1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/OverflowInstAnalysis.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/Constant.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DerivedTypes.h" 27 #include "llvm/IR/IRBuilder.h" 28 #include "llvm/IR/InstrTypes.h" 29 #include "llvm/IR/Instruction.h" 30 #include "llvm/IR/Instructions.h" 31 #include "llvm/IR/IntrinsicInst.h" 32 #include "llvm/IR/Intrinsics.h" 33 #include "llvm/IR/Operator.h" 34 #include "llvm/IR/PatternMatch.h" 35 #include "llvm/IR/Type.h" 36 #include "llvm/IR/User.h" 37 #include "llvm/IR/Value.h" 38 #include "llvm/Support/Casting.h" 39 #include "llvm/Support/ErrorHandling.h" 40 #include "llvm/Support/KnownBits.h" 41 #include "llvm/Transforms/InstCombine/InstCombiner.h" 42 #include <cassert> 43 #include <utility> 44 45 #define DEBUG_TYPE "instcombine" 46 #include "llvm/Transforms/Utils/InstructionWorklist.h" 47 48 using namespace llvm; 49 using namespace PatternMatch; 50 51 52 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 53 SelectPatternFlavor SPF, Value *A, Value *B) { 54 CmpInst::Predicate Pred = getMinMaxPred(SPF); 55 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 56 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 57 } 58 59 /// Replace a select operand based on an equality comparison with the identity 60 /// constant of a binop. 61 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 62 const TargetLibraryInfo &TLI, 63 InstCombinerImpl &IC) { 64 // The select condition must be an equality compare with a constant operand. 65 Value *X; 66 Constant *C; 67 CmpInst::Predicate Pred; 68 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 69 return nullptr; 70 71 bool IsEq; 72 if (ICmpInst::isEquality(Pred)) 73 IsEq = Pred == ICmpInst::ICMP_EQ; 74 else if (Pred == FCmpInst::FCMP_OEQ) 75 IsEq = true; 76 else if (Pred == FCmpInst::FCMP_UNE) 77 IsEq = false; 78 else 79 return nullptr; 80 81 // A select operand must be a binop. 82 BinaryOperator *BO; 83 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 84 return nullptr; 85 86 // The compare constant must be the identity constant for that binop. 87 // If this a floating-point compare with 0.0, any zero constant will do. 88 Type *Ty = BO->getType(); 89 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 90 if (IdC != C) { 91 if (!IdC || !CmpInst::isFPPredicate(Pred)) 92 return nullptr; 93 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 94 return nullptr; 95 } 96 97 // Last, match the compare variable operand with a binop operand. 98 Value *Y; 99 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 100 return nullptr; 101 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 102 return nullptr; 103 104 // +0.0 compares equal to -0.0, and so it does not behave as required for this 105 // transform. Bail out if we can not exclude that possibility. 106 if (isa<FPMathOperator>(BO)) 107 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 108 return nullptr; 109 110 // BO = binop Y, X 111 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 112 // => 113 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 114 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 115 } 116 117 /// This folds: 118 /// select (icmp eq (and X, C1)), TC, FC 119 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 120 /// To something like: 121 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 122 /// Or: 123 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 124 /// With some variations depending if FC is larger than TC, or the shift 125 /// isn't needed, or the bit widths don't match. 126 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 127 InstCombiner::BuilderTy &Builder) { 128 const APInt *SelTC, *SelFC; 129 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 130 !match(Sel.getFalseValue(), m_APInt(SelFC))) 131 return nullptr; 132 133 // If this is a vector select, we need a vector compare. 134 Type *SelType = Sel.getType(); 135 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 136 return nullptr; 137 138 Value *V; 139 APInt AndMask; 140 bool CreateAnd = false; 141 ICmpInst::Predicate Pred = Cmp->getPredicate(); 142 if (ICmpInst::isEquality(Pred)) { 143 if (!match(Cmp->getOperand(1), m_Zero())) 144 return nullptr; 145 146 V = Cmp->getOperand(0); 147 const APInt *AndRHS; 148 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 149 return nullptr; 150 151 AndMask = *AndRHS; 152 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 153 Pred, V, AndMask)) { 154 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 155 if (!AndMask.isPowerOf2()) 156 return nullptr; 157 158 CreateAnd = true; 159 } else { 160 return nullptr; 161 } 162 163 // In general, when both constants are non-zero, we would need an offset to 164 // replace the select. This would require more instructions than we started 165 // with. But there's one special-case that we handle here because it can 166 // simplify/reduce the instructions. 167 APInt TC = *SelTC; 168 APInt FC = *SelFC; 169 if (!TC.isZero() && !FC.isZero()) { 170 // If the select constants differ by exactly one bit and that's the same 171 // bit that is masked and checked by the select condition, the select can 172 // be replaced by bitwise logic to set/clear one bit of the constant result. 173 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 174 return nullptr; 175 if (CreateAnd) { 176 // If we have to create an 'and', then we must kill the cmp to not 177 // increase the instruction count. 178 if (!Cmp->hasOneUse()) 179 return nullptr; 180 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 181 } 182 bool ExtraBitInTC = TC.ugt(FC); 183 if (Pred == ICmpInst::ICMP_EQ) { 184 // If the masked bit in V is clear, clear or set the bit in the result: 185 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 186 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 187 Constant *C = ConstantInt::get(SelType, TC); 188 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 189 } 190 if (Pred == ICmpInst::ICMP_NE) { 191 // If the masked bit in V is set, set or clear the bit in the result: 192 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 193 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 194 Constant *C = ConstantInt::get(SelType, FC); 195 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 196 } 197 llvm_unreachable("Only expecting equality predicates"); 198 } 199 200 // Make sure one of the select arms is a power-of-2. 201 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 202 return nullptr; 203 204 // Determine which shift is needed to transform result of the 'and' into the 205 // desired result. 206 const APInt &ValC = !TC.isZero() ? TC : FC; 207 unsigned ValZeros = ValC.logBase2(); 208 unsigned AndZeros = AndMask.logBase2(); 209 210 // Insert the 'and' instruction on the input to the truncate. 211 if (CreateAnd) 212 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 213 214 // If types don't match, we can still convert the select by introducing a zext 215 // or a trunc of the 'and'. 216 if (ValZeros > AndZeros) { 217 V = Builder.CreateZExtOrTrunc(V, SelType); 218 V = Builder.CreateShl(V, ValZeros - AndZeros); 219 } else if (ValZeros < AndZeros) { 220 V = Builder.CreateLShr(V, AndZeros - ValZeros); 221 V = Builder.CreateZExtOrTrunc(V, SelType); 222 } else { 223 V = Builder.CreateZExtOrTrunc(V, SelType); 224 } 225 226 // Okay, now we know that everything is set up, we just don't know whether we 227 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 228 bool ShouldNotVal = !TC.isZero(); 229 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 230 if (ShouldNotVal) 231 V = Builder.CreateXor(V, ValC); 232 233 return V; 234 } 235 236 /// We want to turn code that looks like this: 237 /// %C = or %A, %B 238 /// %D = select %cond, %C, %A 239 /// into: 240 /// %C = select %cond, %B, 0 241 /// %D = or %A, %C 242 /// 243 /// Assuming that the specified instruction is an operand to the select, return 244 /// a bitmask indicating which operands of this instruction are foldable if they 245 /// equal the other incoming value of the select. 246 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 247 switch (I->getOpcode()) { 248 case Instruction::Add: 249 case Instruction::FAdd: 250 case Instruction::Mul: 251 case Instruction::FMul: 252 case Instruction::And: 253 case Instruction::Or: 254 case Instruction::Xor: 255 return 3; // Can fold through either operand. 256 case Instruction::Sub: // Can only fold on the amount subtracted. 257 case Instruction::FSub: 258 case Instruction::FDiv: // Can only fold on the divisor amount. 259 case Instruction::Shl: // Can only fold on the shift amount. 260 case Instruction::LShr: 261 case Instruction::AShr: 262 return 1; 263 default: 264 return 0; // Cannot fold 265 } 266 } 267 268 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 269 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 270 Instruction *FI) { 271 // Don't break up min/max patterns. The hasOneUse checks below prevent that 272 // for most cases, but vector min/max with bitcasts can be transformed. If the 273 // one-use restrictions are eased for other patterns, we still don't want to 274 // obfuscate min/max. 275 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 276 match(&SI, m_SMax(m_Value(), m_Value())) || 277 match(&SI, m_UMin(m_Value(), m_Value())) || 278 match(&SI, m_UMax(m_Value(), m_Value())))) 279 return nullptr; 280 281 // If this is a cast from the same type, merge. 282 Value *Cond = SI.getCondition(); 283 Type *CondTy = Cond->getType(); 284 if (TI->getNumOperands() == 1 && TI->isCast()) { 285 Type *FIOpndTy = FI->getOperand(0)->getType(); 286 if (TI->getOperand(0)->getType() != FIOpndTy) 287 return nullptr; 288 289 // The select condition may be a vector. We may only change the operand 290 // type if the vector width remains the same (and matches the condition). 291 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 292 if (!FIOpndTy->isVectorTy() || 293 CondVTy->getElementCount() != 294 cast<VectorType>(FIOpndTy)->getElementCount()) 295 return nullptr; 296 297 // TODO: If the backend knew how to deal with casts better, we could 298 // remove this limitation. For now, there's too much potential to create 299 // worse codegen by promoting the select ahead of size-altering casts 300 // (PR28160). 301 // 302 // Note that ValueTracking's matchSelectPattern() looks through casts 303 // without checking 'hasOneUse' when it matches min/max patterns, so this 304 // transform may end up happening anyway. 305 if (TI->getOpcode() != Instruction::BitCast && 306 (!TI->hasOneUse() || !FI->hasOneUse())) 307 return nullptr; 308 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 309 // TODO: The one-use restrictions for a scalar select could be eased if 310 // the fold of a select in visitLoadInst() was enhanced to match a pattern 311 // that includes a cast. 312 return nullptr; 313 } 314 315 // Fold this by inserting a select from the input values. 316 Value *NewSI = 317 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 318 SI.getName() + ".v", &SI); 319 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 320 TI->getType()); 321 } 322 323 // Cond ? -X : -Y --> -(Cond ? X : Y) 324 Value *X, *Y; 325 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 326 (TI->hasOneUse() || FI->hasOneUse())) { 327 // Intersect FMF from the fneg instructions and union those with the select. 328 FastMathFlags FMF = TI->getFastMathFlags(); 329 FMF &= FI->getFastMathFlags(); 330 FMF |= SI.getFastMathFlags(); 331 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 332 if (auto *NewSelI = dyn_cast<Instruction>(NewSel)) 333 NewSelI->setFastMathFlags(FMF); 334 Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel); 335 NewFNeg->setFastMathFlags(FMF); 336 return NewFNeg; 337 } 338 339 // Min/max intrinsic with a common operand can have the common operand pulled 340 // after the select. This is the same transform as below for binops, but 341 // specialized for intrinsic matching and without the restrictive uses clause. 342 auto *TII = dyn_cast<IntrinsicInst>(TI); 343 auto *FII = dyn_cast<IntrinsicInst>(FI); 344 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() && 345 (TII->hasOneUse() || FII->hasOneUse())) { 346 Value *T0, *T1, *F0, *F1; 347 if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) && 348 match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) { 349 if (T0 == F0) { 350 Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI); 351 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 352 } 353 if (T0 == F1) { 354 Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI); 355 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 356 } 357 if (T1 == F0) { 358 Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI); 359 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 360 } 361 if (T1 == F1) { 362 Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI); 363 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 364 } 365 } 366 } 367 368 // Only handle binary operators (including two-operand getelementptr) with 369 // one-use here. As with the cast case above, it may be possible to relax the 370 // one-use constraint, but that needs be examined carefully since it may not 371 // reduce the total number of instructions. 372 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 373 !TI->isSameOperationAs(FI) || 374 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 375 !TI->hasOneUse() || !FI->hasOneUse()) 376 return nullptr; 377 378 // Figure out if the operations have any operands in common. 379 Value *MatchOp, *OtherOpT, *OtherOpF; 380 bool MatchIsOpZero; 381 if (TI->getOperand(0) == FI->getOperand(0)) { 382 MatchOp = TI->getOperand(0); 383 OtherOpT = TI->getOperand(1); 384 OtherOpF = FI->getOperand(1); 385 MatchIsOpZero = true; 386 } else if (TI->getOperand(1) == FI->getOperand(1)) { 387 MatchOp = TI->getOperand(1); 388 OtherOpT = TI->getOperand(0); 389 OtherOpF = FI->getOperand(0); 390 MatchIsOpZero = false; 391 } else if (!TI->isCommutative()) { 392 return nullptr; 393 } else if (TI->getOperand(0) == FI->getOperand(1)) { 394 MatchOp = TI->getOperand(0); 395 OtherOpT = TI->getOperand(1); 396 OtherOpF = FI->getOperand(0); 397 MatchIsOpZero = true; 398 } else if (TI->getOperand(1) == FI->getOperand(0)) { 399 MatchOp = TI->getOperand(1); 400 OtherOpT = TI->getOperand(0); 401 OtherOpF = FI->getOperand(1); 402 MatchIsOpZero = true; 403 } else { 404 return nullptr; 405 } 406 407 // If the select condition is a vector, the operands of the original select's 408 // operands also must be vectors. This may not be the case for getelementptr 409 // for example. 410 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 411 !OtherOpF->getType()->isVectorTy())) 412 return nullptr; 413 414 // If we reach here, they do have operations in common. 415 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 416 SI.getName() + ".v", &SI); 417 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 418 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 419 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 420 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 421 NewBO->copyIRFlags(TI); 422 NewBO->andIRFlags(FI); 423 return NewBO; 424 } 425 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 426 auto *FGEP = cast<GetElementPtrInst>(FI); 427 Type *ElementType = TGEP->getResultElementType(); 428 return TGEP->isInBounds() && FGEP->isInBounds() 429 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 430 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 431 } 432 llvm_unreachable("Expected BinaryOperator or GEP"); 433 return nullptr; 434 } 435 436 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 437 if (!C1I.isZero() && !C2I.isZero()) // One side must be zero. 438 return false; 439 return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes(); 440 } 441 442 /// Try to fold the select into one of the operands to allow further 443 /// optimization. 