1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visitSelect function.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/Analysis/AssumptionCache.h"
20 #include "llvm/Analysis/CmpInstAnalysis.h"
21 #include "llvm/Analysis/InstructionSimplify.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
42 #include <cassert>
43 #include <utility>
44 
45 using namespace llvm;
46 using namespace PatternMatch;
47 
48 #define DEBUG_TYPE "instcombine"
49 
50 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
51                            SelectPatternFlavor SPF, Value *A, Value *B) {
52   CmpInst::Predicate Pred = getMinMaxPred(SPF);
53   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
54   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
55 }
56 
57 /// Replace a select operand based on an equality comparison with the identity
58 /// constant of a binop.
59 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
60                                             const TargetLibraryInfo &TLI) {
61   // The select condition must be an equality compare with a constant operand.
62   Value *X;
63   Constant *C;
64   CmpInst::Predicate Pred;
65   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
66     return nullptr;
67 
68   bool IsEq;
69   if (ICmpInst::isEquality(Pred))
70     IsEq = Pred == ICmpInst::ICMP_EQ;
71   else if (Pred == FCmpInst::FCMP_OEQ)
72     IsEq = true;
73   else if (Pred == FCmpInst::FCMP_UNE)
74     IsEq = false;
75   else
76     return nullptr;
77 
78   // A select operand must be a binop.
79   BinaryOperator *BO;
80   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
81     return nullptr;
82 
83   // The compare constant must be the identity constant for that binop.
84   // If this a floating-point compare with 0.0, any zero constant will do.
85   Type *Ty = BO->getType();
86   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
87   if (IdC != C) {
88     if (!IdC || !CmpInst::isFPPredicate(Pred))
89       return nullptr;
90     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
91       return nullptr;
92   }
93 
94   // Last, match the compare variable operand with a binop operand.
95   Value *Y;
96   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
97     return nullptr;
98   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
99     return nullptr;
100 
101   // +0.0 compares equal to -0.0, and so it does not behave as required for this
102   // transform. Bail out if we can not exclude that possibility.
103   if (isa<FPMathOperator>(BO))
104     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
105       return nullptr;
106 
107   // BO = binop Y, X
108   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
109   // =>
110   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
111   Sel.setOperand(IsEq ? 1 : 2, Y);
112   return &Sel;
113 }
114 
115 /// This folds:
116 ///  select (icmp eq (and X, C1)), TC, FC
117 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
118 /// To something like:
119 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
120 /// Or:
121 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
122 /// With some variations depending if FC is larger than TC, or the shift
123 /// isn't needed, or the bit widths don't match.
124 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
125                                 InstCombiner::BuilderTy &Builder) {
126   const APInt *SelTC, *SelFC;
127   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
128       !match(Sel.getFalseValue(), m_APInt(SelFC)))
129     return nullptr;
130 
131   // If this is a vector select, we need a vector compare.
132   Type *SelType = Sel.getType();
133   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
134     return nullptr;
135 
136   Value *V;
137   APInt AndMask;
138   bool CreateAnd = false;
139   ICmpInst::Predicate Pred = Cmp->getPredicate();
140   if (ICmpInst::isEquality(Pred)) {
141     if (!match(Cmp->getOperand(1), m_Zero()))
142       return nullptr;
143 
144     V = Cmp->getOperand(0);
145     const APInt *AndRHS;
146     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
147       return nullptr;
148 
149     AndMask = *AndRHS;
150   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
151                                   Pred, V, AndMask)) {
152     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
153     if (!AndMask.isPowerOf2())
154       return nullptr;
155 
156     CreateAnd = true;
157   } else {
158     return nullptr;
159   }
160 
161   // In general, when both constants are non-zero, we would need an offset to
162   // replace the select. This would require more instructions than we started
163   // with. But there's one special-case that we handle here because it can
164   // simplify/reduce the instructions.
165   APInt TC = *SelTC;
166   APInt FC = *SelFC;
167   if (!TC.isNullValue() && !FC.isNullValue()) {
168     // If the select constants differ by exactly one bit and that's the same
169     // bit that is masked and checked by the select condition, the select can
170     // be replaced by bitwise logic to set/clear one bit of the constant result.
171     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
172       return nullptr;
173     if (CreateAnd) {
174       // If we have to create an 'and', then we must kill the cmp to not
175       // increase the instruction count.
176       if (!Cmp->hasOneUse())
177         return nullptr;
178       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
179     }
180     bool ExtraBitInTC = TC.ugt(FC);
181     if (Pred == ICmpInst::ICMP_EQ) {
182       // If the masked bit in V is clear, clear or set the bit in the result:
183       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
184       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
185       Constant *C = ConstantInt::get(SelType, TC);
186       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
187     }
188     if (Pred == ICmpInst::ICMP_NE) {
189       // If the masked bit in V is set, set or clear the bit in the result:
190       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
191       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
192       Constant *C = ConstantInt::get(SelType, FC);
193       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
194     }
195     llvm_unreachable("Only expecting equality predicates");
196   }
197 
198   // Make sure one of the select arms is a power-of-2.
199   if (!TC.isPowerOf2() && !FC.isPowerOf2())
200     return nullptr;
201 
202   // Determine which shift is needed to transform result of the 'and' into the
203   // desired result.
204   const APInt &ValC = !TC.isNullValue() ? TC : FC;
205   unsigned ValZeros = ValC.logBase2();
206   unsigned AndZeros = AndMask.logBase2();
207 
208   // Insert the 'and' instruction on the input to the truncate.
209   if (CreateAnd)
210     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
211 
212   // If types don't match, we can still convert the select by introducing a zext
213   // or a trunc of the 'and'.
214   if (ValZeros > AndZeros) {
215     V = Builder.CreateZExtOrTrunc(V, SelType);
216     V = Builder.CreateShl(V, ValZeros - AndZeros);
217   } else if (ValZeros < AndZeros) {
218     V = Builder.CreateLShr(V, AndZeros - ValZeros);
219     V = Builder.CreateZExtOrTrunc(V, SelType);
220   } else {
221     V = Builder.CreateZExtOrTrunc(V, SelType);
222   }
223 
224   // Okay, now we know that everything is set up, we just don't know whether we
225   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
226   bool ShouldNotVal = !TC.isNullValue();
227   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
228   if (ShouldNotVal)
229     V = Builder.CreateXor(V, ValC);
230 
231   return V;
232 }
233 
234 /// We want to turn code that looks like this:
235 ///   %C = or %A, %B
236 ///   %D = select %cond, %C, %A
237 /// into:
238 ///   %C = select %cond, %B, 0
239 ///   %D = or %A, %C
240 ///
241 /// Assuming that the specified instruction is an operand to the select, return
242 /// a bitmask indicating which operands of this instruction are foldable if they
243 /// equal the other incoming value of the select.
244 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
245   switch (I->getOpcode()) {
246   case Instruction::Add:
247   case Instruction::Mul:
248   case Instruction::And:
249   case Instruction::Or:
250   case Instruction::Xor:
251     return 3;              // Can fold through either operand.
252   case Instruction::Sub:   // Can only fold on the amount subtracted.
253   case Instruction::Shl:   // Can only fold on the shift amount.
254   case Instruction::LShr:
255   case Instruction::AShr:
256     return 1;
257   default:
258     return 0;              // Cannot fold
259   }
260 }
261 
262 /// For the same transformation as the previous function, return the identity
263 /// constant that goes into the select.
264 static APInt getSelectFoldableConstant(BinaryOperator *I) {
265   switch (I->getOpcode()) {
266   default: llvm_unreachable("This cannot happen!");
267   case Instruction::Add:
268   case Instruction::Sub:
269   case Instruction::Or:
270   case Instruction::Xor:
271   case Instruction::Shl:
272   case Instruction::LShr:
273   case Instruction::AShr:
274     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
275   case Instruction::And:
276     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
277   case Instruction::Mul:
278     return APInt(I->getType()->getScalarSizeInBits(), 1);
279   }
280 }
281 
282 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
283 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
284                                           Instruction *FI) {
285   // Don't break up min/max patterns. The hasOneUse checks below prevent that
286   // for most cases, but vector min/max with bitcasts can be transformed. If the
287   // one-use restrictions are eased for other patterns, we still don't want to
288   // obfuscate min/max.
