SMax(m_Value(), m_Value())) ||
277        match(&SI, m_UMin(m_Value(), m_Value())) ||
278        match(&SI, m_UMax(m_Value(), m_Value()))))
279     return nullptr;
280 
281   // If this is a cast from the same type, merge.
282   Value *Cond = SI.getCondition();
283   Type *CondTy = Cond->getType();
284   if (TI->getNumOperands() == 1 && TI->isCast()) {
285     Type *FIOpndTy = FI->getOperand(0)->getType();
286     if (TI->getOperand(0)->getType() != FIOpndTy)
287       return nullptr;
288 
289     // The select condition may be a vector. We may only change the operand
290     // type if the vector width remains the same (and matches the condition).
291     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
292       if (!FIOpndTy->isVectorTy() ||
293           CondVTy->getElementCount() !=
294               cast<VectorType>(FIOpndTy)->getElementCount())
295         return nullptr;
296 
297       // TODO: If the backend knew how to deal with casts better, we could
298       // remove this limitation. For now, there's too much potential to create
299       // worse codegen by promoting the select ahead of size-altering casts
300       // (PR28160).
301       //
302       // Note that ValueTracking's matchSelectPattern() looks through casts
303       // without checking 'hasOneUse' when it matches min/max patterns, so this
304       // transform may end up happening anyway.
305       if (TI->getOpcode() != Instruction::BitCast &&
306           (!TI->hasOneUse() || !FI->hasOneUse()))
307         return nullptr;
308     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
309       // TODO: The one-use restrictions for a scalar select could be eased if
310       // the fold of a select in visitLoadInst() was enhanced to match a pattern
311       // that includes a cast.
312       return nullptr;
313     }
314 
315     // Fold this by inserting a select from the input values.
316     Value *NewSI =
317         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
318                              SI.getName() + ".v", &SI);
319     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
320                             TI->getType());
321   }
322 
323   // Cond ? -X : -Y --> -(Cond ? X : Y)
324   Value *X, *Y;
325   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
326       (TI->hasOneUse() || FI->hasOneUse())) {
327     // Intersect FMF from the fneg instructions and union those with the select.
328     FastMathFlags FMF = TI->getFastMathFlags();
329     FMF &= FI->getFastMathFlags();
330     FMF |= SI.getFastMathFlags();
331     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
332     if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
333       NewSelI->setFastMathFlags(FMF);
334     Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
335     NewFNeg->setFastMathFlags(FMF);
336     return NewFNeg;
337   }
338 
339   // Min/max intrinsic with a common operand can have the common operand pulled
340   // after the select. This is the same transform as below for binops, but
341   // specialized for intrinsic matching and without the restrictive uses clause.
342   auto *TII = dyn_cast<IntrinsicInst>(TI);
343   auto *FII = dyn_cast<IntrinsicInst>(FI);
344   if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() &&
345       (TII->hasOneUse() || FII->hasOneUse())) {
346     Value *T0, *T1, *F0, *F1;
347     if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) &&
348         match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) {
349       if (T0 == F0) {
350         Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI);
351         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
352       }
353       if (T0 == F1) {
354         Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI);
355         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
356       }
357       if (T1 == F0) {
358         Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI);
359         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
360       }
361       if (T1 == F1) {
362         Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI);
363         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
364       }
365     }
366   }
367 
368   // Only handle binary operators (including two-operand getelementptr) with
369   // one-use here. As with the cast case above, it may be possible to relax the
370   // one-use constraint, but that needs be examined carefully since it may not
371   // reduce the total number of instructions.
372   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
373       !TI->isSameOperationAs(FI) ||
374       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
375       !TI->hasOneUse() || !FI->hasOneUse())
376     return nullptr;
377 
378   // Figure out if the operations have any operands in common.
379   Value *MatchOp, *OtherOpT, *OtherOpF;
380   bool MatchIsOpZero;
381   if (TI->getOperand(0) == FI->getOperand(0)) {
382     MatchOp  = TI->getOperand(0);
383     OtherOpT = TI->getOperand(1);
384     OtherOpF = FI->getOperand(1);
385     MatchIsOpZero = true;
386   } else if (TI->getOperand(1) == FI->getOperand(1)) {
387     MatchOp  = TI->getOperand(1);
388     OtherOpT = TI->getOperand(0);
389     OtherOpF = FI->getOperand(0);
390     MatchIsOpZero = false;
391   } else if (!TI->isCommutative()) {
392     return nullptr;
393   } else if (TI->getOperand(0) == FI->getOperand(1)) {
394     MatchOp  = TI->getOperand(0);
395     OtherOpT = TI->getOperand(1);
396     OtherOpF = FI->getOperand(0);
397     MatchIsOpZero = true;
398   } else if (TI->getOperand(1) == FI->getOperand(0)) {
399     MatchOp  = TI->getOperand(1);
400     OtherOpT = TI->getOperand(0);
401     OtherOpF = FI->getOperand(1);
402     MatchIsOpZero = true;
403   } else {
404     return nullptr;
405   }
406 
407   // If the select condition is a vector, the operands of the original select's
408   // operands also must be vectors. This may not be the case for getelementptr
409   // for example.
410   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
411                                !OtherOpF->getType()->isVectorTy()))
412     return nullptr;
413 
414   // If we reach here, they do have operations in common.
415   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
416                                       SI.getName() + ".v", &SI);
417   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
418   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
419   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
420     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
421     NewBO->copyIRFlags(TI);
422     NewBO->andIRFlags(FI);
423     return NewBO;
424   }
425   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
426     auto *FGEP = cast<GetElementPtrInst>(FI);
427     Type *ElementType = TGEP->getResultElementType();
428     return TGEP->isInBounds() && FGEP->isInBounds()
429                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
430                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
431   }
432   llvm_unreachable("Expected BinaryOperator or GEP");
433   return nullptr;
434 }
435 
436 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
437   if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
438     return false;
439   return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
440 }
441 
442 /// Try to fold the select into one of the operands to allow further
443 /// optimization.
444 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
445                                                 Value *FalseVal) {
446   // See the comment above GetSelectFoldableOperands for a description of the
447   // transformation we are doing here.
448   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
449     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
450       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
451         unsigned OpToFold = 0;
452         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
453           OpToFold = 1;
454         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
455           OpToFold = 2;
456         }
457 
458         if (OpToFold) {
459           Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(),
460                                                        TVI->getType(), true);
461           Value *OOp = TVI->getOperand(2-OpToFold);
462           // Avoid creating select between 2 constants unless it's selecting
463           // between 0, 1 and -1.
464           const APInt *OOpC;
465           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
466           if (!isa<Constant>(OOp) ||
467               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
468             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
469             NewSel->takeName(TVI);
470             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
471                                                         FalseVal, NewSel);
472             BO->copyIRFlags(TVI);
473             return BO;
474           }
475         }
476       }
477     }
478   }
479 
480   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
481     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
482       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
483         unsigned OpToFold = 0;
484         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
485           OpToFold = 1;
486         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
487           OpToFold = 2;
488         }
489 
490         if (OpToFold) {
491           Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(),
492                                                        FVI->getType(), true);
493           Value *OOp = FVI->getOperand(2-OpToFold);
494           // Avoid creating select between 2 constants unless it's selecting
495           // between 0, 1 and -1.
496           const APInt *OOpC;
497           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
498           if (!isa<Constant>(OOp) ||
499               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
500             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
501             NewSel->takeName(FVI);
502             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
503                                                         TrueVal, NewSel);
504             BO->copyIRFlags(FVI);
505             return BO;
506           }
507         }
508       }
509     }
510   }
511 
512   return nullptr;
513 }
514 
515 /// We want to turn:
516 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
517 /// into:
518 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
519 /// Note:
520 ///   Z may be 0 if lshr is missing.
521 /// Worst-case scenario is that we will replace 5 instructions with 5 different
522 /// instructions, but we got rid of select.
523 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
524                                          Value *TVal, Value *FVal,
525                                          InstCombiner::BuilderTy &Builder) {
526   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
527         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
528         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
529     return nullptr;
530 
531   // The TrueVal has general form of:  and %B, 1
532   Value *B;
533   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
534     return nullptr;
535 
536   // Where %B may be optionally shifted:  lshr %X, %Z.
537   Value *X, *Z;
538   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
539   if (!HasShift)
540     X = B;
541 
542   Value *Y;
543   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
544     return nullptr;
545 
546   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
547   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
548   Constant *One = ConstantInt::get(SelType, 1);
549   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
550   Value *FullMask = Builder.CreateOr(Y, MaskB);
551   Value *MaskedX = Builder.CreateAnd(X, FullMask);
552   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
553   return new ZExtInst(ICmpNeZero, SelType);
554 }
555 
556 /// We want to turn:
557 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
558 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
559 /// into:
560 ///   ashr (X, Y)
561 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
562                                      Value *FalseVal,
563                                      InstCombiner::BuilderTy &Builder) {
564   ICmpInst::Predicate Pred = IC->getPredicate();
565   Value *CmpLHS = IC->getOperand(0);
566   Value *CmpRHS = IC->getOperand(1);
567   if (!CmpRHS->getType()->isIntOrIntVectorTy())
568     return nullptr;
569 
570   Value *X, *Y;
571   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
572   if ((Pred != ICmpInst::ICMP_SGT ||
573        !match(CmpRHS,
574               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
575       (Pred != ICmpInst::ICMP_SLT ||
576        !match(CmpRHS,
577               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
578     return nullptr;
579 
580   // Canonicalize so that ashr is in FalseVal.
581   if (Pred == ICmpInst::ICMP_SLT)
582     std::swap(TrueVal, FalseVal);
583 
584   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
585       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
586       match(CmpLHS, m_Specific(X))) {
587     const auto *Ashr = cast<Instruction>(FalseVal);
588     // if lshr is not exact and ashr is, this new ashr must not be exact.
589     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
590     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
591   }
592 
593   return nullptr;
594 }
595 
596 /// We want to turn:
597 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
598 /// into:
599 ///   (or (shl (and X, C1), C3), Y)
600 /// iff:
601 ///   C1 and C2 are both powers of 2
602 /// where:
603 ///   C3 = Log(C2) - Log(C1)
604 ///
605 /// This transform handles cases where:
606 /// 1. The icmp predicate is inverted
607 /// 2. The select operands are reversed
608 /// 3. The magnitude of C2 and C1 are flipped
609 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
610                                   Value *FalseVal,
611                                   InstCombiner::BuilderTy &Builder) {
612   // Only handle integer compares. Also, if this is a vector select, we need a
613   // vector compare.
614   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
615       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
616     return nullptr;
617 
618   Value *CmpLHS = IC->getOperand(0);
619   Value *CmpRHS = IC->getOperand(1);
620 
621   Value *V;
622   unsigned C1Log;
623   bool IsEqualZero;
624   bool NeedAnd = false;
625   if (IC->isEquality()) {
626     if (!match(CmpRHS, m_Zero()))
627       return nullptr;
628 
629     const APInt *C1;
630     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
631       return nullptr;
632 
633     V = CmpLHS;
634     C1Log = C1->logBase2();
635     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
636   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
637              IC->getPredicate() == ICmpInst::ICMP_SGT) {
638     // We also need to recognize (icmp slt (trunc (X)), 0) and
639     // (icmp sgt (trunc (X)), -1).
640     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
641     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
642         (!IsEqualZero && !match(CmpRHS, m_Zero())))
643       return nullptr;
644 
645     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
646       return nullptr;
647 
648     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
649     NeedAnd = true;
650   } else {
651     return nullptr;
652   }
653 
654   const APInt *C2;
655   bool OrOnTrueVal = false;
656   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
657   if (!OrOnFalseVal)
658     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
659 
660   if (!OrOnFalseVal && !OrOnTrueVal)
661     return nullptr;
662 
663   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
664 
665   unsigned C2Log = C2->logBase2();
666 
667   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
668   bool NeedShift = C1Log != C2Log;
669   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
670                        V->getType()->getScalarSizeInBits();
671 
672   // Make sure we don't create more instructions than we save.
673   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
674   if ((NeedShift + NeedXor + NeedZExtTrunc) >
675       (IC->hasOneUse() + Or->hasOneUse()))
676     return nullptr;
677 
678   if (NeedAnd) {
679     // Insert the AND instruction on the input to the truncate.
