1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 41 #include <cassert> 42 #include <utility> 43 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 #define DEBUG_TYPE "instcombine" 48 49 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 50 SelectPatternFlavor SPF, Value *A, Value *B) { 51 CmpInst::Predicate Pred = getMinMaxPred(SPF); 52 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 53 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 54 } 55 56 /// Replace a select operand based on an equality comparison with the identity 57 /// constant of a binop. 58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 59 const TargetLibraryInfo &TLI) { 60 // The select condition must be an equality compare with a constant operand. 61 Value *X; 62 Constant *C; 63 CmpInst::Predicate Pred; 64 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 65 return nullptr; 66 67 bool IsEq; 68 if (ICmpInst::isEquality(Pred)) 69 IsEq = Pred == ICmpInst::ICMP_EQ; 70 else if (Pred == FCmpInst::FCMP_OEQ) 71 IsEq = true; 72 else if (Pred == FCmpInst::FCMP_UNE) 73 IsEq = false; 74 else 75 return nullptr; 76 77 // A select operand must be a binop. 78 BinaryOperator *BO; 79 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 80 return nullptr; 81 82 // The compare constant must be the identity constant for that binop. 83 // If this a floating-point compare with 0.0, any zero constant will do. 84 Type *Ty = BO->getType(); 85 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 86 if (IdC != C) { 87 if (!IdC || !CmpInst::isFPPredicate(Pred)) 88 return nullptr; 89 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 90 return nullptr; 91 } 92 93 // Last, match the compare variable operand with a binop operand. 94 Value *Y; 95 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 96 return nullptr; 97 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 98 return nullptr; 99 100 // +0.0 compares equal to -0.0, and so it does not behave as required for this 101 // transform. Bail out if we can not exclude that possibility. 102 if (isa<FPMathOperator>(BO)) 103 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 104 return nullptr; 105 106 // BO = binop Y, X 107 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 108 // => 109 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 110 Sel.setOperand(IsEq ? 1 : 2, Y); 111 return &Sel; 112 } 113 114 /// This folds: 115 /// select (icmp eq (and X, C1)), TC, FC 116 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 117 /// To something like: 118 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 119 /// Or: 120 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 121 /// With some variations depending if FC is larger than TC, or the shift 122 /// isn't needed, or the bit widths don't match. 123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 124 InstCombiner::BuilderTy &Builder) { 125 const APInt *SelTC, *SelFC; 126 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 127 !match(Sel.getFalseValue(), m_APInt(SelFC))) 128 return nullptr; 129 130 // If this is a vector select, we need a vector compare. 131 Type *SelType = Sel.getType(); 132 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 133 return nullptr; 134 135 Value *V; 136 APInt AndMask; 137 bool CreateAnd = false; 138 ICmpInst::Predicate Pred = Cmp->getPredicate(); 139 if (ICmpInst::isEquality(Pred)) { 140 if (!match(Cmp->getOperand(1), m_Zero())) 141 return nullptr; 142 143 V = Cmp->getOperand(0); 144 const APInt *AndRHS; 145 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 146 return nullptr; 147 148 AndMask = *AndRHS; 149 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 150 Pred, V, AndMask)) { 151 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 152 if (!AndMask.isPowerOf2()) 153 return nullptr; 154 155 CreateAnd = true; 156 } else { 157 return nullptr; 158 } 159 160 // In general, when both constants are non-zero, we would need an offset to 161 // replace the select. This would require more instructions than we started 162 // with. But there's one special-case that we handle here because it can 163 // simplify/reduce the instructions. 164 APInt TC = *SelTC; 165 APInt FC = *SelFC; 166 if (!TC.isNullValue() && !FC.isNullValue()) { 167 // If the select constants differ by exactly one bit and that's the same 168 // bit that is masked and checked by the select condition, the select can 169 // be replaced by bitwise logic to set/clear one bit of the constant result. 170 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 171 return nullptr; 172 if (CreateAnd) { 173 // If we have to create an 'and', then we must kill the cmp to not 174 // increase the instruction count. 