289   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
290        match(&SI, m_SMax(m_Value(), m_Value())) ||
291        match(&SI, m_UMin(m_Value(), m_Value())) ||
292        match(&SI, m_UMax(m_Value(), m_Value()))))
293     return nullptr;
294 
295   // If this is a cast from the same type, merge.
296   if (TI->getNumOperands() == 1 && TI->isCast()) {
297     Type *FIOpndTy = FI->getOperand(0)->getType();
298     if (TI->getOperand(0)->getType() != FIOpndTy)
299       return nullptr;
300 
301     // The select condition may be a vector. We may only change the operand
302     // type if the vector width remains the same (and matches the condition).
303     Type *CondTy = SI.getCondition()->getType();
304     if (CondTy->isVectorTy()) {
305       if (!FIOpndTy->isVectorTy())
306         return nullptr;
307       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
308         return nullptr;
309 
310       // TODO: If the backend knew how to deal with casts better, we could
311       // remove this limitation. For now, there's too much potential to create
312       // worse codegen by promoting the select ahead of size-altering casts
313       // (PR28160).
314       //
315       // Note that ValueTracking's matchSelectPattern() looks through casts
316       // without checking 'hasOneUse' when it matches min/max patterns, so this
317       // transform may end up happening anyway.
318       if (TI->getOpcode() != Instruction::BitCast &&
319           (!TI->hasOneUse() || !FI->hasOneUse()))
320         return nullptr;
321     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
322       // TODO: The one-use restrictions for a scalar select could be eased if
323       // the fold of a select in visitLoadInst() was enhanced to match a pattern
324       // that includes a cast.
325       return nullptr;
326     }
327 
328     // Fold this by inserting a select from the input values.
329     Value *NewSI =
330         Builder.CreateSelect(SI.getCondition(), TI->getOperand(0),
331                              FI->getOperand(0), SI.getName() + ".v", &SI);
332     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
333                             TI->getType());
334   }
335 
336   // Only handle binary operators (including two-operand getelementptr) with
337   // one-use here. As with the cast case above, it may be possible to relax the
338   // one-use constraint, but that needs be examined carefully since it may not
339   // reduce the total number of instructions.
340   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
341       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
342       !TI->hasOneUse() || !FI->hasOneUse())
343     return nullptr;
344 
345   // Figure out if the operations have any operands in common.
346   Value *MatchOp, *OtherOpT, *OtherOpF;
347   bool MatchIsOpZero;
348   if (TI->getOperand(0) == FI->getOperand(0)) {
349     MatchOp  = TI->getOperand(0);
350     OtherOpT = TI->getOperand(1);
351     OtherOpF = FI->getOperand(1);
352     MatchIsOpZero = true;
353   } else if (TI->getOperand(1) == FI->getOperand(1)) {
354     MatchOp  = TI->getOperand(1);
355     OtherOpT = TI->getOperand(0);
356     OtherOpF = FI->getOperand(0);
357     MatchIsOpZero = false;
358   } else if (!TI->isCommutative()) {
359     return nullptr;
360   } else if (TI->getOperand(0) == FI->getOperand(1)) {
361     MatchOp  = TI->getOperand(0);
362     OtherOpT = TI->getOperand(1);
363     OtherOpF = FI->getOperand(0);
364     MatchIsOpZero = true;
365   } else if (TI->getOperand(1) == FI->getOperand(0)) {
366     MatchOp  = TI->getOperand(1);
367     OtherOpT = TI->getOperand(0);
368     OtherOpF = FI->getOperand(1);
369     MatchIsOpZero = true;
370   } else {
371     return nullptr;
372   }
373 
374   // If the select condition is a vector, the operands of the original select's
375   // operands also must be vectors. This may not be the case for getelementptr
376   // for example.
377   if (SI.getCondition()->getType()->isVectorTy() &&
378       (!OtherOpT->getType()->isVectorTy() ||
379        !OtherOpF->getType()->isVectorTy()))
380     return nullptr;
381 
382   // If we reach here, they do have operations in common.
383   Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF,
384                                       SI.getName() + ".v", &SI);
385   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
386   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
387   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
388     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
389     NewBO->copyIRFlags(TI);
390     NewBO->andIRFlags(FI);
391     return NewBO;
392   }
393   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
394     auto *FGEP = cast<GetElementPtrInst>(FI);
395     Type *ElementType = TGEP->getResultElementType();
396     return TGEP->isInBounds() && FGEP->isInBounds()
397                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
398                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
399   }
400   llvm_unreachable("Expected BinaryOperator or GEP");
401   return nullptr;
402 }
403 
404 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
405   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
406     return false;
407   return C1I.isOneValue() || C1I.isAllOnesValue() ||
408          C2I.isOneValue() || C2I.isAllOnesValue();
409 }
410 
411 /// Try to fold the select into one of the operands to allow further
412 /// optimization.
413 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
414                                             Value *FalseVal) {
415   // See the comment above GetSelectFoldableOperands for a description of the
416   // transformation we are doing here.
417   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
418     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
419       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
420         unsigned OpToFold = 0;
421         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
422           OpToFold = 1;
423         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
424           OpToFold = 2;
425         }
426 
427         if (OpToFold) {
428           APInt CI = getSelectFoldableConstant(TVI);
429           Value *OOp = TVI->getOperand(2-OpToFold);
430           // Avoid creating select between 2 constants unless it's selecting
431           // between 0, 1 and -1.
432           const APInt *OOpC;
433           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
434           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
435             Value *C = ConstantInt::get(OOp->getType(), CI);
436             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
437             NewSel->takeName(TVI);
438             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
439                                                         FalseVal, NewSel);
440             BO->copyIRFlags(TVI);
441             return BO;
442           }
443         }
444       }
445     }
446   }
447 
448   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
449     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
450       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
451         unsigned OpToFold = 0;
452         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
453           OpToFold = 1;
454         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
455           OpToFold = 2;
456         }
457 
458         if (OpToFold) {
459           APInt CI = getSelectFoldableConstant(FVI);
460           Value *OOp = FVI->getOperand(2-OpToFold);
461           // Avoid creating select between 2 constants unless it's selecting
462           // between 0, 1 and -1.
463           const APInt *OOpC;
464           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
465           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
466             Value *C = ConstantInt::get(OOp->getType(), CI);
467             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
468             NewSel->takeName(FVI);
469             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
470                                                         TrueVal, NewSel);
471             BO->copyIRFlags(FVI);
472             return BO;
473           }
474         }
475       }
476     }
477   }
478 
479   return nullptr;
480 }
481 
482 /// We want to turn:
483 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
484 /// into:
485 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
486 /// Note:
487 ///   Z may be 0 if lshr is missing.
488 /// Worst-case scenario is that we will replace 5 instructions with 5 different
489 /// instructions, but we got rid of select.
490 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
491                                          Value *TVal, Value *FVal,
492                                          InstCombiner::BuilderTy &Builder) {
493   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
494         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
495         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
496     return nullptr;
497 
498   // The TrueVal has general form of:  and %B, 1
499   Value *B;
500   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
501     return nullptr;
502 
503   // Where %B may be optionally shifted:  lshr %X, %Z.
504   Value *X, *Z;
505   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
506   if (!HasShift)
507     X = B;
508 
509   Value *Y;
510   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
511     return nullptr;
512 
513   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
514   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
515   Constant *One = ConstantInt::get(SelType, 1);
516   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
517   Value *FullMask = Builder.CreateOr(Y, MaskB);
518   Value *MaskedX = Builder.CreateAnd(X, FullMask);
519   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
520   return new ZExtInst(ICmpNeZero, SelType);
521 }
522 
523 /// We want to turn:
524 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
525 /// into:
526 ///   (or (shl (and X, C1), C3), Y)
527 /// iff:
528 ///   C1 and C2 are both powers of 2
529 /// where:
530 ///   C3 = Log(C2) - Log(C1)
531 ///
532 /// This transform handles cases where:
533 /// 1. The icmp predicate is inverted
534 /// 2. The select operands are reversed
535 /// 3. The magnitude of C2 and C1 are flipped
536 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
537                                   Value *FalseVal,
538                                   InstCombiner::BuilderTy &Builder) {
539   // Only handle integer compares. Also, if this is a vector select, we need a
540   // vector compare.