680     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
681     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
682   }
683 
684   if (C2Log > C1Log) {
685     V = Builder.CreateZExtOrTrunc(V, Y->getType());
686     V = Builder.CreateShl(V, C2Log - C1Log);
687   } else if (C1Log > C2Log) {
688     V = Builder.CreateLShr(V, C1Log - C2Log);
689     V = Builder.CreateZExtOrTrunc(V, Y->getType());
690   } else
691     V = Builder.CreateZExtOrTrunc(V, Y->getType());
692 
693   if (NeedXor)
694     V = Builder.CreateXor(V, *C2);
695 
696   return Builder.CreateOr(V, Y);
697 }
698 
699 /// Canonicalize a set or clear of a masked set of constant bits to
700 /// select-of-constants form.
701 static Instruction *foldSetClearBits(SelectInst &Sel,
702                                      InstCombiner::BuilderTy &Builder) {
703   Value *Cond = Sel.getCondition();
704   Value *T = Sel.getTrueValue();
705   Value *F = Sel.getFalseValue();
706   Type *Ty = Sel.getType();
707   Value *X;
708   const APInt *NotC, *C;
709 
710   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
711   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
712       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
713     Constant *Zero = ConstantInt::getNullValue(Ty);
714     Constant *OrC = ConstantInt::get(Ty, *C);
715     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
716     return BinaryOperator::CreateOr(T, NewSel);
717   }
718 
719   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
720   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
721       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
722     Constant *Zero = ConstantInt::getNullValue(Ty);
723     Constant *OrC = ConstantInt::get(Ty, *C);
724     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
725     return BinaryOperator::CreateOr(F, NewSel);
726   }
727 
728   return nullptr;
729 }
730 
731 //   select (x == 0), 0, x * y --> freeze(y) * x
732 //   select (y == 0), 0, x * y --> freeze(x) * y
733 //   select (x == 0), undef, x * y --> freeze(y) * x
734 //   select (x == undef), 0, x * y --> freeze(y) * x
735 // Usage of mul instead of 0 will make the result more poisonous,
736 // so the operand that was not checked in the condition should be frozen.
737 // The latter folding is applied only when a constant compared with x is
738 // is a vector consisting of 0 and undefs. If a constant compared with x
739 // is a scalar undefined value or undefined vector then an expression
740 // should be already folded into a constant.
741 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
742   auto *CondVal = SI.getCondition();
743   auto *TrueVal = SI.getTrueValue();
744   auto *FalseVal = SI.getFalseValue();
745   Value *X, *Y;
746   ICmpInst::Predicate Predicate;
747 
748   // Assuming that constant compared with zero is not undef (but it may be
749   // a vector with some undef elements). Otherwise (when a constant is undef)
750   // the select expression should be already simplified.
751   if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
752       !ICmpInst::isEquality(Predicate))
753     return nullptr;
754 
755   if (Predicate == ICmpInst::ICMP_NE)
756     std::swap(TrueVal, FalseVal);
757 
758   // Check that TrueVal is a constant instead of matching it with m_Zero()
759   // to handle the case when it is a scalar undef value or a vector containing
760   // non-zero elements that are masked by undef elements in the compare
761   // constant.
762   auto *TrueValC = dyn_cast<Constant>(TrueVal);
763   if (TrueValC == nullptr ||
764       !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
765       !isa<Instruction>(FalseVal))
766     return nullptr;
767 
768   auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
769   auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
770   // If X is compared with 0 then TrueVal could be either zero or undef.
771   // m_Zero match vectors containing some undef elements, but for scalars
772   // m_Undef should be used explicitly.
773   if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
774     return nullptr;
775 
776   auto *FalseValI = cast<Instruction>(FalseVal);
777   auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
778                                      *FalseValI);
779   IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
780   return IC.replaceInstUsesWith(SI, FalseValI);
781 }
782 
783 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
784 /// There are 8 commuted/swapped variants of this pattern.
785 /// TODO: Also support a - UMIN(a,b) patterns.
786 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
787                                             const Value *TrueVal,
788                                             const Value *FalseVal,
789                                             InstCombiner::BuilderTy &Builder) {
790   ICmpInst::Predicate Pred = ICI->getPredicate();
791   if (!ICmpInst::isUnsigned(Pred))
792     return nullptr;
793 
794   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
795   if (match(TrueVal, m_Zero())) {
796     Pred = ICmpInst::getInversePredicate(Pred);
797     std::swap(TrueVal, FalseVal);
798   }
799   if (!match(FalseVal, m_Zero()))
800     return nullptr;
801 
802   Value *A = ICI->getOperand(0);
803   Value *B = ICI->getOperand(1);
804   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
805     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
806     std::swap(A, B);
807     Pred = ICmpInst::getSwappedPredicate(Pred);
808   }
809 
810   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
811          "Unexpected isUnsigned predicate!");
812 
813   // Ensure the sub is of the form:
814   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
815   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
816   // Checking for both a-b and a+(-b) as a constant.
817   bool IsNegative = false;
818   const APInt *C;
819   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
820       (match(A, m_APInt(C)) &&
821        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
822     IsNegative = true;
823   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
824            !(match(B, m_APInt(C)) &&
825              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
826     return nullptr;
827 
828   // If we are adding a negate and the sub and icmp are used anywhere else, we
829   // would end up with more instructions.
830   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
831     return nullptr;
832 
833   // (a > b) ? a - b : 0 -> usub.sat(a, b)
834   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
835   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
836   if (IsNegative)
837     Result = Builder.CreateNeg(Result);
838   return Result;
839 }
840 
841 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
842                                        InstCombiner::BuilderTy &Builder) {
843   if (!Cmp->hasOneUse())
844     return nullptr;
845 
846   // Match unsigned saturated add with constant.
847   Value *Cmp0 = Cmp->getOperand(0);
848   Value *Cmp1 = Cmp->getOperand(1);
849   ICmpInst::Predicate Pred = Cmp->getPredicate();
850   Value *X;
851   const APInt *C, *CmpC;
852   if (Pred == ICmpInst::ICMP_ULT &&
853       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
854       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
855     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
856     return Builder.CreateBinaryIntrinsic(
857         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
858   }
859 
860   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
861   // There are 8 commuted variants.
862   // Canonicalize -1 (saturated result) to true value of the select.
863   if (match(FVal, m_AllOnes())) {
864     std::swap(TVal, FVal);
865     Pred = CmpInst::getInversePredicate(Pred);
866   }
867   if (!match(TVal, m_AllOnes()))
868     return nullptr;
869 
870   // Canonicalize predicate to less-than or less-or-equal-than.
871   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
872     std::swap(Cmp0, Cmp1);
873     Pred = CmpInst::getSwappedPredicate(Pred);
874   }
875   if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
876     return nullptr;
877 
878   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
879   // Strictness of the comparison is irrelevant.
880   Value *Y;
881   if (match(Cmp0, m_Not(m_Value(X))) &&
882       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
883     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
884     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
885     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
886   }
887   // The 'not' op may be included in the sum but not the compare.
888   // Strictness of the comparison is irrelevant.
889   X = Cmp0;
890   Y = Cmp1;
891   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
892     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
893     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
894     BinaryOperator *BO = cast<BinaryOperator>(FVal);
895     return Builder.CreateBinaryIntrinsic(
896         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
897   }
898   // The overflow may be detected via the add wrapping round.
899   // This is only valid for strict comparison!
900   if (Pred == ICmpInst::ICMP_ULT &&
901       match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
902       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
903     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
904     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
905     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
906   }
907 
908   return nullptr;
909 }
910 
911 /// Fold the following code sequence:
912 /// \code
913 ///   int a = ctlz(x & -x);
914 //    x ? 31 - a : a;
915 /// \code
916 ///
917 /// into:
918 ///   cttz(x)
919 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
920                                          Value *FalseVal,
921                                          InstCombiner::BuilderTy &Builder) {
922   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
923   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
924     return nullptr;
925 
926   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
927     std::swap(TrueVal, FalseVal);
928 
929   if (!match(FalseVal,
930              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
931     return nullptr;
932 
933   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
934     return nullptr;
935 
936   Value *X = ICI->getOperand(0);
937   auto *II = cast<IntrinsicInst>(TrueVal);
938   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
939     return nullptr;
940 
941   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
942                                           II->getType());
943   return CallInst::Create(F, {X, II->getArgOperand(1)});
944 }
945 
946 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
947 /// call to cttz/ctlz with flag 'is_zero_poison' cleared.
948 ///
949 /// For example, we can fold the following code sequence:
950 /// \code
951 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
952 ///   %1 = icmp ne i32 %x, 0
953 ///   %2 = select i1 %1, i32 %0, i32 32
954 /// \code
955 ///
956 /// into:
957 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
958 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
959                                  InstCombiner::BuilderTy &Builder) {
960   ICmpInst::Predicate Pred = ICI->getPredicate();
961   Value *CmpLHS = ICI->getOperand(0);
962   Value *CmpRHS = ICI->getOperand(1);
963 
964   // Check if the condition value compares a value for equality against zero.
965   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
966     return nullptr;
967 
968   Value *SelectArg = FalseVal;
969   Value *ValueOnZero = TrueVal;
970   if (Pred == ICmpInst::ICMP_NE)
971     std::swap(SelectArg, ValueOnZero);
972 
973   // Skip zero extend/truncate.
974   Value *Count = nullptr;
975   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
976       !match(SelectArg, m_Trunc(m_Value(Count))))
977     Count = SelectArg;
978 
979   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
980   // input to the cttz/ctlz is used as LHS for the compare instruction.
981   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
982       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
983     return nullptr;
984 
985   IntrinsicInst *II = cast<IntrinsicInst>(Count);
986 
987   // Check if the value propagated on zero is a constant number equal to the
988   // sizeof in bits of 'Count'.
989   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
990   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
991     // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
992     // true to false on this flag, so we can replace it for all users.
993     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
994     return SelectArg;
995   }
996 
997   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
998   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
999   // not be used if the input is zero. Relax to 'zero is poison' for that case.
1000   if (II->hasOneUse() && SelectArg->hasOneUse() &&
1001       !match(II->getArgOperand(1), m_One()))
1002     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
1003 
1004   return nullptr;
1005 }
1006 
1007 /// Return true if we find and adjust an icmp+select pattern where the compare
1008 /// is with a constant that can be incremented or decremented to match the
1009 /// minimum or maximum idiom.
1010 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
1011   ICmpInst::Predicate Pred = Cmp.getPredicate();
1012   Value *CmpLHS = Cmp.getOperand(0);
1013   Value *CmpRHS = Cmp.getOperand(1);
1014   Value *TrueVal = Sel.getTrueValue();
1015   Value *FalseVal = Sel.getFalseValue();
1016 
1017   // We may move or edit the compare, so make sure the select is the only user.
1018   const APInt *CmpC;
1019   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
1020     return false;
1021 
1022   // These transforms only work for selects of integers or vector selects of
1023   // integer vectors.
1024   Type *SelTy = Sel.getType();
1025   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
1026   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
1027     return false;
1028 
1029   Constant *AdjustedRHS;
1030   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
1031     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
1032   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
1033     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
1034   else
1035     return false;
1036 
1037   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
1038   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
1039   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
1040       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
1041     ; // Nothing to do here. Values match without any sign/zero extension.
1042   }
1043   // Types do not match. Instead of calculating this with mixed types, promote
1044   // all to the larger type. This enables scalar evolution to analyze this
1045   // expression.
