1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/OverflowInstAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/InstCombine/InstCombiner.h"
42 #include <cassert>
43 #include <utility>
44 
45 #define DEBUG_TYPE "instcombine"
46 #include "llvm/Transforms/Utils/InstructionWorklist.h"
47 
48 using namespace llvm;
49 using namespace PatternMatch;
50 
51 
52 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
53                            SelectPatternFlavor SPF, Value *A, Value *B) {
54   CmpInst::Predicate Pred = getMinMaxPred(SPF);
55   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
56   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
57 }
58 
59 /// Replace a select operand based on an equality comparison with the identity
60 /// constant of a binop.
61 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
62                                             const TargetLibraryInfo &TLI,
63                                             InstCombinerImpl &IC) {
64   // The select condition must be an equality compare with a constant operand.
65   Value *X;
66   Constant *C;
67   CmpInst::Predicate Pred;
68   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
69     return nullptr;
70 
71   bool IsEq;
72   if (ICmpInst::isEquality(Pred))
73     IsEq = Pred == ICmpInst::ICMP_EQ;
74   else if (Pred == FCmpInst::FCMP_OEQ)
75     IsEq = true;
76   else if (Pred == FCmpInst::FCMP_UNE)
77     IsEq = false;
78   else
79     return nullptr;
80 
81   // A select operand must be a binop.
82   BinaryOperator *BO;
83   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
84     return nullptr;
85 
86   // The compare constant must be the identity constant for that binop.
87   // If this a floating-point compare with 0.0, any zero constant will do.
88   Type *Ty = BO->getType();
89   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
90   if (IdC != C) {
91     if (!IdC || !CmpInst::isFPPredicate(Pred))
92       return nullptr;
93     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
94       return nullptr;
95   }
96 
97   // Last, match the compare variable operand with a binop operand.
98   Value *Y;
99   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
100     return nullptr;
101   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
102     return nullptr;
103 
104   // +0.0 compares equal to -0.0, and so it does not behave as required for this
105   // transform. Bail out if we can not exclude that possibility.
106   if (isa<FPMathOperator>(BO))
107     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
108       return nullptr;
109 
110   // BO = binop Y, X
111   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
112   // =>
113   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
114   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
115 }
116 
117 /// This folds:
118 ///  select (icmp eq (and X, C1)), TC, FC
119 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
120 /// To something like:
121 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
122 /// Or:
123 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
124 /// With some variations depending if FC is larger than TC, or the shift
125 /// isn't needed, or the bit widths don't match.
126 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
127                                 InstCombiner::BuilderTy &Builder) {
128   const APInt *SelTC, *SelFC;
129   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
130       !match(Sel.getFalseValue(), m_APInt(SelFC)))
131     return nullptr;
132 
133   // If this is a vector select, we need a vector compare.
134   Type *SelType = Sel.getType();
135   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
136     return nullptr;
137 
138   Value *V;
139   APInt AndMask;
140   bool CreateAnd = false;
141   ICmpInst::Predicate Pred = Cmp->getPredicate();
142   if (ICmpInst::isEquality(Pred)) {
143     if (!match(Cmp->getOperand(1), m_Zero()))
144       return nullptr;
145 
146     V = Cmp->getOperand(0);
147     const APInt *AndRHS;
148     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
149       return nullptr;
150 
151     AndMask = *AndRHS;
152   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
153                                   Pred, V, AndMask)) {
154     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
155     if (!AndMask.isPowerOf2())
156       return nullptr;
157 
158     CreateAnd = true;
159   } else {
160     return nullptr;
161   }
162 
163   // In general, when both constants are non-zero, we would need an offset to
164   // replace the select. This would require more instructions than we started
165   // with. But there's one special-case that we handle here because it can
166   // simplify/reduce the instructions.
167   APInt TC = *SelTC;
168   APInt FC = *SelFC;
169   if (!TC.isZero() && !FC.isZero()) {
170     // If the select constants differ by exactly one bit and that's the same
171     // bit that is masked and checked by the select condition, the select can
172     // be replaced by bitwise logic to set/clear one bit of the constant result.
173     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
174       return nullptr;
175     if (CreateAnd) {
176       // If we have to create an 'and', then we must kill the cmp to not
177       // increase the instruction count.
178       if (!Cmp->hasOneUse())
179         return nullptr;
180       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
181     }
182     bool ExtraBitInTC = TC.ugt(FC);
183     if (Pred == ICmpInst::ICMP_EQ) {
184       // If the masked bit in V is clear, clear or set the bit in the result:
185       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
186       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
187       Constant *C = ConstantInt::get(SelType, TC);
188       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
189     }
190     if (Pred == ICmpInst::ICMP_NE) {
191       // If the masked bit in V is set, set or clear the bit in the result:
192       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
193       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
194       Constant *C = ConstantInt::get(SelType, FC);
195       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
196     }
197     llvm_unreachable("Only expecting equality predicates");
198   }
199 
200   // Make sure one of the select arms is a power-of-2.
201   if (!TC.isPowerOf2() && !FC.isPowerOf2())
202     return nullptr;
203 
204   // Determine which shift is needed to transform result of the 'and' into the
205   // desired result.
206   const APInt &ValC = !TC.isZero() ? TC : FC;
207   unsigned ValZeros = ValC.logBase2();
208   unsigned AndZeros = AndMask.logBase2();
209 
210   // Insert the 'and' instruction on the input to the truncate.
211   if (CreateAnd)
212     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
213 
214   // If types don't match, we can still convert the select by introducing a zext
215   // or a trunc of the 'and'.
216   if (ValZeros > AndZeros) {
217     V = Builder.CreateZExtOrTrunc(V, SelType);
218     V = Builder.CreateShl(V, ValZeros - AndZeros);
219   } else if (ValZeros < AndZeros) {
220     V = Builder.CreateLShr(V, AndZeros - ValZeros);
221     V = Builder.CreateZExtOrTrunc(V, SelType);
222   } else {
223     V = Builder.CreateZExtOrTrunc(V, SelType);
224   }
225 
226   // Okay, now we know that everything is set up, we just don't know whether we
227   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
228   bool ShouldNotVal = !TC.isZero();
229   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
230   if (ShouldNotVal)
231     V = Builder.CreateXor(V, ValC);
232 
233   return V;
234 }
235 
236 /// We want to turn code that looks like this:
237 ///   %C = or %A, %B
238 ///   %D = select %cond, %C, %A
239 /// into:
240 ///   %C = select %cond, %B, 0
241 ///   %D = or %A, %C
242 ///
243 /// Assuming that the specified instruction is an operand to the select, return
244 /// a bitmask indicating which operands of this instruction are foldable if they
245 /// equal the other incoming value of the select.
246 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
247   switch (I->getOpcode()) {
248   case Instruction::Add:
249   case Instruction::FAdd:
250   case Instruction::Mul:
251   case Instruction::FMul:
252   case Instruction::And:
253   case Instruction::Or:
254   case Instruction::Xor:
255     return 3;              // Can fold through either operand.
256   case Instruction::Sub:   // Can only fold on the amount subtracted.
257   case Instruction::FSub:
258   case Instruction::FDiv:  // Can only fold on the divisor amount.
259   case Instruction::Shl:   // Can only fold on the shift amount.
260   case Instruction::LShr:
261   case Instruction::AShr:
262     return 1;
263   default:
264     return 0;              // Cannot fold
265   }
266 }
267 
268 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
269 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
270                                               Instruction *FI) {
271   // Don't break up min/max patterns. The hasOneUse checks below prevent that
272   // for most cases, but vector min/max with bitcasts can be transformed. If the
273   // one-use restrictions are eased for other patterns, we still don't want to
274   // obfuscate min/max.
275   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
276        match(&SI, m_SMax(m_Value(), m_Value())) ||
277        match(&SI, m_UMin(m_Value(), m_Value())) ||
278        match(&SI, m_UMax(m_Value(), m_Value()))))
279     return nullptr;
280 
281   // If this is a cast from the same type, merge.
282   Value *Cond = SI.getCondition();
283   Type *CondTy = Cond->getType();
284   if (TI->getNumOperands() == 1 && TI->isCast()) {
285     Type *FIOpndTy = FI->getOperand(0)->getType();
286     if (TI->getOperand(0)->getType() != FIOpndTy)
287       return nullptr;
288 
289     // The select condition may be a vector. We may only change the operand
290     // type if the vector width remains the same (and matches the condition).
291     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
292       if (!FIOpndTy->isVectorTy() ||
293           CondVTy->getElementCount() !=
294               cast<VectorType>(FIOpndTy)->getElementCount())
295         return nullptr;
296 
297       // TODO: If the backend knew how to deal with casts better, we could
298       // remove this limitation. For now, there's too much potential to create
299       // worse codegen by promoting the select ahead of size-altering casts
300       // (PR28160).
301       //
302       // Note that ValueTracking's matchSelectPattern() looks through casts
303       // without checking 'hasOneUse' when it matches min/max patterns, so this
304       // transform may end up happening anyway.
305       if (TI->getOpcode() != Instruction::BitCast &&
306           (!TI->hasOneUse() || !FI->hasOneUse()))
307         return nullptr;
308     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
309       // TODO: The one-use restrictions for a scalar select could be eased if
310       // the fold of a select in visitLoadInst() was enhanced to match a pattern
311       // that includes a cast.
312       return nullptr;
313     }
314 
315     // Fold this by inserting a select from the input values.
316     Value *NewSI =
317         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
318                              SI.getName() + ".v", &SI);
319     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
320                             TI->getType());
321   }
322 
323   // Cond ? -X : -Y --> -(Cond ? X : Y)
324   Value *X, *Y;
325   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
326       (TI->hasOneUse() || FI->hasOneUse())) {
327     // Intersect FMF from the fneg instructions and union those with the select.
328     FastMathFlags FMF = TI->getFastMathFlags();
329     FMF &= FI->getFastMathFlags();
330     FMF |= SI.getFastMathFlags();
331     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
332     if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
333       NewSelI->setFastMathFlags(FMF);
334     Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
335     NewFNeg->setFastMathFlags(FMF);
336     return NewFNeg;
337   }
338 
339   // Min/max intrinsic with a common operand can have the common operand pulled
340   // after the select. This is the same transform as below for binops, but
341   // specialized for intrinsic matching and without the restrictive uses clause.
342   auto *TII = dyn_cast<IntrinsicInst>(TI);
343   auto *FII = dyn_cast<IntrinsicInst>(FI);
344   if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() &&
345       (TII->hasOneUse() || FII->hasOneUse())) {
346     Value *T0, *T1, *F0, *F1;
347     if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) &&
348         match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) {
349       if (T0 == F0) {
350         Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI);
351         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
352       }
353       if (T0 == F1) {
354         Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI);
355         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
356       }
357       if (T1 == F0) {
358         Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI);
359         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
360       }
361       if (T1 == F1) {
362         Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI);
363         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
364       }
365     }
366   }
367 
368   // Only handle binary operators (including two-operand getelementptr) with
369   // one-use here. As with the cast case above, it may be possible to relax the
370   // one-use constraint, but that needs be examined carefully since it may not
371   // reduce the total number of instructions.
372   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
373       !TI->isSameOperationAs(FI) ||
374       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
375       !TI->hasOneUse() || !FI->hasOneUse())
376     return nullptr;
377 
378   // Figure out if the operations have any operands in common.
379   Value *MatchOp, *OtherOpT, *OtherOpF;
380   bool MatchIsOpZero;
381   if (TI->getOperand(0) == FI->getOperand(0)) {
382     MatchOp  = TI->getOperand(0);
383     OtherOpT = TI->getOperand(1);
384     OtherOpF = FI->getOperand(1);
385     MatchIsOpZero = true;
386   } else if (TI->getOperand(1) == FI->getOperand(1)) {
387     MatchOp  = TI->getOperand(1);
388     OtherOpT = TI->getOperand(0);
389     OtherOpF = FI->getOperand(0);
390     MatchIsOpZero = false;
391   } else if (!TI->isCommutative()) {
392     return nullptr;
393   } else if (TI->getOperand(0) == FI->getOperand(1)) {
394     MatchOp  = TI->getOperand(0);
395     OtherOpT = TI->getOperand(1);
396     OtherOpF = FI->getOperand(0);
397     MatchIsOpZero = true;
398   } else if (TI->getOperand(1) == FI->getOperand(0)) {
399     MatchOp  = TI->getOperand(1);
400     OtherOpT = TI->getOperand(0);
401     OtherOpF = FI->getOperand(1);
402     MatchIsOpZero = true;
403   } else {
404     return nullptr;
405   }
406 
407   // If the select condition is a vector, the operands of the original select's
408   // operands also must be vectors. This may not be the case for getelementptr
409   // for example.
410   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
411                                !OtherOpF->getType()->isVectorTy()))
412     return nullptr;
413 
414   // If we reach here, they do have operations in common.