541   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
542       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
543     return nullptr;
544 
545   Value *CmpLHS = IC->getOperand(0);
546   Value *CmpRHS = IC->getOperand(1);
547 
548   Value *V;
549   unsigned C1Log;
550   bool IsEqualZero;
551   bool NeedAnd = false;
552   if (IC->isEquality()) {
553     if (!match(CmpRHS, m_Zero()))
554       return nullptr;
555 
556     const APInt *C1;
557     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
558       return nullptr;
559 
560     V = CmpLHS;
561     C1Log = C1->logBase2();
562     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
563   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
564              IC->getPredicate() == ICmpInst::ICMP_SGT) {
565     // We also need to recognize (icmp slt (trunc (X)), 0) and
566     // (icmp sgt (trunc (X)), -1).
567     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
568     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
569         (!IsEqualZero && !match(CmpRHS, m_Zero())))
570       return nullptr;
571 
572     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
573       return nullptr;
574 
575     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
576     NeedAnd = true;
577   } else {
578     return nullptr;
579   }
580 
581   const APInt *C2;
582   bool OrOnTrueVal = false;
583   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
584   if (!OrOnFalseVal)
585     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
586 
587   if (!OrOnFalseVal && !OrOnTrueVal)
588     return nullptr;
589 
590   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
591 
592   unsigned C2Log = C2->logBase2();
593 
594   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
595   bool NeedShift = C1Log != C2Log;
596   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
597                        V->getType()->getScalarSizeInBits();
598 
599   // Make sure we don't create more instructions than we save.
600   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
601   if ((NeedShift + NeedXor + NeedZExtTrunc) >
602       (IC->hasOneUse() + Or->hasOneUse()))
603     return nullptr;
604 
605   if (NeedAnd) {
606     // Insert the AND instruction on the input to the truncate.
607     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
608     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
609   }
610 
611   if (C2Log > C1Log) {
612     V = Builder.CreateZExtOrTrunc(V, Y->getType());
613     V = Builder.CreateShl(V, C2Log - C1Log);
614   } else if (C1Log > C2Log) {
615     V = Builder.CreateLShr(V, C1Log - C2Log);
616     V = Builder.CreateZExtOrTrunc(V, Y->getType());
617   } else
618     V = Builder.CreateZExtOrTrunc(V, Y->getType());
619 
620   if (NeedXor)
621     V = Builder.CreateXor(V, *C2);
622 
623   return Builder.CreateOr(V, Y);
624 }
625 
626 /// Transform patterns such as: (a > b) ? a - b : 0
627 /// into: ((a > b) ? a : b) - b)
628 /// This produces a canonical max pattern that is more easily recognized by the
629 /// backend and converted into saturated subtraction instructions if those
630 /// exist.
631 /// There are 8 commuted/swapped variants of this pattern.
632 /// TODO: Also support a - UMIN(a,b) patterns.
633 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
634                                             const Value *TrueVal,
635                                             const Value *FalseVal,
636                                             InstCombiner::BuilderTy &Builder) {
637   ICmpInst::Predicate Pred = ICI->getPredicate();
638   if (!ICmpInst::isUnsigned(Pred))
639     return nullptr;
640 
641   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
642   if (match(TrueVal, m_Zero())) {
643     Pred = ICmpInst::getInversePredicate(Pred);
644     std::swap(TrueVal, FalseVal);
645   }
646   if (!match(FalseVal, m_Zero()))
647     return nullptr;
648 
649   Value *A = ICI->getOperand(0);
650   Value *B = ICI->getOperand(1);
651   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
652     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
653     std::swap(A, B);
654     Pred = ICmpInst::getSwappedPredicate(Pred);
655   }
656 
657   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
658          "Unexpected isUnsigned predicate!");
659 
660   // Account for swapped form of subtraction: ((a > b) ? b - a : 0).
661   bool IsNegative = false;
662   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))))
663     IsNegative = true;
664   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))))
665     return nullptr;
666 
667   // If sub is used anywhere else, we wouldn't be able to eliminate it
668   // afterwards.
669   if (!TrueVal->hasOneUse())
670     return nullptr;
671 
672   // All checks passed, convert to canonical unsigned saturated subtraction
673   // form: sub(max()).
674   // (a > b) ? a - b : 0 -> ((a > b) ? a : b) - b)
675   Value *Max = Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
676   return IsNegative ? Builder.CreateSub(B, Max) : Builder.CreateSub(Max, B);
677 }
678 
679 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
680 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
681 ///
682 /// For example, we can fold the following code sequence:
683 /// \code
684 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
685 ///   %1 = icmp ne i32 %x, 0
686 ///   %2 = select i1 %1, i32 %0, i32 32
687 /// \code
688 ///
689 /// into:
690 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
691 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
692                                  InstCombiner::BuilderTy &Builder) {
693   ICmpInst::Predicate Pred = ICI->getPredicate();
694   Value *CmpLHS = ICI->getOperand(0);
695   Value *CmpRHS = ICI->getOperand(1);
696 
697   // Check if the condition value compares a value for equality against zero.
698   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
699     return nullptr;
700 
701   Value *Count = FalseVal;
702   Value *ValueOnZero = TrueVal;
703   if (Pred == ICmpInst::ICMP_NE)
704     std::swap(Count, ValueOnZero);
705 
706   // Skip zero extend/truncate.
707   Value *V = nullptr;
708   if (match(Count, m_ZExt(m_Value(V))) ||
709       match(Count, m_Trunc(m_Value(V))))
710     Count = V;
711 
712   // Check if the value propagated on zero is a constant number equal to the
713   // sizeof in bits of 'Count'.
714   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
715   if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits)))
716     return nullptr;
717 
718   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
719   // input to the cttz/ctlz is used as LHS for the compare instruction.
720   if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) ||
721       match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) {
722     IntrinsicInst *II = cast<IntrinsicInst>(Count);
723     // Explicitly clear the 'undef_on_zero' flag.
724     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
725     NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
726     Builder.Insert(NewI);
727     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
728   }
729 
730   return nullptr;
731 }
732 
733 /// Return true if we find and adjust an icmp+select pattern where the compare
734 /// is with a constant that can be incremented or decremented to match the
735 /// minimum or maximum idiom.
736 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
737   ICmpInst::Predicate Pred = Cmp.getPredicate();
738   Value *CmpLHS = Cmp.getOperand(0);
739   Value *CmpRHS = Cmp.getOperand(1);
740   Value *TrueVal = Sel.getTrueValue();
741   Value *FalseVal = Sel.getFalseValue();
742 
743   // We may move or edit the compare, so make sure the select is the only user.
744   const APInt *CmpC;
745   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
746     return false;
747 
748   // These transforms only work for selects of integers or vector selects of
749   // integer vectors.
750   Type *SelTy = Sel.getType();
751   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
752   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
753     return false;
754 
755   Constant *AdjustedRHS;
756   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
757     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
758   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
759     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
760   else
761     return false;
762 
763   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
764   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
765   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
766       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
767     ; // Nothing to do here. Values match without any sign/zero extension.
768   }
769   // Types do not match. Instead of calculating this with mixed types, promote
770   // all to the larger type. This enables scalar evolution to analyze this
771   // expression.
772   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
773     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
774 
775     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
776     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
777     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
778     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
779     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
780       CmpLHS = TrueVal;
781       AdjustedRHS = SextRHS;
782     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
783                SextRHS == TrueVal) {
784       CmpLHS = FalseVal;
785       AdjustedRHS = SextRHS;
786     } else if (Cmp.isUnsigned()) {
787       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
788       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
789       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
790       // zext + signed compare cannot be changed:
791       //    0xff <s 0x00, but 0x00ff >s 0x0000
792       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
793         CmpLHS = TrueVal;
794         AdjustedRHS = ZextRHS;
795       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
796                  ZextRHS == TrueVal) {
797         CmpLHS = FalseVal;
798         AdjustedRHS = ZextRHS;
799       } else {
800         return false;
801       }
802     } else {
803       return false;
804     }
805   } else {
806     return false;
807   }
808 
809   Pred = ICmpInst::getSwappedPredicate(Pred);
810   CmpRHS = AdjustedRHS;
811   std::swap(FalseVal, TrueVal);
812   Cmp.setPredicate(Pred);
813   Cmp.setOperand(0, CmpLHS);
814   Cmp.setOperand(1, CmpRHS);
815   Sel.setOperand(1, TrueVal);
816   Sel.setOperand(2, FalseVal);
817   Sel.swapProfMetadata();
818 
819   // Move the compare instruction right before the select instruction. Otherwise
820   // the sext/zext value may be defined after the compare instruction uses it.