1046   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
1047     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
1048 
1049     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
1050     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
1051     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
1052     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
1053     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
1054       CmpLHS = TrueVal;
1055       AdjustedRHS = SextRHS;
1056     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
1057                SextRHS == TrueVal) {
1058       CmpLHS = FalseVal;
1059       AdjustedRHS = SextRHS;
1060     } else if (Cmp.isUnsigned()) {
1061       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
1062       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
1063       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
1064       // zext + signed compare cannot be changed:
1065       //    0xff <s 0x00, but 0x00ff >s 0x0000
1066       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
1067         CmpLHS = TrueVal;
1068         AdjustedRHS = ZextRHS;
1069       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
1070                  ZextRHS == TrueVal) {
1071         CmpLHS = FalseVal;
1072         AdjustedRHS = ZextRHS;
1073       } else {
1074         return false;
1075       }
1076     } else {
1077       return false;
1078     }
1079   } else {
1080     return false;
1081   }
1082 
1083   Pred = ICmpInst::getSwappedPredicate(Pred);
1084   CmpRHS = AdjustedRHS;
1085   std::swap(FalseVal, TrueVal);
1086   Cmp.setPredicate(Pred);
1087   Cmp.setOperand(0, CmpLHS);
1088   Cmp.setOperand(1, CmpRHS);
1089   Sel.setOperand(1, TrueVal);
1090   Sel.setOperand(2, FalseVal);
1091   Sel.swapProfMetadata();
1092 
1093   // Move the compare instruction right before the select instruction. Otherwise
1094   // the sext/zext value may be defined after the compare instruction uses it.
1095   Cmp.moveBefore(&Sel);
1096 
1097   return true;
1098 }
1099 
1100 /// If this is an integer min/max (icmp + select) with a constant operand,
1101 /// create the canonical icmp for the min/max operation and canonicalize the
1102 /// constant to the 'false' operand of the select:
1103 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
1104 /// Note: if C1 != C2, this will change the icmp constant to the existing
1105 /// constant operand of the select.
1106 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel,
1107                                                    ICmpInst &Cmp,
1108                                                    InstCombinerImpl &IC) {
1109   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1110     return nullptr;
1111 
1112   // Canonicalize the compare predicate based on whether we have min or max.
1113   Value *LHS, *RHS;
1114   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
1115   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
1116     return nullptr;
1117 
1118   // Is this already canonical?
1119   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
1120   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
1121       Cmp.getPredicate() == CanonicalPred)
1122     return nullptr;
1123 
1124   // Bail out on unsimplified X-0 operand (due to some worklist management bug),
1125   // as this may cause an infinite combine loop. Let the sub be folded first.
1126   if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
1127       match(RHS, m_Sub(m_Value(), m_Zero())))
1128     return nullptr;
1129 
1130   // Create the canonical compare and plug it into the select.
1131   IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS));
1132 
1133   // If the select operands did not change, we're done.
1134   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1135     return &Sel;
1136 
1137   // If we are swapping the select operands, swap the metadata too.
1138   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
1139          "Unexpected results from matchSelectPattern");
1140   Sel.swapValues();
1141   Sel.swapProfMetadata();
1142   return &Sel;
1143 }
1144 
1145 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1146                                         InstCombinerImpl &IC) {
1147   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1148     return nullptr;
1149 
1150   Value *LHS, *RHS;
1151   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1152   if (SPF != SelectPatternFlavor::SPF_ABS &&
1153       SPF != SelectPatternFlavor::SPF_NABS)
1154     return nullptr;
1155 
1156   // Note that NSW flag can only be propagated for normal, non-negated abs!
1157   bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1158                         match(RHS, m_NSWNeg(m_Specific(LHS)));
1159   Constant *IntMinIsPoisonC =
1160       ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
1161   Instruction *Abs =
1162       IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1163 
1164   if (SPF == SelectPatternFlavor::SPF_NABS)
1165     return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
1166 
1167   return IC.replaceInstUsesWith(Sel, Abs);
1168 }
1169 
1170 /// If we have a select with an equality comparison, then we know the value in
1171 /// one of the arms of the select. See if substituting this value into an arm
1172 /// and simplifying the result yields the same value as the other arm.
1173 ///
1174 /// To make this transform safe, we must drop poison-generating flags
1175 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1176 /// that poison from propagating. If the existing binop already had no
1177 /// poison-generating flags, then this transform can be done by instsimplify.
1178 ///
1179 /// Consider:
1180 ///   %cmp = icmp eq i32 %x, 2147483647
1181 ///   %add = add nsw i32 %x, 1
1182 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1183 ///
1184 /// We can't replace %sel with %add unless we strip away the flags.
1185 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1186 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1187                                                           ICmpInst &Cmp) {
1188   // Value equivalence substitution requires an all-or-nothing replacement.
1189   // It does not make sense for a vector compare where each lane is chosen
1190   // independently.
1191   if (!Cmp.isEquality() || Cmp.getType()->isVectorTy())
1192     return nullptr;
1193 
1194   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1195   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1196   bool Swapped = false;
1197   if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1198     std::swap(TrueVal, FalseVal);
1199     Swapped = true;
1200   }
1201 
1202   // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1203   // Make sure Y cannot be undef though, as we might pick different values for
1204   // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1205   // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1206   // replacement cycle.
1207   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1208   if (TrueVal != CmpLHS &&
1209       isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1210     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1211                                           /* AllowRefinement */ true))
1212       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1213 
1214     // Even if TrueVal does not simplify, we can directly replace a use of
1215     // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1216     // else and is safe to speculatively execute (we may end up executing it
1217     // with different operands, which should not cause side-effects or trigger
1218     // undefined behavior). Only do this if CmpRHS is a constant, as
1219     // profitability is not clear for other cases.
1220     // FIXME: The replacement could be performed recursively.
1221     if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()))
1222       if (auto *I = dyn_cast<Instruction>(TrueVal))
1223         if (I->hasOneUse() && isSafeToSpeculativelyExecute(I))
1224           for (Use &U : I->operands())
1225             if (U == CmpLHS) {
1226               replaceUse(U, CmpRHS);
1227               return &Sel;
1228             }
1229   }
1230   if (TrueVal != CmpRHS &&
1231       isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1232     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1233                                           /* AllowRefinement */ true))
1234       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1235 
1236   auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1237   if (!FalseInst)
1238     return nullptr;
1239 
1240   // InstSimplify already performed this fold if it was possible subject to
1241   // current poison-generating flags. Try the transform again with
1242   // poison-generating flags temporarily dropped.
1243   bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1244   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1245     WasNUW = OBO->hasNoUnsignedWrap();
1246     WasNSW = OBO->hasNoSignedWrap();
1247     FalseInst->setHasNoUnsignedWrap(false);
1248     FalseInst->setHasNoSignedWrap(false);
1249   }
1250   if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1251     WasExact = PEO->isExact();
1252     FalseInst->setIsExact(false);
1253   }
1254   if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1255     WasInBounds = GEP->isInBounds();
1256     GEP->setIsInBounds(false);
1257   }
1258 
1259   // Try each equivalence substitution possibility.
1260   // We have an 'EQ' comparison, so the select's false value will propagate.
1261   // Example:
1262   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1263   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1264                              /* AllowRefinement */ false) == TrueVal ||
1265       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1266                              /* AllowRefinement */ false) == TrueVal) {
1267     return replaceInstUsesWith(Sel, FalseVal);
1268   }
1269 
1270   // Restore poison-generating flags if the transform did not apply.
1271   if (WasNUW)
1272     FalseInst->setHasNoUnsignedWrap();
1273   if (WasNSW)
1274     FalseInst->setHasNoSignedWrap();
1275   if (WasExact)
1276     FalseInst->setIsExact();
1277   if (WasInBounds)
1278     cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1279 
1280   return nullptr;
1281 }
1282 
1283 // See if this is a pattern like:
1284 //   %old_cmp1 = icmp slt i32 %x, C2
1285 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1286 //   %old_x_offseted = add i32 %x, C1
1287 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1288 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1289 // This can be rewritten as more canonical pattern:
1290 //   %new_cmp1 = icmp slt i32 %x, -C1
1291 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1292 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1293 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1294 // Iff -C1 s<= C2 s<= C0-C1
1295 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1296 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1297 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1298                                     InstCombiner::BuilderTy &Builder) {
1299   Value *X = Sel0.getTrueValue();
1300   Value *Sel1 = Sel0.getFalseValue();
1301 
1302   // First match the condition of the outermost select.
1303   // Said condition must be one-use.
1304   if (!Cmp0.hasOneUse())
1305     return nullptr;
1306   ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1307   Value *Cmp00 = Cmp0.getOperand(0);
1308   Constant *C0;
1309   if (!match(Cmp0.getOperand(1),
1310              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1311     return nullptr;
1312 
1313   if (!isa<SelectInst>(Sel1)) {
1314     Pred0 = ICmpInst::getInversePredicate(Pred0);
1315     std::swap(X, Sel1);
1316   }
1317 
1318   // Canonicalize Cmp0 into ult or uge.
1319   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1320   switch (Pred0) {
1321   case ICmpInst::Predicate::ICMP_ULT:
1322   case ICmpInst::Predicate::ICMP_UGE:
1323     // Although icmp ult %x, 0 is an unusual thing to try and should generally
1324     // have been simplified, it does not verify with undef inputs so ensure we
1325     // are not in a strange state.
1326     if (!match(C0, m_SpecificInt_ICMP(
1327                        ICmpInst::Predicate::ICMP_NE,
1328                        APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1329       return nullptr;
1330     break; // Great!
1331   case ICmpInst::Predicate::ICMP_ULE:
1332   case ICmpInst::Predicate::ICMP_UGT:
1333     // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1334     // C0, which again means it must not have any all-ones elements.
1335     if (!match(C0,
1336                m_SpecificInt_ICMP(
1337                    ICmpInst::Predicate::ICMP_NE,
1338                    APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1339       return nullptr; // Can't do, have all-ones element[s].
1340     C0 = InstCombiner::AddOne(C0);
1341     break;
1342   default:
1343     return nullptr; // Unknown predicate.
1344   }
1345 
1346   // Now that we've canonicalized the ICmp, we know the X we expect;
1347   // the select in other hand should be one-use.
1348   if (!Sel1->hasOneUse())
1349     return nullptr;
1350 
1351   // If the types do not match, look through any truncs to the underlying
1352   // instruction.
1353   if (Cmp00->getType() != X->getType() && X->hasOneUse())
1354     match(X, m_TruncOrSelf(m_Value(X)));
1355 
1356   // We now can finish matching the condition of the outermost select:
1357   // it should either be the X itself, or an addition of some constant to X.
1358   Constant *C1;
1359   if (Cmp00 == X)
1360     C1 = ConstantInt::getNullValue(X->getType());
1361   else if (!match(Cmp00,
1362                   m_Add(m_Specific(X),
1363                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1364     return nullptr;
1365 
1366   Value *Cmp1;
1367   ICmpInst::Predicate Pred1;
1368   Constant *C2;
1369   Value *ReplacementLow, *ReplacementHigh;
1370   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1371                             m_Value(ReplacementHigh))) ||
1372       !match(Cmp1,
1373              m_ICmp(Pred1, m_Specific(X),
1374                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1375     return nullptr;
1376 
1377   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1378     return nullptr; // Not enough one-use instructions for the fold.
1379   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1380   //        two comparisons we'll need to build.
1381 
1382   // Canonicalize Cmp1 into the form we expect.
1383   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1384   switch (Pred1) {
1385   case ICmpInst::Predicate::ICMP_SLT:
1386     break;
1387   case ICmpInst::Predicate::ICMP_SLE:
1388     // We'd have to increment C2 by one, and for that it must not have signed
1389     // max element, but then it would have been canonicalized to 'slt' before
1390     // we get here. So we can't do anything useful with 'sle'.
1391     return nullptr;
1392   case ICmpInst::Predicate::ICMP_SGT:
1393     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1394     // which again means it must not have any signed max elements.
1395     if (!match(C2,
1396                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1397                                   APInt::getSignedMaxValue(
1398                                       C2->getType()->getScalarSizeInBits()))))
1399       return nullptr; // Can't do, have signed max element[s].
1400     C2 = InstCombiner::AddOne(C2);
1401     LLVM_FALLTHROUGH;
1402   case ICmpInst::Predicate::ICMP_SGE:
1403     // Also non-canonical, but here we don't need to change C2,
1404     // so we don't have any restrictions on C2, so we can just handle it.
1405     std::swap(ReplacementLow, ReplacementHigh);
1406     break;
1407   default:
1408     return nullptr; // Unknown predicate.
1409   }
1410 
1411   // The thresholds of this clamp-like pattern.