415   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
416                                       SI.getName() + ".v", &SI);
417   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
418   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
419   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
420     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
421     NewBO->copyIRFlags(TI);
422     NewBO->andIRFlags(FI);
423     return NewBO;
424   }
425   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
426     auto *FGEP = cast<GetElementPtrInst>(FI);
427     Type *ElementType = TGEP->getResultElementType();
428     return TGEP->isInBounds() && FGEP->isInBounds()
429                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
430                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
431   }
432   llvm_unreachable("Expected BinaryOperator or GEP");
433   return nullptr;
434 }
435 
436 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
437   if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
438     return false;
439   return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
440 }
441 
442 /// Try to fold the select into one of the operands to allow further
443 /// optimization.
444 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
445                                                 Value *FalseVal) {
446   // See the comment above GetSelectFoldableOperands for a description of the
447   // transformation we are doing here.
448   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
449     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
450       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
451         unsigned OpToFold = 0;
452         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
453           OpToFold = 1;
454         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
455           OpToFold = 2;
456         }
457 
458         if (OpToFold) {
459           Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(),
460                                                        TVI->getType(), true);
461           Value *OOp = TVI->getOperand(2-OpToFold);
462           // Avoid creating select between 2 constants unless it's selecting
463           // between 0, 1 and -1.
464           const APInt *OOpC;
465           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
466           if (!isa<Constant>(OOp) ||
467               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
468             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
469             NewSel->takeName(TVI);
470             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
471                                                         FalseVal, NewSel);
472             BO->copyIRFlags(TVI);
473             return BO;
474           }
475         }
476       }
477     }
478   }
479 
480   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
481     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
482       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
483         unsigned OpToFold = 0;
484         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
485           OpToFold = 1;
486         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
487           OpToFold = 2;
488         }
489 
490         if (OpToFold) {
491           Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(),
492                                                        FVI->getType(), true);
493           Value *OOp = FVI->getOperand(2-OpToFold);
494           // Avoid creating select between 2 constants unless it's selecting
495           // between 0, 1 and -1.
496           const APInt *OOpC;
497           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
498           if (!isa<Constant>(OOp) ||
499               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
500             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
501             NewSel->takeName(FVI);
502             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
503                                                         TrueVal, NewSel);
504             BO->copyIRFlags(FVI);
505             return BO;
506           }
507         }
508       }
509     }
510   }
511 
512   return nullptr;
513 }
514 
515 /// We want to turn:
516 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
517 /// into:
518 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
519 /// Note:
520 ///   Z may be 0 if lshr is missing.
521 /// Worst-case scenario is that we will replace 5 instructions with 5 different
522 /// instructions, but we got rid of select.
523 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
524                                          Value *TVal, Value *FVal,
525                                          InstCombiner::BuilderTy &Builder) {
526   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
527         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
528         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
529     return nullptr;
530 
531   // The TrueVal has general form of:  and %B, 1
532   Value *B;
533   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
534     return nullptr;
535 
536   // Where %B may be optionally shifted:  lshr %X, %Z.
537   Value *X, *Z;
538   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
539   if (!HasShift)
540     X = B;
541 
542   Value *Y;
543   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
544     return nullptr;
545 
546   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
547   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
548   Constant *One = ConstantInt::get(SelType, 1);
549   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
550   Value *FullMask = Builder.CreateOr(Y, MaskB);
551   Value *MaskedX = Builder.CreateAnd(X, FullMask);
552   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
553   return new ZExtInst(ICmpNeZero, SelType);
554 }
555 
556 /// We want to turn:
557 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
558 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
559 /// into:
560 ///   ashr (X, Y)
561 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
562                                      Value *FalseVal,
563                                      InstCombiner::BuilderTy &Builder) {
564   ICmpInst::Predicate Pred = IC->getPredicate();
565   Value *CmpLHS = IC->getOperand(0);
566   Value *CmpRHS = IC->getOperand(1);
567   if (!CmpRHS->getType()->isIntOrIntVectorTy())
568     return nullptr;
569 
570   Value *X, *Y;
571   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
572   if ((Pred != ICmpInst::ICMP_SGT ||
573        !match(CmpRHS,
574               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
575       (Pred != ICmpInst::ICMP_SLT ||
576        !match(CmpRHS,
577               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
578     return nullptr;
579 
580   // Canonicalize so that ashr is in FalseVal.
581   if (Pred == ICmpInst::ICMP_SLT)
582     std::swap(TrueVal, FalseVal);
583 
584   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
585       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
586       match(CmpLHS, m_Specific(X))) {
587     const auto *Ashr = cast<Instruction>(FalseVal);
588     // if lshr is not exact and ashr is, this new ashr must not be exact.
589     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
590     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
591   }
592 
593   return nullptr;
594 }
595 
596 /// We want to turn:
597 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
598 /// into:
599 ///   (or (shl (and X, C1), C3), Y)
600 /// iff:
601 ///   C1 and C2 are both powers of 2
602 /// where:
603 ///   C3 = Log(C2) - Log(C1)
604 ///
605 /// This transform handles cases where:
606 /// 1. The icmp predicate is inverted
607 /// 2. The select operands are reversed
608 /// 3. The magnitude of C2 and C1 are flipped
609 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
610                                   Value *FalseVal,
611                                   InstCombiner::BuilderTy &Builder) {
612   // Only handle integer compares. Also, if this is a vector select, we need a
613   // vector compare.
614   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
615       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
616     return nullptr;
617 
618   Value *CmpLHS = IC->getOperand(0);
619   Value *CmpRHS = IC->getOperand(1);
620 
621   Value *V;
622   unsigned C1Log;
623   bool IsEqualZero;
624   bool NeedAnd = false;
625   if (IC->isEquality()) {
626     if (!match(CmpRHS, m_Zero()))
627       return nullptr;
628 
629     const APInt *C1;
630     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
631       return nullptr;
632 
633     V = CmpLHS;
634     C1Log = C1->logBase2();
635     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
636   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
637              IC->getPredicate() == ICmpInst::ICMP_SGT) {
638     // We also need to recognize (icmp slt (trunc (X)), 0) and
639     // (icmp sgt (trunc (X)), -1).
640     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
641     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
642         (!IsEqualZero && !match(CmpRHS, m_Zero())))
643       return nullptr;
644 
645     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
646       return nullptr;
647 
648     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
649     NeedAnd = true;
650   } else {
651     return nullptr;
652   }
653 
654   const APInt *C2;
655   bool OrOnTrueVal = false;
656   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
657   if (!OrOnFalseVal)
658     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
659 
660   if (!OrOnFalseVal && !OrOnTrueVal)
661     return nullptr;
662 
663   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
664 
665   unsigned C2Log = C2->logBase2();
666 
667   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
668   bool NeedShift = C1Log != C2Log;
669   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
670                        V->getType()->getScalarSizeInBits();
671 
672   // Make sure we don't create more instructions than we save.
673   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
674   if ((NeedShift + NeedXor + NeedZExtTrunc) >
675       (IC->hasOneUse() + Or->hasOneUse()))
676     return nullptr;
677 
678   if (NeedAnd) {
679     // Insert the AND instruction on the input to the truncate.
680     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
681     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
682   }
683 
684   if (C2Log > C1Log) {
685     V = Builder.CreateZExtOrTrunc(V, Y->getType());
686     V = Builder.CreateShl(V, C2Log - C1Log);
687   } else if (C1Log > C2Log) {
688     V = Builder.CreateLShr(V, C1Log - C2Log);
689     V = Builder.CreateZExtOrTrunc(V, Y->getType());
690   } else
691     V = Builder.CreateZExtOrTrunc(V, Y->getType());
692 
693   if (NeedXor)
694     V = Builder.CreateXor(V, *C2);
695 
696   return Builder.CreateOr(V, Y);
697 }
698 
699 /// Canonicalize a set or clear of a masked set of constant bits to
700 /// select-of-constants form.
701 static Instruction *foldSetClearBits(SelectInst &Sel,
702                                      InstCombiner::BuilderTy &Builder) {
703   Value *Cond = Sel.getCondition();
704   Value *T = Sel.getTrueValue();
705   Value *F = Sel.getFalseValue();
706   Type *Ty = Sel.getType();
707   Value *X;
708   const APInt *NotC, *C;
709 
710   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
711   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
712       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
713     Constant *Zero = ConstantInt::getNullValue(Ty);
714     Constant *OrC = ConstantInt::get(Ty, *C);
715     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
716     return BinaryOperator::CreateOr(T, NewSel);
717   }
718 
719   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
720   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
721       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
722     Constant *Zero = ConstantInt::getNullValue(Ty);
723     Constant *OrC = ConstantInt::get(Ty, *C);
724     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
725     return BinaryOperator::CreateOr(F, NewSel);
726   }
727 
728   return nullptr;
729 }
730 
731 //   select (x == 0), 0, x * y --> freeze(y) * x
732 //   select (y == 0), 0, x * y --> freeze(x) * y
733 //   select (x == 0), undef, x * y --> freeze(y) * x
734 //   select (x == undef), 0, x * y --> freeze(y) * x
735 // Usage of mul instead of 0 will make the result more poisonous,
736 // so the operand that was not checked in the condition should be frozen.
737 // The latter folding is applied only when a constant compared with x is
738 // is a vector consisting of 0 and undefs. If a constant compared with x
739 // is a scalar undefined value or undefined vector then an expression
740 // should be already folded into a constant.
741 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
742   auto *CondVal = SI.getCondition();
743   auto *TrueVal = SI.getTrueValue();
744   auto *FalseVal = SI.getFalseValue();
745   Value *X, *Y;
746   ICmpInst::Predicate Predicate;
747 
748   // Assuming that constant compared with zero is not undef (but it may be
749   // a vector with some undef elements). Otherwise (when a constant is undef)
750   // the select expression should be already simplified.
751   if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
752       !ICmpInst::isEquality(Predicate))
753     return nullptr;
754 
755   if (Predicate == ICmpInst::ICMP_NE)
756     std::swap(TrueVal, FalseVal);
757 
758   // Check that TrueVal is a constant instead of matching it with m_Zero()
759   // to handle the case when it is a scalar undef value or a vector containing
760   // non-zero elements that are masked by undef elements in the compare
761   // constant.
762   auto *TrueValC = dyn_cast<Constant>(TrueVal);
763   if (TrueValC == nullptr ||
764       !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
765       !isa<Instruction>(FalseVal))
766     return nullptr;
767 
768   auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
769   auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
770   // If X is compared with 0 then TrueVal could be either zero or undef.
771   // m_Zero match vectors containing some undef elements, but for scalars
772   // m_Undef should be used explicitly.
773   if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
774     return nullptr;
775 
776   auto *FalseValI = cast<Instruction>(FalseVal);
777   auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
778                                      *FalseValI);
779   IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
780   return IC.replaceInstUsesWith(SI, FalseValI);
781 }
782 
783 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
784 /// There are 8 commuted/swapped variants of this pattern.
785 /// TODO: Also support a - UMIN(a,b) patterns.
786 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
787                                             const Value *TrueVal,
788                                             const Value *FalseVal,
789                                             InstCombiner::BuilderTy &Builder) {
790   ICmpInst::Predicate Pred = ICI->getPredicate();
791   if (!ICmpInst::isUnsigned(Pred))
792     return nullptr;
793 
794   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
795   if (match(TrueVal, m_Zero())) {
796     Pred = ICmpInst::getInversePredicate(Pred);
797     std::swap(TrueVal, FalseVal);
798   }
799   if (!match(FalseVal, m_Zero()))
800     return nullptr;
801 
802   Value *A = ICI->getOperand(0);
803   Value *B = ICI->getOperand(1);
804   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
805     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
806     std::swap(A, B);
807     Pred = ICmpInst::getSwappedPredicate(Pred);
808   }
809 
810   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
811          "Unexpected isUnsigned predicate!");
812 
813   // Ensure the sub is of the form:
814   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
815   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
816   // Checking for both a-b and a+(-b) as a constant.
817   bool IsNegative = false;
818   const APInt *C;
819   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
820       (match(A, m_APInt(C)) &&
821        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
822     IsNegative = true;
823   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
824            !(match(B, m_APInt(C)) &&
825              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
826     return nullptr;
827 
828   // If we are adding a negate and the sub and icmp are used anywhere else, we
829   // would end up with more instructions.
830   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
831     return nullptr;
832 
833   // (a > b) ? a - b : 0 -> usub.sat(a, b)
834   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
835   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
836   if (IsNegative)
837     Result = Builder.CreateNeg(Result);
838   return Result;
839 }
840 
841 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
842                                        InstCombiner::BuilderTy &Builder) {
843   if (!Cmp->hasOneUse())
844     return nullptr;
845 
846   // Match unsigned saturated add with constant.
847   Value *Cmp0 = Cmp->getOperand(0);
848   Value *Cmp1 = Cmp->getOperand(1);
849   ICmpInst::Predicate Pred = Cmp->getPredicate();
850   Value *X;
851   const APInt *C, *CmpC;
852   if (Pred == ICmpInst::ICMP_ULT &&
853       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
854       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
855     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
856     return Builder.CreateBinaryIntrinsic(
857         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
858   }
859 
860   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
861   // There are 8 commuted variants.
862   // Canonicalize -1 (saturated result) to true value of the select.
863   if (match(FVal, m_AllOnes())) {
864     std::swap(TVal, FVal);
865     Pred = CmpInst::getInversePredicate(Pred);
866   }
867   if (!match(TVal, m_AllOnes()))
868     return nullptr;
869 
870   // Canonicalize predicate to less-than or less-or-equal-than.