821   Cmp.moveBefore(&Sel);
822 
823   return true;
824 }
825 
826 /// If this is an integer min/max (icmp + select) with a constant operand,
827 /// create the canonical icmp for the min/max operation and canonicalize the
828 /// constant to the 'false' operand of the select:
829 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
830 /// Note: if C1 != C2, this will change the icmp constant to the existing
831 /// constant operand of the select.
832 static Instruction *
833 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
834                                InstCombiner::BuilderTy &Builder) {
835   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
836     return nullptr;
837 
838   // Canonicalize the compare predicate based on whether we have min or max.
839   Value *LHS, *RHS;
840   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
841   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
842     return nullptr;
843 
844   // Is this already canonical?
845   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
846   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
847       Cmp.getPredicate() == CanonicalPred)
848     return nullptr;
849 
850   // Create the canonical compare and plug it into the select.
851   Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
852 
853   // If the select operands did not change, we're done.
854   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
855     return &Sel;
856 
857   // If we are swapping the select operands, swap the metadata too.
858   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
859          "Unexpected results from matchSelectPattern");
860   Sel.setTrueValue(LHS);
861   Sel.setFalseValue(RHS);
862   Sel.swapProfMetadata();
863   return &Sel;
864 }
865 
866 /// There are many select variants for each of ABS/NABS.
867 /// In matchSelectPattern(), there are different compare constants, compare
868 /// predicates/operands and select operands.
869 /// In isKnownNegation(), there are different formats of negated operands.
870 /// Canonicalize all these variants to 1 pattern.
871 /// This makes CSE more likely.
872 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
873                                         InstCombiner::BuilderTy &Builder) {
874   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
875     return nullptr;
876 
877   // Choose a sign-bit check for the compare (likely simpler for codegen).
878   // ABS:  (X <s 0) ? -X : X
879   // NABS: (X <s 0) ? X : -X
880   Value *LHS, *RHS;
881   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
882   if (SPF != SelectPatternFlavor::SPF_ABS &&
883       SPF != SelectPatternFlavor::SPF_NABS)
884     return nullptr;
885 
886   Value *TVal = Sel.getTrueValue();
887   Value *FVal = Sel.getFalseValue();
888   assert(isKnownNegation(TVal, FVal) &&
889          "Unexpected result from matchSelectPattern");
890 
891   // The compare may use the negated abs()/nabs() operand, or it may use
892   // negation in non-canonical form such as: sub A, B.
893   bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
894                           match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
895 
896   bool CmpCanonicalized = !CmpUsesNegatedOp &&
897                           match(Cmp.getOperand(1), m_ZeroInt()) &&
898                           Cmp.getPredicate() == ICmpInst::ICMP_SLT;
899   bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
900 
901   // Is this already canonical?
902   if (CmpCanonicalized && RHSCanonicalized)
903     return nullptr;
904 
905   // If RHS is used by other instructions except compare and select, don't
906   // canonicalize it to not increase the instruction count.
907   if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
908     return nullptr;
909 
910   // Create the canonical compare: icmp slt LHS 0.
911   if (!CmpCanonicalized) {
912     Cmp.setPredicate(ICmpInst::ICMP_SLT);
913     Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
914     if (CmpUsesNegatedOp)
915       Cmp.setOperand(0, LHS);
916   }
917 
918   // Create the canonical RHS: RHS = sub (0, LHS).
919   if (!RHSCanonicalized) {
920     assert(RHS->hasOneUse() && "RHS use number is not right");
921     RHS = Builder.CreateNeg(LHS);
922     if (TVal == LHS) {
923       Sel.setFalseValue(RHS);
924       FVal = RHS;
925     } else {
926       Sel.setTrueValue(RHS);
927       TVal = RHS;
928     }
929   }
930 
931   // If the select operands do not change, we're done.
932   if (SPF == SelectPatternFlavor::SPF_NABS) {
933     if (TVal == LHS)
934       return &Sel;
935     assert(FVal == LHS && "Unexpected results from matchSelectPattern");
936   } else {
937     if (FVal == LHS)
938       return &Sel;
939     assert(TVal == LHS && "Unexpected results from matchSelectPattern");
940   }
941 
942   // We are swapping the select operands, so swap the metadata too.
943   Sel.setTrueValue(FVal);
944   Sel.setFalseValue(TVal);
945   Sel.swapProfMetadata();
946   return &Sel;
947 }
948 
949 /// Visit a SelectInst that has an ICmpInst as its first operand.
950 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
951                                                   ICmpInst *ICI) {
952   Value *TrueVal = SI.getTrueValue();
953   Value *FalseVal = SI.getFalseValue();
954 
955   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
956     return NewSel;
957 
958   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
959     return NewAbs;
960 
961   bool Changed = adjustMinMax(SI, *ICI);
962 
963   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
964     return replaceInstUsesWith(SI, V);
965 
966   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
967   ICmpInst::Predicate Pred = ICI->getPredicate();
968   Value *CmpLHS = ICI->getOperand(0);
969   Value *CmpRHS = ICI->getOperand(1);
970   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
971     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
972       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
973       SI.setOperand(1, CmpRHS);
974       Changed = true;
975     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
976       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
977       SI.setOperand(2, CmpRHS);
978       Changed = true;
979     }
980   }
981 
982   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
983   // decomposeBitTestICmp() might help.
984   {
985     unsigned BitWidth =
986         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
987     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
988     Value *X;
989     const APInt *Y, *C;
990     bool TrueWhenUnset;
991     bool IsBitTest = false;
992     if (ICmpInst::isEquality(Pred) &&
993         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
994         match(CmpRHS, m_Zero())) {
995       IsBitTest = true;
996       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
997     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
998       X = CmpLHS;
999       Y = &MinSignedValue;
1000       IsBitTest = true;
1001       TrueWhenUnset = false;
1002     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1003       X = CmpLHS;
1004       Y = &MinSignedValue;
1005       IsBitTest = true;
1006       TrueWhenUnset = true;
1007     }
1008     if (IsBitTest) {
1009       Value *V = nullptr;
1010       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1011       if (TrueWhenUnset && TrueVal == X &&
1012           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1013         V = Builder.CreateAnd(X, ~(*Y));
1014       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1015       else if (!TrueWhenUnset && FalseVal == X &&
1016                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1017         V = Builder.CreateAnd(X, ~(*Y));
1018       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1019       else if (TrueWhenUnset && FalseVal == X &&
1020                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1021         V = Builder.CreateOr(X, *Y);
1022       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1023       else if (!TrueWhenUnset && TrueVal == X &&
1024                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1025         V = Builder.CreateOr(X, *Y);
1026 
1027       if (V)
1028         return replaceInstUsesWith(SI, V);
1029     }
1030   }
1031 
1032   if (Instruction *V =
1033           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1034     return V;
1035 
1036   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1037     return replaceInstUsesWith(SI, V);
1038 
1039   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1040     return replaceInstUsesWith(SI, V);
1041 
1042   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1043     return replaceInstUsesWith(SI, V);
1044 
1045   return Changed ? &SI : nullptr;
1046 }
1047 
1048 /// SI is a select whose condition is a PHI node (but the two may be in
1049 /// different blocks). See if the true/false values (V) are live in all of the
1050 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1051 ///
1052 ///   X = phi [ C1, BB1], [C2, BB2]
1053 ///   Y = add
1054 ///   Z = select X, Y, 0
1055 ///
1056 /// because Y is not live in BB1/BB2.
1057 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1058                                                    const SelectInst &SI) {
1059   // If the value is a non-instruction value like a constant or argument, it
1060   // can always be mapped.