175 if (!Cmp->hasOneUse()) 176 return nullptr; 177 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 178 } 179 bool ExtraBitInTC = TC.ugt(FC); 180 if (Pred == ICmpInst::ICMP_EQ) { 181 // If the masked bit in V is clear, clear or set the bit in the result: 182 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 184 Constant *C = ConstantInt::get(SelType, TC); 185 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 186 } 187 if (Pred == ICmpInst::ICMP_NE) { 188 // If the masked bit in V is set, set or clear the bit in the result: 189 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 191 Constant *C = ConstantInt::get(SelType, FC); 192 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 193 } 194 llvm_unreachable("Only expecting equality predicates"); 195 } 196 197 // Make sure one of the select arms is a power-of-2. 198 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 199 return nullptr; 200 201 // Determine which shift is needed to transform result of the 'and' into the 202 // desired result. 203 const APInt &ValC = !TC.isNullValue() ? TC : FC; 204 unsigned ValZeros = ValC.logBase2(); 205 unsigned AndZeros = AndMask.logBase2(); 206 207 // Insert the 'and' instruction on the input to the truncate. 208 if (CreateAnd) 209 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 210 211 // If types don't match, we can still convert the select by introducing a zext 212 // or a trunc of the 'and'. 213 if (ValZeros > AndZeros) { 214 V = Builder.CreateZExtOrTrunc(V, SelType); 215 V = Builder.CreateShl(V, ValZeros - AndZeros); 216 } else if (ValZeros < AndZeros) { 217 V = Builder.CreateLShr(V, AndZeros - ValZeros); 218 V = Builder.CreateZExtOrTrunc(V, SelType); 219 } else { 220 V = Builder.CreateZExtOrTrunc(V, SelType); 221 } 222 223 // Okay, now we know that everything is set up, we just don't know whether we 224 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 225 bool ShouldNotVal = !TC.isNullValue(); 226 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 227 if (ShouldNotVal) 228 V = Builder.CreateXor(V, ValC); 229 230 return V; 231 } 232 233 /// We want to turn code that looks like this: 234 /// %C = or %A, %B 235 /// %D = select %cond, %C, %A 236 /// into: 237 /// %C = select %cond, %B, 0 238 /// %D = or %A, %C 239 /// 240 /// Assuming that the specified instruction is an operand to the select, return 241 /// a bitmask indicating which operands of this instruction are foldable if they 242 /// equal the other incoming value of the select. 243 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 244 switch (I->getOpcode()) { 245 case Instruction::Add: 246 case Instruction::Mul: 247 case Instruction::And: 248 case Instruction::Or: 249 case Instruction::Xor: 250 return 3; // Can fold through either operand. 251 case Instruction::Sub: // Can only fold on the amount subtracted. 252 case Instruction::Shl: // Can only fold on the shift amount. 253 case Instruction::LShr: 254 case Instruction::AShr: 255 return 1; 256 default: 257 return 0; // Cannot fold 258 } 259 } 260 261 /// For the same transformation as the previous function, return the identity 262 /// constant that goes into the select. 263 static APInt getSelectFoldableConstant(BinaryOperator *I) { 264 switch (I->getOpcode()) { 265 default: llvm_unreachable("This cannot happen!"); 266 case Instruction::Add: 267 case Instruction::Sub: 268 case Instruction::Or: 269 case Instruction::Xor: 270 case Instruction::Shl: 271 case Instruction::LShr: 272 case Instruction::AShr: 273 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 274 case Instruction::And: 275 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 276 case Instruction::Mul: 277 return APInt(I->getType()->getScalarSizeInBits(), 1); 278 } 279 } 280 281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 283 Instruction *FI) { 284 // Don't break up min/max patterns. The hasOneUse checks below prevent that 285 // for most cases, but vector min/max with bitcasts can be transformed. If the 286 // one-use restrictions are eased for other patterns, we still don't want to 287 // obfuscate min/max. 288 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 289 match(&SI, m_SMax(m_Value(), m_Value())) || 290 match(&SI, m_UMin(m_Value(), m_Value())) || 291 match(&SI, m_UMax(m_Value(), m_Value())))) 292 return nullptr; 293 294 // If this is a cast from the same type, merge. 295 Value *Cond = SI.getCondition(); 296 Type *CondTy = Cond->getType(); 297 if (TI->getNumOperands() == 1 && TI->isCast()) { 298 Type *FIOpndTy = FI->getOperand(0)->getType(); 299 if (TI->getOperand(0)->getType() != FIOpndTy) 300 return nullptr; 301 302 // The select condition may be a vector. We may only change the operand 303 // type if the vector width remains the same (and matches the condition). 304 if (CondTy->isVectorTy()) { 305 if (!FIOpndTy->isVectorTy()) 306 return nullptr; 307 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 308 return nullptr; 309 310 // TODO: If the backend knew how to deal with casts better, we could 311 // remove this limitation. For now, there's too much potential to create 312 // worse codegen by promoting the select ahead of size-altering casts 313 // (PR28160). 314 // 315 // Note that ValueTracking's matchSelectPattern() looks through casts 316 // without checking 'hasOneUse' when it matches min/max patterns, so this 317 // transform may end up happening anyway. 