871   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
872     std::swap(Cmp0, Cmp1);
873     Pred = CmpInst::getSwappedPredicate(Pred);
874   }
875   if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
876     return nullptr;
877 
878   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
879   // Strictness of the comparison is irrelevant.
880   Value *Y;
881   if (match(Cmp0, m_Not(m_Value(X))) &&
882       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
883     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
884     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
885     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
886   }
887   // The 'not' op may be included in the sum but not the compare.
888   // Strictness of the comparison is irrelevant.
889   X = Cmp0;
890   Y = Cmp1;
891   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
892     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
893     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
894     BinaryOperator *BO = cast<BinaryOperator>(FVal);
895     return Builder.CreateBinaryIntrinsic(
896         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
897   }
898   // The overflow may be detected via the add wrapping round.
899   // This is only valid for strict comparison!
900   if (Pred == ICmpInst::ICMP_ULT &&
901       match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
902       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
903     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
904     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
905     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
906   }
907 
908   return nullptr;
909 }
910 
911 /// Fold the following code sequence:
912 /// \code
913 ///   int a = ctlz(x & -x);
914 //    x ? 31 - a : a;
915 /// \code
916 ///
917 /// into:
918 ///   cttz(x)
919 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
920                                          Value *FalseVal,
921                                          InstCombiner::BuilderTy &Builder) {
922   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
923   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
924     return nullptr;
925 
926   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
927     std::swap(TrueVal, FalseVal);
928 
929   if (!match(FalseVal,
930              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
931     return nullptr;
932 
933   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
934     return nullptr;
935 
936   Value *X = ICI->getOperand(0);
937   auto *II = cast<IntrinsicInst>(TrueVal);
938   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
939     return nullptr;
940 
941   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
942                                           II->getType());
943   return CallInst::Create(F, {X, II->getArgOperand(1)});
944 }
945 
946 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
947 /// call to cttz/ctlz with flag 'is_zero_poison' cleared.
948 ///
949 /// For example, we can fold the following code sequence:
950 /// \code
951 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
952 ///   %1 = icmp ne i32 %x, 0
953 ///   %2 = select i1 %1, i32 %0, i32 32
954 /// \code
955 ///
956 /// into:
957 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
958 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
959                                  InstCombiner::BuilderTy &Builder) {
960   ICmpInst::Predicate Pred = ICI->getPredicate();
961   Value *CmpLHS = ICI->getOperand(0);
962   Value *CmpRHS = ICI->getOperand(1);
963 
964   // Check if the condition value compares a value for equality against zero.
965   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
966     return nullptr;
967 
968   Value *SelectArg = FalseVal;
969   Value *ValueOnZero = TrueVal;
970   if (Pred == ICmpInst::ICMP_NE)
971     std::swap(SelectArg, ValueOnZero);
972 
973   // Skip zero extend/truncate.
974   Value *Count = nullptr;
975   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
976       !match(SelectArg, m_Trunc(m_Value(Count))))
977     Count = SelectArg;
978 
979   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
980   // input to the cttz/ctlz is used as LHS for the compare instruction.
981   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
982       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
983     return nullptr;
984 
985   IntrinsicInst *II = cast<IntrinsicInst>(Count);
986 
987   // Check if the value propagated on zero is a constant number equal to the
988   // sizeof in bits of 'Count'.
989   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
990   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
991     // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
992     // true to false on this flag, so we can replace it for all users.
993     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
994     return SelectArg;
995   }
996 
997   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
998   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
999   // not be used if the input is zero. Relax to 'zero is poison' for that case.
1000   if (II->hasOneUse() && SelectArg->hasOneUse() &&
1001       !match(II->getArgOperand(1), m_One()))
1002     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
1003 
1004   return nullptr;
1005 }
1006 
1007 /// Return true if we find and adjust an icmp+select pattern where the compare
1008 /// is with a constant that can be incremented or decremented to match the
1009 /// minimum or maximum idiom.
1010 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
1011   ICmpInst::Predicate Pred = Cmp.getPredicate();
1012   Value *CmpLHS = Cmp.getOperand(0);
1013   Value *CmpRHS = Cmp.getOperand(1);
1014   Value *TrueVal = Sel.getTrueValue();
1015   Value *FalseVal = Sel.getFalseValue();
1016 
1017   // We may move or edit the compare, so make sure the select is the only user.
1018   const APInt *CmpC;
1019   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
1020     return false;
1021 
1022   // These transforms only work for selects of integers or vector selects of
1023   // integer vectors.
1024   Type *SelTy = Sel.getType();
1025   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
1026   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
1027     return false;
1028 
1029   Constant *AdjustedRHS;
1030   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
1031     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
1032   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
1033     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
1034   else
1035     return false;
1036 
1037   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
1038   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
1039   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
1040       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
1041     ; // Nothing to do here. Values match without any sign/zero extension.
1042   }
1043   // Types do not match. Instead of calculating this with mixed types, promote
1044   // all to the larger type. This enables scalar evolution to analyze this
1045   // expression.
1046   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
1047     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
1048 
1049     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
1050     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
1051     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
1052     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
1053     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
1054       CmpLHS = TrueVal;
1055       AdjustedRHS = SextRHS;
1056     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
1057                SextRHS == TrueVal) {
1058       CmpLHS = FalseVal;
1059       AdjustedRHS = SextRHS;
1060     } else if (Cmp.isUnsigned()) {
1061       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
1062       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
1063       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
1064       // zext + signed compare cannot be changed:
1065       //    0xff <s 0x00, but 0x00ff >s 0x0000
1066       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
1067         CmpLHS = TrueVal;
1068         AdjustedRHS = ZextRHS;
1069       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
1070                  ZextRHS == TrueVal) {
1071         CmpLHS = FalseVal;
1072         AdjustedRHS = ZextRHS;
1073       } else {
1074         return false;
1075       }
1076     } else {
1077       return false;
1078     }
1079   } else {
1080     return false;
1081   }
1082 
1083   Pred = ICmpInst::getSwappedPredicate(Pred);
1084   CmpRHS = AdjustedRHS;
1085   std::swap(FalseVal, TrueVal);
1086   Cmp.setPredicate(Pred);
1087   Cmp.setOperand(0, CmpLHS);
1088   Cmp.setOperand(1, CmpRHS);
1089   Sel.setOperand(1, TrueVal);
1090   Sel.setOperand(2, FalseVal);
1091   Sel.swapProfMetadata();
1092 
1093   // Move the compare instruction right before the select instruction. Otherwise
1094   // the sext/zext value may be defined after the compare instruction uses it.
1095   Cmp.moveBefore(&Sel);
1096 
1097   return true;
1098 }
1099 
1100 static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp,
1101                                     InstCombinerImpl &IC) {
1102   Value *LHS, *RHS;
1103   // TODO: What to do with pointer min/max patterns?
1104   if (!Sel.getType()->isIntOrIntVectorTy())
1105     return nullptr;
1106 
1107   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1108   if (SPF == SelectPatternFlavor::SPF_ABS ||
1109       SPF == SelectPatternFlavor::SPF_NABS) {
1110     if (!Cmp.hasOneUse())
1111       return nullptr; // TODO: Relax this restriction.
1112 
1113     // Note that NSW flag can only be propagated for normal, non-negated abs!
1114     bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1115                           match(RHS, m_NSWNeg(m_Specific(LHS)));
1116     Constant *IntMinIsPoisonC =
1117         ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
1118     Instruction *Abs =
1119         IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1120 
1121     if (SPF == SelectPatternFlavor::SPF_NABS)
1122       return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
1123     return IC.replaceInstUsesWith(Sel, Abs);
1124   }
1125 
1126   if (SelectPatternResult::isMinOrMax(SPF)) {
1127     Intrinsic::ID IntrinsicID;
1128     switch (SPF) {
1129     case SelectPatternFlavor::SPF_UMIN:
1130       IntrinsicID = Intrinsic::umin;
1131       break;
1132     case SelectPatternFlavor::SPF_UMAX:
1133       IntrinsicID = Intrinsic::umax;
1134       break;
1135     case SelectPatternFlavor::SPF_SMIN:
1136       IntrinsicID = Intrinsic::smin;
1137       break;
1138     case SelectPatternFlavor::SPF_SMAX:
1139       IntrinsicID = Intrinsic::smax;
1140       break;
1141     default:
1142       llvm_unreachable("Unexpected SPF");
1143     }
1144     return IC.replaceInstUsesWith(
1145         Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS));
1146   }
1147 
1148   return nullptr;
1149 }
1150 
1151 /// If we have a select with an equality comparison, then we know the value in
1152 /// one of the arms of the select. See if substituting this value into an arm
1153 /// and simplifying the result yields the same value as the other arm.
1154 ///
1155 /// To make this transform safe, we must drop poison-generating flags
1156 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1157 /// that poison from propagating. If the existing binop already had no
1158 /// poison-generating flags, then this transform can be done by instsimplify.
1159 ///
1160 /// Consider:
1161 ///   %cmp = icmp eq i32 %x, 2147483647
1162 ///   %add = add nsw i32 %x, 1
1163 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1164 ///
1165 /// We can't replace %sel with %add unless we strip away the flags.
1166 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1167 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1168                                                           ICmpInst &Cmp) {
1169   // Value equivalence substitution requires an all-or-nothing replacement.
1170   // It does not make sense for a vector compare where each lane is chosen
1171   // independently.
1172   if (!Cmp.isEquality() || Cmp.getType()->isVectorTy())
1173     return nullptr;
1174 
1175   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1176   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1177   bool Swapped = false;
1178   if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1179     std::swap(TrueVal, FalseVal);
1180     Swapped = true;
1181   }
1182 
1183   // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1184   // Make sure Y cannot be undef though, as we might pick different values for
1185   // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1186   // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1187   // replacement cycle.
1188   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1189   if (TrueVal != CmpLHS &&
1190       isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1191     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1192                                           /* AllowRefinement */ true))
1193       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1194 
1195     // Even if TrueVal does not simplify, we can directly replace a use of
1196     // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1197     // else and is safe to speculatively execute (we may end up executing it
1198     // with different operands, which should not cause side-effects or trigger
1199     // undefined behavior). Only do this if CmpRHS is a constant, as
1200     // profitability is not clear for other cases.
1201     // FIXME: The replacement could be performed recursively.
1202     if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()))
1203       if (auto *I = dyn_cast<Instruction>(TrueVal))
1204         if (I->hasOneUse() && isSafeToSpeculativelyExecute(I))
1205           for (Use &U : I->operands())
1206             if (U == CmpLHS) {
1207               replaceUse(U, CmpRHS);
1208               return &Sel;
1209             }
1210   }
1211   if (TrueVal != CmpRHS &&
1212       isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1213     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1214                                           /* AllowRefinement */ true))
1215       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1216 
1217   auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1218   if (!FalseInst)
1219     return nullptr;
1220 
1221   // InstSimplify already performed this fold if it was possible subject to
1222   // current poison-generating flags. Try the transform again with
1223   // poison-generating flags temporarily dropped.
1224   bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1225   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1226     WasNUW = OBO->hasNoUnsignedWrap();
1227     WasNSW = OBO->hasNoSignedWrap();
1228     FalseInst->setHasNoUnsignedWrap(false);
1229     FalseInst->setHasNoSignedWrap(false);
1230   }
1231   if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1232     WasExact = PEO->isExact();
1233     FalseInst->setIsExact(false);
1234   }
1235   if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1236     WasInBounds = GEP->isInBounds();
1237     GEP->setIsInBounds(false);
1238   }
1239 
1240   // Try each equivalence substitution possibility.
1241   // We have an 'EQ' comparison, so the select's false value will propagate.
1242   // Example:
1243   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1244   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1245                              /* AllowRefinement */ false) == TrueVal ||
1246       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1247                              /* AllowRefinement */ false) == TrueVal) {
1248     return replaceInstUsesWith(Sel, FalseVal);
1249   }
1250 
1251   // Restore poison-generating flags if the transform did not apply.
1252   if (WasNUW)
1253     FalseInst->setHasNoUnsignedWrap();
1254   if (WasNSW)
1255     FalseInst->setHasNoSignedWrap();
1256   if (WasExact)
1257     FalseInst->setIsExact();
1258   if (WasInBounds)
1259     cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1260 
1261   return nullptr;
1262 }
1263 
1264 // See if this is a pattern like:
1265 //   %old_cmp1 = icmp slt i32 %x, C2
1266 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1267 //   %old_x_offseted = add i32 %x, C1
1268 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1269 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1270 // This can be rewritten as more canonical pattern:
1271 //   %new_cmp1 = icmp slt i32 %x, -C1
1272 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1273 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1274 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1275 // Iff -C1 s<= C2 s<= C0-C1
1276 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1277 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1278 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1279                                     InstCombiner::BuilderTy &Builder) {
1280   Value *X = Sel0.getTrueValue();
1281   Value *Sel1 = Sel0.getFalseValue();
1282 
1283   // First match the condition of the outermost select.
1284   // Said condition must be one-use.