1061   const Instruction *I = dyn_cast<Instruction>(V);
1062   if (!I) return true;
1063 
1064   // If V is a PHI node defined in the same block as the condition PHI, we can
1065   // map the arguments.
1066   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1067 
1068   if (const PHINode *VP = dyn_cast<PHINode>(I))
1069     if (VP->getParent() == CondPHI->getParent())
1070       return true;
1071 
1072   // Otherwise, if the PHI and select are defined in the same block and if V is
1073   // defined in a different block, then we can transform it.
1074   if (SI.getParent() == CondPHI->getParent() &&
1075       I->getParent() != CondPHI->getParent())
1076     return true;
1077 
1078   // Otherwise we have a 'hard' case and we can't tell without doing more
1079   // detailed dominator based analysis, punt.
1080   return false;
1081 }
1082 
1083 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1084 ///   SPF2(SPF1(A, B), C)
1085 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1086                                         SelectPatternFlavor SPF1,
1087                                         Value *A, Value *B,
1088                                         Instruction &Outer,
1089                                         SelectPatternFlavor SPF2, Value *C) {
1090   if (Outer.getType() != Inner->getType())
1091     return nullptr;
1092 
1093   if (C == A || C == B) {
1094     // MAX(MAX(A, B), B) -> MAX(A, B)
1095     // MIN(MIN(a, b), a) -> MIN(a, b)
1096     // TODO: This could be done in instsimplify.
1097     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1098       return replaceInstUsesWith(Outer, Inner);
1099 
1100     // MAX(MIN(a, b), a) -> a
1101     // MIN(MAX(a, b), a) -> a
1102     // TODO: This could be done in instsimplify.
1103     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1104         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1105         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1106         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1107       return replaceInstUsesWith(Outer, C);
1108   }
1109 
1110   if (SPF1 == SPF2) {
1111     const APInt *CB, *CC;
1112     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1113       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1114       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1115       // TODO: This could be done in instsimplify.
1116       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1117           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1118           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1119           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1120         return replaceInstUsesWith(Outer, Inner);
1121 
1122       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1123       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1124       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1125           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1126           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1127           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1128         Outer.replaceUsesOfWith(Inner, A);
1129         return &Outer;
1130       }
1131     }
1132   }
1133 
1134   // ABS(ABS(X)) -> ABS(X)
1135   // NABS(NABS(X)) -> NABS(X)
1136   // TODO: This could be done in instsimplify.
1137   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1138     return replaceInstUsesWith(Outer, Inner);
1139   }
1140 
1141   // ABS(NABS(X)) -> ABS(X)
1142   // NABS(ABS(X)) -> NABS(X)
1143   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1144       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1145     SelectInst *SI = cast<SelectInst>(Inner);
1146     Value *NewSI =
1147         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1148                              SI->getTrueValue(), SI->getName(), SI);
1149     return replaceInstUsesWith(Outer, NewSI);
1150   }
1151 
1152   auto IsFreeOrProfitableToInvert =
1153       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1154     if (match(V, m_Not(m_Value(NotV)))) {
1155       // If V has at most 2 uses then we can get rid of the xor operation
1156       // entirely.
1157       ElidesXor |= !V->hasNUsesOrMore(3);
1158       return true;
1159     }
1160 
1161     if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1162       NotV = nullptr;
1163       return true;
1164     }
1165 
1166     return false;
1167   };
1168 
1169   Value *NotA, *NotB, *NotC;
1170   bool ElidesXor = false;
1171 
1172   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1173   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1174   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1175   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1176   //
1177   // This transform is performance neutral if we can elide at least one xor from
1178   // the set of three operands, since we'll be tacking on an xor at the very
1179   // end.
1180   if (SelectPatternResult::isMinOrMax(SPF1) &&
1181       SelectPatternResult::isMinOrMax(SPF2) &&
1182       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1183       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1184       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1185     if (!NotA)
1186       NotA = Builder.CreateNot(A);
1187     if (!NotB)
1188       NotB = Builder.CreateNot(B);
1189     if (!NotC)
1190       NotC = Builder.CreateNot(C);
1191 
1192     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1193                                    NotB);
1194     Value *NewOuter = Builder.CreateNot(
1195         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1196     return replaceInstUsesWith(Outer, NewOuter);
1197   }
1198 
1199   return nullptr;
1200 }
1201 
1202 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1203 /// This is even legal for FP.
1204 static Instruction *foldAddSubSelect(SelectInst &SI,
1205                                      InstCombiner::BuilderTy &Builder) {
1206   Value *CondVal = SI.getCondition();
1207   Value *TrueVal = SI.getTrueValue();
1208   Value *FalseVal = SI.getFalseValue();
1209   auto *TI = dyn_cast<Instruction>(TrueVal);
1210   auto *FI = dyn_cast<Instruction>(FalseVal);
1211   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1212     return nullptr;
1213 
1214   Instruction *AddOp = nullptr, *SubOp = nullptr;
1215   if ((TI->getOpcode() == Instruction::Sub &&
1216        FI->getOpcode() == Instruction::Add) ||
1217       (TI->getOpcode() == Instruction::FSub &&
1218        FI->getOpcode() == Instruction::FAdd)) {
1219     AddOp = FI;
1220     SubOp = TI;
1221   } else if ((FI->getOpcode() == Instruction::Sub &&
1222               TI->getOpcode() == Instruction::Add) ||
1223              (FI->getOpcode() == Instruction::FSub &&
1224               TI->getOpcode() == Instruction::FAdd)) {
1225     AddOp = TI;
1226     SubOp = FI;
1227   }
1228 
1229   if (AddOp) {
1230     Value *OtherAddOp = nullptr;
1231     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1232       OtherAddOp = AddOp->getOperand(1);
1233     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1234       OtherAddOp = AddOp->getOperand(0);
1235     }
1236 
1237     if (OtherAddOp) {
1238       // So at this point we know we have (Y -> OtherAddOp):
1239       //        select C, (add X, Y), (sub X, Z)
1240       Value *NegVal; // Compute -Z
1241       if (SI.getType()->isFPOrFPVectorTy()) {
1242         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1243         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1244           FastMathFlags Flags = AddOp->getFastMathFlags();
1245           Flags &= SubOp->getFastMathFlags();
1246           NegInst->setFastMathFlags(Flags);
1247         }
1248       } else {
1249         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1250       }
1251 
1252       Value *NewTrueOp = OtherAddOp;
1253       Value *NewFalseOp = NegVal;
1254       if (AddOp != TI)
1255         std::swap(NewTrueOp, NewFalseOp);
1256       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1257                                            SI.getName() + ".p", &SI);
1258 
1259       if (SI.getType()->isFPOrFPVectorTy()) {
1260         Instruction *RI =
1261             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1262 
1263         FastMathFlags Flags = AddOp->getFastMathFlags();
1264         Flags &= SubOp->getFastMathFlags();
1265         RI->setFastMathFlags(Flags);
1266         return RI;
1267       } else
1268         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1269     }
1270   }
1271   return nullptr;
1272 }
1273 
1274 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1275   Constant *C;
1276   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1277       !match(Sel.getFalseValue(), m_Constant(C)))
1278     return nullptr;
1279 
1280   Instruction *ExtInst;
1281   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1282       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1283     return nullptr;
1284 
1285   auto ExtOpcode = ExtInst->getOpcode();
1286   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1287     return nullptr;
1288 
1289   // If we are extending from a boolean type or if we can create a select that
1290   // has the same size operands as its condition, try to narrow the select.
1291   Value *X = ExtInst->getOperand(0);
1292   Type *SmallType = X->getType();
1293   Value *Cond = Sel.getCondition();
1294   auto *Cmp = dyn_cast<CmpInst>(Cond);
1295   if (!SmallType->isIntOrIntVectorTy(1) &&
1296       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1297     return nullptr;
1298 
1299   // If the constant is the same after truncation to the smaller type and
1300   // extension to the original type, we can narrow the select.