1412   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1413   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1414   if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1415     std::swap(ThresholdLowIncl, ThresholdHighExcl);
1416 
1417   // The fold has a precondition 1: C2 s>= ThresholdLow
1418   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1419                                          ThresholdLowIncl);
1420   if (!match(Precond1, m_One()))
1421     return nullptr;
1422   // The fold has a precondition 2: C2 s<= ThresholdHigh
1423   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1424                                          ThresholdHighExcl);
1425   if (!match(Precond2, m_One()))
1426     return nullptr;
1427 
1428   // If we are matching from a truncated input, we need to sext the
1429   // ReplacementLow and ReplacementHigh values. Only do the transform if they
1430   // are free to extend due to being constants.
1431   if (X->getType() != Sel0.getType()) {
1432     Constant *LowC, *HighC;
1433     if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1434         !match(ReplacementHigh, m_ImmConstant(HighC)))
1435       return nullptr;
1436     ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
1437     ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
1438   }
1439 
1440   // All good, finally emit the new pattern.
1441   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1442   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1443   Value *MaybeReplacedLow =
1444       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1445 
1446   // Create the final select. If we looked through a truncate above, we will
1447   // need to retruncate the result.
1448   Value *MaybeReplacedHigh = Builder.CreateSelect(
1449       ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1450   return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1451 }
1452 
1453 // If we have
1454 //  %cmp = icmp [canonical predicate] i32 %x, C0
1455 //  %r = select i1 %cmp, i32 %y, i32 C1
1456 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1457 // will have if we flip the strictness of the predicate (i.e. without changing
1458 // the result) is identical to the C1 in select. If it matches we can change
1459 // original comparison to one with swapped predicate, reuse the constant,
1460 // and swap the hands of select.
1461 static Instruction *
1462 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1463                                          InstCombinerImpl &IC) {
1464   ICmpInst::Predicate Pred;
1465   Value *X;
1466   Constant *C0;
1467   if (!match(&Cmp, m_OneUse(m_ICmp(
1468                        Pred, m_Value(X),
1469                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1470     return nullptr;
1471 
1472   // If comparison predicate is non-relational, we won't be able to do anything.
1473   if (ICmpInst::isEquality(Pred))
1474     return nullptr;
1475 
1476   // If comparison predicate is non-canonical, then we certainly won't be able
1477   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1478   if (!InstCombiner::isCanonicalPredicate(Pred))
1479     return nullptr;
1480 
1481   // If the [input] type of comparison and select type are different, lets abort
1482   // for now. We could try to compare constants with trunc/[zs]ext though.
1483   if (C0->getType() != Sel.getType())
1484     return nullptr;
1485 
1486   // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
1487   // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
1488   //        Or should we just abandon this transform entirely?
1489   if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
1490     return nullptr;
1491 
1492 
1493   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1494   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1495   // At least one of these values we are selecting between must be a constant
1496   // else we'll never succeed.
1497   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1498       !match(SelVal1, m_AnyIntegralConstant()))
1499     return nullptr;
1500 
1501   // Does this constant C match any of the `select` values?
1502   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1503     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1504   };
1505 
1506   // If C0 *already* matches true/false value of select, we are done.
1507   if (MatchesSelectValue(C0))
1508     return nullptr;
1509 
1510   // Check the constant we'd have with flipped-strictness predicate.
1511   auto FlippedStrictness =
1512       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1513   if (!FlippedStrictness)
1514     return nullptr;
1515 
1516   // If said constant doesn't match either, then there is no hope,
1517   if (!MatchesSelectValue(FlippedStrictness->second))
1518     return nullptr;
1519 
1520   // It matched! Lets insert the new comparison just before select.
1521   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1522   IC.Builder.SetInsertPoint(&Sel);
1523 
1524   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1525   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1526                                         Cmp.getName() + ".inv");
1527   IC.replaceOperand(Sel, 0, NewCmp);
1528   Sel.swapValues();
1529   Sel.swapProfMetadata();
1530 
1531   return &Sel;
1532 }
1533 
1534 /// Visit a SelectInst that has an ICmpInst as its first operand.
1535 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1536                                                       ICmpInst *ICI) {
1537   if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1538     return NewSel;
1539 
1540   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this))
1541     return NewSel;
1542 
1543   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this))
1544     return NewAbs;
1545 
1546   if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
1547     return replaceInstUsesWith(SI, V);
1548 
1549   if (Instruction *NewSel =
1550           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1551     return NewSel;
1552 
1553   bool Changed = adjustMinMax(SI, *ICI);
1554 
1555   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1556     return replaceInstUsesWith(SI, V);
1557 
1558   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1559   Value *TrueVal = SI.getTrueValue();
1560   Value *FalseVal = SI.getFalseValue();
1561   ICmpInst::Predicate Pred = ICI->getPredicate();
1562   Value *CmpLHS = ICI->getOperand(0);
1563   Value *CmpRHS = ICI->getOperand(1);
1564   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1565     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1566       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1567       SI.setOperand(1, CmpRHS);
1568       Changed = true;
1569     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1570       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1571       SI.setOperand(2, CmpRHS);
1572       Changed = true;
1573     }
1574   }
1575 
1576   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1577   // decomposeBitTestICmp() might help.
1578   {
1579     unsigned BitWidth =
1580         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1581     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1582     Value *X;
1583     const APInt *Y, *C;
1584     bool TrueWhenUnset;
1585     bool IsBitTest = false;
1586     if (ICmpInst::isEquality(Pred) &&
1587         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1588         match(CmpRHS, m_Zero())) {
1589       IsBitTest = true;
1590       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1591     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1592       X = CmpLHS;
1593       Y = &MinSignedValue;
1594       IsBitTest = true;
1595       TrueWhenUnset = false;
1596     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1597       X = CmpLHS;
1598       Y = &MinSignedValue;
1599       IsBitTest = true;
1600       TrueWhenUnset = true;
1601     }
1602     if (IsBitTest) {
1603       Value *V = nullptr;
1604       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1605       if (TrueWhenUnset && TrueVal == X &&
1606           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1607         V = Builder.CreateAnd(X, ~(*Y));
1608       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1609       else if (!TrueWhenUnset && FalseVal == X &&
1610                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1611         V = Builder.CreateAnd(X, ~(*Y));
1612       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1613       else if (TrueWhenUnset && FalseVal == X &&
1614                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1615         V = Builder.CreateOr(X, *Y);
1616       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1617       else if (!TrueWhenUnset && TrueVal == X &&
1618                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1619         V = Builder.CreateOr(X, *Y);
1620 
1621       if (V)
1622         return replaceInstUsesWith(SI, V);
1623     }
1624   }
1625 
1626   if (Instruction *V =
1627           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1628     return V;
1629 
1630   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1631     return V;
1632 
1633   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1634     return replaceInstUsesWith(SI, V);
1635 
1636   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1637     return replaceInstUsesWith(SI, V);
1638 
1639   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1640     return replaceInstUsesWith(SI, V);
1641 
1642   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1643     return replaceInstUsesWith(SI, V);
1644 
1645   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1646     return replaceInstUsesWith(SI, V);
1647 
1648   return Changed ? &SI : nullptr;
1649 }
1650 
1651 /// SI is a select whose condition is a PHI node (but the two may be in
1652 /// different blocks). See if the true/false values (V) are live in all of the
1653 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1654 ///
1655 ///   X = phi [ C1, BB1], [C2, BB2]
1656 ///   Y = add
1657 ///   Z = select X, Y, 0
1658 ///
1659 /// because Y is not live in BB1/BB2.
1660 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1661                                                    const SelectInst &SI) {
1662   // If the value is a non-instruction value like a constant or argument, it
1663   // can always be mapped.
1664   const Instruction *I = dyn_cast<Instruction>(V);
1665   if (!I) return true;
1666 
1667   // If V is a PHI node defined in the same block as the condition PHI, we can
1668   // map the arguments.
1669   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1670 
1671   if (const PHINode *VP = dyn_cast<PHINode>(I))
1672     if (VP->getParent() == CondPHI->getParent())
1673       return true;
1674 
1675   // Otherwise, if the PHI and select are defined in the same block and if V is
1676   // defined in a different block, then we can transform it.
1677   if (SI.getParent() == CondPHI->getParent() &&
1678       I->getParent() != CondPHI->getParent())
1679     return true;
1680 
1681   // Otherwise we have a 'hard' case and we can't tell without doing more
1682   // detailed dominator based analysis, punt.
1683   return false;
1684 }
1685 
1686 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1687 ///   SPF2(SPF1(A, B), C)
1688 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1689                                             SelectPatternFlavor SPF1, Value *A,
1690                                             Value *B, Instruction &Outer,
1691                                             SelectPatternFlavor SPF2,
1692                                             Value *C) {
1693   if (Outer.getType() != Inner->getType())
1694     return nullptr;
1695 
1696   if (C == A || C == B) {
1697     // MAX(MAX(A, B), B) -> MAX(A, B)
1698     // MIN(MIN(a, b), a) -> MIN(a, b)
1699     // TODO: This could be done in instsimplify.
1700     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1701       return replaceInstUsesWith(Outer, Inner);
1702 
1703     // MAX(MIN(a, b), a) -> a
1704     // MIN(MAX(a, b), a) -> a
1705     // TODO: This could be done in instsimplify.
1706     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1707         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1708         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1709         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1710       return replaceInstUsesWith(Outer, C);
1711   }
1712 
1713   if (SPF1 == SPF2) {
1714     const APInt *CB, *CC;
1715     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1716       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1717       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1718       // TODO: This could be done in instsimplify.
1719       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1720           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1721           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1722           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1723         return replaceInstUsesWith(Outer, Inner);
1724 
1725       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1726       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1727       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1728           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1729           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1730           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1731         Outer.replaceUsesOfWith(Inner, A);
1732         return &Outer;
1733       }
1734     }
1735   }
1736 
1737   // max(max(A, B), min(A, B)) --> max(A, B)
1738   // min(min(A, B), max(A, B)) --> min(A, B)
1739   // TODO: This could be done in instsimplify.
1740   if (SPF1 == SPF2 &&
1741       ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1742        (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1743        (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1744        (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1745     return replaceInstUsesWith(Outer, Inner);
1746 
1747   // ABS(ABS(X)) -> ABS(X)
1748   // NABS(NABS(X)) -> NABS(X)
1749   // TODO: This could be done in instsimplify.
1750   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1751     return replaceInstUsesWith(Outer, Inner);
1752   }
1753 
1754   // ABS(NABS(X)) -> ABS(X)
1755   // NABS(ABS(X)) -> NABS(X)
1756   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1757       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1758     SelectInst *SI = cast<SelectInst>(Inner);
1759     Value *NewSI =
1760         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1761                              SI->getTrueValue(), SI->getName(), SI);
1762     return replaceInstUsesWith(Outer, NewSI);
1763   }
1764 
1765   auto IsFreeOrProfitableToInvert =
1766       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1767     if (match(V, m_Not(m_Value(NotV)))) {
1768       // If V has at most 2 uses then we can get rid of the xor operation
1769       // entirely.
1770       ElidesXor |= !V->hasNUsesOrMore(3);
1771       return true;
1772     }
1773 
1774     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1775       NotV = nullptr;
1776       return true;
1777     }
1778 
1779     return false;
1780   };
1781 
1782   Value *NotA, *NotB, *NotC;
1783   bool ElidesXor = false;
1784 
1785   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1786   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1787   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1788   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1789   //
1790   // This transform is performance neutral if we can elide at least one xor from
1791   // the set of three operands, since we'll be tacking on an xor at the very
1792   // end.
1793   if (SelectPatternResult::isMinOrMax(SPF1) &&
1794       SelectPatternResult::isMinOrMax(SPF2) &&
1795       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1796       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1797       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1798     if (!NotA)
1799       NotA = Builder.CreateNot(A);
1800     if (!NotB)
1801       NotB = Builder.CreateNot(B);
1802     if (!NotC)
1803       NotC = Builder.CreateNot(C);
1804 
1805     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1806                                    NotB);
1807     Value *NewOuter = Builder.CreateNot(
1808         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1809     return replaceInstUsesWith(Outer, NewOuter);
1810   }
1811 
1812   return nullptr;
1813 }
1814 
1815 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1816 /// This is even legal for FP.