1285   if (!Cmp0.hasOneUse())
1286     return nullptr;
1287   ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1288   Value *Cmp00 = Cmp0.getOperand(0);
1289   Constant *C0;
1290   if (!match(Cmp0.getOperand(1),
1291              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1292     return nullptr;
1293 
1294   if (!isa<SelectInst>(Sel1)) {
1295     Pred0 = ICmpInst::getInversePredicate(Pred0);
1296     std::swap(X, Sel1);
1297   }
1298 
1299   // Canonicalize Cmp0 into ult or uge.
1300   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1301   switch (Pred0) {
1302   case ICmpInst::Predicate::ICMP_ULT:
1303   case ICmpInst::Predicate::ICMP_UGE:
1304     // Although icmp ult %x, 0 is an unusual thing to try and should generally
1305     // have been simplified, it does not verify with undef inputs so ensure we
1306     // are not in a strange state.
1307     if (!match(C0, m_SpecificInt_ICMP(
1308                        ICmpInst::Predicate::ICMP_NE,
1309                        APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1310       return nullptr;
1311     break; // Great!
1312   case ICmpInst::Predicate::ICMP_ULE:
1313   case ICmpInst::Predicate::ICMP_UGT:
1314     // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1315     // C0, which again means it must not have any all-ones elements.
1316     if (!match(C0,
1317                m_SpecificInt_ICMP(
1318                    ICmpInst::Predicate::ICMP_NE,
1319                    APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1320       return nullptr; // Can't do, have all-ones element[s].
1321     C0 = InstCombiner::AddOne(C0);
1322     break;
1323   default:
1324     return nullptr; // Unknown predicate.
1325   }
1326 
1327   // Now that we've canonicalized the ICmp, we know the X we expect;
1328   // the select in other hand should be one-use.
1329   if (!Sel1->hasOneUse())
1330     return nullptr;
1331 
1332   // If the types do not match, look through any truncs to the underlying
1333   // instruction.
1334   if (Cmp00->getType() != X->getType() && X->hasOneUse())
1335     match(X, m_TruncOrSelf(m_Value(X)));
1336 
1337   // We now can finish matching the condition of the outermost select:
1338   // it should either be the X itself, or an addition of some constant to X.
1339   Constant *C1;
1340   if (Cmp00 == X)
1341     C1 = ConstantInt::getNullValue(X->getType());
1342   else if (!match(Cmp00,
1343                   m_Add(m_Specific(X),
1344                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1345     return nullptr;
1346 
1347   Value *Cmp1;
1348   ICmpInst::Predicate Pred1;
1349   Constant *C2;
1350   Value *ReplacementLow, *ReplacementHigh;
1351   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1352                             m_Value(ReplacementHigh))) ||
1353       !match(Cmp1,
1354              m_ICmp(Pred1, m_Specific(X),
1355                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1356     return nullptr;
1357 
1358   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1359     return nullptr; // Not enough one-use instructions for the fold.
1360   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1361   //        two comparisons we'll need to build.
1362 
1363   // Canonicalize Cmp1 into the form we expect.
1364   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1365   switch (Pred1) {
1366   case ICmpInst::Predicate::ICMP_SLT:
1367     break;
1368   case ICmpInst::Predicate::ICMP_SLE:
1369     // We'd have to increment C2 by one, and for that it must not have signed
1370     // max element, but then it would have been canonicalized to 'slt' before
1371     // we get here. So we can't do anything useful with 'sle'.
1372     return nullptr;
1373   case ICmpInst::Predicate::ICMP_SGT:
1374     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1375     // which again means it must not have any signed max elements.
1376     if (!match(C2,
1377                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1378                                   APInt::getSignedMaxValue(
1379                                       C2->getType()->getScalarSizeInBits()))))
1380       return nullptr; // Can't do, have signed max element[s].
1381     C2 = InstCombiner::AddOne(C2);
1382     LLVM_FALLTHROUGH;
1383   case ICmpInst::Predicate::ICMP_SGE:
1384     // Also non-canonical, but here we don't need to change C2,
1385     // so we don't have any restrictions on C2, so we can just handle it.
1386     std::swap(ReplacementLow, ReplacementHigh);
1387     break;
1388   default:
1389     return nullptr; // Unknown predicate.
1390   }
1391 
1392   // The thresholds of this clamp-like pattern.
1393   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1394   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1395   if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1396     std::swap(ThresholdLowIncl, ThresholdHighExcl);
1397 
1398   // The fold has a precondition 1: C2 s>= ThresholdLow
1399   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1400                                          ThresholdLowIncl);
1401   if (!match(Precond1, m_One()))
1402     return nullptr;
1403   // The fold has a precondition 2: C2 s<= ThresholdHigh
1404   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1405                                          ThresholdHighExcl);
1406   if (!match(Precond2, m_One()))
1407     return nullptr;
1408 
1409   // If we are matching from a truncated input, we need to sext the
1410   // ReplacementLow and ReplacementHigh values. Only do the transform if they
1411   // are free to extend due to being constants.
1412   if (X->getType() != Sel0.getType()) {
1413     Constant *LowC, *HighC;
1414     if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1415         !match(ReplacementHigh, m_ImmConstant(HighC)))
1416       return nullptr;
1417     ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
1418     ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
1419   }
1420 
1421   // All good, finally emit the new pattern.
1422   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1423   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1424   Value *MaybeReplacedLow =
1425       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1426 
1427   // Create the final select. If we looked through a truncate above, we will
1428   // need to retruncate the result.
1429   Value *MaybeReplacedHigh = Builder.CreateSelect(
1430       ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1431   return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1432 }
1433 
1434 // If we have
1435 //  %cmp = icmp [canonical predicate] i32 %x, C0
1436 //  %r = select i1 %cmp, i32 %y, i32 C1
1437 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1438 // will have if we flip the strictness of the predicate (i.e. without changing
1439 // the result) is identical to the C1 in select. If it matches we can change
1440 // original comparison to one with swapped predicate, reuse the constant,
1441 // and swap the hands of select.
1442 static Instruction *
1443 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1444                                          InstCombinerImpl &IC) {
1445   ICmpInst::Predicate Pred;
1446   Value *X;
1447   Constant *C0;
1448   if (!match(&Cmp, m_OneUse(m_ICmp(
1449                        Pred, m_Value(X),
1450                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1451     return nullptr;
1452 
1453   // If comparison predicate is non-relational, we won't be able to do anything.
1454   if (ICmpInst::isEquality(Pred))
1455     return nullptr;
1456 
1457   // If comparison predicate is non-canonical, then we certainly won't be able
1458   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1459   if (!InstCombiner::isCanonicalPredicate(Pred))
1460     return nullptr;
1461 
1462   // If the [input] type of comparison and select type are different, lets abort
1463   // for now. We could try to compare constants with trunc/[zs]ext though.
1464   if (C0->getType() != Sel.getType())
1465     return nullptr;
1466 
1467   // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
1468   // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
1469   //        Or should we just abandon this transform entirely?
1470   if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
1471     return nullptr;
1472 
1473 
1474   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1475   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1476   // At least one of these values we are selecting between must be a constant
1477   // else we'll never succeed.
1478   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1479       !match(SelVal1, m_AnyIntegralConstant()))
1480     return nullptr;
1481 
1482   // Does this constant C match any of the `select` values?
1483   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1484     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1485   };
1486 
1487   // If C0 *already* matches true/false value of select, we are done.
1488   if (MatchesSelectValue(C0))
1489     return nullptr;
1490 
1491   // Check the constant we'd have with flipped-strictness predicate.
1492   auto FlippedStrictness =
1493       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1494   if (!FlippedStrictness)
1495     return nullptr;
1496 
1497   // If said constant doesn't match either, then there is no hope,
1498   if (!MatchesSelectValue(FlippedStrictness->second))
1499     return nullptr;
1500 
1501   // It matched! Lets insert the new comparison just before select.
1502   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1503   IC.Builder.SetInsertPoint(&Sel);
1504 
1505   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1506   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1507                                         Cmp.getName() + ".inv");
1508   IC.replaceOperand(Sel, 0, NewCmp);
1509   Sel.swapValues();
1510   Sel.swapProfMetadata();
1511 
1512   return &Sel;
1513 }
1514 
1515 /// Visit a SelectInst that has an ICmpInst as its first operand.
1516 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1517                                                       ICmpInst *ICI) {
1518   if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1519     return NewSel;
1520 
1521   if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this))
1522     return NewSPF;
1523 
1524   if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
1525     return replaceInstUsesWith(SI, V);
1526 
1527   if (Instruction *NewSel =
1528           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1529     return NewSel;
1530 
1531   bool Changed = adjustMinMax(SI, *ICI);
1532 
1533   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1534     return replaceInstUsesWith(SI, V);
1535 
1536   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1537   Value *TrueVal = SI.getTrueValue();
1538   Value *FalseVal = SI.getFalseValue();
1539   ICmpInst::Predicate Pred = ICI->getPredicate();
1540   Value *CmpLHS = ICI->getOperand(0);
1541   Value *CmpRHS = ICI->getOperand(1);
1542   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1543     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1544       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1545       SI.setOperand(1, CmpRHS);
1546       Changed = true;
1547     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1548       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1549       SI.setOperand(2, CmpRHS);
1550       Changed = true;
1551     }
1552   }
1553 
1554   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1555   // decomposeBitTestICmp() might help.
1556   {
1557     unsigned BitWidth =
1558         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1559     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1560     Value *X;
1561     const APInt *Y, *C;
1562     bool TrueWhenUnset;
1563     bool IsBitTest = false;
1564     if (ICmpInst::isEquality(Pred) &&
1565         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1566         match(CmpRHS, m_Zero())) {
1567       IsBitTest = true;
1568       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1569     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1570       X = CmpLHS;
1571       Y = &MinSignedValue;
1572       IsBitTest = true;
1573       TrueWhenUnset = false;
1574     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1575       X = CmpLHS;
1576       Y = &MinSignedValue;
1577       IsBitTest = true;
1578       TrueWhenUnset = true;
1579     }
1580     if (IsBitTest) {
1581       Value *V = nullptr;
1582       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1583       if (TrueWhenUnset && TrueVal == X &&
1584           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1585         V = Builder.CreateAnd(X, ~(*Y));
1586       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1587       else if (!TrueWhenUnset && FalseVal == X &&
1588                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1589         V = Builder.CreateAnd(X, ~(*Y));
1590       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1591       else if (TrueWhenUnset && FalseVal == X &&
1592                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1593         V = Builder.CreateOr(X, *Y);
1594       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1595       else if (!TrueWhenUnset && TrueVal == X &&
1596                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1597         V = Builder.CreateOr(X, *Y);
1598 
1599       if (V)
1600         return replaceInstUsesWith(SI, V);
1601     }
1602   }
1603 
1604   if (Instruction *V =
1605           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1606     return V;
1607 
1608   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1609     return V;
1610 
1611   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1612     return replaceInstUsesWith(SI, V);
1613 
1614   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1615     return replaceInstUsesWith(SI, V);
1616 
1617   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1618     return replaceInstUsesWith(SI, V);
1619 
1620   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1621     return replaceInstUsesWith(SI, V);
1622 
1623   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1624     return replaceInstUsesWith(SI, V);
1625 
1626   return Changed ? &SI : nullptr;
1627 }
1628 
1629 /// SI is a select whose condition is a PHI node (but the two may be in
1630 /// different blocks). See if the true/false values (V) are live in all of the
1631 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1632 ///
1633 ///   X = phi [ C1, BB1], [C2, BB2]
1634 ///   Y = add
1635 ///   Z = select X, Y, 0
1636 ///
1637 /// because Y is not live in BB1/BB2.
1638 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1639                                                    const SelectInst &SI) {
1640   // If the value is a non-instruction value like a constant or argument, it
1641   // can always be mapped.
1642   const Instruction *I = dyn_cast<Instruction>(V);
1643   if (!I) return true;
1644 
1645   // If V is a PHI node defined in the same block as the condition PHI, we can
1646   // map the arguments.
1647   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1648 
1649   if (const PHINode *VP = dyn_cast<PHINode>(I))
1650     if (VP->getParent() == CondPHI->getParent())
1651       return true;
1652 
1653   // Otherwise, if the PHI and select are defined in the same block and if V is
1654   // defined in a different block, then we can transform it.
1655   if (SI.getParent() == CondPHI->getParent() &&
1656       I->getParent() != CondPHI->getParent())
1657     return true;
1658 
1659   // Otherwise we have a 'hard' case and we can't tell without doing more
1660   // detailed dominator based analysis, punt.
1661   return false;
1662 }
1663 
1664 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1665 ///   SPF2(SPF1(A, B), C)
1666 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1667                                             SelectPatternFlavor SPF1, Value *A,
1668                                             Value *B, Instruction &Outer,
1669                                             SelectPatternFlavor SPF2,
1670                                             Value *C) {
1671   if (Outer.getType() != Inner->getType())
1672     return nullptr;
1673 
1674   if (C == A || C == B) {
1675     // MAX(MAX(A, B), B) -> MAX(A, B)
1676     // MIN(MIN(a, b), a) -> MIN(a, b)
1677     // TODO: This could be done in instsimplify.