444 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 445 Value *FalseVal) { 446 // See the comment above GetSelectFoldableOperands for a description of the 447 // transformation we are doing here. 448 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 449 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 450 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 451 unsigned OpToFold = 0; 452 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 453 OpToFold = 1; 454 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 455 OpToFold = 2; 456 } 457 458 if (OpToFold) { 459 Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(), 460 TVI->getType(), true); 461 Value *OOp = TVI->getOperand(2-OpToFold); 462 // Avoid creating select between 2 constants unless it's selecting 463 // between 0, 1 and -1. 464 const APInt *OOpC; 465 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 466 if (!isa<Constant>(OOp) || 467 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 468 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 469 NewSel->takeName(TVI); 470 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 471 FalseVal, NewSel); 472 BO->copyIRFlags(TVI); 473 return BO; 474 } 475 } 476 } 477 } 478 } 479 480 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 481 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 482 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 483 unsigned OpToFold = 0; 484 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 485 OpToFold = 1; 486 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 487 OpToFold = 2; 488 } 489 490 if (OpToFold) { 491 Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(), 492 FVI->getType(), true); 493 Value *OOp = FVI->getOperand(2-OpToFold); 494 // Avoid creating select between 2 constants unless it's selecting 495 // between 0, 1 and -1. 496 const APInt *OOpC; 497 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 498 if (!isa<Constant>(OOp) || 499 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 500 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 501 NewSel->takeName(FVI); 502 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 503 TrueVal, NewSel); 504 BO->copyIRFlags(FVI); 505 return BO; 506 } 507 } 508 } 509 } 510 } 511 512 return nullptr; 513 } 514 515 /// We want to turn: 516 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 517 /// into: 518 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 519 /// Note: 520 /// Z may be 0 if lshr is missing. 521 /// Worst-case scenario is that we will replace 5 instructions with 5 different 522 /// instructions, but we got rid of select. 523 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 524 Value *TVal, Value *FVal, 525 InstCombiner::BuilderTy &Builder) { 526 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 527 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 528 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 529 return nullptr; 530 531 // The TrueVal has general form of: and %B, 1 532 Value *B; 533 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 534 return nullptr; 535 536 // Where %B may be optionally shifted: lshr %X, %Z. 537 Value *X, *Z; 538 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 539 if (!HasShift) 540 X = B; 541 542 Value *Y; 543 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 544 return nullptr; 545 546 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 547 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 548 Constant *One = ConstantInt::get(SelType, 1); 549 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 550 Value *FullMask = Builder.CreateOr(Y, MaskB); 551 Value *MaskedX = Builder.CreateAnd(X, FullMask); 552 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 553 return new ZExtInst(ICmpNeZero, SelType); 554 } 555 556 /// We want to turn: 557 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 558 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 559 /// into: 560 /// ashr (X, Y) 561 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 562 Value *FalseVal, 563 InstCombiner::BuilderTy &Builder) { 564 ICmpInst::Predicate Pred = IC->getPredicate(); 565 Value *CmpLHS = IC->getOperand(0); 566 Value *CmpRHS = IC->getOperand(1); 567 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 568 return nullptr; 569 570 Value *X, *Y; 571 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 572 if ((Pred != ICmpInst::ICMP_SGT || 573 !match(CmpRHS, 574 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 575 (Pred != ICmpInst::ICMP_SLT || 576 !match(CmpRHS, 577 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 578 return nullptr; 579 580 // Canonicalize so that ashr is in FalseVal. 581 if (Pred == ICmpInst::ICMP_SLT) 582 std::swap(TrueVal, FalseVal); 583 584 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 585 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 586 match(CmpLHS, m_Specific(X))) { 587 const auto *Ashr = cast<Instruction>(FalseVal); 588 // if lshr is not exact and ashr is, this new ashr must not be exact. 589 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 590 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 591 } 592 593 return nullptr; 594 } 595 596 /// We want to turn: 597 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 598 /// into: 599 /// (or (shl (and X, C1), C3), Y) 600 /// iff: 601 /// C1 and C2 are both powers of 2 602 /// where: 603 /// C3 = Log(C2) - Log(C1) 604 /// 605 /// This transform handles cases where: 606 /// 1. The icmp predicate is inverted 607 /// 2. The select operands are reversed 608 /// 3. The magnitude of C2 and C1 are flipped 609 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 610 Value *FalseVal, 611 InstCombiner::BuilderTy &Builder) { 612 // Only handle integer compares. Also, if this is a vector select, we need a 613 // vector compare. 614 if (!TrueVal->getType()->isIntOrIntVectorTy() || 615 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 616 return nullptr; 617 618 Value *CmpLHS = IC->getOperand(0); 619 Value *CmpRHS = IC->getOperand(1); 620 621 Value *V; 622 unsigned C1Log; 623 bool IsEqualZero; 624 bool NeedAnd = false; 625 if (IC->isEquality()) { 626 if (!match(CmpRHS, m_Zero())) 627 return nullptr; 628 629 const APInt *C1; 630 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 631 return nullptr; 632 633 V = CmpLHS; 634 C1Log = C1->logBase2(); 635 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 636 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 637 IC->getPredicate() == ICmpInst::ICMP_SGT) { 638 // We also need to recognize (icmp slt (trunc (X)), 0) and 639 // (icmp sgt (trunc (X)), -1). 640 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 641 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 642 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 643 return nullptr; 644 645 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 646 return nullptr; 647 648 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 649 NeedAnd = true; 650 } else { 651 return nullptr; 652 } 653 654 const APInt *C2; 655 bool OrOnTrueVal = false; 656 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 657 if (!OrOnFalseVal) 658 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 659 660 if (!OrOnFalseVal && !OrOnTrueVal) 661 return nullptr; 662 663 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 664 665 unsigned C2Log = C2->logBase2(); 666 667 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 668 bool NeedShift = C1Log != C2Log; 669 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 670 V->getType()->getScalarSizeInBits(); 671 672 // Make sure we don't create more instructions than we save. 673 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 674 if ((NeedShift + NeedXor + NeedZExtTrunc) > 675 (IC->hasOneUse() + Or->hasOneUse())) 676 return nullptr; 677 678 if (NeedAnd) { 679 // Insert the AND instruction on the input to the truncate. 680 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 681 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 682 } 683 684 if (C2Log > C1Log) { 685 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 686 V = Builder.CreateShl(V, C2Log - C1Log); 687 } else if (C1Log > C2Log) { 688 V = Builder.CreateLShr(V, C1Log - C2Log); 689 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 690 } else 691 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 692 693 if (NeedXor) 694 V = Builder.CreateXor(V, *C2); 695 696 return Builder.CreateOr(V, Y); 697 } 698 699 /// Canonicalize a set or clear of a masked set of constant bits to 700 /// select-of-constants form. 701 static Instruction *foldSetClearBits(SelectInst &Sel, 702 InstCombiner::BuilderTy &Builder) { 703 Value *Cond = Sel.getCondition(); 704 Value *T = Sel.getTrueValue(); 705 Value *F = Sel.getFalseValue(); 706 Type *Ty = Sel.getType(); 707 Value *X; 708 const APInt *NotC, *C; 709 710 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 711 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 712 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 713 Constant *Zero = ConstantInt::getNullValue(Ty); 714 Constant *OrC = ConstantInt::get(Ty, *C); 715 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 716 return BinaryOperator::CreateOr(T, NewSel); 717 } 718 719 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 720 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 721 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 722 Constant *Zero = ConstantInt::getNullValue(Ty); 723 Constant *OrC = ConstantInt::get(Ty, *C); 724 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 725 return BinaryOperator::CreateOr(F, NewSel); 726 } 727 728 return nullptr; 729 } 730 731 // select (x == 0), 0, x * y --> freeze(y) * x 732 // select (y == 0), 0, x * y --> freeze(x) * y 733 // select (x == 0), undef, x * y --> freeze(y) * x 734 // select (x == undef), 0, x * y --> freeze(y) * x 735 // Usage of mul instead of 0 will make the result more poisonous, 736 // so the operand that was not checked in the condition should be frozen. 737 // The latter folding is applied only when a constant compared with x is 738 // is a vector consisting of 0 and undefs. If a constant compared with x 739 // is a scalar undefined value or undefined vector then an expression 740 // should be already folded into a constant. 741 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) { 742 auto *CondVal = SI.getCondition(); 743 auto *TrueVal = SI.getTrueValue(); 744 auto *FalseVal = SI.getFalseValue(); 745 Value *X, *Y; 746 ICmpInst::Predicate Predicate; 747 748 // Assuming that constant compared with zero is not undef (but it may be 749 // a vector with some undef elements). Otherwise (when a constant is undef) 750 // the select expression should be already simplified. 751 if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) || 752 !ICmpInst::isEquality(Predicate)) 753 return nullptr; 754 755 if (Predicate == ICmpInst::ICMP_NE) 756 std::swap(TrueVal, FalseVal); 757 758 // Check that TrueVal is a constant instead of matching it with m_Zero() 759 // to handle the case when it is a scalar undef value or a vector containing 760 // non-zero elements that are masked by undef elements in the compare 761 // constant. 762 auto *TrueValC = dyn_cast<Constant>(TrueVal); 763 if (TrueValC == nullptr || 764 !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) || 765 !isa<Instruction>(FalseVal)) 766 return nullptr; 767 768 auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1)); 769 auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC); 770 // If X is compared with 0 then TrueVal could be either zero or undef. 771 // m_Zero match vectors containing some undef elements, but for scalars 772 // m_Undef should be used explicitly. 773 if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef())) 774 return nullptr; 775 776 auto *FalseValI = cast<Instruction>(FalseVal); 777 auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"), 778 *FalseValI); 779 IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY); 780 return IC.replaceInstUsesWith(SI, FalseValI); 781 } 782 783 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 784 /// There are 8 commuted/swapped variants of this pattern. 785 /// TODO: Also support a - UMIN(a,b) patterns. 786 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 787 const Value *TrueVal, 788 const Value *FalseVal, 789 InstCombiner::BuilderTy &Builder) { 790 ICmpInst::Predicate Pred = ICI->getPredicate(); 791 if (!ICmpInst::isUnsigned(Pred)) 792 return nullptr; 793 794 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 795 if (match(TrueVal, m_Zero())) { 796 Pred = ICmpInst::getInversePredicate(Pred); 797 std::swap(TrueVal, FalseVal); 798 } 799 if (!match(FalseVal, m_Zero())) 800 return nullptr; 801 802 Value *A = ICI->getOperand(0); 803 Value *B = ICI->getOperand(1); 804 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 805 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 806 std::swap(A, B); 807 Pred = ICmpInst::getSwappedPredicate(Pred); 808 } 809 810 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 811 "Unexpected isUnsigned predicate!"); 812 813 // Ensure the sub is of the form: 814 // (a > b) ? a - b : 0 -> usub.sat(a, b) 815 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 816 // Checking for both a-b and a+(-b) as a constant. 817 bool IsNegative = false; 818 const APInt *C; 819 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 820 (match(A, m_APInt(C)) && 821 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 822 IsNegative = true; 823 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 824 !(match(B, m_APInt(C)) && 825 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 826 return nullptr; 827 828 // If we are adding a negate and the sub and icmp are used anywhere else, we 829 // would end up with more instructions. 830 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 831 return nullptr; 832 833 // (a > b) ? a - b : 0 -> usub.sat(a, b) 834 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 835 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 836 if (IsNegative) 837 Result = Builder.CreateNeg(Result); 838 return Result; 839 } 840 841 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 842 InstCombiner::BuilderTy &Builder) { 843 if (!Cmp->hasOneUse()) 844 return nullptr; 845 846 // Match unsigned saturated add with constant. 847 Value *Cmp0 = Cmp->getOperand(0); 848 Value *Cmp1 = Cmp->getOperand(1); 849 ICmpInst::Predicate Pred = Cmp->getPredicate(); 850 Value *X; 851 const APInt *C, *CmpC; 852 if (Pred == ICmpInst::ICMP_ULT && 853 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 854 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 855 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 856 return Builder.CreateBinaryIntrinsic( 857 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 858 } 859 860 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 861 // There are 8 commuted variants. 862 // Canonicalize -1 (saturated result) to true value of the select. 863 if (match(FVal, m_AllOnes())) { 864 std::swap(TVal, FVal); 865 Pred = CmpInst::getInversePredicate(Pred); 866 } 867 if (!match(TVal, m_AllOnes())) 868 return nullptr; 869 870 // Canonicalize predicate to less-than or less-or-equal-than. 871 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 872 std::swap(Cmp0, Cmp1); 873 Pred = CmpInst::getSwappedPredicate(Pred); 874 } 875 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 876 return nullptr; 877 878 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 879 // Strictness of the comparison is irrelevant. 880 Value *Y; 881 if (match(Cmp0, m_Not(m_Value(X))) && 882 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 883 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 884 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 885 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 886 } 887 // The 'not' op may be included in the sum but not the compare. 