1817 static Instruction *foldAddSubSelect(SelectInst &SI,
1818                                      InstCombiner::BuilderTy &Builder) {
1819   Value *CondVal = SI.getCondition();
1820   Value *TrueVal = SI.getTrueValue();
1821   Value *FalseVal = SI.getFalseValue();
1822   auto *TI = dyn_cast<Instruction>(TrueVal);
1823   auto *FI = dyn_cast<Instruction>(FalseVal);
1824   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1825     return nullptr;
1826 
1827   Instruction *AddOp = nullptr, *SubOp = nullptr;
1828   if ((TI->getOpcode() == Instruction::Sub &&
1829        FI->getOpcode() == Instruction::Add) ||
1830       (TI->getOpcode() == Instruction::FSub &&
1831        FI->getOpcode() == Instruction::FAdd)) {
1832     AddOp = FI;
1833     SubOp = TI;
1834   } else if ((FI->getOpcode() == Instruction::Sub &&
1835               TI->getOpcode() == Instruction::Add) ||
1836              (FI->getOpcode() == Instruction::FSub &&
1837               TI->getOpcode() == Instruction::FAdd)) {
1838     AddOp = TI;
1839     SubOp = FI;
1840   }
1841 
1842   if (AddOp) {
1843     Value *OtherAddOp = nullptr;
1844     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1845       OtherAddOp = AddOp->getOperand(1);
1846     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1847       OtherAddOp = AddOp->getOperand(0);
1848     }
1849 
1850     if (OtherAddOp) {
1851       // So at this point we know we have (Y -> OtherAddOp):
1852       //        select C, (add X, Y), (sub X, Z)
1853       Value *NegVal; // Compute -Z
1854       if (SI.getType()->isFPOrFPVectorTy()) {
1855         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1856         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1857           FastMathFlags Flags = AddOp->getFastMathFlags();
1858           Flags &= SubOp->getFastMathFlags();
1859           NegInst->setFastMathFlags(Flags);
1860         }
1861       } else {
1862         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1863       }
1864 
1865       Value *NewTrueOp = OtherAddOp;
1866       Value *NewFalseOp = NegVal;
1867       if (AddOp != TI)
1868         std::swap(NewTrueOp, NewFalseOp);
1869       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1870                                            SI.getName() + ".p", &SI);
1871 
1872       if (SI.getType()->isFPOrFPVectorTy()) {
1873         Instruction *RI =
1874             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1875 
1876         FastMathFlags Flags = AddOp->getFastMathFlags();
1877         Flags &= SubOp->getFastMathFlags();
1878         RI->setFastMathFlags(Flags);
1879         return RI;
1880       } else
1881         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1882     }
1883   }
1884   return nullptr;
1885 }
1886 
1887 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1888 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1889 /// Along with a number of patterns similar to:
1890 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1891 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1892 static Instruction *
1893 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1894   Value *CondVal = SI.getCondition();
1895   Value *TrueVal = SI.getTrueValue();
1896   Value *FalseVal = SI.getFalseValue();
1897 
1898   WithOverflowInst *II;
1899   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1900       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1901     return nullptr;
1902 
1903   Value *X = II->getLHS();
1904   Value *Y = II->getRHS();
1905 
1906   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1907     Type *Ty = Limit->getType();
1908 
1909     ICmpInst::Predicate Pred;
1910     Value *TrueVal, *FalseVal, *Op;
1911     const APInt *C;
1912     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1913                                m_Value(TrueVal), m_Value(FalseVal))))
1914       return false;
1915 
1916     auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
1917     auto IsMinMax = [&](Value *Min, Value *Max) {
1918       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1919       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1920       return match(Min, m_SpecificInt(MinVal)) &&
1921              match(Max, m_SpecificInt(MaxVal));
1922     };
1923 
1924     if (Op != X && Op != Y)
1925       return false;
1926 
1927     if (IsAdd) {
1928       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1929       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1930       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1931       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1932       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1933           IsMinMax(TrueVal, FalseVal))
1934         return true;
1935       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1936       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1937       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1938       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1939       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1940           IsMinMax(FalseVal, TrueVal))
1941         return true;
1942     } else {
1943       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1944       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1945       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1946           IsMinMax(TrueVal, FalseVal))
1947         return true;
1948       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1949       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1950       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1951           IsMinMax(FalseVal, TrueVal))
1952         return true;
1953       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1954       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1955       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1956           IsMinMax(FalseVal, TrueVal))
1957         return true;
1958       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1959       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1960       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1961           IsMinMax(TrueVal, FalseVal))
1962         return true;
1963     }
1964 
1965     return false;
1966   };
1967 
1968   Intrinsic::ID NewIntrinsicID;
1969   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1970       match(TrueVal, m_AllOnes()))
1971     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1972     NewIntrinsicID = Intrinsic::uadd_sat;
1973   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1974            match(TrueVal, m_Zero()))
1975     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1976     NewIntrinsicID = Intrinsic::usub_sat;
1977   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1978            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1979     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1980     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1981     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1982     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1983     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1984     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1985     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1986     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1987     NewIntrinsicID = Intrinsic::sadd_sat;
1988   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1989            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1990     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1991     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1992     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1993     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1994     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1995     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1996     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1997     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1998     NewIntrinsicID = Intrinsic::ssub_sat;
1999   else
2000     return nullptr;
2001 
2002   Function *F =
2003       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
2004   return CallInst::Create(F, {X, Y});
2005 }
2006 
2007 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
2008   Constant *C;
2009   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
2010       !match(Sel.getFalseValue(), m_Constant(C)))
2011     return nullptr;
2012 
2013   Instruction *ExtInst;
2014   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
2015       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
2016     return nullptr;
2017 
2018   auto ExtOpcode = ExtInst->getOpcode();
2019   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
2020     return nullptr;
2021 
2022   // If we are extending from a boolean type or if we can create a select that
2023   // has the same size operands as its condition, try to narrow the select.
2024   Value *X = ExtInst->getOperand(0);
2025   Type *SmallType = X->getType();
2026   Value *Cond = Sel.getCondition();
2027   auto *Cmp = dyn_cast<CmpInst>(Cond);
2028   if (!SmallType->isIntOrIntVectorTy(1) &&
2029       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
2030     return nullptr;
2031 
2032   // If the constant is the same after truncation to the smaller type and
2033   // extension to the original type, we can narrow the select.
2034   Type *SelType = Sel.getType();
2035   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
2036   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
2037   if (ExtC == C && ExtInst->hasOneUse()) {
2038     Value *TruncCVal = cast<Value>(TruncC);
2039     if (ExtInst == Sel.getFalseValue())
2040       std::swap(X, TruncCVal);
2041 
2042     // select Cond, (ext X), C --> ext(select Cond, X, C')
2043     // select Cond, C, (ext X) --> ext(select Cond, C', X)
2044     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2045     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2046   }
2047 
2048   // If one arm of the select is the extend of the condition, replace that arm
2049   // with the extension of the appropriate known bool value.
2050   if (Cond == X) {
2051     if (ExtInst == Sel.getTrueValue()) {
2052       // select X, (sext X), C --> select X, -1, C
2053       // select X, (zext X), C --> select X,  1, C
2054       Constant *One = ConstantInt::getTrue(SmallType);
2055       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
2056       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
2057     } else {
2058       // select X, C, (sext X) --> select X, C, 0
2059       // select X, C, (zext X) --> select X, C, 0
2060       Constant *Zero = ConstantInt::getNullValue(SelType);
2061       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
2062     }
2063   }
2064 
2065   return nullptr;
2066 }
2067 
2068 /// Try to transform a vector select with a constant condition vector into a
2069 /// shuffle for easier combining with other shuffles and insert/extract.
2070 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2071   Value *CondVal = SI.getCondition();
2072   Constant *CondC;
2073   auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2074   if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2075     return nullptr;
2076 
2077   unsigned NumElts = CondValTy->getNumElements();
2078   SmallVector<int, 16> Mask;
2079   Mask.reserve(NumElts);
2080   for (unsigned i = 0; i != NumElts; ++i) {
2081     Constant *Elt = CondC->getAggregateElement(i);
2082     if (!Elt)
2083       return nullptr;
2084 
2085     if (Elt->isOneValue()) {
2086       // If the select condition element is true, choose from the 1st vector.
2087       Mask.push_back(i);
2088     } else if (Elt->isNullValue()) {
2089       // If the select condition element is false, choose from the 2nd vector.
2090       Mask.push_back(i + NumElts);
2091     } else if (isa<UndefValue>(Elt)) {
2092       // Undef in a select condition (choose one of the operands) does not mean
2093       // the same thing as undef in a shuffle mask (any value is acceptable), so
2094       // give up.
2095       return nullptr;
2096     } else {
2097       // Bail out on a constant expression.
2098       return nullptr;
2099     }
2100   }
2101 
2102   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2103 }
2104 
2105 /// If we have a select of vectors with a scalar condition, try to convert that
2106 /// to a vector select by splatting the condition. A splat may get folded with
2107 /// other operations in IR and having all operands of a select be vector types
2108 /// is likely better for vector codegen.
2109 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2110                                                    InstCombinerImpl &IC) {
2111   auto *Ty = dyn_cast<VectorType>(Sel.getType());
2112   if (!Ty)
2113     return nullptr;
2114 
2115   // We can replace a single-use extract with constant index.
2116   Value *Cond = Sel.getCondition();
2117   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2118     return nullptr;
2119 
2120   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2121   // Splatting the extracted condition reduces code (we could directly create a
2122   // splat shuffle of the source vector to eliminate the intermediate step).
2123   return IC.replaceOperand(
2124       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2125 }
2126 
2127 /// Reuse bitcasted operands between a compare and select:
2128 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2129 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2130 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2131                                           InstCombiner::BuilderTy &Builder) {
2132   Value *Cond = Sel.getCondition();
2133   Value *TVal = Sel.getTrueValue();
2134   Value *FVal = Sel.getFalseValue();
2135 
2136   CmpInst::Predicate Pred;
2137   Value *A, *B;
2138   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2139     return nullptr;
2140 
2141   // The select condition is a compare instruction. If the select's true/false
2142   // values are already the same as the compare operands, there's nothing to do.
2143   if (TVal == A || TVal == B || FVal == A || FVal == B)
2144     return nullptr;
2145 
2146   Value *C, *D;
2147   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2148     return nullptr;
2149 
2150   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2151   Value *TSrc, *FSrc;
2152   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2153       !match(FVal, m_BitCast(m_Value(FSrc))))
2154     return nullptr;
2155 
2156   // If the select true/false values are *different bitcasts* of the same source
2157   // operands, make the select operands the same as the compare operands and
2158   // cast the result. This is the canonical select form for min/max.
2159   Value *NewSel;
2160   if (TSrc == C && FSrc == D) {
2161     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2162     // bitcast (select (cmp A, B), A, B)
2163     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2164   } else if (TSrc == D && FSrc == C) {
2165     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2166     // bitcast (select (cmp A, B), B, A)
2167     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2168   } else {
2169     return nullptr;
2170   }
2171   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2172 }
2173 
2174 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2175 /// instructions.
2176 ///
2177 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2178 /// selects between the returned value of the cmpxchg instruction its compare
2179 /// operand, the result of the select will always be equal to its false value.
2180 /// For example:
2181 ///
2182 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2183 ///   %1 = extractvalue { i64, i1 } %0, 1
2184 ///   %2 = extractvalue { i64, i1 } %0, 0
2185 ///   %3 = select i1 %1, i64 %compare, i64 %2
2186 ///   ret i64 %3
2187 ///
2188 /// The returned value of the cmpxchg instruction (%2) is the original value
2189 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2190 /// must have been equal to %compare. Thus, the result of the select is always
2191 /// equal to %2, and the code can be simplified to:
2192 ///
2193 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2194 ///   %1 = extractvalue { i64, i1 } %0, 0
2195 ///   ret i64 %1
2196 ///
2197 static Value *foldSelectCmpXchg(SelectInst &SI) {
2198   // A helper that determines if V is an extractvalue instruction whose
2199   // aggregate operand is a cmpxchg instruction and whose single index is equal
2200   // to I. If such conditions are true, the helper returns the cmpxchg
2201   // instruction; otherwise, a nullptr is returned.