1301   Type *SelType = Sel.getType();
1302   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1303   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1304   if (ExtC == C) {
1305     Value *TruncCVal = cast<Value>(TruncC);
1306     if (ExtInst == Sel.getFalseValue())
1307       std::swap(X, TruncCVal);
1308 
1309     // select Cond, (ext X), C --> ext(select Cond, X, C')
1310     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1311     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1312     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1313   }
1314 
1315   // If one arm of the select is the extend of the condition, replace that arm
1316   // with the extension of the appropriate known bool value.
1317   if (Cond == X) {
1318     if (ExtInst == Sel.getTrueValue()) {
1319       // select X, (sext X), C --> select X, -1, C
1320       // select X, (zext X), C --> select X,  1, C
1321       Constant *One = ConstantInt::getTrue(SmallType);
1322       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1323       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1324     } else {
1325       // select X, C, (sext X) --> select X, C, 0
1326       // select X, C, (zext X) --> select X, C, 0
1327       Constant *Zero = ConstantInt::getNullValue(SelType);
1328       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1329     }
1330   }
1331 
1332   return nullptr;
1333 }
1334 
1335 /// Try to transform a vector select with a constant condition vector into a
1336 /// shuffle for easier combining with other shuffles and insert/extract.
1337 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1338   Value *CondVal = SI.getCondition();
1339   Constant *CondC;
1340   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1341     return nullptr;
1342 
1343   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1344   SmallVector<Constant *, 16> Mask;
1345   Mask.reserve(NumElts);
1346   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1347   for (unsigned i = 0; i != NumElts; ++i) {
1348     Constant *Elt = CondC->getAggregateElement(i);
1349     if (!Elt)
1350       return nullptr;
1351 
1352     if (Elt->isOneValue()) {
1353       // If the select condition element is true, choose from the 1st vector.
1354       Mask.push_back(ConstantInt::get(Int32Ty, i));
1355     } else if (Elt->isNullValue()) {
1356       // If the select condition element is false, choose from the 2nd vector.
1357       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1358     } else if (isa<UndefValue>(Elt)) {
1359       // Undef in a select condition (choose one of the operands) does not mean
1360       // the same thing as undef in a shuffle mask (any value is acceptable), so
1361       // give up.
1362       return nullptr;
1363     } else {
1364       // Bail out on a constant expression.
1365       return nullptr;
1366     }
1367   }
1368 
1369   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1370                                ConstantVector::get(Mask));
1371 }
1372 
1373 /// Reuse bitcasted operands between a compare and select:
1374 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1375 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1376 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1377                                           InstCombiner::BuilderTy &Builder) {
1378   Value *Cond = Sel.getCondition();
1379   Value *TVal = Sel.getTrueValue();
1380   Value *FVal = Sel.getFalseValue();
1381 
1382   CmpInst::Predicate Pred;
1383   Value *A, *B;
1384   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1385     return nullptr;
1386 
1387   // The select condition is a compare instruction. If the select's true/false
1388   // values are already the same as the compare operands, there's nothing to do.
1389   if (TVal == A || TVal == B || FVal == A || FVal == B)
1390     return nullptr;
1391 
1392   Value *C, *D;
1393   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1394     return nullptr;
1395 
1396   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1397   Value *TSrc, *FSrc;
1398   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1399       !match(FVal, m_BitCast(m_Value(FSrc))))
1400     return nullptr;
1401 
1402   // If the select true/false values are *different bitcasts* of the same source
1403   // operands, make the select operands the same as the compare operands and
1404   // cast the result. This is the canonical select form for min/max.
1405   Value *NewSel;
1406   if (TSrc == C && FSrc == D) {
1407     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1408     // bitcast (select (cmp A, B), A, B)
1409     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1410   } else if (TSrc == D && FSrc == C) {
1411     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1412     // bitcast (select (cmp A, B), B, A)
1413     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1414   } else {
1415     return nullptr;
1416   }
1417   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1418 }
1419 
1420 /// Try to eliminate select instructions that test the returned flag of cmpxchg
1421 /// instructions.
1422 ///
1423 /// If a select instruction tests the returned flag of a cmpxchg instruction and
1424 /// selects between the returned value of the cmpxchg instruction its compare
1425 /// operand, the result of the select will always be equal to its false value.
1426 /// For example:
1427 ///
1428 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1429 ///   %1 = extractvalue { i64, i1 } %0, 1
1430 ///   %2 = extractvalue { i64, i1 } %0, 0
1431 ///   %3 = select i1 %1, i64 %compare, i64 %2
1432 ///   ret i64 %3
1433 ///
1434 /// The returned value of the cmpxchg instruction (%2) is the original value
1435 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
1436 /// must have been equal to %compare. Thus, the result of the select is always
1437 /// equal to %2, and the code can be simplified to:
1438 ///
1439 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1440 ///   %1 = extractvalue { i64, i1 } %0, 0
1441 ///   ret i64 %1
1442 ///
1443 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
1444   // A helper that determines if V is an extractvalue instruction whose
1445   // aggregate operand is a cmpxchg instruction and whose single index is equal
1446   // to I. If such conditions are true, the helper returns the cmpxchg
1447   // instruction; otherwise, a nullptr is returned.
1448   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
1449     auto *Extract = dyn_cast<ExtractValueInst>(V);
1450     if (!Extract)
1451       return nullptr;
1452     if (Extract->getIndices()[0] != I)
1453       return nullptr;
1454     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
1455   };
1456 
1457   // If the select has a single user, and this user is a select instruction that
1458   // we can simplify, skip the cmpxchg simplification for now.
1459   if (SI.hasOneUse())
1460     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
1461       if (Select->getCondition() == SI.getCondition())
1462         if (Select->getFalseValue() == SI.getTrueValue() ||
1463             Select->getTrueValue() == SI.getFalseValue())
1464           return nullptr;
1465 
1466   // Ensure the select condition is the returned flag of a cmpxchg instruction.
1467   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
1468   if (!CmpXchg)
1469     return nullptr;
1470 
1471   // Check the true value case: The true value of the select is the returned
1472   // value of the same cmpxchg used by the condition, and the false value is the
1473   // cmpxchg instruction's compare operand.
1474   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
1475     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
1476       SI.setTrueValue(SI.getFalseValue());
1477       return &SI;
1478     }
1479 
1480   // Check the false value case: The false value of the select is the returned
1481   // value of the same cmpxchg used by the condition, and the true value is the
1482   // cmpxchg instruction's compare operand.
1483   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
1484     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
1485       SI.setTrueValue(SI.getFalseValue());
1486       return &SI;
1487     }
1488 
1489   return nullptr;
1490 }
1491 
1492 /// Reduce a sequence of min/max with a common operand.
1493 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
1494                                         Value *RHS,
1495                                         InstCombiner::BuilderTy &Builder) {
1496   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
1497   // TODO: Allow FP min/max with nnan/nsz.
1498   if (!LHS->getType()->isIntOrIntVectorTy())
1499     return nullptr;
1500 
1501   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1502   Value *A, *B, *C, *D;
1503   SelectPatternResult L = matchSelectPattern(LHS, A, B);
1504   SelectPatternResult R = matchSelectPattern(RHS, C, D);
1505   if (SPF != L.Flavor || L.Flavor != R.Flavor)
1506     return nullptr;
1507 
1508   // Look for a common operand. The use checks are different than usual because
1509   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
1510   // the select.
1511   Value *MinMaxOp = nullptr;
1512   Value *ThirdOp = nullptr;
1513   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
1514     // If the LHS is only used in this chain and the RHS is used outside of it,
1515     // reuse the RHS min/max because that will eliminate the LHS.
1516     if (D == A || C == A) {
1517       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1518       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1519       MinMaxOp = RHS;
1520       ThirdOp = B;
1521     } else if (D == B || C == B) {
1522       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1523       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1524       MinMaxOp = RHS;
1525       ThirdOp = A;
1526     }
1527   } else if (!RHS->hasNUsesOrMore(3)) {
1528     // Reuse the LHS. This will eliminate the RHS.