888 // Strictness of the comparison is irrelevant. 889 X = Cmp0; 890 Y = Cmp1; 891 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 892 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 893 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 894 BinaryOperator *BO = cast<BinaryOperator>(FVal); 895 return Builder.CreateBinaryIntrinsic( 896 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 897 } 898 // The overflow may be detected via the add wrapping round. 899 // This is only valid for strict comparison! 900 if (Pred == ICmpInst::ICMP_ULT && 901 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 902 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 903 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 904 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 905 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 906 } 907 908 return nullptr; 909 } 910 911 /// Fold the following code sequence: 912 /// \code 913 /// int a = ctlz(x & -x); 914 // x ? 31 - a : a; 915 /// \code 916 /// 917 /// into: 918 /// cttz(x) 919 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 920 Value *FalseVal, 921 InstCombiner::BuilderTy &Builder) { 922 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 923 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 924 return nullptr; 925 926 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 927 std::swap(TrueVal, FalseVal); 928 929 if (!match(FalseVal, 930 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 931 return nullptr; 932 933 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 934 return nullptr; 935 936 Value *X = ICI->getOperand(0); 937 auto *II = cast<IntrinsicInst>(TrueVal); 938 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 939 return nullptr; 940 941 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 942 II->getType()); 943 return CallInst::Create(F, {X, II->getArgOperand(1)}); 944 } 945 946 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 947 /// call to cttz/ctlz with flag 'is_zero_poison' cleared. 948 /// 949 /// For example, we can fold the following code sequence: 950 /// \code 951 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 952 /// %1 = icmp ne i32 %x, 0 953 /// %2 = select i1 %1, i32 %0, i32 32 954 /// \code 955 /// 956 /// into: 957 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 958 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 959 InstCombiner::BuilderTy &Builder) { 960 ICmpInst::Predicate Pred = ICI->getPredicate(); 961 Value *CmpLHS = ICI->getOperand(0); 962 Value *CmpRHS = ICI->getOperand(1); 963 964 // Check if the condition value compares a value for equality against zero. 965 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 966 return nullptr; 967 968 Value *SelectArg = FalseVal; 969 Value *ValueOnZero = TrueVal; 970 if (Pred == ICmpInst::ICMP_NE) 971 std::swap(SelectArg, ValueOnZero); 972 973 // Skip zero extend/truncate. 974 Value *Count = nullptr; 975 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 976 !match(SelectArg, m_Trunc(m_Value(Count)))) 977 Count = SelectArg; 978 979 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 980 // input to the cttz/ctlz is used as LHS for the compare instruction. 981 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 982 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 983 return nullptr; 984 985 IntrinsicInst *II = cast<IntrinsicInst>(Count); 986 987 // Check if the value propagated on zero is a constant number equal to the 988 // sizeof in bits of 'Count'. 989 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 990 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 991 // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from 992 // true to false on this flag, so we can replace it for all users. 993 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 994 return SelectArg; 995 } 996 997 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 998 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 999 // not be used if the input is zero. Relax to 'zero is poison' for that case. 1000 if (II->hasOneUse() && SelectArg->hasOneUse() && 1001 !match(II->getArgOperand(1), m_One())) 1002 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 1003 1004 return nullptr; 1005 } 1006 1007 /// Return true if we find and adjust an icmp+select pattern where the compare 1008 /// is with a constant that can be incremented or decremented to match the 1009 /// minimum or maximum idiom. 1010 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 1011 ICmpInst::Predicate Pred = Cmp.getPredicate(); 1012 Value *CmpLHS = Cmp.getOperand(0); 1013 Value *CmpRHS = Cmp.getOperand(1); 1014 Value *TrueVal = Sel.getTrueValue(); 1015 Value *FalseVal = Sel.getFalseValue(); 1016 1017 // We may move or edit the compare, so make sure the select is the only user. 1018 const APInt *CmpC; 1019 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 1020 return false; 1021 1022 // These transforms only work for selects of integers or vector selects of 1023 // integer vectors. 1024 Type *SelTy = Sel.getType(); 1025 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 1026 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 1027 return false; 1028 1029 Constant *AdjustedRHS; 1030 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 1031 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 1032 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 1033 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 1034 else 1035 return false; 1036 1037 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 1038 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 1039 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 1040 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 1041 ; // Nothing to do here. Values match without any sign/zero extension. 1042 } 1043 // Types do not match. Instead of calculating this with mixed types, promote 1044 // all to the larger type. This enables scalar evolution to analyze this 1045 // expression. 1046 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 1047 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 1048 1049 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 1050 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 1051 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 1052 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 1053 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 1054 CmpLHS = TrueVal; 1055 AdjustedRHS = SextRHS; 1056 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 1057 SextRHS == TrueVal) { 1058 CmpLHS = FalseVal; 1059 AdjustedRHS = SextRHS; 1060 } else if (Cmp.isUnsigned()) { 1061 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 1062 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 1063 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 1064 // zext + signed compare cannot be changed: 1065 // 0xff <s 0x00, but 0x00ff >s 0x0000 1066 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 1067 CmpLHS = TrueVal; 1068 AdjustedRHS = ZextRHS; 1069 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 1070 ZextRHS == TrueVal) { 1071 CmpLHS = FalseVal; 1072 AdjustedRHS = ZextRHS; 1073 } else { 1074 return false; 1075 } 1076 } else { 1077 return false; 1078 } 1079 } else { 1080 return false; 1081 } 1082 1083 Pred = ICmpInst::getSwappedPredicate(Pred); 1084 CmpRHS = AdjustedRHS; 1085 std::swap(FalseVal, TrueVal); 1086 Cmp.setPredicate(Pred); 1087 Cmp.setOperand(0, CmpLHS); 1088 Cmp.setOperand(1, CmpRHS); 1089 Sel.setOperand(1, TrueVal); 1090 Sel.setOperand(2, FalseVal); 1091 Sel.swapProfMetadata(); 1092 1093 // Move the compare instruction right before the select instruction. Otherwise 1094 // the sext/zext value may be defined after the compare instruction uses it. 1095 Cmp.moveBefore(&Sel); 1096 1097 return true; 1098 } 1099 1100 /// If this is an integer min/max (icmp + select) with a constant operand, 1101 /// create the canonical icmp for the min/max operation and canonicalize the 1102 /// constant to the 'false' operand of the select: 1103 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 1104 /// Note: if C1 != C2, this will change the icmp constant to the existing 1105 /// constant operand of the select. 1106 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel, 1107 ICmpInst &Cmp, 1108 InstCombinerImpl &IC) { 1109 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1110 return nullptr; 1111 1112 // Canonicalize the compare predicate based on whether we have min or max. 1113 Value *LHS, *RHS; 1114 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1115 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1116 return nullptr; 1117 1118 // Is this already canonical? 1119 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1120 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1121 Cmp.getPredicate() == CanonicalPred) 1122 return nullptr; 1123 1124 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1125 // as this may cause an infinite combine loop. Let the sub be folded first. 1126 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1127 match(RHS, m_Sub(m_Value(), m_Zero()))) 1128 return nullptr; 1129 1130 // Create the canonical compare and plug it into the select. 1131 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1132 1133 // If the select operands did not change, we're done. 1134 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1135 return &Sel; 1136 1137 // If we are swapping the select operands, swap the metadata too. 1138 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1139 "Unexpected results from matchSelectPattern"); 1140 Sel.swapValues(); 1141 Sel.swapProfMetadata(); 1142 return &Sel; 1143 } 1144 1145 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 1146 InstCombinerImpl &IC) { 1147 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1148 return nullptr; 1149 1150 Value *LHS, *RHS; 1151 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1152 if (SPF != SelectPatternFlavor::SPF_ABS && 1153 SPF != SelectPatternFlavor::SPF_NABS) 1154 return nullptr; 1155 1156 // Note that NSW flag can only be propagated for normal, non-negated abs! 1157 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1158 match(RHS, m_NSWNeg(m_Specific(LHS))); 1159 Constant *IntMinIsPoisonC = 1160 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison); 1161 Instruction *Abs = 1162 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1163 1164 if (SPF == SelectPatternFlavor::SPF_NABS) 1165 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag! 1166 1167 return IC.replaceInstUsesWith(Sel, Abs); 1168 } 1169 1170 /// If we have a select with an equality comparison, then we know the value in 1171 /// one of the arms of the select. See if substituting this value into an arm 1172 /// and simplifying the result yields the same value as the other arm. 1173 /// 1174 /// To make this transform safe, we must drop poison-generating flags 1175 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1176 /// that poison from propagating. If the existing binop already had no 1177 /// poison-generating flags, then this transform can be done by instsimplify. 1178 /// 1179 /// Consider: 1180 /// %cmp = icmp eq i32 %x, 2147483647 1181 /// %add = add nsw i32 %x, 1 1182 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1183 /// 1184 /// We can't replace %sel with %add unless we strip away the flags. 1185 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1186 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1187 ICmpInst &Cmp) { 1188 // Value equivalence substitution requires an all-or-nothing replacement. 1189 // It does not make sense for a vector compare where each lane is chosen 1190 // independently. 1191 if (!Cmp.isEquality() || Cmp.getType()->isVectorTy()) 1192 return nullptr; 1193 1194 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1195 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1196 bool Swapped = false; 1197 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1198 std::swap(TrueVal, FalseVal); 1199 Swapped = true; 1200 } 1201 1202 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1203 // Make sure Y cannot be undef though, as we might pick different values for 1204 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1205 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1206 // replacement cycle. 1207 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1208 if (TrueVal != CmpLHS && 1209 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) { 1210 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1211 /* AllowRefinement */ true)) 1212 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1213 1214 // Even if TrueVal does not simplify, we can directly replace a use of 1215 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1216 // else and is safe to speculatively execute (we may end up executing it 1217 // with different operands, which should not cause side-effects or trigger 1218 // undefined behavior). Only do this if CmpRHS is a constant, as 1219 // profitability is not clear for other cases. 1220 // FIXME: The replacement could be performed recursively. 1221 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant())) 1222 if (auto *I = dyn_cast<Instruction>(TrueVal)) 1223 if (I->hasOneUse() && isSafeToSpeculativelyExecute(I)) 1224 for (Use &U : I->operands()) 1225 if (U == CmpLHS) { 1226 replaceUse(U, CmpRHS); 1227 return &Sel; 1228 } 1229 } 1230 if (TrueVal != CmpRHS && 1231 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1232 if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1233 /* AllowRefinement */ true)) 1234 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1235 1236 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1237 if (!FalseInst) 1238 return nullptr; 1239 1240 // InstSimplify already performed this fold if it was possible subject to 1241 // current poison-generating flags. Try the transform again with 1242 // poison-generating flags temporarily dropped. 1243 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1244 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1245 WasNUW = OBO->hasNoUnsignedWrap(); 1246 WasNSW = OBO->hasNoSignedWrap(); 1247 FalseInst->setHasNoUnsignedWrap(false); 1248 FalseInst->setHasNoSignedWrap(false); 1249 } 1250 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1251 WasExact = PEO->isExact(); 1252 FalseInst->setIsExact(false); 1253 } 1254 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1255 WasInBounds = GEP->isInBounds(); 1256 GEP->setIsInBounds(false); 1257 } 1258 1259 // Try each equivalence substitution possibility. 1260 // We have an 'EQ' comparison, so the select's false value will propagate. 1261 // Example: 1262 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1263 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1264 /* AllowRefinement */ false) == TrueVal || 1265 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1266 /* AllowRefinement */ false) == TrueVal) { 1267 return replaceInstUsesWith(Sel, FalseVal); 1268 } 1269 1270 // Restore poison-generating flags if the transform did not apply. 1271 if (WasNUW) 1272 FalseInst->setHasNoUnsignedWrap(); 1273 if (WasNSW) 1274 FalseInst->setHasNoSignedWrap(); 1275 if (WasExact) 1276 FalseInst->setIsExact(); 1277 if (WasInBounds) 1278 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1279 1280 return nullptr; 1281 } 1282 1283 // See if this is a pattern like: 1284 // %old_cmp1 = icmp slt i32 %x, C2 1285 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1286 // %old_x_offseted = add i32 %x, C1 1287 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1288 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1289 // This can be rewritten as more canonical pattern: 1290 // %new_cmp1 = icmp slt i32 %x, -C1 1291 // %new_cmp2 = icmp sge i32 %x, C0-C1 1292 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1293 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1294 // Iff -C1 s<= C2 s<= C0-C1 1295 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1296 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1297 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1298 InstCombiner::BuilderTy &Builder) { 1299 Value *X = Sel0.getTrueValue(); 1300 Value *Sel1 = Sel0.getFalseValue(); 1301 1302 // First match the condition of the outermost select. 