1678     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1679       return replaceInstUsesWith(Outer, Inner);
1680 
1681     // MAX(MIN(a, b), a) -> a
1682     // MIN(MAX(a, b), a) -> a
1683     // TODO: This could be done in instsimplify.
1684     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1685         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1686         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1687         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1688       return replaceInstUsesWith(Outer, C);
1689   }
1690 
1691   if (SPF1 == SPF2) {
1692     const APInt *CB, *CC;
1693     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1694       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1695       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1696       // TODO: This could be done in instsimplify.
1697       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1698           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1699           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1700           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1701         return replaceInstUsesWith(Outer, Inner);
1702 
1703       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1704       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1705       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1706           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1707           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1708           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1709         Outer.replaceUsesOfWith(Inner, A);
1710         return &Outer;
1711       }
1712     }
1713   }
1714 
1715   // max(max(A, B), min(A, B)) --> max(A, B)
1716   // min(min(A, B), max(A, B)) --> min(A, B)
1717   // TODO: This could be done in instsimplify.
1718   if (SPF1 == SPF2 &&
1719       ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1720        (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1721        (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1722        (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1723     return replaceInstUsesWith(Outer, Inner);
1724 
1725   // ABS(ABS(X)) -> ABS(X)
1726   // NABS(NABS(X)) -> NABS(X)
1727   // TODO: This could be done in instsimplify.
1728   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1729     return replaceInstUsesWith(Outer, Inner);
1730   }
1731 
1732   // ABS(NABS(X)) -> ABS(X)
1733   // NABS(ABS(X)) -> NABS(X)
1734   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1735       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1736     SelectInst *SI = cast<SelectInst>(Inner);
1737     Value *NewSI =
1738         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1739                              SI->getTrueValue(), SI->getName(), SI);
1740     return replaceInstUsesWith(Outer, NewSI);
1741   }
1742 
1743   auto IsFreeOrProfitableToInvert =
1744       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1745     if (match(V, m_Not(m_Value(NotV)))) {
1746       // If V has at most 2 uses then we can get rid of the xor operation
1747       // entirely.
1748       ElidesXor |= !V->hasNUsesOrMore(3);
1749       return true;
1750     }
1751 
1752     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1753       NotV = nullptr;
1754       return true;
1755     }
1756 
1757     return false;
1758   };
1759 
1760   Value *NotA, *NotB, *NotC;
1761   bool ElidesXor = false;
1762 
1763   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1764   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1765   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1766   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1767   //
1768   // This transform is performance neutral if we can elide at least one xor from
1769   // the set of three operands, since we'll be tacking on an xor at the very
1770   // end.
1771   if (SelectPatternResult::isMinOrMax(SPF1) &&
1772       SelectPatternResult::isMinOrMax(SPF2) &&
1773       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1774       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1775       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1776     if (!NotA)
1777       NotA = Builder.CreateNot(A);
1778     if (!NotB)
1779       NotB = Builder.CreateNot(B);
1780     if (!NotC)
1781       NotC = Builder.CreateNot(C);
1782 
1783     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1784                                    NotB);
1785     Value *NewOuter = Builder.CreateNot(
1786         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1787     return replaceInstUsesWith(Outer, NewOuter);
1788   }
1789 
1790   return nullptr;
1791 }
1792 
1793 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1794 /// This is even legal for FP.
1795 static Instruction *foldAddSubSelect(SelectInst &SI,
1796                                      InstCombiner::BuilderTy &Builder) {
1797   Value *CondVal = SI.getCondition();
1798   Value *TrueVal = SI.getTrueValue();
1799   Value *FalseVal = SI.getFalseValue();
1800   auto *TI = dyn_cast<Instruction>(TrueVal);
1801   auto *FI = dyn_cast<Instruction>(FalseVal);
1802   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1803     return nullptr;
1804 
1805   Instruction *AddOp = nullptr, *SubOp = nullptr;
1806   if ((TI->getOpcode() == Instruction::Sub &&
1807        FI->getOpcode() == Instruction::Add) ||
1808       (TI->getOpcode() == Instruction::FSub &&
1809        FI->getOpcode() == Instruction::FAdd)) {
1810     AddOp = FI;
1811     SubOp = TI;
1812   } else if ((FI->getOpcode() == Instruction::Sub &&
1813               TI->getOpcode() == Instruction::Add) ||
1814              (FI->getOpcode() == Instruction::FSub &&
1815               TI->getOpcode() == Instruction::FAdd)) {
1816     AddOp = TI;
1817     SubOp = FI;
1818   }
1819 
1820   if (AddOp) {
1821     Value *OtherAddOp = nullptr;
1822     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1823       OtherAddOp = AddOp->getOperand(1);
1824     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1825       OtherAddOp = AddOp->getOperand(0);
1826     }
1827 
1828     if (OtherAddOp) {
1829       // So at this point we know we have (Y -> OtherAddOp):
1830       //        select C, (add X, Y), (sub X, Z)
1831       Value *NegVal; // Compute -Z
1832       if (SI.getType()->isFPOrFPVectorTy()) {
1833         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1834         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1835           FastMathFlags Flags = AddOp->getFastMathFlags();
1836           Flags &= SubOp->getFastMathFlags();
1837           NegInst->setFastMathFlags(Flags);
1838         }
1839       } else {
1840         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1841       }
1842 
1843       Value *NewTrueOp = OtherAddOp;
1844       Value *NewFalseOp = NegVal;
1845       if (AddOp != TI)
1846         std::swap(NewTrueOp, NewFalseOp);
1847       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1848                                            SI.getName() + ".p", &SI);
1849 
1850       if (SI.getType()->isFPOrFPVectorTy()) {
1851         Instruction *RI =
1852             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1853 
1854         FastMathFlags Flags = AddOp->getFastMathFlags();
1855         Flags &= SubOp->getFastMathFlags();
1856         RI->setFastMathFlags(Flags);
1857         return RI;
1858       } else
1859         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1860     }
1861   }
1862   return nullptr;
1863 }
1864 
1865 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1866 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1867 /// Along with a number of patterns similar to:
1868 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1869 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1870 static Instruction *
1871 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1872   Value *CondVal = SI.getCondition();
1873   Value *TrueVal = SI.getTrueValue();
1874   Value *FalseVal = SI.getFalseValue();
1875 
1876   WithOverflowInst *II;
1877   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1878       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1879     return nullptr;
1880 
1881   Value *X = II->getLHS();
1882   Value *Y = II->getRHS();
1883 
1884   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1885     Type *Ty = Limit->getType();
1886 
1887     ICmpInst::Predicate Pred;
1888     Value *TrueVal, *FalseVal, *Op;
1889     const APInt *C;
1890     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1891                                m_Value(TrueVal), m_Value(FalseVal))))
1892       return false;
1893 
1894     auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
1895     auto IsMinMax = [&](Value *Min, Value *Max) {
1896       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1897       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1898       return match(Min, m_SpecificInt(MinVal)) &&
1899              match(Max, m_SpecificInt(MaxVal));
1900     };
1901 
1902     if (Op != X && Op != Y)
1903       return false;
1904 
1905     if (IsAdd) {
1906       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1907       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1908       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1909       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1910       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1911           IsMinMax(TrueVal, FalseVal))
1912         return true;
1913       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1914       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1915       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1916       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1917       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1918           IsMinMax(FalseVal, TrueVal))
1919         return true;
1920     } else {
1921       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1922       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1923       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1924           IsMinMax(TrueVal, FalseVal))
1925         return true;
1926       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1927       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1928       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1929           IsMinMax(FalseVal, TrueVal))
1930         return true;
1931       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1932       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1933       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1934           IsMinMax(FalseVal, TrueVal))
1935         return true;
1936       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1937       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1938       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1939           IsMinMax(TrueVal, FalseVal))
1940         return true;
1941     }
1942 
1943     return false;
1944   };
1945 
1946   Intrinsic::ID NewIntrinsicID;
1947   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1948       match(TrueVal, m_AllOnes()))
1949     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1950     NewIntrinsicID = Intrinsic::uadd_sat;
1951   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1952            match(TrueVal, m_Zero()))
1953     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1954     NewIntrinsicID = Intrinsic::usub_sat;
1955   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1956            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1957     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1958     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1959     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1960     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1961     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1962     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1963     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1964     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1965     NewIntrinsicID = Intrinsic::sadd_sat;
1966   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1967            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1968     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1969     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1970     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1971     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1972     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1973     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1974     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1975     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1976     NewIntrinsicID = Intrinsic::ssub_sat;
1977   else
1978     return nullptr;
1979 
1980   Function *F =
1981       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1982   return CallInst::Create(F, {X, Y});
1983 }
1984 
1985 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
1986   Constant *C;
1987   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1988       !match(Sel.getFalseValue(), m_Constant(C)))
1989     return nullptr;
1990 
1991   Instruction *ExtInst;
1992   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1993       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1994     return nullptr;
1995 
1996   auto ExtOpcode = ExtInst->getOpcode();
1997   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1998     return nullptr;
1999 
2000   // If we are extending from a boolean type or if we can create a select that
2001   // has the same size operands as its condition, try to narrow the select.
2002   Value *X = ExtInst->getOperand(0);
2003   Type *SmallType = X->getType();
2004   Value *Cond = Sel.getCondition();
2005   auto *Cmp = dyn_cast<CmpInst>(Cond);
2006   if (!SmallType->isIntOrIntVectorTy(1) &&
2007       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
2008     return nullptr;
2009 
2010   // If the constant is the same after truncation to the smaller type and
2011   // extension to the original type, we can narrow the select.
2012   Type *SelType = Sel.getType();
2013   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
2014   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
2015   if (ExtC == C && ExtInst->hasOneUse()) {
2016     Value *TruncCVal = cast<Value>(TruncC);
2017     if (ExtInst == Sel.getFalseValue())
2018       std::swap(X, TruncCVal);
2019 
2020     // select Cond, (ext X), C --> ext(select Cond, X, C')
2021     // select Cond, C, (ext X) --> ext(select Cond, C', X)
2022     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
2023     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
2024   }
2025 
2026   // If one arm of the select is the extend of the condition, replace that arm
2027   // with the extension of the appropriate known bool value.
2028   if (Cond == X) {
2029     if (ExtInst == Sel.getTrueValue()) {
2030       // select X, (sext X), C --> select X, -1, C
2031       // select X, (zext X), C --> select X,  1, C
2032       Constant *One = ConstantInt::getTrue(SmallType);
2033       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
2034       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
2035     } else {
2036       // select X, C, (sext X) --> select X, C, 0
2037       // select X, C, (zext X) --> select X, C, 0
2038       Constant *Zero = ConstantInt::getNullValue(SelType);
2039       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
2040     }
2041   }
2042 
2043   return nullptr;
2044 }
2045 
2046 /// Try to transform a vector select with a constant condition vector into a
2047 /// shuffle for easier combining with other shuffles and insert/extract.
2048 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
2049   Value *CondVal = SI.getCondition();
2050   Constant *CondC;
2051   auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
2052   if (!CondValTy || !match(CondVal, m_Constant(CondC)))
2053     return nullptr;
2054 
2055   unsigned NumElts = CondValTy->getNumElements();
2056   SmallVector<int, 16> Mask;
2057   Mask.reserve(NumElts);
2058   for (unsigned i = 0; i != NumElts; ++i) {
2059     Constant *Elt = CondC->getAggregateElement(i);
2060     if (!Elt)
2061       return nullptr;
2062 
2063     if (Elt->isOneValue()) {
2064       // If the select condition element is true, choose from the 1st vector.
2065       Mask.push_back(i);
2066     } else if (Elt->isNullValue()) {
2067       // If the select condition element is false, choose from the 2nd vector.
2068       Mask.push_back(i + NumElts);
2069     } else if (isa<UndefValue>(Elt)) {
2070       // Undef in a select condition (choose one of the operands) does not mean
2071       // the same thing as undef in a shuffle mask (any value is acceptable), so
2072       // give up.
2073       return nullptr;
2074     } else {
2075       // Bail out on a constant expression.
2076       return nullptr;
2077     }
2078   }
2079 
2080   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
2081 }
2082 
2083 /// If we have a select of vectors with a scalar condition, try to convert that
2084 /// to a vector select by splatting the condition. A splat may get folded with
2085 /// other operations in IR and having all operands of a select be vector types
2086 /// is likely better for vector codegen.
2087 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2088                                                    InstCombinerImpl &IC) {
2089   auto *Ty = dyn_cast<VectorType>(Sel.getType());
2090   if (!Ty)
2091     return nullptr;
2092 
2093   // We can replace a single-use extract with constant index.
2094   Value *Cond = Sel.getCondition();
2095   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2096     return nullptr;
2097 
2098   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2099   // Splatting the extracted condition reduces code (we could directly create a
2100   // splat shuffle of the source vector to eliminate the intermediate step).
2101   return IC.replaceOperand(
2102       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2103 }
2104 
2105 /// Reuse bitcasted operands between a compare and select:
2106 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2107 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2108 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2109                                           InstCombiner::BuilderTy &Builder) {
2110   Value *Cond = Sel.getCondition();
2111   Value *TVal = Sel.getTrueValue();
2112   Value *FVal = Sel.getFalseValue();
2113 
2114   CmpInst::Predicate Pred;
2115   Value *A, *B;
2116   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2117     return nullptr;
2118 
2119   // The select condition is a compare instruction. If the select's true/false
2120   // values are already the same as the compare operands, there's nothing to do.