2202   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2203     auto *Extract = dyn_cast<ExtractValueInst>(V);
2204     if (!Extract)
2205       return nullptr;
2206     if (Extract->getIndices()[0] != I)
2207       return nullptr;
2208     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2209   };
2210 
2211   // If the select has a single user, and this user is a select instruction that
2212   // we can simplify, skip the cmpxchg simplification for now.
2213   if (SI.hasOneUse())
2214     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2215       if (Select->getCondition() == SI.getCondition())
2216         if (Select->getFalseValue() == SI.getTrueValue() ||
2217             Select->getTrueValue() == SI.getFalseValue())
2218           return nullptr;
2219 
2220   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2221   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2222   if (!CmpXchg)
2223     return nullptr;
2224 
2225   // Check the true value case: The true value of the select is the returned
2226   // value of the same cmpxchg used by the condition, and the false value is the
2227   // cmpxchg instruction's compare operand.
2228   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2229     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2230       return SI.getFalseValue();
2231 
2232   // Check the false value case: The false value of the select is the returned
2233   // value of the same cmpxchg used by the condition, and the true value is the
2234   // cmpxchg instruction's compare operand.
2235   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2236     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2237       return SI.getFalseValue();
2238 
2239   return nullptr;
2240 }
2241 
2242 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2243                                        Value *Y,
2244                                        InstCombiner::BuilderTy &Builder) {
2245   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
2246   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2247                     SPF == SelectPatternFlavor::SPF_UMAX;
2248   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2249   // the constant value check to an assert.
2250   Value *A;
2251   const APInt *C1, *C2;
2252   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2253       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2254     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2255     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2256     Value *NewMinMax = createMinMax(Builder, SPF, A,
2257                                     ConstantInt::get(X->getType(), *C2 - *C1));
2258     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2259                                      ConstantInt::get(X->getType(), *C1));
2260   }
2261 
2262   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2263       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2264     bool Overflow;
2265     APInt Diff = C2->ssub_ov(*C1, Overflow);
2266     if (!Overflow) {
2267       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2268       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2269       Value *NewMinMax = createMinMax(Builder, SPF, A,
2270                                       ConstantInt::get(X->getType(), Diff));
2271       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2272                                        ConstantInt::get(X->getType(), *C1));
2273     }
2274   }
2275 
2276   return nullptr;
2277 }
2278 
2279 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2280 Instruction *InstCombinerImpl::matchSAddSubSat(Instruction &MinMax1) {
2281   Type *Ty = MinMax1.getType();
2282 
2283   // We are looking for a tree of:
2284   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2285   // Where the min and max could be reversed
2286   Instruction *MinMax2;
2287   BinaryOperator *AddSub;
2288   const APInt *MinValue, *MaxValue;
2289   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2290     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2291       return nullptr;
2292   } else if (match(&MinMax1,
2293                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2294     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2295       return nullptr;
2296   } else
2297     return nullptr;
2298 
2299   // Check that the constants clamp a saturate, and that the new type would be
2300   // sensible to convert to.
2301   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2302     return nullptr;
2303   // In what bitwidth can this be treated as saturating arithmetics?
2304   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2305   // FIXME: This isn't quite right for vectors, but using the scalar type is a
2306   // good first approximation for what should be done there.
2307   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2308     return nullptr;
2309 
2310   // Also make sure that the number of uses is as expected. The 3 is for the
2311   // the two items of the compare and the select, or 2 from a min/max.
2312   unsigned ExpUses = isa<IntrinsicInst>(MinMax1) ? 2 : 3;
2313   if (MinMax2->hasNUsesOrMore(ExpUses) || AddSub->hasNUsesOrMore(ExpUses))
2314     return nullptr;
2315 
2316   // Create the new type (which can be a vector type)
2317   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2318 
2319   Intrinsic::ID IntrinsicID;
2320   if (AddSub->getOpcode() == Instruction::Add)
2321     IntrinsicID = Intrinsic::sadd_sat;
2322   else if (AddSub->getOpcode() == Instruction::Sub)
2323     IntrinsicID = Intrinsic::ssub_sat;
2324   else
2325     return nullptr;
2326 
2327   // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
2328   // is usually achieved via a sext from a smaller type.
2329   if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) >
2330           NewBitWidth ||
2331       ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
2332     return nullptr;
2333 
2334   // Finally create and return the sat intrinsic, truncated to the new type
2335   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2336   Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
2337   Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
2338   Value *Sat = Builder.CreateCall(F, {AT, BT});
2339   return CastInst::Create(Instruction::SExt, Sat, Ty);
2340 }
2341 
2342 /// Reduce a sequence of min/max with a common operand.
2343 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2344                                         Value *RHS,
2345                                         InstCombiner::BuilderTy &Builder) {
2346   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2347   // TODO: Allow FP min/max with nnan/nsz.
2348   if (!LHS->getType()->isIntOrIntVectorTy())
2349     return nullptr;
2350 
2351   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2352   Value *A, *B, *C, *D;
2353   SelectPatternResult L = matchSelectPattern(LHS, A, B);
2354   SelectPatternResult R = matchSelectPattern(RHS, C, D);
2355   if (SPF != L.Flavor || L.Flavor != R.Flavor)
2356     return nullptr;
2357 
2358   // Look for a common operand. The use checks are different than usual because
2359   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2360   // the select.
2361   Value *MinMaxOp = nullptr;
2362   Value *ThirdOp = nullptr;
2363   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2364     // If the LHS is only used in this chain and the RHS is used outside of it,
2365     // reuse the RHS min/max because that will eliminate the LHS.
2366     if (D == A || C == A) {
2367       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2368       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2369       MinMaxOp = RHS;
2370       ThirdOp = B;
2371     } else if (D == B || C == B) {
2372       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2373       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2374       MinMaxOp = RHS;
2375       ThirdOp = A;
2376     }
2377   } else if (!RHS->hasNUsesOrMore(3)) {
2378     // Reuse the LHS. This will eliminate the RHS.
2379     if (D == A || D == B) {
2380       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2381       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2382       MinMaxOp = LHS;
2383       ThirdOp = C;
2384     } else if (C == A || C == B) {
2385       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2386       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2387       MinMaxOp = LHS;
2388       ThirdOp = D;
2389     }
2390   }
2391   if (!MinMaxOp || !ThirdOp)
2392     return nullptr;
2393 
2394   CmpInst::Predicate P = getMinMaxPred(SPF);
2395   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2396   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2397 }
2398 
2399 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2400 /// into a funnel shift intrinsic. Example:
2401 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2402 ///              --> call llvm.fshl.i32(a, a, b)
2403 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2404 ///                 --> call llvm.fshl.i32(a, b, c)
2405 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2406 ///                 --> call llvm.fshr.i32(a, b, c)
2407 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2408                                           InstCombiner::BuilderTy &Builder) {
2409   // This must be a power-of-2 type for a bitmasking transform to be valid.
2410   unsigned Width = Sel.getType()->getScalarSizeInBits();
2411   if (!isPowerOf2_32(Width))
2412     return nullptr;
2413 
2414   BinaryOperator *Or0, *Or1;
2415   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2416     return nullptr;
2417 
2418   Value *SV0, *SV1, *SA0, *SA1;
2419   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2420                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2421       !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2422                                           m_ZExtOrSelf(m_Value(SA1))))) ||
2423       Or0->getOpcode() == Or1->getOpcode())
2424     return nullptr;
2425 
2426   // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2427   if (Or0->getOpcode() == BinaryOperator::LShr) {
2428     std::swap(Or0, Or1);
2429     std::swap(SV0, SV1);
2430     std::swap(SA0, SA1);
2431   }
2432   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2433          Or1->getOpcode() == BinaryOperator::LShr &&
2434          "Illegal or(shift,shift) pair");
2435 
2436   // Check the shift amounts to see if they are an opposite pair.
2437   Value *ShAmt;
2438   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2439     ShAmt = SA0;
2440   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2441     ShAmt = SA1;
2442   else
2443     return nullptr;
2444 
2445   // We should now have this pattern:
2446   // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2447   // The false value of the select must be a funnel-shift of the true value:
2448   // IsFShl -> TVal must be SV0 else TVal must be SV1.
2449   bool IsFshl = (ShAmt == SA0);
2450   Value *TVal = Sel.getTrueValue();
2451   if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2452     return nullptr;
2453 
2454   // Finally, see if the select is filtering out a shift-by-zero.
2455   Value *Cond = Sel.getCondition();
2456   ICmpInst::Predicate Pred;
2457   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2458       Pred != ICmpInst::ICMP_EQ)
2459     return nullptr;
2460 
2461   // If this is not a rotate then the select was blocking poison from the
2462   // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2463   if (SV0 != SV1) {
2464     if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2465       SV1 = Builder.CreateFreeze(SV1);
2466     else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2467       SV0 = Builder.CreateFreeze(SV0);
2468   }
2469 
2470   // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2471   // Convert to funnel shift intrinsic.
2472   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2473   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2474   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2475   return CallInst::Create(F, { SV0, SV1, ShAmt });
2476 }
2477 
2478 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2479                                          InstCombiner::BuilderTy &Builder) {
2480   Value *Cond = Sel.getCondition();
2481   Value *TVal = Sel.getTrueValue();
2482   Value *FVal = Sel.getFalseValue();
2483   Type *SelType = Sel.getType();
2484 
2485   // Match select ?, TC, FC where the constants are equal but negated.
2486   // TODO: Generalize to handle a negated variable operand?
2487   const APFloat *TC, *FC;
2488   if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
2489       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2490     return nullptr;
2491 
2492   assert(TC != FC && "Expected equal select arms to simplify");
2493 
2494   Value *X;
2495   const APInt *C;
2496   bool IsTrueIfSignSet;
2497   ICmpInst::Predicate Pred;
2498   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2499       !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2500       X->getType() != SelType)
2501     return nullptr;
2502 
2503   // If needed, negate the value that will be the sign argument of the copysign:
2504   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2505   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2506   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2507   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2508   if (IsTrueIfSignSet ^ TC->isNegative())
2509     X = Builder.CreateFNegFMF(X, &Sel);
2510 
2511   // Canonicalize the magnitude argument as the positive constant since we do
2512   // not care about its sign.
2513   Value *MagArg = TC->isNegative() ? FVal : TVal;
2514   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2515                                           Sel.getType());
2516   Instruction *CopySign = CallInst::Create(F, { MagArg, X });
2517   CopySign->setFastMathFlags(Sel.getFastMathFlags());
2518   return CopySign;
2519 }
2520 
2521 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2522   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2523   if (!VecTy)
2524     return nullptr;
2525 
2526   unsigned NumElts = VecTy->getNumElements();
2527   APInt UndefElts(NumElts, 0);
2528   APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2529   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2530     if (V != &Sel)
2531       return replaceInstUsesWith(Sel, V);
2532     return &Sel;
2533   }
2534 
2535   // A select of a "select shuffle" with a common operand can be rearranged
2536   // to select followed by "select shuffle". Because of poison, this only works
2537   // in the case of a shuffle with no undefined mask elements.
2538   Value *Cond = Sel.getCondition();
2539   Value *TVal = Sel.getTrueValue();
2540   Value *FVal = Sel.getFalseValue();
2541   Value *X, *Y;
2542   ArrayRef<int> Mask;
2543   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2544       !is_contained(Mask, UndefMaskElem) &&
2545       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2546     if (X == FVal) {
2547       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2548       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2549       return new ShuffleVectorInst(X, NewSel, Mask);
2550     }
2551     if (Y == FVal) {
2552       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2553       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2554       return new ShuffleVectorInst(NewSel, Y, Mask);
2555     }
2556   }
2557   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2558       !is_contained(Mask, UndefMaskElem) &&
2559       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2560     if (X == TVal) {
2561       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2562       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2563       return new ShuffleVectorInst(X, NewSel, Mask);
2564     }
2565     if (Y == TVal) {
2566       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2567       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2568       return new ShuffleVectorInst(NewSel, Y, Mask);
2569     }
2570   }
2571 
2572   return nullptr;
2573 }
2574 
2575 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2576                                         const DominatorTree &DT,
2577                                         InstCombiner::BuilderTy &Builder) {
2578   // Find the block's immediate dominator that ends with a conditional branch
2579   // that matches select's condition (maybe inverted).