1303 // Said condition must be one-use. 1304 if (!Cmp0.hasOneUse()) 1305 return nullptr; 1306 ICmpInst::Predicate Pred0 = Cmp0.getPredicate(); 1307 Value *Cmp00 = Cmp0.getOperand(0); 1308 Constant *C0; 1309 if (!match(Cmp0.getOperand(1), 1310 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1311 return nullptr; 1312 1313 if (!isa<SelectInst>(Sel1)) { 1314 Pred0 = ICmpInst::getInversePredicate(Pred0); 1315 std::swap(X, Sel1); 1316 } 1317 1318 // Canonicalize Cmp0 into ult or uge. 1319 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1320 switch (Pred0) { 1321 case ICmpInst::Predicate::ICMP_ULT: 1322 case ICmpInst::Predicate::ICMP_UGE: 1323 // Although icmp ult %x, 0 is an unusual thing to try and should generally 1324 // have been simplified, it does not verify with undef inputs so ensure we 1325 // are not in a strange state. 1326 if (!match(C0, m_SpecificInt_ICMP( 1327 ICmpInst::Predicate::ICMP_NE, 1328 APInt::getZero(C0->getType()->getScalarSizeInBits())))) 1329 return nullptr; 1330 break; // Great! 1331 case ICmpInst::Predicate::ICMP_ULE: 1332 case ICmpInst::Predicate::ICMP_UGT: 1333 // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment 1334 // C0, which again means it must not have any all-ones elements. 1335 if (!match(C0, 1336 m_SpecificInt_ICMP( 1337 ICmpInst::Predicate::ICMP_NE, 1338 APInt::getAllOnes(C0->getType()->getScalarSizeInBits())))) 1339 return nullptr; // Can't do, have all-ones element[s]. 1340 C0 = InstCombiner::AddOne(C0); 1341 break; 1342 default: 1343 return nullptr; // Unknown predicate. 1344 } 1345 1346 // Now that we've canonicalized the ICmp, we know the X we expect; 1347 // the select in other hand should be one-use. 1348 if (!Sel1->hasOneUse()) 1349 return nullptr; 1350 1351 // If the types do not match, look through any truncs to the underlying 1352 // instruction. 1353 if (Cmp00->getType() != X->getType() && X->hasOneUse()) 1354 match(X, m_TruncOrSelf(m_Value(X))); 1355 1356 // We now can finish matching the condition of the outermost select: 1357 // it should either be the X itself, or an addition of some constant to X. 1358 Constant *C1; 1359 if (Cmp00 == X) 1360 C1 = ConstantInt::getNullValue(X->getType()); 1361 else if (!match(Cmp00, 1362 m_Add(m_Specific(X), 1363 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1364 return nullptr; 1365 1366 Value *Cmp1; 1367 ICmpInst::Predicate Pred1; 1368 Constant *C2; 1369 Value *ReplacementLow, *ReplacementHigh; 1370 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1371 m_Value(ReplacementHigh))) || 1372 !match(Cmp1, 1373 m_ICmp(Pred1, m_Specific(X), 1374 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1375 return nullptr; 1376 1377 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1378 return nullptr; // Not enough one-use instructions for the fold. 1379 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1380 // two comparisons we'll need to build. 1381 1382 // Canonicalize Cmp1 into the form we expect. 1383 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1384 switch (Pred1) { 1385 case ICmpInst::Predicate::ICMP_SLT: 1386 break; 1387 case ICmpInst::Predicate::ICMP_SLE: 1388 // We'd have to increment C2 by one, and for that it must not have signed 1389 // max element, but then it would have been canonicalized to 'slt' before 1390 // we get here. So we can't do anything useful with 'sle'. 1391 return nullptr; 1392 case ICmpInst::Predicate::ICMP_SGT: 1393 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1394 // which again means it must not have any signed max elements. 1395 if (!match(C2, 1396 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1397 APInt::getSignedMaxValue( 1398 C2->getType()->getScalarSizeInBits())))) 1399 return nullptr; // Can't do, have signed max element[s]. 1400 C2 = InstCombiner::AddOne(C2); 1401 LLVM_FALLTHROUGH; 1402 case ICmpInst::Predicate::ICMP_SGE: 1403 // Also non-canonical, but here we don't need to change C2, 1404 // so we don't have any restrictions on C2, so we can just handle it. 1405 std::swap(ReplacementLow, ReplacementHigh); 1406 break; 1407 default: 1408 return nullptr; // Unknown predicate. 1409 } 1410 1411 // The thresholds of this clamp-like pattern. 1412 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1413 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1414 if (Pred0 == ICmpInst::Predicate::ICMP_UGE) 1415 std::swap(ThresholdLowIncl, ThresholdHighExcl); 1416 1417 // The fold has a precondition 1: C2 s>= ThresholdLow 1418 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1419 ThresholdLowIncl); 1420 if (!match(Precond1, m_One())) 1421 return nullptr; 1422 // The fold has a precondition 2: C2 s<= ThresholdHigh 1423 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1424 ThresholdHighExcl); 1425 if (!match(Precond2, m_One())) 1426 return nullptr; 1427 1428 // If we are matching from a truncated input, we need to sext the 1429 // ReplacementLow and ReplacementHigh values. Only do the transform if they 1430 // are free to extend due to being constants. 1431 if (X->getType() != Sel0.getType()) { 1432 Constant *LowC, *HighC; 1433 if (!match(ReplacementLow, m_ImmConstant(LowC)) || 1434 !match(ReplacementHigh, m_ImmConstant(HighC))) 1435 return nullptr; 1436 ReplacementLow = ConstantExpr::getSExt(LowC, X->getType()); 1437 ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType()); 1438 } 1439 1440 // All good, finally emit the new pattern. 1441 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1442 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1443 Value *MaybeReplacedLow = 1444 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1445 1446 // Create the final select. If we looked through a truncate above, we will 1447 // need to retruncate the result. 1448 Value *MaybeReplacedHigh = Builder.CreateSelect( 1449 ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1450 return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType()); 1451 } 1452 1453 // If we have 1454 // %cmp = icmp [canonical predicate] i32 %x, C0 1455 // %r = select i1 %cmp, i32 %y, i32 C1 1456 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1457 // will have if we flip the strictness of the predicate (i.e. without changing 1458 // the result) is identical to the C1 in select. If it matches we can change 1459 // original comparison to one with swapped predicate, reuse the constant, 1460 // and swap the hands of select. 1461 static Instruction * 1462 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1463 InstCombinerImpl &IC) { 1464 ICmpInst::Predicate Pred; 1465 Value *X; 1466 Constant *C0; 1467 if (!match(&Cmp, m_OneUse(m_ICmp( 1468 Pred, m_Value(X), 1469 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1470 return nullptr; 1471 1472 // If comparison predicate is non-relational, we won't be able to do anything. 1473 if (ICmpInst::isEquality(Pred)) 1474 return nullptr; 1475 1476 // If comparison predicate is non-canonical, then we certainly won't be able 1477 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1478 if (!InstCombiner::isCanonicalPredicate(Pred)) 1479 return nullptr; 1480 1481 // If the [input] type of comparison and select type are different, lets abort 1482 // for now. We could try to compare constants with trunc/[zs]ext though. 1483 if (C0->getType() != Sel.getType()) 1484 return nullptr; 1485 1486 // ULT with 'add' of a constant is canonical. See foldICmpAddConstant(). 1487 // FIXME: Are there more magic icmp predicate+constant pairs we must avoid? 1488 // Or should we just abandon this transform entirely? 1489 if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant()))) 1490 return nullptr; 1491 1492 1493 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1494 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1495 // At least one of these values we are selecting between must be a constant 1496 // else we'll never succeed. 1497 if (!match(SelVal0, m_AnyIntegralConstant()) && 1498 !match(SelVal1, m_AnyIntegralConstant())) 1499 return nullptr; 1500 1501 // Does this constant C match any of the `select` values? 1502 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1503 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1504 }; 1505 1506 // If C0 *already* matches true/false value of select, we are done. 1507 if (MatchesSelectValue(C0)) 1508 return nullptr; 1509 1510 // Check the constant we'd have with flipped-strictness predicate. 1511 auto FlippedStrictness = 1512 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1513 if (!FlippedStrictness) 1514 return nullptr; 1515 1516 // If said constant doesn't match either, then there is no hope, 1517 if (!MatchesSelectValue(FlippedStrictness->second)) 1518 return nullptr; 1519 1520 // It matched! Lets insert the new comparison just before select. 1521 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1522 IC.Builder.SetInsertPoint(&Sel); 1523 1524 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1525 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1526 Cmp.getName() + ".inv"); 1527 IC.replaceOperand(Sel, 0, NewCmp); 1528 Sel.swapValues(); 1529 Sel.swapProfMetadata(); 1530 1531 return &Sel; 1532 } 1533 1534 /// Visit a SelectInst that has an ICmpInst as its first operand. 1535 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1536 ICmpInst *ICI) { 1537 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1538 return NewSel; 1539 1540 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this)) 1541 return NewSel; 1542 1543 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this)) 1544 return NewAbs; 1545 1546 if (Value *V = canonicalizeClampLike(SI, *ICI, Builder)) 1547 return replaceInstUsesWith(SI, V); 1548 1549 if (Instruction *NewSel = 1550 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1551 return NewSel; 1552 1553 bool Changed = adjustMinMax(SI, *ICI); 1554 1555 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1556 return replaceInstUsesWith(SI, V); 1557 1558 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1559 Value *TrueVal = SI.getTrueValue(); 1560 Value *FalseVal = SI.getFalseValue(); 1561 ICmpInst::Predicate Pred = ICI->getPredicate(); 1562 Value *CmpLHS = ICI->getOperand(0); 1563 Value *CmpRHS = ICI->getOperand(1); 1564 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1565 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1566 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1567 SI.setOperand(1, CmpRHS); 1568 Changed = true; 1569 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1570 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1571 SI.setOperand(2, CmpRHS); 1572 Changed = true; 1573 } 1574 } 1575 1576 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1577 // decomposeBitTestICmp() might help. 1578 { 1579 unsigned BitWidth = 1580 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1581 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1582 Value *X; 1583 const APInt *Y, *C; 1584 bool TrueWhenUnset; 1585 bool IsBitTest = false; 1586 if (ICmpInst::isEquality(Pred) && 1587 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1588 match(CmpRHS, m_Zero())) { 1589 IsBitTest = true; 1590 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1591 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1592 X = CmpLHS; 1593 Y = &MinSignedValue; 1594 IsBitTest = true; 1595 TrueWhenUnset = false; 1596 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1597 X = CmpLHS; 1598 Y = &MinSignedValue; 1599 IsBitTest = true; 1600 TrueWhenUnset = true; 1601 } 1602 if (IsBitTest) { 1603 Value *V = nullptr; 1604 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1605 if (TrueWhenUnset && TrueVal == X && 1606 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1607 V = Builder.CreateAnd(X, ~(*Y)); 1608 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1609 else if (!TrueWhenUnset && FalseVal == X && 1610 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1611 V = Builder.CreateAnd(X, ~(*Y)); 1612 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1613 else if (TrueWhenUnset && FalseVal == X && 1614 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1615 V = Builder.CreateOr(X, *Y); 1616 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1617 else if (!TrueWhenUnset && TrueVal == X && 1618 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1619 V = Builder.CreateOr(X, *Y); 1620 1621 if (V) 1622 return replaceInstUsesWith(SI, V); 1623 } 1624 } 1625 1626 if (Instruction *V = 1627 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1628 return V; 1629 1630 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1631 return V; 1632 1633 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1634 return replaceInstUsesWith(SI, V); 1635 1636 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1637 return replaceInstUsesWith(SI, V); 1638 1639 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1640 return replaceInstUsesWith(SI, V); 1641 1642 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1643 return replaceInstUsesWith(SI, V); 1644 1645 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1646 return replaceInstUsesWith(SI, V); 1647 1648 return Changed ? &SI : nullptr; 1649 } 1650 1651 /// SI is a select whose condition is a PHI node (but the two may be in 1652 /// different blocks). See if the true/false values (V) are live in all of the 1653 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1654 /// 1655 /// X = phi [ C1, BB1], [C2, BB2] 1656 /// Y = add 1657 /// Z = select X, Y, 0 1658 /// 1659 /// because Y is not live in BB1/BB2. 1660 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1661 const SelectInst &SI) { 1662 // If the value is a non-instruction value like a constant or argument, it 1663 // can always be mapped. 1664 const Instruction *I = dyn_cast<Instruction>(V); 1665 if (!I) return true; 1666 1667 // If V is a PHI node defined in the same block as the condition PHI, we can 1668 // map the arguments. 1669 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1670 1671 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1672 if (VP->getParent() == CondPHI->getParent()) 1673 return true; 1674 1675 // Otherwise, if the PHI and select are defined in the same block and if V is 1676 // defined in a different block, then we can transform it. 1677 if (SI.getParent() == CondPHI->getParent() && 1678 I->getParent() != CondPHI->getParent()) 1679 return true; 1680 1681 // Otherwise we have a 'hard' case and we can't tell without doing more 1682 // detailed dominator based analysis, punt. 1683 return false; 1684 } 1685 1686 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1687 /// SPF2(SPF1(A, B), C) 1688 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1689 SelectPatternFlavor SPF1, Value *A, 1690 Value *B, Instruction &Outer, 1691 SelectPatternFlavor SPF2, 1692 Value *C) { 1693 if (Outer.getType() != Inner->getType()) 1694 return nullptr; 1695 1696 if (C == A || C == B) { 1697 // MAX(MAX(A, B), B) -> MAX(A, B) 1698 // MIN(MIN(a, b), a) -> MIN(a, b) 1699 // TODO: This could be done in instsimplify. 1700 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1701 return replaceInstUsesWith(Outer, Inner); 1702 1703 // MAX(MIN(a, b), a) -> a 1704 // MIN(MAX(a, b), a) -> a 1705 // TODO: This could be done in instsimplify. 