2121   if (TVal == A || TVal == B || FVal == A || FVal == B)
2122     return nullptr;
2123 
2124   Value *C, *D;
2125   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2126     return nullptr;
2127 
2128   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2129   Value *TSrc, *FSrc;
2130   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2131       !match(FVal, m_BitCast(m_Value(FSrc))))
2132     return nullptr;
2133 
2134   // If the select true/false values are *different bitcasts* of the same source
2135   // operands, make the select operands the same as the compare operands and
2136   // cast the result. This is the canonical select form for min/max.
2137   Value *NewSel;
2138   if (TSrc == C && FSrc == D) {
2139     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2140     // bitcast (select (cmp A, B), A, B)
2141     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2142   } else if (TSrc == D && FSrc == C) {
2143     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2144     // bitcast (select (cmp A, B), B, A)
2145     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2146   } else {
2147     return nullptr;
2148   }
2149   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2150 }
2151 
2152 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2153 /// instructions.
2154 ///
2155 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2156 /// selects between the returned value of the cmpxchg instruction its compare
2157 /// operand, the result of the select will always be equal to its false value.
2158 /// For example:
2159 ///
2160 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2161 ///   %1 = extractvalue { i64, i1 } %0, 1
2162 ///   %2 = extractvalue { i64, i1 } %0, 0
2163 ///   %3 = select i1 %1, i64 %compare, i64 %2
2164 ///   ret i64 %3
2165 ///
2166 /// The returned value of the cmpxchg instruction (%2) is the original value
2167 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2168 /// must have been equal to %compare. Thus, the result of the select is always
2169 /// equal to %2, and the code can be simplified to:
2170 ///
2171 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2172 ///   %1 = extractvalue { i64, i1 } %0, 0
2173 ///   ret i64 %1
2174 ///
2175 static Value *foldSelectCmpXchg(SelectInst &SI) {
2176   // A helper that determines if V is an extractvalue instruction whose
2177   // aggregate operand is a cmpxchg instruction and whose single index is equal
2178   // to I. If such conditions are true, the helper returns the cmpxchg
2179   // instruction; otherwise, a nullptr is returned.
2180   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2181     auto *Extract = dyn_cast<ExtractValueInst>(V);
2182     if (!Extract)
2183       return nullptr;
2184     if (Extract->getIndices()[0] != I)
2185       return nullptr;
2186     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2187   };
2188 
2189   // If the select has a single user, and this user is a select instruction that
2190   // we can simplify, skip the cmpxchg simplification for now.
2191   if (SI.hasOneUse())
2192     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2193       if (Select->getCondition() == SI.getCondition())
2194         if (Select->getFalseValue() == SI.getTrueValue() ||
2195             Select->getTrueValue() == SI.getFalseValue())
2196           return nullptr;
2197 
2198   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2199   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2200   if (!CmpXchg)
2201     return nullptr;
2202 
2203   // Check the true value case: The true value of the select is the returned
2204   // value of the same cmpxchg used by the condition, and the false value is the
2205   // cmpxchg instruction's compare operand.
2206   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2207     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2208       return SI.getFalseValue();
2209 
2210   // Check the false value case: The false value of the select is the returned
2211   // value of the same cmpxchg used by the condition, and the true value is the
2212   // cmpxchg instruction's compare operand.
2213   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2214     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2215       return SI.getFalseValue();
2216 
2217   return nullptr;
2218 }
2219 
2220 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2221                                        Value *Y,
2222                                        InstCombiner::BuilderTy &Builder) {
2223   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
2224   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2225                     SPF == SelectPatternFlavor::SPF_UMAX;
2226   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2227   // the constant value check to an assert.
2228   Value *A;
2229   const APInt *C1, *C2;
2230   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2231       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2232     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2233     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2234     Value *NewMinMax = createMinMax(Builder, SPF, A,
2235                                     ConstantInt::get(X->getType(), *C2 - *C1));
2236     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2237                                      ConstantInt::get(X->getType(), *C1));
2238   }
2239 
2240   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2241       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2242     bool Overflow;
2243     APInt Diff = C2->ssub_ov(*C1, Overflow);
2244     if (!Overflow) {
2245       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2246       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2247       Value *NewMinMax = createMinMax(Builder, SPF, A,
2248                                       ConstantInt::get(X->getType(), Diff));
2249       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2250                                        ConstantInt::get(X->getType(), *C1));
2251     }
2252   }
2253 
2254   return nullptr;
2255 }
2256 
2257 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2258 Instruction *InstCombinerImpl::matchSAddSubSat(Instruction &MinMax1) {
2259   Type *Ty = MinMax1.getType();
2260 
2261   // We are looking for a tree of:
2262   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2263   // Where the min and max could be reversed
2264   Instruction *MinMax2;
2265   BinaryOperator *AddSub;
2266   const APInt *MinValue, *MaxValue;
2267   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2268     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2269       return nullptr;
2270   } else if (match(&MinMax1,
2271                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2272     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2273       return nullptr;
2274   } else
2275     return nullptr;
2276 
2277   // Check that the constants clamp a saturate, and that the new type would be
2278   // sensible to convert to.
2279   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2280     return nullptr;
2281   // In what bitwidth can this be treated as saturating arithmetics?
2282   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2283   // FIXME: This isn't quite right for vectors, but using the scalar type is a
2284   // good first approximation for what should be done there.
2285   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2286     return nullptr;
2287 
2288   // Also make sure that the number of uses is as expected. The 3 is for the
2289   // the two items of the compare and the select, or 2 from a min/max.
2290   unsigned ExpUses = isa<IntrinsicInst>(MinMax1) ? 2 : 3;
2291   if (MinMax2->hasNUsesOrMore(ExpUses) || AddSub->hasNUsesOrMore(ExpUses))
2292     return nullptr;
2293 
2294   // Create the new type (which can be a vector type)
2295   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2296 
2297   Intrinsic::ID IntrinsicID;
2298   if (AddSub->getOpcode() == Instruction::Add)
2299     IntrinsicID = Intrinsic::sadd_sat;
2300   else if (AddSub->getOpcode() == Instruction::Sub)
2301     IntrinsicID = Intrinsic::ssub_sat;
2302   else
2303     return nullptr;
2304 
2305   // The two operands of the add/sub must be nsw-truncatable to the NewTy. This
2306   // is usually achieved via a sext from a smaller type.
2307   if (ComputeMaxSignificantBits(AddSub->getOperand(0), 0, AddSub) >
2308           NewBitWidth ||
2309       ComputeMaxSignificantBits(AddSub->getOperand(1), 0, AddSub) > NewBitWidth)
2310     return nullptr;
2311 
2312   // Finally create and return the sat intrinsic, truncated to the new type
2313   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2314   Value *AT = Builder.CreateTrunc(AddSub->getOperand(0), NewTy);
2315   Value *BT = Builder.CreateTrunc(AddSub->getOperand(1), NewTy);
2316   Value *Sat = Builder.CreateCall(F, {AT, BT});
2317   return CastInst::Create(Instruction::SExt, Sat, Ty);
2318 }
2319 
2320 /// Reduce a sequence of min/max with a common operand.
2321 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2322                                         Value *RHS,
2323                                         InstCombiner::BuilderTy &Builder) {
2324   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2325   // TODO: Allow FP min/max with nnan/nsz.
2326   if (!LHS->getType()->isIntOrIntVectorTy())
2327     return nullptr;
2328 
2329   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2330   Value *A, *B, *C, *D;
2331   SelectPatternResult L = matchSelectPattern(LHS, A, B);
2332   SelectPatternResult R = matchSelectPattern(RHS, C, D);
2333   if (SPF != L.Flavor || L.Flavor != R.Flavor)
2334     return nullptr;
2335 
2336   // Look for a common operand. The use checks are different than usual because
2337   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2338   // the select.
2339   Value *MinMaxOp = nullptr;
2340   Value *ThirdOp = nullptr;
2341   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2342     // If the LHS is only used in this chain and the RHS is used outside of it,
2343     // reuse the RHS min/max because that will eliminate the LHS.
2344     if (D == A || C == A) {
2345       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2346       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2347       MinMaxOp = RHS;
2348       ThirdOp = B;
2349     } else if (D == B || C == B) {
2350       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2351       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2352       MinMaxOp = RHS;
2353       ThirdOp = A;
2354     }
2355   } else if (!RHS->hasNUsesOrMore(3)) {
2356     // Reuse the LHS. This will eliminate the RHS.
2357     if (D == A || D == B) {
2358       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2359       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2360       MinMaxOp = LHS;
2361       ThirdOp = C;
2362     } else if (C == A || C == B) {
2363       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2364       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2365       MinMaxOp = LHS;
2366       ThirdOp = D;
2367     }
2368   }
2369   if (!MinMaxOp || !ThirdOp)
2370     return nullptr;
2371 
2372   CmpInst::Predicate P = getMinMaxPred(SPF);
2373   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2374   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2375 }
2376 
2377 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2378 /// into a funnel shift intrinsic. Example:
2379 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2380 ///              --> call llvm.fshl.i32(a, a, b)
2381 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2382 ///                 --> call llvm.fshl.i32(a, b, c)
2383 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2384 ///                 --> call llvm.fshr.i32(a, b, c)
2385 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2386                                           InstCombiner::BuilderTy &Builder) {
2387   // This must be a power-of-2 type for a bitmasking transform to be valid.
2388   unsigned Width = Sel.getType()->getScalarSizeInBits();
2389   if (!isPowerOf2_32(Width))
2390     return nullptr;
2391 
2392   BinaryOperator *Or0, *Or1;
2393   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2394     return nullptr;
2395 
2396   Value *SV0, *SV1, *SA0, *SA1;
2397   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2398                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2399       !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2400                                           m_ZExtOrSelf(m_Value(SA1))))) ||
2401       Or0->getOpcode() == Or1->getOpcode())
2402     return nullptr;
2403 
2404   // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2405   if (Or0->getOpcode() == BinaryOperator::LShr) {
2406     std::swap(Or0, Or1);
2407     std::swap(SV0, SV1);
2408     std::swap(SA0, SA1);
2409   }
2410   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2411          Or1->getOpcode() == BinaryOperator::LShr &&
2412          "Illegal or(shift,shift) pair");
2413 
2414   // Check the shift amounts to see if they are an opposite pair.
2415   Value *ShAmt;
2416   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2417     ShAmt = SA0;
2418   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2419     ShAmt = SA1;
2420   else
2421     return nullptr;
2422 
2423   // We should now have this pattern:
2424   // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2425   // The false value of the select must be a funnel-shift of the true value:
2426   // IsFShl -> TVal must be SV0 else TVal must be SV1.
2427   bool IsFshl = (ShAmt == SA0);
2428   Value *TVal = Sel.getTrueValue();
2429   if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2430     return nullptr;
2431 
2432   // Finally, see if the select is filtering out a shift-by-zero.
2433   Value *Cond = Sel.getCondition();
2434   ICmpInst::Predicate Pred;
2435   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2436       Pred != ICmpInst::ICMP_EQ)
2437     return nullptr;
2438 
2439   // If this is not a rotate then the select was blocking poison from the
2440   // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2441   if (SV0 != SV1) {
2442     if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2443       SV1 = Builder.CreateFreeze(SV1);
2444     else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2445       SV0 = Builder.CreateFreeze(SV0);
2446   }
2447 
2448   // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2449   // Convert to funnel shift intrinsic.
2450   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2451   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2452   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2453   return CallInst::Create(F, { SV0, SV1, ShAmt });
2454 }
2455 
2456 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2457                                          InstCombiner::BuilderTy &Builder) {
2458   Value *Cond = Sel.getCondition();
2459   Value *TVal = Sel.getTrueValue();
2460   Value *FVal = Sel.getFalseValue();
2461   Type *SelType = Sel.getType();
2462 
2463   // Match select ?, TC, FC where the constants are equal but negated.
2464   // TODO: Generalize to handle a negated variable operand?
2465   const APFloat *TC, *FC;
2466   if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
2467       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2468     return nullptr;
2469 
2470   assert(TC != FC && "Expected equal select arms to simplify");
2471 
2472   Value *X;
2473   const APInt *C;
2474   bool IsTrueIfSignSet;
2475   ICmpInst::Predicate Pred;
2476   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2477       !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2478       X->getType() != SelType)
2479     return nullptr;
2480 
2481   // If needed, negate the value that will be the sign argument of the copysign:
2482   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2483   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2484   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2485   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2486   if (IsTrueIfSignSet ^ TC->isNegative())
2487     X = Builder.CreateFNegFMF(X, &Sel);
2488 
2489   // Canonicalize the magnitude argument as the positive constant since we do
2490   // not care about its sign.