2580   auto *IDomNode = DT[BB]->getIDom();
2581   if (!IDomNode)
2582     return nullptr;
2583   BasicBlock *IDom = IDomNode->getBlock();
2584 
2585   Value *Cond = Sel.getCondition();
2586   Value *IfTrue, *IfFalse;
2587   BasicBlock *TrueSucc, *FalseSucc;
2588   if (match(IDom->getTerminator(),
2589             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2590                  m_BasicBlock(FalseSucc)))) {
2591     IfTrue = Sel.getTrueValue();
2592     IfFalse = Sel.getFalseValue();
2593   } else if (match(IDom->getTerminator(),
2594                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2595                         m_BasicBlock(FalseSucc)))) {
2596     IfTrue = Sel.getFalseValue();
2597     IfFalse = Sel.getTrueValue();
2598   } else
2599     return nullptr;
2600 
2601   // Make sure the branches are actually different.
2602   if (TrueSucc == FalseSucc)
2603     return nullptr;
2604 
2605   // We want to replace select %cond, %a, %b with a phi that takes value %a
2606   // for all incoming edges that are dominated by condition `%cond == true`,
2607   // and value %b for edges dominated by condition `%cond == false`. If %a
2608   // or %b are also phis from the same basic block, we can go further and take
2609   // their incoming values from the corresponding blocks.
2610   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2611   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2612   DenseMap<BasicBlock *, Value *> Inputs;
2613   for (auto *Pred : predecessors(BB)) {
2614     // Check implication.
2615     BasicBlockEdge Incoming(Pred, BB);
2616     if (DT.dominates(TrueEdge, Incoming))
2617       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2618     else if (DT.dominates(FalseEdge, Incoming))
2619       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2620     else
2621       return nullptr;
2622     // Check availability.
2623     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2624       if (!DT.dominates(Insn, Pred->getTerminator()))
2625         return nullptr;
2626   }
2627 
2628   Builder.SetInsertPoint(&*BB->begin());
2629   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2630   for (auto *Pred : predecessors(BB))
2631     PN->addIncoming(Inputs[Pred], Pred);
2632   PN->takeName(&Sel);
2633   return PN;
2634 }
2635 
2636 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2637                                     InstCombiner::BuilderTy &Builder) {
2638   // Try to replace this select with Phi in one of these blocks.
2639   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2640   CandidateBlocks.insert(Sel.getParent());
2641   for (Value *V : Sel.operands())
2642     if (auto *I = dyn_cast<Instruction>(V))
2643       CandidateBlocks.insert(I->getParent());
2644 
2645   for (BasicBlock *BB : CandidateBlocks)
2646     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2647       return PN;
2648   return nullptr;
2649 }
2650 
2651 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2652   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2653   if (!FI)
2654     return nullptr;
2655 
2656   Value *Cond = FI->getOperand(0);
2657   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2658 
2659   //   select (freeze(x == y)), x, y --> y
2660   //   select (freeze(x != y)), x, y --> x
2661   // The freeze should be only used by this select. Otherwise, remaining uses of
2662   // the freeze can observe a contradictory value.
2663   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2664   //   a = select c, x, y   ;
2665   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2666   //                        ; to y, this can happen.
2667   CmpInst::Predicate Pred;
2668   if (FI->hasOneUse() &&
2669       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2670       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2671     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2672   }
2673 
2674   return nullptr;
2675 }
2676 
2677 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2678                                                                  SelectInst &SI,
2679                                                                  bool IsAnd) {
2680   Value *CondVal = SI.getCondition();
2681   Value *A = SI.getTrueValue();
2682   Value *B = SI.getFalseValue();
2683 
2684   assert(Op->getType()->isIntOrIntVectorTy(1) &&
2685          "Op must be either i1 or vector of i1.");
2686 
2687   Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2688   if (!Res)
2689     return nullptr;
2690 
2691   Value *Zero = Constant::getNullValue(A->getType());
2692   Value *One = Constant::getAllOnesValue(A->getType());
2693 
2694   if (*Res == true) {
2695     if (IsAnd)
2696       // select op, (select cond, A, B), false => select op, A, false
2697       // and    op, (select cond, A, B)        => select op, A, false
2698       //   if op = true implies condval = true.
2699       return SelectInst::Create(Op, A, Zero);
2700     else
2701       // select op, true, (select cond, A, B) => select op, true, A
2702       // or     op, (select cond, A, B)       => select op, true, A
2703       //   if op = false implies condval = true.
2704       return SelectInst::Create(Op, One, A);
2705   } else {
2706     if (IsAnd)
2707       // select op, (select cond, A, B), false => select op, B, false
2708       // and    op, (select cond, A, B)        => select op, B, false
2709       //   if op = true implies condval = false.
2710       return SelectInst::Create(Op, B, Zero);
2711     else
2712       // select op, true, (select cond, A, B) => select op, true, B
2713       // or     op, (select cond, A, B)       => select op, true, B
2714       //   if op = false implies condval = false.
2715       return SelectInst::Create(Op, One, B);
2716   }
2717 }
2718 
2719 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
2720   Value *CondVal = SI.getCondition();
2721   Value *TrueVal = SI.getTrueValue();
2722   Value *FalseVal = SI.getFalseValue();
2723   Type *SelType = SI.getType();
2724 
2725   // FIXME: Remove this workaround when freeze related patches are done.
2726   // For select with undef operand which feeds into an equality comparison,
2727   // don't simplify it so loop unswitch can know the equality comparison
2728   // may have an undef operand. This is a workaround for PR31652 caused by
2729   // descrepancy about branch on undef between LoopUnswitch and GVN.
2730   if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) {
2731     if (llvm::any_of(SI.users(), [&](User *U) {
2732           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2733           if (CI && CI->isEquality())
2734             return true;
2735           return false;
2736         })) {
2737       return nullptr;
2738     }
2739   }
2740 
2741   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2742                                     SQ.getWithInstruction(&SI)))
2743     return replaceInstUsesWith(SI, V);
2744 
2745   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2746     return I;
2747 
2748   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
2749     return I;
2750 
2751   CmpInst::Predicate Pred;
2752 
2753   // Avoid potential infinite loops by checking for non-constant condition.
2754   // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2755   //       Scalar select must have simplified?
2756   if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) &&
2757       TrueVal->getType() == CondVal->getType()) {
2758     // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2759     // checks whether folding it does not convert a well-defined value into
2760     // poison.
2761     if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) {
2762       // Change: A = select B, true, C --> A = or B, C
2763       return BinaryOperator::CreateOr(CondVal, FalseVal);
2764     }
2765     if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) {
2766       // Change: A = select B, C, false --> A = and B, C
2767       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2768     }
2769 
2770     auto *One = ConstantInt::getTrue(SelType);
2771     auto *Zero = ConstantInt::getFalse(SelType);
2772 
2773     // We match the "full" 0 or 1 constant here to avoid a potential infinite
2774     // loop with vectors that may have undefined/poison elements.
2775     // select a, false, b -> select !a, b, false
2776     if (match(TrueVal, m_Specific(Zero))) {
2777       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2778       return SelectInst::Create(NotCond, FalseVal, Zero);
2779     }
2780     // select a, b, true -> select !a, true, b
2781     if (match(FalseVal, m_Specific(One))) {
2782       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2783       return SelectInst::Create(NotCond, One, TrueVal);
2784     }
2785 
2786     // select a, a, b -> select a, true, b
2787     if (CondVal == TrueVal)
2788       return replaceOperand(SI, 1, One);
2789     // select a, b, a -> select a, b, false
2790     if (CondVal == FalseVal)
2791       return replaceOperand(SI, 2, Zero);
2792 
2793     // select a, !a, b -> select !a, b, false
2794     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2795       return SelectInst::Create(TrueVal, FalseVal, Zero);
2796     // select a, b, !a -> select !a, true, b
2797     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2798       return SelectInst::Create(FalseVal, One, TrueVal);
2799 
2800     Value *A, *B;
2801 
2802     // DeMorgan in select form: !a && !b --> !(a || b)
2803     // select !a, !b, false --> not (select a, true, b)
2804     if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2805         (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
2806         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2807       return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
2808 
2809     // DeMorgan in select form: !a || !b --> !(a && b)
2810     // select !a, true, !b --> not (select a, b, false)
2811     if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2812         (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
2813         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2814       return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
2815 
2816     // select (select a, true, b), true, b -> select a, true, b
2817     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2818         match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
2819       return replaceOperand(SI, 0, A);
2820     // select (select a, b, false), b, false -> select a, b, false
2821     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2822         match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
2823       return replaceOperand(SI, 0, A);
2824 
2825     if (!SelType->isVectorTy()) {
2826       if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ,
2827                                             /* AllowRefinement */ true))
2828         return replaceOperand(SI, 1, S);
2829       if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ,
2830                                             /* AllowRefinement */ true))
2831         return replaceOperand(SI, 2, S);
2832     }
2833 
2834     if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
2835       Use *Y = nullptr;
2836       bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
2837       Value *Op1 = IsAnd ? TrueVal : FalseVal;
2838       if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
2839         auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
2840         InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
2841         replaceUse(*Y, FI);
2842         return replaceInstUsesWith(SI, Op1);
2843       }
2844 
2845       if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
2846         if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
2847                                                         /* IsAnd */ IsAnd))
2848           return I;
2849 
2850       if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) {
2851         if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) {
2852           if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd,
2853                                                       /* IsLogical */ true))
2854             return replaceInstUsesWith(SI, V);
2855 
2856           if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd))
2857             return replaceInstUsesWith(SI, V);
2858         }
2859       }
2860     }
2861 
2862     // select (select a, true, b), c, false -> select a, c, false
2863     // select c, (select a, true, b), false -> select c, a, false
2864     //   if c implies that b is false.
2865     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2866         match(FalseVal, m_Zero())) {
2867       Optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
2868       if (Res && *Res == false)
2869         return replaceOperand(SI, 0, A);
2870     }
2871     if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2872         match(FalseVal, m_Zero())) {
2873       Optional<bool> Res = isImpliedCondition(CondVal, B, DL);
2874       if (Res && *Res == false)
2875         return replaceOperand(SI, 1, A);
2876     }
2877     // select c, true, (select a, b, false)  -> select c, true, a
2878     // select (select a, b, false), true, c  -> select a, true, c
2879     //   if c = false implies that b = true
2880     if (match(TrueVal, m_One()) &&
2881         match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) {
2882       Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
2883       if (Res && *Res == true)
2884         return replaceOperand(SI, 2, A);
2885     }
2886     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2887         match(TrueVal, m_One())) {
2888       Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
2889       if (Res && *Res == true)
2890         return replaceOperand(SI, 0, A);
2891     }
2892 
2893     // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b
2894     // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a
2895     Value *C1, *C2;
2896     if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) &&
2897         match(TrueVal, m_One()) &&
2898         match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) {
2899       if (match(C2, m_Not(m_Specific(C1)))) // first case
2900         return SelectInst::Create(C1, A, B);
2901       else if (match(C1, m_Not(m_Specific(C2)))) // second case
2902         return SelectInst::Create(C2, B, A);
2903     }
2904   }
2905 
2906   // Selecting between two integer or vector splat integer constants?
2907   //
2908   // Note that we don't handle a scalar select of vectors:
2909   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2910   // because that may need 3 instructions to splat the condition value:
2911   // extend, insertelement, shufflevector.
2912   //
2913   // Do not handle i1 TrueVal and FalseVal otherwise would result in
2914   // zext/sext i1 to i1.
2915   if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
2916       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2917     // select C, 1, 0 -> zext C to int
2918     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2919       return new ZExtInst(CondVal, SelType);
2920 
2921     // select C, -1, 0 -> sext C to int
2922     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2923       return new SExtInst(CondVal, SelType);
2924 
2925     // select C, 0, 1 -> zext !C to int
2926     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2927       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2928       return new ZExtInst(NotCond, SelType);
2929     }
2930 
2931     // select C, 0, -1 -> sext !C to int
2932     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2933       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2934       return new SExtInst(NotCond, SelType);
2935     }
2936   }
2937 
2938   if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
2939     Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
2940     // Are we selecting a value based on a comparison of the two values?