1706 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1707 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1708 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1709 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1710 return replaceInstUsesWith(Outer, C); 1711 } 1712 1713 if (SPF1 == SPF2) { 1714 const APInt *CB, *CC; 1715 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1716 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1717 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1718 // TODO: This could be done in instsimplify. 1719 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1720 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1721 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1722 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1723 return replaceInstUsesWith(Outer, Inner); 1724 1725 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1726 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1727 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1728 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1729 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1730 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1731 Outer.replaceUsesOfWith(Inner, A); 1732 return &Outer; 1733 } 1734 } 1735 } 1736 1737 // max(max(A, B), min(A, B)) --> max(A, B) 1738 // min(min(A, B), max(A, B)) --> min(A, B) 1739 // TODO: This could be done in instsimplify. 1740 if (SPF1 == SPF2 && 1741 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1742 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1743 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1744 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1745 return replaceInstUsesWith(Outer, Inner); 1746 1747 // ABS(ABS(X)) -> ABS(X) 1748 // NABS(NABS(X)) -> NABS(X) 1749 // TODO: This could be done in instsimplify. 1750 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1751 return replaceInstUsesWith(Outer, Inner); 1752 } 1753 1754 // ABS(NABS(X)) -> ABS(X) 1755 // NABS(ABS(X)) -> NABS(X) 1756 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1757 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1758 SelectInst *SI = cast<SelectInst>(Inner); 1759 Value *NewSI = 1760 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1761 SI->getTrueValue(), SI->getName(), SI); 1762 return replaceInstUsesWith(Outer, NewSI); 1763 } 1764 1765 auto IsFreeOrProfitableToInvert = 1766 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1767 if (match(V, m_Not(m_Value(NotV)))) { 1768 // If V has at most 2 uses then we can get rid of the xor operation 1769 // entirely. 1770 ElidesXor |= !V->hasNUsesOrMore(3); 1771 return true; 1772 } 1773 1774 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1775 NotV = nullptr; 1776 return true; 1777 } 1778 1779 return false; 1780 }; 1781 1782 Value *NotA, *NotB, *NotC; 1783 bool ElidesXor = false; 1784 1785 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1786 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1787 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1788 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1789 // 1790 // This transform is performance neutral if we can elide at least one xor from 1791 // the set of three operands, since we'll be tacking on an xor at the very 1792 // end. 1793 if (SelectPatternResult::isMinOrMax(SPF1) && 1794 SelectPatternResult::isMinOrMax(SPF2) && 1795 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1796 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1797 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1798 if (!NotA) 1799 NotA = Builder.CreateNot(A); 1800 if (!NotB) 1801 NotB = Builder.CreateNot(B); 1802 if (!NotC) 1803 NotC = Builder.CreateNot(C); 1804 1805 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1806 NotB); 1807 Value *NewOuter = Builder.CreateNot( 1808 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1809 return replaceInstUsesWith(Outer, NewOuter); 1810 } 1811 1812 return nullptr; 1813 } 1814 1815 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1816 /// This is even legal for FP. 1817 static Instruction *foldAddSubSelect(SelectInst &SI, 1818 InstCombiner::BuilderTy &Builder) { 1819 Value *CondVal = SI.getCondition(); 1820 Value *TrueVal = SI.getTrueValue(); 1821 Value *FalseVal = SI.getFalseValue(); 1822 auto *TI = dyn_cast<Instruction>(TrueVal); 1823 auto *FI = dyn_cast<Instruction>(FalseVal); 1824 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1825 return nullptr; 1826 1827 Instruction *AddOp = nullptr, *SubOp = nullptr; 1828 if ((TI->getOpcode() == Instruction::Sub && 1829 FI->getOpcode() == Instruction::Add) || 1830 (TI->getOpcode() == Instruction::FSub && 1831 FI->getOpcode() == Instruction::FAdd)) { 1832 AddOp = FI; 1833 SubOp = TI; 1834 } else if ((FI->getOpcode() == Instruction::Sub && 1835 TI->getOpcode() == Instruction::Add) || 1836 (FI->getOpcode() == Instruction::FSub && 1837 TI->getOpcode() == Instruction::FAdd)) { 1838 AddOp = TI; 1839 SubOp = FI; 1840 } 1841 1842 if (AddOp) { 1843 Value *OtherAddOp = nullptr; 1844 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1845 OtherAddOp = AddOp->getOperand(1); 1846 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1847 OtherAddOp = AddOp->getOperand(0); 1848 } 1849 1850 if (OtherAddOp) { 1851 // So at this point we know we have (Y -> OtherAddOp): 1852 // select C, (add X, Y), (sub X, Z) 1853 Value *NegVal; // Compute -Z 1854 if (SI.getType()->isFPOrFPVectorTy()) { 1855 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1856 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1857 FastMathFlags Flags = AddOp->getFastMathFlags(); 1858 Flags &= SubOp->getFastMathFlags(); 1859 NegInst->setFastMathFlags(Flags); 1860 } 1861 } else { 1862 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1863 } 1864 1865 Value *NewTrueOp = OtherAddOp; 1866 Value *NewFalseOp = NegVal; 1867 if (AddOp != TI) 1868 std::swap(NewTrueOp, NewFalseOp); 1869 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1870 SI.getName() + ".p", &SI); 1871 1872 if (SI.getType()->isFPOrFPVectorTy()) { 1873 Instruction *RI = 1874 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1875 1876 FastMathFlags Flags = AddOp->getFastMathFlags(); 1877 Flags &= SubOp->getFastMathFlags(); 1878 RI->setFastMathFlags(Flags); 1879 return RI; 1880 } else 1881 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1882 } 1883 } 1884 return nullptr; 1885 } 1886 1887 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1888 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1889 /// Along with a number of patterns similar to: 1890 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1891 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1892 static Instruction * 1893 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1894 Value *CondVal = SI.getCondition(); 1895 Value *TrueVal = SI.getTrueValue(); 1896 Value *FalseVal = SI.getFalseValue(); 1897 1898 WithOverflowInst *II; 1899 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1900 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1901 return nullptr; 1902 1903 Value *X = II->getLHS(); 1904 Value *Y = II->getRHS(); 1905 1906 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1907 Type *Ty = Limit->getType(); 1908 1909 ICmpInst::Predicate Pred; 1910 Value *TrueVal, *FalseVal, *Op; 1911 const APInt *C; 1912 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1913 m_Value(TrueVal), m_Value(FalseVal)))) 1914 return false; 1915 1916 auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); }; 1917 auto IsMinMax = [&](Value *Min, Value *Max) { 1918 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1919 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1920 return match(Min, m_SpecificInt(MinVal)) && 1921 match(Max, m_SpecificInt(MaxVal)); 1922 }; 1923 1924 if (Op != X && Op != Y) 1925 return false; 1926 1927 if (IsAdd) { 1928 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1929 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1930 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1931 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1932 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1933 IsMinMax(TrueVal, FalseVal)) 1934 return true; 1935 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1936 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1937 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1938 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1939 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1940 IsMinMax(FalseVal, TrueVal)) 1941 return true; 1942 } else { 1943 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1944 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1945 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1946 IsMinMax(TrueVal, FalseVal)) 1947 return true; 1948 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1949 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1950 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1951 IsMinMax(FalseVal, TrueVal)) 1952 return true; 1953 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1954 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1955 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1956 IsMinMax(FalseVal, TrueVal)) 1957 return true; 1958 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1959 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1960 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1961 IsMinMax(TrueVal, FalseVal)) 1962 return true; 1963 } 1964 1965 return false; 1966 }; 1967 1968 Intrinsic::ID NewIntrinsicID; 1969 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1970 match(TrueVal, m_AllOnes())) 1971 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1972 NewIntrinsicID = Intrinsic::uadd_sat; 1973 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1974 match(TrueVal, m_Zero())) 1975 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1976 NewIntrinsicID = Intrinsic::usub_sat; 1977 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1978 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1979 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1980 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1981 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1982 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1983 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1984 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1985 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1986 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1987 NewIntrinsicID = Intrinsic::sadd_sat; 1988 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1989 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1990 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1991 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1992 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1993 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1994 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1995 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1996 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1997 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1998 NewIntrinsicID = Intrinsic::ssub_sat; 1999 else 2000 return nullptr; 2001 2002 Function *F = 2003 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 2004 return CallInst::Create(F, {X, Y}); 2005 } 2006 2007 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 2008 Constant *C; 2009 if (!match(Sel.getTrueValue(), m_Constant(C)) && 2010 !match(Sel.getFalseValue(), m_Constant(C))) 2011 return nullptr; 2012 2013 Instruction *ExtInst; 2014 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 2015 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 2016 return nullptr; 2017 2018 auto ExtOpcode = ExtInst->getOpcode(); 2019 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 2020 return nullptr; 2021 2022 // If we are extending from a boolean type or if we can create a select that 2023 // has the same size operands as its condition, try to narrow the select. 2024 Value *X = ExtInst->getOperand(0); 2025 Type *SmallType = X->getType(); 2026 Value *Cond = Sel.getCondition(); 2027 auto *Cmp = dyn_cast<CmpInst>(Cond); 2028 if (!SmallType->isIntOrIntVectorTy(1) && 2029 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 2030 return nullptr; 2031 2032 // If the constant is the same after truncation to the smaller type and 2033 // extension to the original type, we can narrow the select. 2034 Type *SelType = Sel.getType(); 2035 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 2036 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 2037 if (ExtC == C && ExtInst->hasOneUse()) { 2038 Value *TruncCVal = cast<Value>(TruncC); 2039 if (ExtInst == Sel.getFalseValue()) 2040 std::swap(X, TruncCVal); 2041 2042 // select Cond, (ext X), C --> ext(select Cond, X, C') 2043 // select Cond, C, (ext X) --> ext(select Cond, C', X) 2044 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 2045 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 2046 } 2047 2048 // If one arm of the select is the extend of the condition, replace that arm 2049 // with the extension of the appropriate known bool value. 2050 if (Cond == X) { 2051 if (ExtInst == Sel.getTrueValue()) { 2052 // select X, (sext X), C --> select X, -1, C 2053 // select X, (zext X), C --> select X, 1, C 2054 Constant *One = ConstantInt::getTrue(SmallType); 2055 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 2056 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 2057 } else { 2058 // select X, C, (sext X) --> select X, C, 0 2059 // select X, C, (zext X) --> select X, C, 0 2060 Constant *Zero = ConstantInt::getNullValue(SelType); 2061 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 2062 } 2063 } 2064 2065 return nullptr; 2066 } 2067 2068 /// Try to transform a vector select with a constant condition vector into a 2069 /// shuffle for easier combining with other shuffles and insert/extract. 2070 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 2071 Value *CondVal = SI.getCondition(); 2072 Constant *CondC; 2073 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 2074 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 2075 return nullptr; 2076 2077 unsigned NumElts = CondValTy->getNumElements(); 2078 SmallVector<int, 16> Mask; 2079 Mask.reserve(NumElts); 2080 for (unsigned i = 0; i != NumElts; ++i) { 2081 Constant *Elt = CondC->getAggregateElement(i); 2082 if (!Elt) 2083 return nullptr; 2084 2085 if (Elt->isOneValue()) { 2086 // If the select condition element is true, choose from the 1st vector. 2087 Mask.push_back(i); 2088 } else if (Elt->isNullValue()) { 2089 // If the select condition element is false, choose from the 2nd vector. 2090 Mask.push_back(i + NumElts); 2091 } else if (isa<UndefValue>(Elt)) { 2092 // Undef in a select condition (choose one of the operands) does not mean 2093 // the same thing as undef in a shuffle mask (any value is acceptable), so 2094 // give up. 2095 return nullptr; 2096 } else { 2097 // Bail out on a constant expression. 2098 return nullptr; 2099 } 2100 } 2101 2102 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2103 } 2104 2105 /// If we have a select of vectors with a scalar condition, try to convert that 2106 /// to a vector select by splatting the condition. A splat may get folded with 2107 /// other operations in IR and having all operands of a select be vector types 2108 /// is likely better for vector codegen. 2109 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2110 InstCombinerImpl &IC) { 2111 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2112 if (!Ty) 2113 return nullptr; 2114 2115 // We can replace a single-use extract with constant index. 2116 Value *Cond = Sel.getCondition(); 2117 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2118 return nullptr; 2119 2120 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2121 // Splatting the extracted condition reduces code (we could directly create a 2122 // splat shuffle of the source vector to eliminate the intermediate step). 