318 if (TI->getOpcode() != Instruction::BitCast && 319 (!TI->hasOneUse() || !FI->hasOneUse())) 320 return nullptr; 321 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 322 // TODO: The one-use restrictions for a scalar select could be eased if 323 // the fold of a select in visitLoadInst() was enhanced to match a pattern 324 // that includes a cast. 325 return nullptr; 326 } 327 328 // Fold this by inserting a select from the input values. 329 Value *NewSI = 330 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 331 SI.getName() + ".v", &SI); 332 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 333 TI->getType()); 334 } 335 336 // Cond ? -X : -Y --> -(Cond ? X : Y) 337 Value *X, *Y; 338 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 339 (TI->hasOneUse() || FI->hasOneUse())) { 340 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 341 // TODO: Remove the hack for the binop form when the unary op is optimized 342 // properly with all IR passes. 343 if (TI->getOpcode() != Instruction::FNeg) 344 return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI)); 345 return UnaryOperator::CreateFNeg(NewSel); 346 } 347 348 // Only handle binary operators (including two-operand getelementptr) with 349 // one-use here. As with the cast case above, it may be possible to relax the 350 // one-use constraint, but that needs be examined carefully since it may not 351 // reduce the total number of instructions. 352 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 353 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 354 !TI->hasOneUse() || !FI->hasOneUse()) 355 return nullptr; 356 357 // Figure out if the operations have any operands in common. 358 Value *MatchOp, *OtherOpT, *OtherOpF; 359 bool MatchIsOpZero; 360 if (TI->getOperand(0) == FI->getOperand(0)) { 361 MatchOp = TI->getOperand(0); 362 OtherOpT = TI->getOperand(1); 363 OtherOpF = FI->getOperand(1); 364 MatchIsOpZero = true; 365 } else if (TI->getOperand(1) == FI->getOperand(1)) { 366 MatchOp = TI->getOperand(1); 367 OtherOpT = TI->getOperand(0); 368 OtherOpF = FI->getOperand(0); 369 MatchIsOpZero = false; 370 } else if (!TI->isCommutative()) { 371 return nullptr; 372 } else if (TI->getOperand(0) == FI->getOperand(1)) { 373 MatchOp = TI->getOperand(0); 374 OtherOpT = TI->getOperand(1); 375 OtherOpF = FI->getOperand(0); 376 MatchIsOpZero = true; 377 } else if (TI->getOperand(1) == FI->getOperand(0)) { 378 MatchOp = TI->getOperand(1); 379 OtherOpT = TI->getOperand(0); 380 OtherOpF = FI->getOperand(1); 381 MatchIsOpZero = true; 382 } else { 383 return nullptr; 384 } 385 386 // If the select condition is a vector, the operands of the original select's 387 // operands also must be vectors. This may not be the case for getelementptr 388 // for example. 389 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 390 !OtherOpF->getType()->isVectorTy())) 391 return nullptr; 392 393 // If we reach here, they do have operations in common. 394 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 395 SI.getName() + ".v", &SI); 396 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 397 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 398 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 399 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 400 NewBO->copyIRFlags(TI); 401 NewBO->andIRFlags(FI); 402 return NewBO; 403 } 404 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 405 auto *FGEP = cast<GetElementPtrInst>(FI); 406 Type *ElementType = TGEP->getResultElementType(); 407 return TGEP->isInBounds() && FGEP->isInBounds() 408 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 409 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 410 } 411 llvm_unreachable("Expected BinaryOperator or GEP"); 412 return nullptr; 413 } 414 415 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 416 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 417 return false; 418 return C1I.isOneValue() || C1I.isAllOnesValue() || 419 C2I.isOneValue() || C2I.isAllOnesValue(); 420 } 421 422 /// Try to fold the select into one of the operands to allow further 423 /// optimization. 424 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 425 Value *FalseVal) { 426 // See the comment above GetSelectFoldableOperands for a description of the 427 // transformation we are doing here. 428 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 429 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 430 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 431 unsigned OpToFold = 0; 432 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 433 OpToFold = 1; 434 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 435 OpToFold = 2; 436 } 437 438 if (OpToFold) { 439 APInt CI = getSelectFoldableConstant(TVI); 440 Value *OOp = TVI->getOperand(2-OpToFold); 441 // Avoid creating select between 2 constants unless it's selecting 442 // between 0, 1 and -1. 