1529     if (D == A || D == B) {
1530       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1531       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1532       MinMaxOp = LHS;
1533       ThirdOp = C;
1534     } else if (C == A || C == B) {
1535       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1536       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1537       MinMaxOp = LHS;
1538       ThirdOp = D;
1539     }
1540   }
1541   if (!MinMaxOp || !ThirdOp)
1542     return nullptr;
1543 
1544   CmpInst::Predicate P = getMinMaxPred(SPF);
1545   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
1546   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
1547 }
1548 
1549 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
1550   Value *CondVal = SI.getCondition();
1551   Value *TrueVal = SI.getTrueValue();
1552   Value *FalseVal = SI.getFalseValue();
1553   Type *SelType = SI.getType();
1554 
1555   // FIXME: Remove this workaround when freeze related patches are done.
1556   // For select with undef operand which feeds into an equality comparison,
1557   // don't simplify it so loop unswitch can know the equality comparison
1558   // may have an undef operand. This is a workaround for PR31652 caused by
1559   // descrepancy about branch on undef between LoopUnswitch and GVN.
1560   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
1561     if (llvm::any_of(SI.users(), [&](User *U) {
1562           ICmpInst *CI = dyn_cast<ICmpInst>(U);
1563           if (CI && CI->isEquality())
1564             return true;
1565           return false;
1566         })) {
1567       return nullptr;
1568     }
1569   }
1570 
1571   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
1572                                     SQ.getWithInstruction(&SI)))
1573     return replaceInstUsesWith(SI, V);
1574 
1575   if (Instruction *I = canonicalizeSelectToShuffle(SI))
1576     return I;
1577 
1578   // Canonicalize a one-use integer compare with a non-canonical predicate by
1579   // inverting the predicate and swapping the select operands. This matches a
1580   // compare canonicalization for conditional branches.
1581   // TODO: Should we do the same for FP compares?
1582   CmpInst::Predicate Pred;
1583   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
1584       !isCanonicalPredicate(Pred)) {
1585     // Swap true/false values and condition.
1586     CmpInst *Cond = cast<CmpInst>(CondVal);
1587     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
1588     SI.setOperand(1, FalseVal);
1589     SI.setOperand(2, TrueVal);
1590     SI.swapProfMetadata();
1591     Worklist.Add(Cond);
1592     return &SI;
1593   }
1594 
1595   if (SelType->isIntOrIntVectorTy(1) &&
1596       TrueVal->getType() == CondVal->getType()) {
1597     if (match(TrueVal, m_One())) {
1598       // Change: A = select B, true, C --> A = or B, C
1599       return BinaryOperator::CreateOr(CondVal, FalseVal);
1600     }
1601     if (match(TrueVal, m_Zero())) {
1602       // Change: A = select B, false, C --> A = and !B, C
1603       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1604       return BinaryOperator::CreateAnd(NotCond, FalseVal);
1605     }
1606     if (match(FalseVal, m_Zero())) {
1607       // Change: A = select B, C, false --> A = and B, C
1608       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1609     }
1610     if (match(FalseVal, m_One())) {
1611       // Change: A = select B, C, true --> A = or !B, C
1612       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1613       return BinaryOperator::CreateOr(NotCond, TrueVal);
1614     }
1615 
1616     // select a, a, b  -> a | b
1617     // select a, b, a  -> a & b
1618     if (CondVal == TrueVal)
1619       return BinaryOperator::CreateOr(CondVal, FalseVal);
1620     if (CondVal == FalseVal)
1621       return BinaryOperator::CreateAnd(CondVal, TrueVal);
1622 
1623     // select a, ~a, b -> (~a) & b
1624     // select a, b, ~a -> (~a) | b
1625     if (match(TrueVal, m_Not(m_Specific(CondVal))))
1626       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
1627     if (match(FalseVal, m_Not(m_Specific(CondVal))))
1628       return BinaryOperator::CreateOr(TrueVal, FalseVal);
1629   }
1630 
1631   // Selecting between two integer or vector splat integer constants?
1632   //
1633   // Note that we don't handle a scalar select of vectors:
1634   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
1635   // because that may need 3 instructions to splat the condition value:
1636   // extend, insertelement, shufflevector.
1637   if (SelType->isIntOrIntVectorTy() &&
1638       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
1639     // select C, 1, 0 -> zext C to int
1640     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
1641       return new ZExtInst(CondVal, SelType);
1642 
1643     // select C, -1, 0 -> sext C to int
1644     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
1645       return new SExtInst(CondVal, SelType);
1646 
1647     // select C, 0, 1 -> zext !C to int
1648     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
1649       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1650       return new ZExtInst(NotCond, SelType);
1651     }
1652 
1653     // select C, 0, -1 -> sext !C to int
1654     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
1655       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
1656       return new SExtInst(NotCond, SelType);
1657     }
1658   }
1659 
1660   // See if we are selecting two values based on a comparison of the two values.
1661   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
1662     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
1663       // Canonicalize to use ordered comparisons by swapping the select
1664       // operands.
1665       //
1666       // e.g.
1667       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
1668       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1669         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1670         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1671         Builder.setFastMathFlags(FCI->getFastMathFlags());
1672         Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
1673                                             FCI->getName() + ".inv");
1674 
1675         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1676                                   SI.getName() + ".p");
1677       }
1678 
1679       // NOTE: if we wanted to, this is where to detect MIN/MAX
1680     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
1681       // Canonicalize to use ordered comparisons by swapping the select
1682       // operands.
1683       //
1684       // e.g.
1685       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
1686       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
1687         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
1688         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1689         Builder.setFastMathFlags(FCI->getFastMathFlags());
1690         Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
1691                                             FCI->getName() + ".inv");
1692 
1693         return SelectInst::Create(NewCond, FalseVal, TrueVal,
1694                                   SI.getName() + ".p");
1695       }
1696 
1697       // NOTE: if we wanted to, this is where to detect MIN/MAX
1698     }
1699 
1700     // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
1701     // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
1702     // also require nnan because we do not want to unintentionally change the
1703     // sign of a NaN value.
1704     Value *X = FCI->getOperand(0);
1705     FCmpInst::Predicate Pred = FCI->getPredicate();
1706     if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) {
1707       // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
1708       // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
1709       if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE &&
1710            match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) ||
1711           (X == TrueVal && Pred == FCmpInst::FCMP_OGT &&
1712            match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) {
1713         Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI);
1714         return replaceInstUsesWith(SI, Fabs);
1715       }
1716       // With nsz:
1717       // (X <  +/-0.0) ? -X : X --> fabs(X)
1718       // (X <= +/-0.0) ? -X : X --> fabs(X)
1719       // (X >  +/-0.0) ? X : -X --> fabs(X)
1720       // (X >= +/-0.0) ? X : -X --> fabs(X)
1721       if (FCI->hasNoSignedZeros() &&
1722           ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) &&
1723             (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) ||
1724            (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) &&
1725             (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) {
1726         Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI);
1727         return replaceInstUsesWith(SI, Fabs);
1728       }
1729     }
1730   }
1731 
1732   // See if we are selecting two values based on a comparison of the two values.
1733   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
1734     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
1735       return Result;
1736 
1737   if (Instruction *Add = foldAddSubSelect(SI, Builder))
1738     return Add;
1739 
1740   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
1741   auto *TI = dyn_cast<Instruction>(TrueVal);
1742   auto *FI = dyn_cast<Instruction>(FalseVal);
1743   if (TI && FI && TI->getOpcode() == FI->getOpcode())
1744     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
1745       return IV;
1746 
1747   if (Instruction *I = foldSelectExtConst(SI))
1748     return I;
1749 
1750   // See if we can fold the select into one of our operands.
1751   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
1752     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
1753       return FoldI;
1754 
1755     Value *LHS, *RHS;
1756     Instruction::CastOps CastOp;
1757     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
1758     auto SPF = SPR.Flavor;
1759     if (SPF) {
1760       Value *LHS2, *RHS2;
1761       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
1762         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
1763                                           RHS2, SI, SPF, RHS))
1764           return R;
1765       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
1766         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
1767                                           RHS2, SI, SPF, LHS))
1768           return R;
1769       // TODO.
1770       // ABS(-X) -> ABS(X)
1771     }
1772 
1773     if (SelectPatternResult::isMinOrMax(SPF)) {
1774       // Canonicalize so that
1775       // - type casts are outside select patterns.