2123 return IC.replaceOperand( 2124 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2125 } 2126 2127 /// Reuse bitcasted operands between a compare and select: 2128 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2129 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2130 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2131 InstCombiner::BuilderTy &Builder) { 2132 Value *Cond = Sel.getCondition(); 2133 Value *TVal = Sel.getTrueValue(); 2134 Value *FVal = Sel.getFalseValue(); 2135 2136 CmpInst::Predicate Pred; 2137 Value *A, *B; 2138 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2139 return nullptr; 2140 2141 // The select condition is a compare instruction. If the select's true/false 2142 // values are already the same as the compare operands, there's nothing to do. 2143 if (TVal == A || TVal == B || FVal == A || FVal == B) 2144 return nullptr; 2145 2146 Value *C, *D; 2147 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2148 return nullptr; 2149 2150 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2151 Value *TSrc, *FSrc; 2152 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2153 !match(FVal, m_BitCast(m_Value(FSrc)))) 2154 return nullptr; 2155 2156 // If the select true/false values are *different bitcasts* of the same source 2157 // operands, make the select operands the same as the compare operands and 2158 // cast the result. This is the canonical select form for min/max. 2159 Value *NewSel; 2160 if (TSrc == C && FSrc == D) { 2161 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2162 // bitcast (select (cmp A, B), A, B) 2163 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2164 } else if (TSrc == D && FSrc == C) { 2165 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2166 // bitcast (select (cmp A, B), B, A) 2167 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2168 } else { 2169 return nullptr; 2170 } 2171 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2172 } 2173 2174 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2175 /// instructions. 2176 /// 2177 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2178 /// selects between the returned value of the cmpxchg instruction its compare 2179 /// operand, the result of the select will always be equal to its false value. 2180 /// For example: 2181 /// 2182 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2183 /// %1 = extractvalue { i64, i1 } %0, 1 2184 /// %2 = extractvalue { i64, i1 } %0, 0 2185 /// %3 = select i1 %1, i64 %compare, i64 %2 2186 /// ret i64 %3 2187 /// 2188 /// The returned value of the cmpxchg instruction (%2) is the original value 2189 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2190 /// must have been equal to %compare. Thus, the result of the select is always 2191 /// equal to %2, and the code can be simplified to: 2192 /// 2193 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2194 /// %1 = extractvalue { i64, i1 } %0, 0 2195 /// ret i64 %1 2196 /// 2197 static Value *foldSelectCmpXchg(SelectInst &SI) { 2198 // A helper that determines if V is an extractvalue instruction whose 2199 // aggregate operand is a cmpxchg instruction and whose single index is equal 2200 // to I. If such conditions are true, the helper returns the cmpxchg 2201 // instruction; otherwise, a nullptr is returned. 2202 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2203 auto *Extract = dyn_cast<ExtractValueInst>(V); 2204 if (!Extract) 2205 return nullptr; 2206 if (Extract->getIndices()[0] != I) 2207 return nullptr; 2208 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2209 }; 2210 2211 // If the select has a single user, and this user is a select instruction that 2212 // we can simplify, skip the cmpxchg simplification for now. 2213 if (SI.hasOneUse()) 2214 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2215 if (Select->getCondition() == SI.getCondition()) 2216 if (Select->getFalseValue() == SI.getTrueValue() || 2217 Select->getTrueValue() == SI.getFalseValue()) 2218 return nullptr; 2219 2220 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2221 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2222 if (!CmpXchg) 2223 return nullptr; 2224 2225 // Check the true value case: The true value of the select is the returned 2226 // value of the same cmpxchg used by the condition, and the false value is the 2227 // cmpxchg instruction's compare operand. 2228 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2229 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2230 return SI.getFalseValue(); 2231 2232 // Check the false value case: The false value of the select is the returned 2233 // value of the same cmpxchg used by the condition, and the true value is the 2234 // cmpxchg instruction's compare operand. 2235 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2236 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2237 return SI.getFalseValue(); 2238 2239 return nullptr; 2240 } 2241 2242 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2243 Value *Y, 2244 InstCombiner::BuilderTy &Builder) { 2245 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2246 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2247 SPF == SelectPatternFlavor::SPF_UMAX; 2248 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2249 // the constant value check to an assert. 2250 Value *A; 2251 const APInt *C1, *C2; 2252 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2253 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2254 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2255 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2256 Value *NewMinMax = createMinMax(Builder, SPF, A, 2257 ConstantInt::get(X->getType(), *C2 - *C1)); 2258 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2259 ConstantInt::get(X->getType(), *C1)); 2260 } 2261 2262 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2263 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2264 bool Overflow; 2265 APInt Diff = C2->ssub_ov(*C1, Overflow); 2266 if (!Overflow) { 2267 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2268 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2269 Value *NewMinMax = createMinMax(Builder, SPF, A, 2270 ConstantInt::get(X->getType(), Diff)); 2271 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2272 ConstantInt::get(X->getType(), *C1)); 2273 } 2274 } 2275 2276 return nullptr; 2277 } 2278 2279 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2280 Instruction *InstCombinerImpl::matchSAddSubSat(Instruction &MinMax1) { 2281 Type *Ty = MinMax1.getType(); 2282 2283 // We are looking for a tree of: 2284 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2285 // Where the min and max could be reversed 2286 Instruction *MinMax2; 2287 BinaryOperator *AddSub; 2288 const APInt *MinValue, *MaxValue; 2289 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2290 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2291 return nullptr; 2292 } else if (match(&MinMax1, 2293 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2294 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2295 return nullptr; 2296 } else 2297 return nullptr; 2298 2299 // Check that the constants clamp a saturate, and that the new type would be 2300 // sensible to convert to. 2301 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2302 return nullptr; 2303 // In what bitwidth can this be treated as saturating arithmetics? 2304 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2305 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2306 // good first approximation for what should be done there. 2307 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2308 return nullptr; 2309 2310 // Also make sure that the number of uses is as expected. The 3 is for the 2311 // the two items of the compare and the select, or 2 from a min/max. 2312 unsigned ExpUses = isa<IntrinsicInst>(MinMax1) ? 2 : 3; 2313 if (MinMax2->hasNUsesOrMore(ExpUses) || AddSub->hasNUsesOrMore(ExpUses)) 2314 return nullptr; 2315 2316 // Create the new type (which can be a vector type) 2317 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2318 2319 Intrinsic::ID IntrinsicID; 2320 if (AddSub->getOpcode() == Instruction::Add) 2321 IntrinsicID = Intrinsic::sadd_sat; 2322 else if (AddSub->getOpcode() == Instruction::Sub) 2323 IntrinsicID = Intrinsic::ssub_sat; 2324 else 2325 return nullptr; 2326 2327 // The two operands of the add/sub must be nsw-truncatable to the NewTy. This 2328 // is usually achieved via a sext from a smaller type. 2329 if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) > 2330 NewBitWidth || 2331 ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth) 2332 return nullptr; 2333 2334 // Finally create and return the sat intrinsic, truncated to the new type 2335 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2336 Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy); 2337 Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy); 2338 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2339 return CastInst::Create(Instruction::SExt, Sat, Ty); 2340 } 2341 2342 /// Reduce a sequence of min/max with a common operand. 2343 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2344 Value *RHS, 2345 InstCombiner::BuilderTy &Builder) { 2346 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2347 // TODO: Allow FP min/max with nnan/nsz. 2348 if (!LHS->getType()->isIntOrIntVectorTy()) 2349 return nullptr; 2350 2351 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2352 Value *A, *B, *C, *D; 2353 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2354 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2355 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2356 return nullptr; 2357 2358 // Look for a common operand. The use checks are different than usual because 2359 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2360 // the select. 2361 Value *MinMaxOp = nullptr; 2362 Value *ThirdOp = nullptr; 2363 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2364 // If the LHS is only used in this chain and the RHS is used outside of it, 2365 // reuse the RHS min/max because that will eliminate the LHS. 2366 if (D == A || C == A) { 2367 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2368 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2369 MinMaxOp = RHS; 2370 ThirdOp = B; 2371 } else if (D == B || C == B) { 2372 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2373 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2374 MinMaxOp = RHS; 2375 ThirdOp = A; 2376 } 2377 } else if (!RHS->hasNUsesOrMore(3)) { 2378 // Reuse the LHS. This will eliminate the RHS. 2379 if (D == A || D == B) { 2380 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2381 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2382 MinMaxOp = LHS; 2383 ThirdOp = C; 2384 } else if (C == A || C == B) { 2385 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2386 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2387 MinMaxOp = LHS; 2388 ThirdOp = D; 2389 } 2390 } 2391 if (!MinMaxOp || !ThirdOp) 2392 return nullptr; 2393 2394 CmpInst::Predicate P = getMinMaxPred(SPF); 2395 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2396 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2397 } 2398 2399 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2400 /// into a funnel shift intrinsic. Example: 2401 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2402 /// --> call llvm.fshl.i32(a, a, b) 2403 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2404 /// --> call llvm.fshl.i32(a, b, c) 2405 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2406 /// --> call llvm.fshr.i32(a, b, c) 2407 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2408 InstCombiner::BuilderTy &Builder) { 2409 // This must be a power-of-2 type for a bitmasking transform to be valid. 2410 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2411 if (!isPowerOf2_32(Width)) 2412 return nullptr; 2413 2414 BinaryOperator *Or0, *Or1; 2415 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2416 return nullptr; 2417 2418 Value *SV0, *SV1, *SA0, *SA1; 2419 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2420 m_ZExtOrSelf(m_Value(SA0))))) || 2421 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2422 m_ZExtOrSelf(m_Value(SA1))))) || 2423 Or0->getOpcode() == Or1->getOpcode()) 2424 return nullptr; 2425 2426 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2427 if (Or0->getOpcode() == BinaryOperator::LShr) { 2428 std::swap(Or0, Or1); 2429 std::swap(SV0, SV1); 2430 std::swap(SA0, SA1); 2431 } 2432 assert(Or0->getOpcode() == BinaryOperator::Shl && 2433 Or1->getOpcode() == BinaryOperator::LShr && 2434 "Illegal or(shift,shift) pair"); 2435 2436 // Check the shift amounts to see if they are an opposite pair. 2437 Value *ShAmt; 2438 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2439 ShAmt = SA0; 2440 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2441 ShAmt = SA1; 2442 else 2443 return nullptr; 2444 2445 // We should now have this pattern: 2446 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2447 // The false value of the select must be a funnel-shift of the true value: 2448 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2449 bool IsFshl = (ShAmt == SA0); 2450 Value *TVal = Sel.getTrueValue(); 2451 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2452 return nullptr; 2453 2454 // Finally, see if the select is filtering out a shift-by-zero. 2455 Value *Cond = Sel.getCondition(); 2456 ICmpInst::Predicate Pred; 2457 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2458 Pred != ICmpInst::ICMP_EQ) 2459 return nullptr; 2460 2461 // If this is not a rotate then the select was blocking poison from the 2462 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2463 if (SV0 != SV1) { 2464 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2465 SV1 = Builder.CreateFreeze(SV1); 2466 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2467 SV0 = Builder.CreateFreeze(SV0); 2468 } 2469 2470 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2471 // Convert to funnel shift intrinsic. 2472 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2473 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2474 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2475 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2476 } 2477 2478 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2479 InstCombiner::BuilderTy &Builder) { 2480 Value *Cond = Sel.getCondition(); 2481 Value *TVal = Sel.getTrueValue(); 2482 Value *FVal = Sel.getFalseValue(); 2483 Type *SelType = Sel.getType(); 2484 2485 // Match select ?, TC, FC where the constants are equal but negated. 2486 // TODO: Generalize to handle a negated variable operand? 2487 const APFloat *TC, *FC; 2488 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2489 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2490 return nullptr; 2491 2492 assert(TC != FC && "Expected equal select arms to simplify"); 2493 2494 Value *X; 2495 const APInt *C; 2496 bool IsTrueIfSignSet; 2497 ICmpInst::Predicate Pred; 2498 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2499 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2500 X->getType() != SelType) 2501 return nullptr; 2502 2503 // If needed, negate the value that will be the sign argument of the copysign: 2504 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2505 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2506 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2507 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2508 if (IsTrueIfSignSet ^ TC->isNegative()) 2509 X = Builder.CreateFNegFMF(X, &Sel); 2510 2511 // Canonicalize the magnitude argument as the positive constant since we do 2512 // not care about its sign. 2513 Value *MagArg = TC->isNegative() ? FVal : TVal; 2514 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2515 Sel.getType()); 2516 Instruction *CopySign = CallInst::Create(F, { MagArg, X }); 2517 CopySign->setFastMathFlags(Sel.getFastMathFlags()); 2518 return CopySign; 2519 } 2520 2521 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2522 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2523 if (!VecTy) 2524 return nullptr; 2525 2526 unsigned NumElts = VecTy->getNumElements(); 2527 APInt UndefElts(NumElts, 0); 2528 APInt AllOnesEltMask(APInt::getAllOnes(NumElts)); 2529 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2530 if (V != &Sel) 2531 return replaceInstUsesWith(Sel, V); 2532 return &Sel; 2533 } 2534 2535 // A select of a "select shuffle" with a common operand can be rearranged 2536 // to select followed by "select shuffle". Because of poison, this only works 2537 // in the case of a shuffle with no undefined mask elements. 