443 const APInt *OOpC; 444 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 445 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 446 Value *C = ConstantInt::get(OOp->getType(), CI); 447 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 448 NewSel->takeName(TVI); 449 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 450 FalseVal, NewSel); 451 BO->copyIRFlags(TVI); 452 return BO; 453 } 454 } 455 } 456 } 457 } 458 459 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 460 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 461 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 462 unsigned OpToFold = 0; 463 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 464 OpToFold = 1; 465 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 466 OpToFold = 2; 467 } 468 469 if (OpToFold) { 470 APInt CI = getSelectFoldableConstant(FVI); 471 Value *OOp = FVI->getOperand(2-OpToFold); 472 // Avoid creating select between 2 constants unless it's selecting 473 // between 0, 1 and -1. 474 const APInt *OOpC; 475 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 476 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 477 Value *C = ConstantInt::get(OOp->getType(), CI); 478 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 479 NewSel->takeName(FVI); 480 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 481 TrueVal, NewSel); 482 BO->copyIRFlags(FVI); 483 return BO; 484 } 485 } 486 } 487 } 488 } 489 490 return nullptr; 491 } 492 493 /// We want to turn: 494 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 495 /// into: 496 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 497 /// Note: 498 /// Z may be 0 if lshr is missing. 499 /// Worst-case scenario is that we will replace 5 instructions with 5 different 500 /// instructions, but we got rid of select. 501 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 502 Value *TVal, Value *FVal, 503 InstCombiner::BuilderTy &Builder) { 504 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 505 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 506 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 507 return nullptr; 508 509 // The TrueVal has general form of: and %B, 1 510 Value *B; 511 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 512 return nullptr; 513 514 // Where %B may be optionally shifted: lshr %X, %Z. 515 Value *X, *Z; 516 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 517 if (!HasShift) 518 X = B; 519 520 Value *Y; 521 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 522 return nullptr; 523 524 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 525 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 526 Constant *One = ConstantInt::get(SelType, 1); 527 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 528 Value *FullMask = Builder.CreateOr(Y, MaskB); 529 Value *MaskedX = Builder.CreateAnd(X, FullMask); 530 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 531 return new ZExtInst(ICmpNeZero, SelType); 532 } 533 534 /// We want to turn: 535 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 536 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 537 /// into: 538 /// ashr (X, Y) 539 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 540 Value *FalseVal, 541 InstCombiner::BuilderTy &Builder) { 542 ICmpInst::Predicate Pred = IC->getPredicate(); 543 Value *CmpLHS = IC->getOperand(0); 544 Value *CmpRHS = IC->getOperand(1); 545 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 546 return nullptr; 547 548 Value *X, *Y; 549 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 550 if ((Pred != ICmpInst::ICMP_SGT || 551 !match(CmpRHS, 552 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 553 (Pred != ICmpInst::ICMP_SLT || 554 !match(CmpRHS, 555 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 556 return nullptr; 557 558 // Canonicalize so that ashr is in FalseVal. 559 if (Pred == ICmpInst::ICMP_SLT) 560 std::swap(TrueVal, FalseVal); 561 562 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 563 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 564 match(CmpLHS, m_Specific(X))) { 565 const auto *Ashr = cast<Instruction>(FalseVal); 566 // if lshr is not exact and ashr is, this new ashr must not be exact. 567 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 568 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 569 } 570 571 return nullptr; 572 } 573 574 /// We want to turn: 575 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 576 /// into: 577 /// (or (shl (and X, C1), C3), Y) 578 /// iff: 579 /// C1 and C2 are both powers of 2 580 /// where: 581 /// C3 = Log(C2) - Log(C1) 582 /// 583 /// This transform handles cases where: 584 /// 1. The icmp predicate is inverted 585 /// 2. The select operands are reversed 586 /// 3. The magnitude of C2 and C1 are flipped 587 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 588 Value *FalseVal, 589 InstCombiner::BuilderTy &Builder) { 590 // Only handle integer compares. Also, if this is a vector select, we need a 591 // vector compare. 