2491   Value *MagArg = TC->isNegative() ? FVal : TVal;
2492   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2493                                           Sel.getType());
2494   Instruction *CopySign = CallInst::Create(F, { MagArg, X });
2495   CopySign->setFastMathFlags(Sel.getFastMathFlags());
2496   return CopySign;
2497 }
2498 
2499 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2500   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2501   if (!VecTy)
2502     return nullptr;
2503 
2504   unsigned NumElts = VecTy->getNumElements();
2505   APInt UndefElts(NumElts, 0);
2506   APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2507   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2508     if (V != &Sel)
2509       return replaceInstUsesWith(Sel, V);
2510     return &Sel;
2511   }
2512 
2513   // A select of a "select shuffle" with a common operand can be rearranged
2514   // to select followed by "select shuffle". Because of poison, this only works
2515   // in the case of a shuffle with no undefined mask elements.
2516   Value *Cond = Sel.getCondition();
2517   Value *TVal = Sel.getTrueValue();
2518   Value *FVal = Sel.getFalseValue();
2519   Value *X, *Y;
2520   ArrayRef<int> Mask;
2521   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2522       !is_contained(Mask, UndefMaskElem) &&
2523       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2524     if (X == FVal) {
2525       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2526       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2527       return new ShuffleVectorInst(X, NewSel, Mask);
2528     }
2529     if (Y == FVal) {
2530       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2531       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2532       return new ShuffleVectorInst(NewSel, Y, Mask);
2533     }
2534   }
2535   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2536       !is_contained(Mask, UndefMaskElem) &&
2537       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2538     if (X == TVal) {
2539       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2540       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2541       return new ShuffleVectorInst(X, NewSel, Mask);
2542     }
2543     if (Y == TVal) {
2544       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2545       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2546       return new ShuffleVectorInst(NewSel, Y, Mask);
2547     }
2548   }
2549 
2550   return nullptr;
2551 }
2552 
2553 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2554                                         const DominatorTree &DT,
2555                                         InstCombiner::BuilderTy &Builder) {
2556   // Find the block's immediate dominator that ends with a conditional branch
2557   // that matches select's condition (maybe inverted).
2558   auto *IDomNode = DT[BB]->getIDom();
2559   if (!IDomNode)
2560     return nullptr;
2561   BasicBlock *IDom = IDomNode->getBlock();
2562 
2563   Value *Cond = Sel.getCondition();
2564   Value *IfTrue, *IfFalse;
2565   BasicBlock *TrueSucc, *FalseSucc;
2566   if (match(IDom->getTerminator(),
2567             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2568                  m_BasicBlock(FalseSucc)))) {
2569     IfTrue = Sel.getTrueValue();
2570     IfFalse = Sel.getFalseValue();
2571   } else if (match(IDom->getTerminator(),
2572                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2573                         m_BasicBlock(FalseSucc)))) {
2574     IfTrue = Sel.getFalseValue();
2575     IfFalse = Sel.getTrueValue();
2576   } else
2577     return nullptr;
2578 
2579   // Make sure the branches are actually different.
2580   if (TrueSucc == FalseSucc)
2581     return nullptr;
2582 
2583   // We want to replace select %cond, %a, %b with a phi that takes value %a
2584   // for all incoming edges that are dominated by condition `%cond == true`,
2585   // and value %b for edges dominated by condition `%cond == false`. If %a
2586   // or %b are also phis from the same basic block, we can go further and take
2587   // their incoming values from the corresponding blocks.
2588   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2589   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2590   DenseMap<BasicBlock *, Value *> Inputs;
2591   for (auto *Pred : predecessors(BB)) {
2592     // Check implication.
2593     BasicBlockEdge Incoming(Pred, BB);
2594     if (DT.dominates(TrueEdge, Incoming))
2595       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2596     else if (DT.dominates(FalseEdge, Incoming))
2597       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2598     else
2599       return nullptr;
2600     // Check availability.
2601     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2602       if (!DT.dominates(Insn, Pred->getTerminator()))
2603         return nullptr;
2604   }
2605 
2606   Builder.SetInsertPoint(&*BB->begin());
2607   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2608   for (auto *Pred : predecessors(BB))
2609     PN->addIncoming(Inputs[Pred], Pred);
2610   PN->takeName(&Sel);
2611   return PN;
2612 }
2613 
2614 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2615                                     InstCombiner::BuilderTy &Builder) {
2616   // Try to replace this select with Phi in one of these blocks.
2617   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2618   CandidateBlocks.insert(Sel.getParent());
2619   for (Value *V : Sel.operands())
2620     if (auto *I = dyn_cast<Instruction>(V))
2621       CandidateBlocks.insert(I->getParent());
2622 
2623   for (BasicBlock *BB : CandidateBlocks)
2624     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2625       return PN;
2626   return nullptr;
2627 }
2628 
2629 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2630   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2631   if (!FI)
2632     return nullptr;
2633 
2634   Value *Cond = FI->getOperand(0);
2635   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2636 
2637   //   select (freeze(x == y)), x, y --> y
2638   //   select (freeze(x != y)), x, y --> x
2639   // The freeze should be only used by this select. Otherwise, remaining uses of
2640   // the freeze can observe a contradictory value.
2641   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2642   //   a = select c, x, y   ;
2643   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2644   //                        ; to y, this can happen.
2645   CmpInst::Predicate Pred;
2646   if (FI->hasOneUse() &&
2647       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2648       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2649     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2650   }
2651 
2652   return nullptr;
2653 }
2654 
2655 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2656                                                                  SelectInst &SI,
2657                                                                  bool IsAnd) {
2658   Value *CondVal = SI.getCondition();
2659   Value *A = SI.getTrueValue();
2660   Value *B = SI.getFalseValue();
2661 
2662   assert(Op->getType()->isIntOrIntVectorTy(1) &&
2663          "Op must be either i1 or vector of i1.");
2664 
2665   Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2666   if (!Res)
2667     return nullptr;
2668 
2669   Value *Zero = Constant::getNullValue(A->getType());
2670   Value *One = Constant::getAllOnesValue(A->getType());
2671 
2672   if (*Res == true) {
2673     if (IsAnd)
2674       // select op, (select cond, A, B), false => select op, A, false
2675       // and    op, (select cond, A, B)        => select op, A, false
2676       //   if op = true implies condval = true.
2677       return SelectInst::Create(Op, A, Zero);
2678     else
2679       // select op, true, (select cond, A, B) => select op, true, A
2680       // or     op, (select cond, A, B)       => select op, true, A
2681       //   if op = false implies condval = true.
2682       return SelectInst::Create(Op, One, A);
2683   } else {
2684     if (IsAnd)
2685       // select op, (select cond, A, B), false => select op, B, false
2686       // and    op, (select cond, A, B)        => select op, B, false
2687       //   if op = true implies condval = false.
2688       return SelectInst::Create(Op, B, Zero);
2689     else
2690       // select op, true, (select cond, A, B) => select op, true, B
2691       // or     op, (select cond, A, B)       => select op, true, B
2692       //   if op = false implies condval = false.
2693       return SelectInst::Create(Op, One, B);
2694   }
2695 }
2696 
2697 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
2698   Value *CondVal = SI.getCondition();
2699   Value *TrueVal = SI.getTrueValue();
2700   Value *FalseVal = SI.getFalseValue();
2701   Type *SelType = SI.getType();
2702 
2703   // FIXME: Remove this workaround when freeze related patches are done.
2704   // For select with undef operand which feeds into an equality comparison,
2705   // don't simplify it so loop unswitch can know the equality comparison
2706   // may have an undef operand. This is a workaround for PR31652 caused by
2707   // descrepancy about branch on undef between LoopUnswitch and GVN.
2708   if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) {
2709     if (llvm::any_of(SI.users(), [&](User *U) {
2710           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2711           if (CI && CI->isEquality())
2712             return true;
2713           return false;
2714         })) {
2715       return nullptr;
2716     }
2717   }
2718 
2719   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2720                                     SQ.getWithInstruction(&SI)))
2721     return replaceInstUsesWith(SI, V);
2722 
2723   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2724     return I;
2725 
2726   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
2727     return I;
2728 
2729   CmpInst::Predicate Pred;
2730 
2731   // Avoid potential infinite loops by checking for non-constant condition.
2732   // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2733   //       Scalar select must have simplified?
2734   if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) &&
2735       TrueVal->getType() == CondVal->getType()) {
2736     // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2737     // checks whether folding it does not convert a well-defined value into
2738     // poison.
2739     if (match(TrueVal, m_One()) && impliesPoison(FalseVal, CondVal)) {
2740       // Change: A = select B, true, C --> A = or B, C
2741       return BinaryOperator::CreateOr(CondVal, FalseVal);
2742     }
2743     if (match(FalseVal, m_Zero()) && impliesPoison(TrueVal, CondVal)) {
2744       // Change: A = select B, C, false --> A = and B, C
2745       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2746     }
2747 
2748     auto *One = ConstantInt::getTrue(SelType);
2749     auto *Zero = ConstantInt::getFalse(SelType);
2750 
2751     // We match the "full" 0 or 1 constant here to avoid a potential infinite
2752     // loop with vectors that may have undefined/poison elements.
2753     // select a, false, b -> select !a, b, false
2754     if (match(TrueVal, m_Specific(Zero))) {
2755       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2756       return SelectInst::Create(NotCond, FalseVal, Zero);
2757     }
2758     // select a, b, true -> select !a, true, b
2759     if (match(FalseVal, m_Specific(One))) {
2760       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2761       return SelectInst::Create(NotCond, One, TrueVal);
2762     }
2763 
2764     // select a, a, b -> select a, true, b
2765     if (CondVal == TrueVal)
2766       return replaceOperand(SI, 1, One);
2767     // select a, b, a -> select a, b, false
2768     if (CondVal == FalseVal)
2769       return replaceOperand(SI, 2, Zero);
2770 
2771     // select a, !a, b -> select !a, b, false
2772     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2773       return SelectInst::Create(TrueVal, FalseVal, Zero);
2774     // select a, b, !a -> select !a, true, b
2775     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2776       return SelectInst::Create(FalseVal, One, TrueVal);
2777 
2778     Value *A, *B;
2779 
2780     // DeMorgan in select form: !a && !b --> !(a || b)
2781     // select !a, !b, false --> not (select a, true, b)
2782     if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2783         (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
2784         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2785       return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
2786 
2787     // DeMorgan in select form: !a || !b --> !(a && b)
2788     // select !a, true, !b --> not (select a, b, false)
2789     if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2790         (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
2791         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2792       return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
2793 
2794     // select (select a, true, b), true, b -> select a, true, b
2795     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2796         match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
2797       return replaceOperand(SI, 0, A);
2798     // select (select a, b, false), b, false -> select a, b, false
2799     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2800         match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
2801       return replaceOperand(SI, 0, A);
2802 
2803     if (!SelType->isVectorTy()) {
2804       if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ,
2805                                             /* AllowRefinement */ true))
2806         return replaceOperand(SI, 1, S);
2807       if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ,
2808                                             /* AllowRefinement */ true))
2809         return replaceOperand(SI, 2, S);
2810     }
2811 
2812     if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
2813       Use *Y = nullptr;
2814       bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
2815       Value *Op1 = IsAnd ? TrueVal : FalseVal;
2816       if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
2817         auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
2818         InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
2819         replaceUse(*Y, FI);
2820         return replaceInstUsesWith(SI, Op1);
2821       }
2822 
2823       if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
2824         if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
2825                                                         /* IsAnd */ IsAnd))
2826           return I;
2827 
2828       if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) {
2829         if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) {
2830           if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd,
2831                                                       /* IsLogical */ true))
2832             return replaceInstUsesWith(SI, V);
2833 
2834           if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd))
2835             return replaceInstUsesWith(SI, V);
2836         }
2837       }
2838     }
2839 
2840     // select (select a, true, b), c, false -> select a, c, false
2841     // select c, (select a, true, b), false -> select c, a, false
2842     //   if c implies that b is false.
2843     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2844         match(FalseVal, m_Zero())) {
2845       Optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
2846       if (Res && *Res == false)
2847         return replaceOperand(SI, 0, A);
2848     }
2849     if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2850         match(FalseVal, m_Zero())) {
2851       Optional<bool> Res = isImpliedCondition(CondVal, B, DL);
2852       if (Res && *Res == false)
2853         return replaceOperand(SI, 1, A);
2854     }
2855     // select c, true, (select a, b, false)  -> select c, true, a
2856     // select (select a, b, false), true, c  -> select a, true, c
2857     //   if c = false implies that b = true
2858     if (match(TrueVal, m_One()) &&
2859         match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) {
2860       Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
2861       if (Res && *Res == true)
2862         return replaceOperand(SI, 2, A);
2863     }
2864     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2865         match(TrueVal, m_One())) {
2866       Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
2867       if (Res && *Res == true)
2868         return replaceOperand(SI, 0, A);
2869     }
2870 
2871     // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b
2872     // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a
2873     Value *C1, *C2;
2874     if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) &&
2875         match(TrueVal, m_One()) &&
2876         match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) {
2877       if (match(C2, m_Not(m_Specific(C1)))) // first case
2878         return SelectInst::Create(C1, A, B);
2879       else if (match(C1, m_Not(m_Specific(C2)))) // second case
2880         return SelectInst::Create(C2, B, A);
2881     }
2882   }
2883 
2884   // Selecting between two integer or vector splat integer constants?