2538 Value *Cond = Sel.getCondition(); 2539 Value *TVal = Sel.getTrueValue(); 2540 Value *FVal = Sel.getFalseValue(); 2541 Value *X, *Y; 2542 ArrayRef<int> Mask; 2543 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2544 !is_contained(Mask, UndefMaskElem) && 2545 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2546 if (X == FVal) { 2547 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2548 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2549 return new ShuffleVectorInst(X, NewSel, Mask); 2550 } 2551 if (Y == FVal) { 2552 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2553 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2554 return new ShuffleVectorInst(NewSel, Y, Mask); 2555 } 2556 } 2557 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2558 !is_contained(Mask, UndefMaskElem) && 2559 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2560 if (X == TVal) { 2561 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2562 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2563 return new ShuffleVectorInst(X, NewSel, Mask); 2564 } 2565 if (Y == TVal) { 2566 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2567 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2568 return new ShuffleVectorInst(NewSel, Y, Mask); 2569 } 2570 } 2571 2572 return nullptr; 2573 } 2574 2575 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2576 const DominatorTree &DT, 2577 InstCombiner::BuilderTy &Builder) { 2578 // Find the block's immediate dominator that ends with a conditional branch 2579 // that matches select's condition (maybe inverted). 2580 auto *IDomNode = DT[BB]->getIDom(); 2581 if (!IDomNode) 2582 return nullptr; 2583 BasicBlock *IDom = IDomNode->getBlock(); 2584 2585 Value *Cond = Sel.getCondition(); 2586 Value *IfTrue, *IfFalse; 2587 BasicBlock *TrueSucc, *FalseSucc; 2588 if (match(IDom->getTerminator(), 2589 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2590 m_BasicBlock(FalseSucc)))) { 2591 IfTrue = Sel.getTrueValue(); 2592 IfFalse = Sel.getFalseValue(); 2593 } else if (match(IDom->getTerminator(), 2594 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2595 m_BasicBlock(FalseSucc)))) { 2596 IfTrue = Sel.getFalseValue(); 2597 IfFalse = Sel.getTrueValue(); 2598 } else 2599 return nullptr; 2600 2601 // Make sure the branches are actually different. 2602 if (TrueSucc == FalseSucc) 2603 return nullptr; 2604 2605 // We want to replace select %cond, %a, %b with a phi that takes value %a 2606 // for all incoming edges that are dominated by condition `%cond == true`, 2607 // and value %b for edges dominated by condition `%cond == false`. If %a 2608 // or %b are also phis from the same basic block, we can go further and take 2609 // their incoming values from the corresponding blocks. 2610 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2611 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2612 DenseMap<BasicBlock *, Value *> Inputs; 2613 for (auto *Pred : predecessors(BB)) { 2614 // Check implication. 2615 BasicBlockEdge Incoming(Pred, BB); 2616 if (DT.dominates(TrueEdge, Incoming)) 2617 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2618 else if (DT.dominates(FalseEdge, Incoming)) 2619 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2620 else 2621 return nullptr; 2622 // Check availability. 2623 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2624 if (!DT.dominates(Insn, Pred->getTerminator())) 2625 return nullptr; 2626 } 2627 2628 Builder.SetInsertPoint(&*BB->begin()); 2629 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2630 for (auto *Pred : predecessors(BB)) 2631 PN->addIncoming(Inputs[Pred], Pred); 2632 PN->takeName(&Sel); 2633 return PN; 2634 } 2635 2636 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2637 InstCombiner::BuilderTy &Builder) { 2638 // Try to replace this select with Phi in one of these blocks. 2639 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2640 CandidateBlocks.insert(Sel.getParent()); 2641 for (Value *V : Sel.operands()) 2642 if (auto *I = dyn_cast<Instruction>(V)) 2643 CandidateBlocks.insert(I->getParent()); 2644 2645 for (BasicBlock *BB : CandidateBlocks) 2646 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2647 return PN; 2648 return nullptr; 2649 } 2650 2651 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2652 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2653 if (!FI) 2654 return nullptr; 2655 2656 Value *Cond = FI->getOperand(0); 2657 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2658 2659 // select (freeze(x == y)), x, y --> y 2660 // select (freeze(x != y)), x, y --> x 2661 // The freeze should be only used by this select. Otherwise, remaining uses of 2662 // the freeze can observe a contradictory value. 2663 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2664 // a = select c, x, y ; 2665 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2666 // ; to y, this can happen. 2667 CmpInst::Predicate Pred; 2668 if (FI->hasOneUse() && 2669 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2670 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2671 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2672 } 2673 2674 return nullptr; 2675 } 2676 2677 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op, 2678 SelectInst &SI, 2679 bool IsAnd) { 2680 Value *CondVal = SI.getCondition(); 2681 Value *A = SI.getTrueValue(); 2682 Value *B = SI.getFalseValue(); 2683 2684 assert(Op->getType()->isIntOrIntVectorTy(1) && 2685 "Op must be either i1 or vector of i1."); 2686 2687 Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd); 2688 if (!Res) 2689 return nullptr; 2690 2691 Value *Zero = Constant::getNullValue(A->getType()); 2692 Value *One = Constant::getAllOnesValue(A->getType()); 2693 2694 if (*Res == true) { 2695 if (IsAnd) 2696 // select op, (select cond, A, B), false => select op, A, false 2697 // and op, (select cond, A, B) => select op, A, false 2698 // if op = true implies condval = true. 2699 return SelectInst::Create(Op, A, Zero); 2700 else 2701 // select op, true, (select cond, A, B) => select op, true, A 2702 // or op, (select cond, A, B) => select op, true, A 2703 // if op = false implies condval = true. 2704 return SelectInst::Create(Op, One, A); 2705 } else { 2706 if (IsAnd) 2707 // select op, (select cond, A, B), false => select op, B, false 2708 // and op, (select cond, A, B) => select op, B, false 2709 // if op = true implies condval = false. 2710 return SelectInst::Create(Op, B, Zero); 2711 else 2712 // select op, true, (select cond, A, B) => select op, true, B 2713 // or op, (select cond, A, B) => select op, true, B 2714 // if op = false implies condval = false. 2715 return SelectInst::Create(Op, One, B); 2716 } 2717 } 2718 2719 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2720 Value *CondVal = SI.getCondition(); 2721 Value *TrueVal = SI.getTrueValue(); 2722 Value *FalseVal = SI.getFalseValue(); 2723 Type *SelType = SI.getType(); 2724 2725 // FIXME: Remove this workaround when freeze related patches are done. 2726 // For select with undef operand which feeds into an equality comparison, 2727 // don't simplify it so loop unswitch can know the equality comparison 2728 // may have an undef operand. This is a workaround for PR31652 caused by 2729 // descrepancy about branch on undef between LoopUnswitch and GVN. 2730 if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) { 2731 if (llvm::any_of(SI.users(), [&](User *U) { 2732 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2733 if (CI && CI->isEquality()) 2734 return true; 2735 return false; 2736 })) { 2737 return nullptr; 2738 } 2739 } 2740 2741 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2742 SQ.getWithInstruction(&SI))) 2743 return replaceInstUsesWith(SI, V); 2744 2745 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2746 return I; 2747 2748 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2749 return I; 2750 2751 CmpInst::Predicate Pred; 2752 2753 // Avoid potential infinite loops by checking for non-constant condition. 2754 // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()? 2755 // Scalar select must have simplified? 2756 if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) && 2757 TrueVal->getType() == CondVal->getType()) { 2758 // Folding select to and/or i1 isn't poison safe in general. impliesPoison 2759 // checks whether folding it does not convert a well-defined value into 2760 // poison. 2761 if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) { 2762 // Change: A = select B, true, C --> A = or B, C 2763 return BinaryOperator::CreateOr(CondVal, FalseVal); 2764 } 2765 if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) { 2766 // Change: A = select B, C, false --> A = and B, C 2767 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2768 } 2769 2770 auto *One = ConstantInt::getTrue(SelType); 2771 auto *Zero = ConstantInt::getFalse(SelType); 2772 2773 // We match the "full" 0 or 1 constant here to avoid a potential infinite 2774 // loop with vectors that may have undefined/poison elements. 2775 // select a, false, b -> select !a, b, false 2776 if (match(TrueVal, m_Specific(Zero))) { 2777 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2778 return SelectInst::Create(NotCond, FalseVal, Zero); 2779 } 2780 // select a, b, true -> select !a, true, b 2781 if (match(FalseVal, m_Specific(One))) { 2782 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2783 return SelectInst::Create(NotCond, One, TrueVal); 2784 } 2785 2786 // select a, a, b -> select a, true, b 2787 if (CondVal == TrueVal) 2788 return replaceOperand(SI, 1, One); 2789 // select a, b, a -> select a, b, false 2790 if (CondVal == FalseVal) 2791 return replaceOperand(SI, 2, Zero); 2792 2793 // select a, !a, b -> select !a, b, false 2794 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2795 return SelectInst::Create(TrueVal, FalseVal, Zero); 2796 // select a, b, !a -> select !a, true, b 2797 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2798 return SelectInst::Create(FalseVal, One, TrueVal); 2799 2800 Value *A, *B; 2801 2802 // DeMorgan in select form: !a && !b --> !(a || b) 2803 // select !a, !b, false --> not (select a, true, b) 2804 if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2805 (CondVal->hasOneUse() || TrueVal->hasOneUse()) && 2806 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2807 return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B)); 2808 2809 // DeMorgan in select form: !a || !b --> !(a && b) 2810 // select !a, true, !b --> not (select a, b, false) 2811 if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) && 2812 (CondVal->hasOneUse() || FalseVal->hasOneUse()) && 2813 !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr())) 2814 return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero)); 2815 2816 // select (select a, true, b), true, b -> select a, true, b 2817 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2818 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 2819 return replaceOperand(SI, 0, A); 2820 // select (select a, b, false), b, false -> select a, b, false 2821 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2822 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 2823 return replaceOperand(SI, 0, A); 2824 2825 if (!SelType->isVectorTy()) { 2826 if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ, 2827 /* AllowRefinement */ true)) 2828 return replaceOperand(SI, 1, S); 2829 if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ, 2830 /* AllowRefinement */ true)) 2831 return replaceOperand(SI, 2, S); 2832 } 2833 2834 if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) { 2835 Use *Y = nullptr; 2836 bool IsAnd = match(FalseVal, m_Zero()) ? true : false; 2837 Value *Op1 = IsAnd ? TrueVal : FalseVal; 2838 if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) { 2839 auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr"); 2840 InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser())); 2841 replaceUse(*Y, FI); 2842 return replaceInstUsesWith(SI, Op1); 2843 } 2844 2845 if (auto *Op1SI = dyn_cast<SelectInst>(Op1)) 2846 if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI, 2847 /* IsAnd */ IsAnd)) 2848 return I; 2849 2850 if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) { 2851 if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) { 2852 if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd, 2853 /* IsLogical */ true)) 2854 return replaceInstUsesWith(SI, V); 2855 2856 if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd)) 2857 return replaceInstUsesWith(SI, V); 2858 } 2859 } 2860 } 2861 2862 // select (select a, true, b), c, false -> select a, c, false 2863 // select c, (select a, true, b), false -> select c, a, false 2864 // if c implies that b is false. 2865 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2866 match(FalseVal, m_Zero())) { 2867 Optional<bool> Res = isImpliedCondition(TrueVal, B, DL); 2868 if (Res && *Res == false) 2869 return replaceOperand(SI, 0, A); 2870 } 2871 if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2872 match(FalseVal, m_Zero())) { 2873 Optional<bool> Res = isImpliedCondition(CondVal, B, DL); 2874 if (Res && *Res == false) 2875 return replaceOperand(SI, 1, A); 2876 } 2877 // select c, true, (select a, b, false) -> select c, true, a 2878 // select (select a, b, false), true, c -> select a, true, c 2879 // if c = false implies that b = true 2880 if (match(TrueVal, m_One()) && 2881 match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) { 2882 Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false); 2883 if (Res && *Res == true) 2884 return replaceOperand(SI, 2, A); 2885 } 2886 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2887 match(TrueVal, m_One())) { 2888 Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false); 2889 if (Res && *Res == true) 2890 return replaceOperand(SI, 0, A); 2891 } 2892 2893 // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b 2894 // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a 2895 Value *C1, *C2; 2896 if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) && 2897 match(TrueVal, m_One()) && 2898 match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) { 2899 if (match(C2, m_Not(m_Specific(C1)))) // first case 2900 return SelectInst::Create(C1, A, B); 2901 else if (match(C1, m_Not(m_Specific(C2)))) // second case 2902 return SelectInst::Create(C2, B, A); 2903 } 2904 } 2905 2906 // Selecting between two integer or vector splat integer constants? 2907 // 2908 // Note that we don't handle a scalar select of vectors: 2909 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2910 // because that may need 3 instructions to splat the condition value: 2911 // extend, insertelement, shufflevector. 2912 // 2913 // Do not handle i1 TrueVal and FalseVal otherwise would result in 2914 // zext/sext i1 to i1. 