1776       // - float clamp is transformed to min/max pattern
1777 
1778       bool IsCastNeeded = LHS->getType() != SelType;
1779       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
1780       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
1781       if (IsCastNeeded ||
1782           (LHS->getType()->isFPOrFPVectorTy() &&
1783            ((CmpLHS != LHS && CmpLHS != RHS) ||
1784             (CmpRHS != LHS && CmpRHS != RHS)))) {
1785         CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered);
1786 
1787         Value *Cmp;
1788         if (CmpInst::isIntPredicate(Pred)) {
1789           Cmp = Builder.CreateICmp(Pred, LHS, RHS);
1790         } else {
1791           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
1792           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
1793           Builder.setFastMathFlags(FMF);
1794           Cmp = Builder.CreateFCmp(Pred, LHS, RHS);
1795         }
1796 
1797         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
1798         if (!IsCastNeeded)
1799           return replaceInstUsesWith(SI, NewSI);
1800 
1801         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
1802         return replaceInstUsesWith(SI, NewCast);
1803       }
1804 
1805       // MAX(~a, ~b) -> ~MIN(a, b)
1806       // MAX(~a, C)  -> ~MIN(a, ~C)
1807       // MIN(~a, ~b) -> ~MAX(a, b)
1808       // MIN(~a, C)  -> ~MAX(a, ~C)
1809       auto moveNotAfterMinMax = [&](Value *X, Value *Y,
1810                                     bool Swapped) -> Instruction * {
1811         Value *A;
1812         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
1813             !IsFreeToInvert(A, A->hasOneUse()) &&
1814             // Passing false to only consider m_Not and constants.
1815             IsFreeToInvert(Y, false)) {
1816           Value *B = Builder.CreateNot(Y);
1817           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
1818                                           A, B);
1819           // Copy the profile metadata.
1820           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
1821             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
1822             // Swap the metadata if the operands are swapped.
1823             if (Swapped) {
1824               assert(X == SI.getFalseValue() && Y == SI.getTrueValue() &&
1825                      "Unexpected operands.");
1826               cast<SelectInst>(NewMinMax)->swapProfMetadata();
1827             } else {
1828               assert(X == SI.getTrueValue() && Y == SI.getFalseValue() &&
1829                      "Unexpected operands.");
1830             }
1831           }
1832 
1833           return BinaryOperator::CreateNot(NewMinMax);
1834         }
1835 
1836         return nullptr;
1837       };
1838 
1839       if (Instruction *I = moveNotAfterMinMax(LHS, RHS, /*Swapped*/false))
1840         return I;
1841       if (Instruction *I = moveNotAfterMinMax(RHS, LHS, /*Swapped*/true))
1842         return I;
1843 
1844       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
1845         return I;
1846     }
1847   }
1848 
1849   // See if we can fold the select into a phi node if the condition is a select.
1850   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
1851     // The true/false values have to be live in the PHI predecessor's blocks.
1852     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
1853         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
1854       if (Instruction *NV = foldOpIntoPhi(SI, PN))
1855         return NV;
1856 
1857   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
1858     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
1859       // select(C, select(C, a, b), c) -> select(C, a, c)
1860       if (TrueSI->getCondition() == CondVal) {
1861         if (SI.getTrueValue() == TrueSI->getTrueValue())
1862           return nullptr;
1863         SI.setOperand(1, TrueSI->getTrueValue());
1864         return &SI;
1865       }
1866       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
1867       // We choose this as normal form to enable folding on the And and shortening
1868       // paths for the values (this helps GetUnderlyingObjects() for example).
1869       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
1870         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
1871         SI.setOperand(0, And);
1872         SI.setOperand(1, TrueSI->getTrueValue());
1873         return &SI;
1874       }
1875     }
1876   }
1877   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
1878     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
1879       // select(C, a, select(C, b, c)) -> select(C, a, c)
1880       if (FalseSI->getCondition() == CondVal) {
1881         if (SI.getFalseValue() == FalseSI->getFalseValue())
1882           return nullptr;
1883         SI.setOperand(2, FalseSI->getFalseValue());
1884         return &SI;
1885       }
1886       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
1887       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
1888         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
1889         SI.setOperand(0, Or);
1890         SI.setOperand(2, FalseSI->getFalseValue());
1891         return &SI;
1892       }
1893     }
1894   }
1895 
1896   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
1897     // The select might be preventing a division by 0.
1898     switch (BO->getOpcode()) {
1899     default:
1900       return true;
1901     case Instruction::SRem:
1902     case Instruction::URem:
1903     case Instruction::SDiv:
1904     case Instruction::UDiv:
1905       return false;
1906     }
1907   };
1908 
1909   // Try to simplify a binop sandwiched between 2 selects with the same
1910   // condition.
1911   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
1912   BinaryOperator *TrueBO;
1913   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
1914       canMergeSelectThroughBinop(TrueBO)) {
1915     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
1916       if (TrueBOSI->getCondition() == CondVal) {
1917         TrueBO->setOperand(0, TrueBOSI->getTrueValue());
1918         Worklist.Add(TrueBO);
1919         return &SI;
1920       }
1921     }
1922     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
1923       if (TrueBOSI->getCondition() == CondVal) {
1924         TrueBO->setOperand(1, TrueBOSI->getTrueValue());
1925         Worklist.Add(TrueBO);
1926         return &SI;
1927       }
1928     }
1929   }
1930 
1931   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
1932   BinaryOperator *FalseBO;
1933   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
1934       canMergeSelectThroughBinop(FalseBO)) {
1935     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
1936       if (FalseBOSI->getCondition() == CondVal) {
1937         FalseBO->setOperand(0, FalseBOSI->getFalseValue());
1938         Worklist.Add(FalseBO);
1939         return &SI;
1940       }
1941     }
1942     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
1943       if (FalseBOSI->getCondition() == CondVal) {
1944         FalseBO->setOperand(1, FalseBOSI->getFalseValue());
1945         Worklist.Add(FalseBO);
1946         return &SI;
1947       }
1948     }
1949   }
1950 
1951   Value *NotCond;
1952   if (match(CondVal, m_Not(m_Value(NotCond)))) {
1953     SI.setOperand(0, NotCond);
1954     SI.setOperand(1, FalseVal);
1955     SI.setOperand(2, TrueVal);
1956     SI.swapProfMetadata();
1957     return &SI;
1958   }
1959 
1960   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
1961     unsigned VWidth = VecTy->getNumElements();
1962     APInt UndefElts(VWidth, 0);
1963     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
1964     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
1965       if (V != &SI)
1966         return replaceInstUsesWith(SI, V);
1967       return &SI;
1968     }
1969   }
1970 
1971   // See if we can determine the result of this select based on a dominating
1972   // condition.
1973   BasicBlock *Parent = SI.getParent();
1974   if (BasicBlock *Dom = Parent->getSinglePredecessor()) {
1975     auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator());
1976     if (PBI && PBI->isConditional() &&
1977         PBI->getSuccessor(0) != PBI->getSuccessor(1) &&
1978         (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) {
1979       bool CondIsTrue = PBI->getSuccessor(0) == Parent;
1980       Optional<bool> Implication = isImpliedCondition(
1981           PBI->getCondition(), SI.getCondition(), DL, CondIsTrue);
1982       if (Implication) {
1983         Value *V = *Implication ? TrueVal : FalseVal;
1984         return replaceInstUsesWith(SI, V);
1985       }
1986     }
1987   }
1988 
1989   // If we can compute the condition, there's no need for a select.
1990   // Like the above fold, we are attempting to reduce compile-time cost by
1991   // putting this fold here with limitations rather than in InstSimplify.
1992   // The motivation for this call into value tracking is to take advantage of
1993   // the assumption cache, so make sure that is populated.
1994   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
1995     KnownBits Known(1);
1996     computeKnownBits(CondVal, Known, 0, &SI);
1997     if (Known.One.isOneValue())
1998       return replaceInstUsesWith(SI, TrueVal);
1999     if (Known.Zero.isOneValue())
2000       return replaceInstUsesWith(SI, FalseVal);
2001   }
2002 
2003   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2004     return BitCastSel;
2005 
2006   // Simplify selects that test the returned flag of cmpxchg instructions.
2007   if (Instruction *Select = foldSelectCmpXchg(SI))
2008     return Select;
2009 
2010   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
2011     return Select;
2012 
2013   return nullptr;
2014 }
2015