2885   //
2886   // Note that we don't handle a scalar select of vectors:
2887   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2888   // because that may need 3 instructions to splat the condition value:
2889   // extend, insertelement, shufflevector.
2890   //
2891   // Do not handle i1 TrueVal and FalseVal otherwise would result in
2892   // zext/sext i1 to i1.
2893   if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
2894       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2895     // select C, 1, 0 -> zext C to int
2896     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2897       return new ZExtInst(CondVal, SelType);
2898 
2899     // select C, -1, 0 -> sext C to int
2900     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2901       return new SExtInst(CondVal, SelType);
2902 
2903     // select C, 0, 1 -> zext !C to int
2904     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2905       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2906       return new ZExtInst(NotCond, SelType);
2907     }
2908 
2909     // select C, 0, -1 -> sext !C to int
2910     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2911       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2912       return new SExtInst(NotCond, SelType);
2913     }
2914   }
2915 
2916   if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
2917     Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
2918     // Are we selecting a value based on a comparison of the two values?
2919     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2920         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2921       // Canonicalize to use ordered comparisons by swapping the select
2922       // operands.
2923       //
2924       // e.g.
2925       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2926       if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
2927         FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
2928         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2929         // FIXME: The FMF should propagate from the select, not the fcmp.
2930         Builder.setFastMathFlags(FCmp->getFastMathFlags());
2931         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2932                                             FCmp->getName() + ".inv");
2933         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2934         return replaceInstUsesWith(SI, NewSel);
2935       }
2936 
2937       // NOTE: if we wanted to, this is where to detect MIN/MAX
2938     }
2939   }
2940 
2941   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2942   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2943   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2944   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2945       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2946       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2947     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2948     return replaceInstUsesWith(SI, Fabs);
2949   }
2950   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2951   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2952       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2953       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2954     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2955     return replaceInstUsesWith(SI, Fabs);
2956   }
2957   // With nnan and nsz:
2958   // (X <  +/-0.0) ? -X : X --> fabs(X)
2959   // (X <= +/-0.0) ? -X : X --> fabs(X)
2960   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2961       match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() &&
2962       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2963        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2964     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2965     return replaceInstUsesWith(SI, Fabs);
2966   }
2967   // With nnan and nsz:
2968   // (X >  +/-0.0) ? X : -X --> fabs(X)
2969   // (X >= +/-0.0) ? X : -X --> fabs(X)
2970   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2971       match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() &&
2972       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2973        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2974     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2975     return replaceInstUsesWith(SI, Fabs);
2976   }
2977 
2978   // See if we are selecting two values based on a comparison of the two values.
2979   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2980     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2981       return Result;
2982 
2983   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2984     return Add;
2985   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2986     return Add;
2987   if (Instruction *Or = foldSetClearBits(SI, Builder))
2988     return Or;
2989   if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
2990     return Mul;
2991 
2992   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2993   auto *TI = dyn_cast<Instruction>(TrueVal);
2994   auto *FI = dyn_cast<Instruction>(FalseVal);
2995   if (TI && FI && TI->getOpcode() == FI->getOpcode())
2996     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2997       return IV;
2998 
2999   if (Instruction *I = foldSelectExtConst(SI))
3000     return I;
3001 
3002   // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
3003   // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
3004   auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
3005                                bool Swap) -> GetElementPtrInst * {
3006     Value *Ptr = Gep->getPointerOperand();
3007     if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
3008         !Gep->hasOneUse())
3009       return nullptr;
3010     Value *Idx = Gep->getOperand(1);
3011     if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
3012       return nullptr;
3013     Type *ElementType = Gep->getResultElementType();
3014     Value *NewT = Idx;
3015     Value *NewF = Constant::getNullValue(Idx->getType());
3016     if (Swap)
3017       std::swap(NewT, NewF);
3018     Value *NewSI =
3019         Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
3020     return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
3021   };
3022   if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
3023     if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
3024       return NewGep;
3025   if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
3026     if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
3027       return NewGep;
3028 
3029   // See if we can fold the select into one of our operands.
3030   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
3031     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
3032       return FoldI;
3033 
3034     Value *LHS, *RHS;
3035     Instruction::CastOps CastOp;
3036     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
3037     auto SPF = SPR.Flavor;
3038     if (SPF) {
3039       Value *LHS2, *RHS2;
3040       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
3041         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
3042                                           RHS2, SI, SPF, RHS))
3043           return R;
3044       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
3045         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
3046                                           RHS2, SI, SPF, LHS))
3047           return R;
3048       // TODO.
3049       // ABS(-X) -> ABS(X)
3050     }
3051 
3052     if (SelectPatternResult::isMinOrMax(SPF)) {
3053       // Canonicalize so that
3054       // - type casts are outside select patterns.
3055       // - float clamp is transformed to min/max pattern
3056 
3057       bool IsCastNeeded = LHS->getType() != SelType;
3058       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
3059       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
3060       if (IsCastNeeded ||
3061           (LHS->getType()->isFPOrFPVectorTy() &&
3062            ((CmpLHS != LHS && CmpLHS != RHS) ||
3063             (CmpRHS != LHS && CmpRHS != RHS)))) {
3064         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
3065 
3066         Value *Cmp;
3067         if (CmpInst::isIntPredicate(MinMaxPred)) {
3068           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
3069         } else {
3070           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
3071           auto FMF =
3072               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
3073           Builder.setFastMathFlags(FMF);
3074           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
3075         }
3076 
3077         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
3078         if (!IsCastNeeded)
3079           return replaceInstUsesWith(SI, NewSI);
3080 
3081         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
3082         return replaceInstUsesWith(SI, NewCast);
3083       }
3084 
3085       // MAX(~a, ~b) -> ~MIN(a, b)
3086       // MAX(~a, C)  -> ~MIN(a, ~C)
3087       // MIN(~a, ~b) -> ~MAX(a, b)
3088       // MIN(~a, C)  -> ~MAX(a, ~C)
3089       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
3090         Value *A;
3091         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
3092             !isFreeToInvert(A, A->hasOneUse()) &&
3093             // Passing false to only consider m_Not and constants.
3094             isFreeToInvert(Y, false)) {
3095           Value *B = Builder.CreateNot(Y);
3096           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
3097                                           A, B);
3098           // Copy the profile metadata.
3099           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
3100             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
3101             // Swap the metadata if the operands are swapped.
3102             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
3103               cast<SelectInst>(NewMinMax)->swapProfMetadata();
3104           }
3105 
3106           return BinaryOperator::CreateNot(NewMinMax);
3107         }
3108 
3109         return nullptr;
3110       };
3111 
3112       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
3113         return I;
3114       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
3115         return I;
3116 
3117       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
3118         return I;
3119 
3120       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
3121         return I;
3122       if (Instruction *I = matchSAddSubSat(SI))
3123         return I;
3124     }
3125   }
3126 
3127   // Canonicalize select of FP values where NaN and -0.0 are not valid as
3128   // minnum/maxnum intrinsics.
3129   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
3130     Value *X, *Y;
3131     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
3132       return replaceInstUsesWith(
3133           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
3134 
3135     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
3136       return replaceInstUsesWith(
3137           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
3138   }
3139 
3140   // See if we can fold the select into a phi node if the condition is a select.
3141   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
3142     // The true/false values have to be live in the PHI predecessor's blocks.
3143     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
3144         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
3145       if (Instruction *NV = foldOpIntoPhi(SI, PN))
3146         return NV;
3147 
3148   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
3149     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
3150       // select(C, select(C, a, b), c) -> select(C, a, c)
3151       if (TrueSI->getCondition() == CondVal) {
3152         if (SI.getTrueValue() == TrueSI->getTrueValue())
3153           return nullptr;
3154         return replaceOperand(SI, 1, TrueSI->getTrueValue());
3155       }
3156       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
3157       // We choose this as normal form to enable folding on the And and
3158       // shortening paths for the values (this helps getUnderlyingObjects() for
3159       // example).
3160       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
3161         Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
3162         replaceOperand(SI, 0, And);
3163         replaceOperand(SI, 1, TrueSI->getTrueValue());
3164         return &SI;
3165       }
3166     }
3167   }
3168   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
3169     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
3170       // select(C, a, select(C, b, c)) -> select(C, a, c)
3171       if (FalseSI->getCondition() == CondVal) {
3172         if (SI.getFalseValue() == FalseSI->getFalseValue())
3173           return nullptr;
3174         return replaceOperand(SI, 2, FalseSI->getFalseValue());
3175       }
3176       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
3177       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
3178         Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
3179         replaceOperand(SI, 0, Or);
3180         replaceOperand(SI, 2, FalseSI->getFalseValue());
3181         return &SI;
3182       }
3183     }
3184   }
3185 
3186   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
3187     // The select might be preventing a division by 0.
3188     switch (BO->getOpcode()) {
3189     default:
3190       return true;
3191     case Instruction::SRem:
3192     case Instruction::URem:
3193     case Instruction::SDiv:
3194     case Instruction::UDiv:
3195       return false;
3196     }
3197   };
3198 
3199   // Try to simplify a binop sandwiched between 2 selects with the same
3200   // condition.
3201   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
3202   BinaryOperator *TrueBO;
3203   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
3204       canMergeSelectThroughBinop(TrueBO)) {
3205     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
3206       if (TrueBOSI->getCondition() == CondVal) {
3207         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
3208         Worklist.push(TrueBO);
3209         return &SI;
3210       }
3211     }
3212     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
3213       if (TrueBOSI->getCondition() == CondVal) {
3214         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
3215         Worklist.push(TrueBO);
3216         return &SI;
3217       }
3218     }
3219   }
3220 
3221   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
3222   BinaryOperator *FalseBO;
3223   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
3224       canMergeSelectThroughBinop(FalseBO)) {
3225     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
3226       if (FalseBOSI->getCondition() == CondVal) {
3227         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
3228         Worklist.push(FalseBO);
3229         return &SI;
3230       }
3231     }
3232     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
3233       if (FalseBOSI->getCondition() == CondVal) {
3234         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
3235         Worklist.push(FalseBO);
3236         return &SI;
3237       }
3238     }
3239   }
3240 
3241   Value *NotCond;
3242   if (match(CondVal, m_Not(m_Value(NotCond))) &&
3243       !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
3244     replaceOperand(SI, 0, NotCond);
3245     SI.swapValues();
3246     SI.swapProfMetadata();
3247     return &SI;
3248   }
3249 
3250   if (Instruction *I = foldVectorSelect(SI))
3251     return I;
3252 
3253   // If we can compute the condition, there's no need for a select.
3254   // Like the above fold, we are attempting to reduce compile-time cost by
3255   // putting this fold here with limitations rather than in InstSimplify.
3256   // The motivation for this call into value tracking is to take advantage of
3257   // the assumption cache, so make sure that is populated.
3258   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3259     KnownBits Known(1);
3260     computeKnownBits(CondVal, Known, 0, &SI);
3261     if (Known.One.isOne())
3262       return replaceInstUsesWith(SI, TrueVal);
3263     if (Known.Zero.isOne())
3264       return replaceInstUsesWith(SI, FalseVal);
3265   }
3266 
3267   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3268     return BitCastSel;
3269 
3270   // Simplify selects that test the returned flag of cmpxchg instructions.
3271   if (Value *V = foldSelectCmpXchg(SI))
3272     return replaceInstUsesWith(SI, V);
3273 
3274   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3275     return Select;
3276 
3277   if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3278     return Funnel;
3279 
3280   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3281     return Copysign;
3282 
3283   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3284     return replaceInstUsesWith(SI, PN);
3285 
3286   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3287     return replaceInstUsesWith(SI, Fr);
3288 
3289   // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3290   // Load inst is intentionally not checked for hasOneUse()
3291   if (match(FalseVal, m_Zero()) &&
3292       match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3293                                   m_CombineOr(m_Undef(), m_Zero())))) {
3294     auto *MaskedLoad = cast<IntrinsicInst>(TrueVal);
3295     if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
3296       MaskedLoad->setArgOperand(3, FalseVal /* Zero */);
3297     return replaceInstUsesWith(SI, MaskedLoad);
3298   }
3299 
3300   Value *Mask;
3301   if (match(TrueVal, m_Zero()) &&
3302       match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3303                                    m_CombineOr(m_Undef(), m_Zero()))) &&
3304       (CondVal->getType() == Mask->getType())) {
3305     // We can remove the select by ensuring the load zeros all lanes the
3306     // select would have.  We determine this by proving there is no overlap
3307     // between the load and select masks.
3308     // (i.e (load_mask & select_mask) == 0 == no overlap)
3309     bool CanMergeSelectIntoLoad = false;
3310     if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3311       CanMergeSelectIntoLoad = match(V, m_Zero());
3312 
3313     if (CanMergeSelectIntoLoad) {
3314       auto *MaskedLoad = cast<IntrinsicInst>(FalseVal);
3315       if (isa<UndefValue>(MaskedLoad->getArgOperand(3)))
3316         MaskedLoad->setArgOperand(3, TrueVal /* Zero */);
3317       return replaceInstUsesWith(SI, MaskedLoad);
3318     }
3319   }
3320 
3321   return nullptr;
3322 }
3323