2915 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 2916 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2917 // select C, 1, 0 -> zext C to int 2918 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2919 return new ZExtInst(CondVal, SelType); 2920 2921 // select C, -1, 0 -> sext C to int 2922 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2923 return new SExtInst(CondVal, SelType); 2924 2925 // select C, 0, 1 -> zext !C to int 2926 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2927 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2928 return new ZExtInst(NotCond, SelType); 2929 } 2930 2931 // select C, 0, -1 -> sext !C to int 2932 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2933 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2934 return new SExtInst(NotCond, SelType); 2935 } 2936 } 2937 2938 if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) { 2939 Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1); 2940 // Are we selecting a value based on a comparison of the two values? 2941 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2942 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2943 // Canonicalize to use ordered comparisons by swapping the select 2944 // operands. 2945 // 2946 // e.g. 2947 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2948 if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) { 2949 FCmpInst::Predicate InvPred = FCmp->getInversePredicate(); 2950 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2951 // FIXME: The FMF should propagate from the select, not the fcmp. 2952 Builder.setFastMathFlags(FCmp->getFastMathFlags()); 2953 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2954 FCmp->getName() + ".inv"); 2955 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2956 return replaceInstUsesWith(SI, NewSel); 2957 } 2958 2959 // NOTE: if we wanted to, this is where to detect MIN/MAX 2960 } 2961 } 2962 2963 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2964 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. 2965 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2966 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2967 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2968 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2969 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI); 2970 return replaceInstUsesWith(SI, Fabs); 2971 } 2972 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2973 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2974 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2975 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2976 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI); 2977 return replaceInstUsesWith(SI, Fabs); 2978 } 2979 // With nnan and nsz: 2980 // (X < +/-0.0) ? -X : X --> fabs(X) 2981 // (X <= +/-0.0) ? -X : X --> fabs(X) 2982 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2983 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() && 2984 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2985 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2986 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI); 2987 return replaceInstUsesWith(SI, Fabs); 2988 } 2989 // With nnan and nsz: 2990 // (X > +/-0.0) ? X : -X --> fabs(X) 2991 // (X >= +/-0.0) ? X : -X --> fabs(X) 2992 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2993 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() && 2994 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2995 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2996 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI); 2997 return replaceInstUsesWith(SI, Fabs); 2998 } 2999 3000 // See if we are selecting two values based on a comparison of the two values. 3001 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 3002 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 3003 return Result; 3004 3005 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 3006 return Add; 3007 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 3008 return Add; 3009 if (Instruction *Or = foldSetClearBits(SI, Builder)) 3010 return Or; 3011 if (Instruction *Mul = foldSelectZeroOrMul(SI, *this)) 3012 return Mul; 3013 3014 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 3015 auto *TI = dyn_cast<Instruction>(TrueVal); 3016 auto *FI = dyn_cast<Instruction>(FalseVal); 3017 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 3018 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 3019 return IV; 3020 3021 if (Instruction *I = foldSelectExtConst(SI)) 3022 return I; 3023 3024 // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0)) 3025 // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx)) 3026 auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base, 3027 bool Swap) -> GetElementPtrInst * { 3028 Value *Ptr = Gep->getPointerOperand(); 3029 if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base || 3030 !Gep->hasOneUse()) 3031 return nullptr; 3032 Value *Idx = Gep->getOperand(1); 3033 if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType())) 3034 return nullptr; 3035 Type *ElementType = Gep->getResultElementType(); 3036 Value *NewT = Idx; 3037 Value *NewF = Constant::getNullValue(Idx->getType()); 3038 if (Swap) 3039 std::swap(NewT, NewF); 3040 Value *NewSI = 3041 Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI); 3042 return GetElementPtrInst::Create(ElementType, Ptr, {NewSI}); 3043 }; 3044 if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal)) 3045 if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false)) 3046 return NewGep; 3047 if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal)) 3048 if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true)) 3049 return NewGep; 3050 3051 // See if we can fold the select into one of our operands. 3052 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 3053 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 3054 return FoldI; 3055 3056 Value *LHS, *RHS; 3057 Instruction::CastOps CastOp; 3058 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 3059 auto SPF = SPR.Flavor; 3060 if (SPF) { 3061 Value *LHS2, *RHS2; 3062 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 3063 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 3064 RHS2, SI, SPF, RHS)) 3065 return R; 3066 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 3067 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 3068 RHS2, SI, SPF, LHS)) 3069 return R; 3070 // TODO. 3071 // ABS(-X) -> ABS(X) 3072 } 3073 3074 if (SelectPatternResult::isMinOrMax(SPF)) { 3075 // Canonicalize so that 3076 // - type casts are outside select patterns. 3077 // - float clamp is transformed to min/max pattern 3078 3079 bool IsCastNeeded = LHS->getType() != SelType; 3080 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 3081 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 3082 if (IsCastNeeded || 3083 (LHS->getType()->isFPOrFPVectorTy() && 3084 ((CmpLHS != LHS && CmpLHS != RHS) || 3085 (CmpRHS != LHS && CmpRHS != RHS)))) { 3086 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 3087 3088 Value *Cmp; 3089 if (CmpInst::isIntPredicate(MinMaxPred)) { 3090 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 3091 } else { 3092 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 3093 auto FMF = 3094 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 3095 Builder.setFastMathFlags(FMF); 3096 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 3097 } 3098 3099 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 3100 if (!IsCastNeeded) 3101 return replaceInstUsesWith(SI, NewSI); 3102 3103 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 3104 return replaceInstUsesWith(SI, NewCast); 3105 } 3106 3107 // MAX(~a, ~b) -> ~MIN(a, b) 3108 // MAX(~a, C) -> ~MIN(a, ~C) 3109 // MIN(~a, ~b) -> ~MAX(a, b) 3110 // MIN(~a, C) -> ~MAX(a, ~C) 3111 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 3112 Value *A; 3113 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 3114 !isFreeToInvert(A, A->hasOneUse()) && 3115 // Passing false to only consider m_Not and constants. 3116 isFreeToInvert(Y, false)) { 3117 Value *B = Builder.CreateNot(Y); 3118 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 3119 A, B); 3120 // Copy the profile metadata. 3121 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 3122 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 3123 // Swap the metadata if the operands are swapped. 3124 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 3125 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 3126 } 3127 3128 return BinaryOperator::CreateNot(NewMinMax); 3129 } 3130 3131 return nullptr; 3132 }; 3133 3134 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 3135 return I; 3136 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 3137 return I; 3138 3139 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 3140 return I; 3141 3142 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 3143 return I; 3144 if (Instruction *I = matchSAddSubSat(SI)) 3145 return I; 3146 } 3147 } 3148 3149 // Canonicalize select of FP values where NaN and -0.0 are not valid as 3150 // minnum/maxnum intrinsics. 3151 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 3152 Value *X, *Y; 3153 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 3154 return replaceInstUsesWith( 3155 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 3156 3157 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 3158 return replaceInstUsesWith( 3159 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 3160 } 3161 3162 // See if we can fold the select into a phi node if the condition is a select. 3163 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 3164 // The true/false values have to be live in the PHI predecessor's blocks. 3165 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 3166 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 3167 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 3168 return NV; 3169 3170 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 3171 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 3172 // select(C, select(C, a, b), c) -> select(C, a, c) 3173 if (TrueSI->getCondition() == CondVal) { 3174 if (SI.getTrueValue() == TrueSI->getTrueValue()) 3175 return nullptr; 3176 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 3177 } 3178 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 3179 // We choose this as normal form to enable folding on the And and 3180 // shortening paths for the values (this helps getUnderlyingObjects() for 3181 // example). 3182 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 3183 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 3184 replaceOperand(SI, 0, And); 3185 replaceOperand(SI, 1, TrueSI->getTrueValue()); 3186 return &SI; 3187 } 3188 } 3189 } 3190 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 3191 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 3192 // select(C, a, select(C, b, c)) -> select(C, a, c) 3193 if (FalseSI->getCondition() == CondVal) { 3194 if (SI.getFalseValue() == FalseSI->getFalseValue()) 3195 return nullptr; 3196 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 3197 } 3198 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 3199 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 3200 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 3201 replaceOperand(SI, 0, Or); 3202 replaceOperand(SI, 2, FalseSI->getFalseValue()); 3203 return &SI; 3204 } 3205 } 3206 } 3207 3208 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 3209 // The select might be preventing a division by 0. 3210 switch (BO->getOpcode()) { 3211 default: 3212 return true; 3213 case Instruction::SRem: 3214 case Instruction::URem: 3215 case Instruction::SDiv: 3216 case Instruction::UDiv: 3217 return false; 3218 } 3219 }; 3220 3221 // Try to simplify a binop sandwiched between 2 selects with the same 3222 // condition. 3223 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 3224 BinaryOperator *TrueBO; 3225 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 3226 canMergeSelectThroughBinop(TrueBO)) { 3227 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 3228 if (TrueBOSI->getCondition() == CondVal) { 3229 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 3230 Worklist.push(TrueBO); 3231 return &SI; 3232 } 3233 } 3234 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 3235 if (TrueBOSI->getCondition() == CondVal) { 3236 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 3237 Worklist.push(TrueBO); 3238 return &SI; 3239 } 3240 } 3241 } 3242 3243 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 3244 BinaryOperator *FalseBO; 3245 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 3246 canMergeSelectThroughBinop(FalseBO)) { 3247 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 3248 if (FalseBOSI->getCondition() == CondVal) { 3249 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 3250 Worklist.push(FalseBO); 3251 return &SI; 3252 } 3253 } 3254 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 3255 if (FalseBOSI->getCondition() == CondVal) { 3256 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 3257 Worklist.push(FalseBO); 3258 return &SI; 3259 } 3260 } 3261 } 3262 3263 Value *NotCond; 3264 if (match(CondVal, m_Not(m_Value(NotCond))) && 3265 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 3266 replaceOperand(SI, 0, NotCond); 3267 SI.swapValues(); 3268 SI.swapProfMetadata(); 3269 return &SI; 3270 } 3271 3272 if (Instruction *I = foldVectorSelect(SI)) 3273 return I; 3274 3275 // If we can compute the condition, there's no need for a select. 3276 // Like the above fold, we are attempting to reduce compile-time cost by 3277 // putting this fold here with limitations rather than in InstSimplify. 3278 // The motivation for this call into value tracking is to take advantage of 3279 // the assumption cache, so make sure that is populated. 3280 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3281 KnownBits Known(1); 3282 computeKnownBits(CondVal, Known, 0, &SI); 3283 if (Known.One.isOne()) 3284 return replaceInstUsesWith(SI, TrueVal); 3285 if (Known.Zero.isOne()) 3286 return replaceInstUsesWith(SI, FalseVal); 3287 } 3288 3289 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3290 return BitCastSel; 3291 3292 // Simplify selects that test the returned flag of cmpxchg instructions. 3293 if (Value *V = foldSelectCmpXchg(SI)) 3294 return replaceInstUsesWith(SI, V); 3295 3296 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3297 return Select; 3298 3299 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3300 return Funnel; 3301 3302 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3303 return Copysign; 3304 3305 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3306 return replaceInstUsesWith(SI, PN); 3307 3308 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3309 return replaceInstUsesWith(SI, Fr); 3310 3311 // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0) 3312 // Load inst is intentionally not checked for hasOneUse() 3313 if (match(FalseVal, m_Zero()) && 3314 match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal), 3315 m_CombineOr(m_Undef(), m_Zero())))) { 3316 auto *MaskedLoad = cast<IntrinsicInst>(TrueVal); 3317 if (isa<UndefValue>(MaskedLoad->getArgOperand(3))) 3318 MaskedLoad->setArgOperand(3, FalseVal /* Zero */); 3319 return replaceInstUsesWith(SI, MaskedLoad); 3320 } 3321 3322 Value *Mask; 3323 if (match(TrueVal, m_Zero()) && 3324 match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask), 3325 m_CombineOr(m_Undef(), m_Zero()))) && 3326 (CondVal->getType() == Mask->getType())) { 3327 // We can remove the select by ensuring the load zeros all lanes the 3328 // select would have. We determine this by proving there is no overlap 3329 // between the load and select masks. 3330 // (i.e (load_mask & select_mask) == 0 == no overlap) 3331 bool CanMergeSelectIntoLoad = false; 3332 if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI))) 3333 CanMergeSelectIntoLoad = match(V, m_Zero()); 3334 3335 if (CanMergeSelectIntoLoad) { 3336 auto *MaskedLoad = cast<IntrinsicInst>(FalseVal); 3337 if (isa<UndefValue>(MaskedLoad->getArgOperand(3))) 3338 MaskedLoad->setArgOperand(3, TrueVal /* Zero */); 3339 return replaceInstUsesWith(SI, MaskedLoad); 3340 } 3341 } 3342 3343 return nullptr; 3344 } 3345