2941     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2942         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2943       // Canonicalize to use ordered comparisons by swapping the select
2944       // operands.
2945       //
2946       // e.g.
2947       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2948       if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
2949         FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
2950         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2951         // FIXME: The FMF should propagate from the select, not the fcmp.
2952         Builder.setFastMathFlags(FCmp->getFastMathFlags());
2953         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2954                                             FCmp->getName() + ".inv");
2955         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2956         return replaceInstUsesWith(SI, NewSel);
2957       }
2958 
2959       // NOTE: if we wanted to, this is where to detect MIN/MAX
2960     }
2961   }
2962 
2963   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2964   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2965   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2966   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2967       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2968       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2969     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2970     return replaceInstUsesWith(SI, Fabs);
2971   }
2972   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2973   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2974       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2975       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2976     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2977     return replaceInstUsesWith(SI, Fabs);
2978   }
2979   // With nnan and nsz:
2980   // (X <  +/-0.0) ? -X : X --> fabs(X)
2981   // (X <= +/-0.0) ? -X : X --> fabs(X)
2982   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2983       match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() &&
2984       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2985        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2986     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2987     return replaceInstUsesWith(SI, Fabs);
2988   }
2989   // With nnan and nsz:
2990   // (X >  +/-0.0) ? X : -X --> fabs(X)
2991   // (X >= +/-0.0) ? X : -X --> fabs(X)
2992   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2993       match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() &&
2994       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2995        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2996     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2997     return replaceInstUsesWith(SI, Fabs);
2998   }
2999 
3000   // See if we are selecting two values based on a comparison of the two values.
3001   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
3002     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
3003       return Result;
3004 
3005   if (Instruction *Add = foldAddSubSelect(SI, Builder))
3006     return Add;
3007   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
3008     return Add;
3009   if (Instruction *Or = foldSetClearBits(SI, Builder))
3010     return Or;
3011   if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
3012     return Mul;
3013 
3014   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
3015   auto *TI = dyn_cast<Instruction>(TrueVal);
3016   auto *FI = dyn_cast<Instruction>(FalseVal);
3017   if (TI && FI && TI->getOpcode() == FI->getOpcode())
3018     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
3019       return IV;
3020 
3021   if (Instruction *I = foldSelectExtConst(SI))
3022     return I;
3023 
3024   // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
3025   // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
3026   auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
3027                                bool Swap) -> GetElementPtrInst * {
3028     Value *Ptr = Gep->getPointerOperand();
3029     if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
3030         !Gep->hasOneUse())
3031       return nullptr;
3032     Value *Idx = Gep->getOperand(1);
3033     if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
3034       return nullptr;
3035     Type *ElementType = Gep->getResultElementType();
3036     Value *NewT = Idx;
3037     Value *NewF = Constant::getNullValue(Idx->getType());
3038     if (Swap)
3039       std::swap(NewT, NewF);
3040     Value *NewSI =
3041         Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
3042     return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
3043   };
3044   if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
3045     if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
3046       return NewGep;
3047   if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
3048     if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
3049       return NewGep;
3050 
3051   // See if we can fold the select into one of our operands.
3052   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
3053     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
3054       return FoldI;
3055 
3056     Value *LHS, *RHS;
3057     Instruction::CastOps CastOp;
3058     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
3059     auto SPF = SPR.Flavor;
3060     if (SPF) {
3061       Value *LHS2, *RHS2;
3062       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
3063         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
3064                                           RHS2, SI, SPF, RHS))
3065           return R;
3066       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
3067         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
3068                                           RHS2, SI, SPF, LHS))
3069           return R;
3070       // TODO.
3071       // ABS(-X) -> ABS(X)
3072     }
3073 
3074     if (SelectPatternResult::isMinOrMax(SPF)) {
3075       // Canonicalize so that
3076       // - type casts are outside select patterns.
3077       // - float clamp is transformed to min/max pattern
3078 
3079       bool IsCastNeeded = LHS->getType() != SelType;
3080       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
3081       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
3082       if (IsCastNeeded ||
3083           (LHS->getType()->isFPOrFPVectorTy() &&
3084            ((CmpLHS != LHS && CmpLHS != RHS) ||
3085             (CmpRHS != LHS && CmpRHS != RHS)))) {
3086         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
3087 
3088         Value *Cmp;
3089         if (CmpInst::isIntPredicate(MinMaxPred)) {
3090           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
3091         } else {
3092           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3093           auto FMF =
3094               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
3095           Builder.setFastMathFlags(FMF);
3096           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
3097         }
3098 
3099         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
3100         if (!IsCastNeeded)
3101           return replaceInstUsesWith(SI, NewSI);
3102 
3103         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
3104         return replaceInstUsesWith(SI, NewCast);
3105       }
3106 
3107       // MAX(~a, ~b) -> ~MIN(a, b)
3108       // MAX(~a, C)  -> ~MIN(a, ~C)
3109       // MIN(~a, ~b) -> ~MAX(a, b)
3110       // MIN(~a, C)  -> ~MAX(a, ~C)
3111       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
3112         Value *A;
3113         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
3114             !isFreeToInvert(A, A->hasOneUse()) &&
3115             // Passing false to only consider m_Not and constants.
3116             isFreeToInvert(Y, false)) {
3117           Value *B = Builder.CreateNot(Y);
3118           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
3119                                           A, B);
3120           // Copy the profile metadata.
3121           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
3122             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
3123             // Swap the metadata if the operands are swapped.
3124             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
3125               cast<SelectInst>(NewMinMax)->swapProfMetadata();
3126           }
3127 
3128           return BinaryOperator::CreateNot(NewMinMax);
3129         }
3130 
3131         return nullptr;
3132       };
3133 
3134       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
3135         return I;
3136       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
3137         return I;
3138 
3139       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
3140         return I;
3141 
3142       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
3143         return I;
3144       if (Instruction *I = matchSAddSubSat(SI))
3145         return I;
3146     }
3147   }
3148 
3149   // Canonicalize select of FP values where NaN and -0.0 are not valid as
3150   // minnum/maxnum intrinsics.
3151   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
3152     Value *X, *Y;
3153     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
3154       return replaceInstUsesWith(
3155           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
3156 
3157     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
3158       return replaceInstUsesWith(
3159           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
3160   }
3161 
3162   // See if we can fold the select into a phi node if the condition is a select.
3163   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
3164     // The true/false values have to be live in the PHI predecessor's blocks.
3165     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
3166         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
3167       if (Instruction *NV = foldOpIntoPhi(SI, PN))
3168         return NV;
3169 
3170   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
3171     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
3172       // select(C, select(C, a, b), c) -> select(C, a, c)
3173       if (TrueSI->getCondition() == CondVal) {
3174         if (SI.getTrueValue() == TrueSI->getTrueValue())
3175           return nullptr;
3176         return replaceOperand(SI, 1, TrueSI->getTrueValue());
3177       }
3178       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
3179       // We choose this as normal form to enable folding on the And and
3180       // shortening paths for the values (this helps getUnderlyingObjects() for
3181       // example).
3182       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
3183         Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
3184         replaceOperand(SI, 0, And);
3185         replaceOperand(SI, 1, TrueSI->getTrueValue());
3186         return &SI;
3187       }
3188     }
3189   }
3190   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
3191     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
3192       // select(C, a, select(C, b, c)) -> select(C, a, c)
3193       if (FalseSI->getCondition() == CondVal) {
3194         if (SI.getFalseValue() == FalseSI->getFalseValue())
3195           return nullptr;
3196         return replaceOperand(SI, 2, FalseSI->getFalseValue());
3197       }
3198       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3199       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
3200         Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
3201         replaceOperand(SI, 0, Or);
3202         replaceOperand(SI, 2, FalseSI->getFalseValue());
3203         return &SI;
3204       }
3205     }
3206   }
3207 
3208   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
3209     // The select might be preventing a division by 0.
3210     switch (BO->getOpcode()) {
3211     default:
3212       return true;
3213     case Instruction::SRem:
3214     case Instruction::URem:
3215     case Instruction::SDiv:
3216     case Instruction::UDiv:
3217       return false;
3218     }
3219   };
3220 
3221   // Try to simplify a binop sandwiched between 2 selects with the same
3222   // condition.
3223   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3224   BinaryOperator *TrueBO;
3225   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
3226       canMergeSelectThroughBinop(TrueBO)) {
3227     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
3228       if (TrueBOSI->getCondition() == CondVal) {
3229         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
3230         Worklist.push(TrueBO);
3231         return &SI;
3232       }
3233     }
3234     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
3235       if (TrueBOSI->getCondition() == CondVal) {
3236         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
3237         Worklist.push(TrueBO);
3238         return &SI;
3239       }
3240     }
3241   }
3242 
3243   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3244   BinaryOperator *FalseBO;
3245   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
3246       canMergeSelectThroughBinop(FalseBO)) {
3247     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3248       if (FalseBOSI->getCondition() == CondVal) {
3249         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3250         Worklist.push(FalseBO);
3251         return &SI;
3252       }
3253     }
3254     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3255       if (FalseBOSI->getCondition() == CondVal) {
3256         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3257         Worklist.push(FalseBO);
3258         return &SI;
3259       }
3260     }
3261   }
3262 
3263   Value *NotCond;
3264   if (match(CondVal, m_Not(m_Value(NotCond))) &&
3265       !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3266     replaceOperand(SI, 0, NotCond);
3267     SI.swapValues();
3268     SI.swapProfMetadata();
3269     return &SI;
3270   }
3271 
3272   if (Instruction *I = foldVectorSelect(SI))
3273     return I;
3274 
3275   // If we can compute the condition, there's no need for a select.
3276   // Like the above fold, we are attempting to reduce compile-time cost by
3277   // putting this fold here with limitations rather than in InstSimplify.
3278   // The motivation for this call into value tracking is to take advantage of
3279   // the assumption cache, so make sure that is populated.
3280   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3281     KnownBits Known(1);
3282     computeKnownBits(CondVal, Known, 0, &SI);
3283     if (Known.One.isOne())
3284       return replaceInstUsesWith(SI, TrueVal);
3285     if (Known.Zero.isOne())
3286       return replaceInstUsesWith(SI, FalseVal);
3287   }
3288 
3289   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3290     return BitCastSel;
3291 
3292   // Simplify selects that test the returned flag of cmpxchg instructions.
3293   if (Value *V = foldSelectCmpXchg(SI))
3294     return replaceInstUsesWith(SI, V);
3295 
3296   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3297     return Select;
3298 
3299   if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3300     return Funnel;
3301 
3302   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3303     return Copysign;
3304 
3305   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3306     return replaceInstUsesWith(SI, PN);
3307 
3308   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3309     return replaceInstUsesWith(SI, Fr);
3310 
3311   // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3312   // Load inst is intentionally not checked for hasOneUse()
3313   if (match(FalseVal, m_Zero()) &&
3314       match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3315                                   m_CombineOr(m_Undef(), m_Zero())))) {
3316     auto *MaskedLoad = cast<IntrinsicInst>(TrueVal);
3317     if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
3318       MaskedLoad->setArgOperand(3, FalseVal /* Zero */);
3319     return replaceInstUsesWith(SI, MaskedLoad);
3320   }
3321 
3322   Value *Mask;
3323   if (match(TrueVal, m_Zero()) &&
3324       match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3325                                    m_CombineOr(m_Undef(), m_Zero()))) &&
3326       (CondVal->getType() == Mask->getType())) {
3327     // We can remove the select by ensuring the load zeros all lanes the
3328     // select would have.  We determine this by proving there is no overlap
3329     // between the load and select masks.
3330     // (i.e (load_mask & select_mask) == 0 == no overlap)
3331     bool CanMergeSelectIntoLoad = false;
3332     if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3333       CanMergeSelectIntoLoad = match(V, m_Zero());
3334 
3335     if (CanMergeSelectIntoLoad) {
3336       auto *MaskedLoad = cast<IntrinsicInst>(FalseVal);
3337       if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
3338         MaskedLoad->setArgOperand(3, TrueVal /* Zero */);
3339       return replaceInstUsesWith(SI, MaskedLoad);
3340     }
3341   }
3342 
3343   return nullptr;
3344 }
3345