592 if (!TrueVal->getType()->isIntOrIntVectorTy() || 593 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 594 return nullptr; 595 596 Value *CmpLHS = IC->getOperand(0); 597 Value *CmpRHS = IC->getOperand(1); 598 599 Value *V; 600 unsigned C1Log; 601 bool IsEqualZero; 602 bool NeedAnd = false; 603 if (IC->isEquality()) { 604 if (!match(CmpRHS, m_Zero())) 605 return nullptr; 606 607 const APInt *C1; 608 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 609 return nullptr; 610 611 V = CmpLHS; 612 C1Log = C1->logBase2(); 613 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 614 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 615 IC->getPredicate() == ICmpInst::ICMP_SGT) { 616 // We also need to recognize (icmp slt (trunc (X)), 0) and 617 // (icmp sgt (trunc (X)), -1). 618 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 619 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 620 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 621 return nullptr; 622 623 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 624 return nullptr; 625 626 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 627 NeedAnd = true; 628 } else { 629 return nullptr; 630 } 631 632 const APInt *C2; 633 bool OrOnTrueVal = false; 634 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 635 if (!OrOnFalseVal) 636 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 637 638 if (!OrOnFalseVal && !OrOnTrueVal) 639 return nullptr; 640 641 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 642 643 unsigned C2Log = C2->logBase2(); 644 645 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 646 bool NeedShift = C1Log != C2Log; 647 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 648 V->getType()->getScalarSizeInBits(); 649 650 // Make sure we don't create more instructions than we save. 651 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 652 if ((NeedShift + NeedXor + NeedZExtTrunc) > 653 (IC->hasOneUse() + Or->hasOneUse())) 654 return nullptr; 655 656 if (NeedAnd) { 657 // Insert the AND instruction on the input to the truncate. 658 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 659 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 660 } 661 662 if (C2Log > C1Log) { 663 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 664 V = Builder.CreateShl(V, C2Log - C1Log); 665 } else if (C1Log > C2Log) { 666 V = Builder.CreateLShr(V, C1Log - C2Log); 667 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 668 } else 669 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 670 671 if (NeedXor) 672 V = Builder.CreateXor(V, *C2); 673 674 return Builder.CreateOr(V, Y); 675 } 676 677 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 678 /// There are 8 commuted/swapped variants of this pattern. 679 /// TODO: Also support a - UMIN(a,b) patterns. 680 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 681 const Value *TrueVal, 682 const Value *FalseVal, 683 InstCombiner::BuilderTy &Builder) { 684 ICmpInst::Predicate Pred = ICI->getPredicate(); 685 if (!ICmpInst::isUnsigned(Pred)) 686 return nullptr; 687 688 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 689 if (match(TrueVal, m_Zero())) { 690 Pred = ICmpInst::getInversePredicate(Pred); 691 std::swap(TrueVal, FalseVal); 692 } 693 if (!match(FalseVal, m_Zero())) 694 return nullptr; 695 696 Value *A = ICI->getOperand(0); 697 Value *B = ICI->getOperand(1); 698 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 699 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 700 std::swap(A, B); 701 Pred = ICmpInst::getSwappedPredicate(Pred); 702 } 703 704 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 705 "Unexpected isUnsigned predicate!"); 706 707 // Account for swapped form of subtraction: ((a > b) ? b - a : 0). 708 bool IsNegative = false; 709 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A)))) 710 IsNegative = true; 711 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B)))) 712 return nullptr; 713 714 // If sub is used anywhere else, we wouldn't be able to eliminate it 715 // afterwards. 716 if (!TrueVal->hasOneUse()) 717 return nullptr; 718 719 // (a > b) ? a - b : 0 -> usub.sat(a, b) 720 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 721 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 722 if (IsNegative) 723 Result = Builder.CreateNeg(Result); 724 return Result; 725 } 726 727 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 728 InstCombiner::BuilderTy &Builder) { 729 if (!Cmp->hasOneUse()) 730 return nullptr; 731 732 // Match unsigned saturated add with constant. 733 Value *Cmp0 = Cmp->getOperand(0); 734 Value *Cmp1 = Cmp->getOperand(1); 735 ICmpInst::Predicate Pred = Cmp->getPredicate(); 736 Value *X; 737 const APInt *C, *CmpC; 738 if (Pred == ICmpInst::ICMP_ULT && 739 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 740 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 741 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 742 return Builder.CreateBinaryIntrinsic( 743 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 744 } 745 746 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 747 // There are 8 commuted variants. 748 // Canonicalize -1 (saturated result) to true value of the select. Just 749 // swapping the compare operands is legal, because the selected value is the 750 // same in case of equality, so we can interchange u< and u<=. 751 if (match(FVal, m_AllOnes())) { 752 std::swap(TVal, FVal); 753 std::swap(Cmp0, Cmp1); 754 } 755 if (!match(TVal, m_AllOnes())) 756 return nullptr; 757 758 // Canonicalize predicate to 'ULT'. 759 if (Pred == ICmpInst::ICMP_UGT) { 760 Pred = ICmpInst::ICMP_ULT; 761 std::swap(Cmp0, Cmp1); 762 } 763 if (Pred != ICmpInst::ICMP_ULT) 764 return nullptr; 765 766 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 767 Value *Y; 768 if (match(Cmp0, m_Not(m_Value(X))) && 769 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 770 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 771 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 772 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 773 } 774 // The 'not' op may be included in the sum but not the compare. 775 X = Cmp0; 776 Y = Cmp1; 777 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 778 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 779 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 780 BinaryOperator *BO = cast<BinaryOperator>(FVal); 781 return Builder.CreateBinaryIntrinsic( 782 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 783 } 784 785 return nullptr; 786 } 787 788 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 789 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 790 /// 791 /// For example, we can fold the following code sequence: 792 /// \code 793 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 794 /// %1 = icmp ne i32 %x, 0 795 /// %2 = select i1 %1, i32 %0, i32 32 796 /// \code 797 /// 798 /// into: 799 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 800 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 801 InstCombiner::BuilderTy &Builder) { 802 ICmpInst::Predicate Pred = ICI->getPredicate(); 803 Value *CmpLHS = ICI->getOperand(0); 804 Value *CmpRHS = ICI->getOperand(1); 805 806 // Check if the condition value compares a value for equality against zero. 807 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 808 return nullptr; 809 810 Value *Count = FalseVal; 811 Value *ValueOnZero = TrueVal; 812 if (Pred == ICmpInst::ICMP_NE) 813 std::swap(Count, ValueOnZero); 814 815 // Skip zero extend/truncate. 816 Value *V = nullptr; 817 if (match(Count, m_ZExt(m_Value(V))) || 818 match(Count, m_Trunc(m_Value(V)))) 819 Count = V; 820 821 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 822 // input to the cttz/ctlz is used as LHS for the compare instruction. 823 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 824 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 825 return nullptr; 826 827 IntrinsicInst *II = cast<IntrinsicInst>(Count); 828 829 // Check if the value propagated on zero is a constant number equal to the 830 // sizeof in bits of 'Count'. 831 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 832 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 833 // Explicitly clear the 'undef_on_zero' flag. 834 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 835 NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); 836 Builder.Insert(NewI); 837 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 838 } 839 840 // If the ValueOnZero is not the bitwidth, we can at least make use of the 841 // fact that the cttz/ctlz result will not be used if the input is zero, so 842 // it's okay to relax it to undef for that case. 843 if (II->hasOneUse() && !match(II->getArgOperand(1), m_One())) 844 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 845 846 return nullptr; 847 } 848 849 /// Return true if we find and adjust an icmp+select pattern where the compare 850 /// is with a constant that can be incremented or decremented to match the 851 /// minimum or maximum idiom. 852 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 853 ICmpInst::Predicate Pred = Cmp.getPredicate(); 854 Value *CmpLHS = Cmp.getOperand(0); 855 Value *CmpRHS = Cmp.getOperand(1); 856 Value *TrueVal = Sel.getTrueValue(); 857 Value *FalseVal = Sel.getFalseValue(); 858 859 // We may move or edit the compare, so make sure the select is the only user. 860 const APInt *CmpC; 861 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 862 return false; 863 864 // These transforms only work for selects of integers or vector selects of 865 // integer vectors. 866 Type *SelTy = Sel.getType(); 867 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 868 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 869 return false; 870 871 Constant *AdjustedRHS; 872 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 873 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 874 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 875 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 876 else 877 return false; 878 879 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 880 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 881 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 882 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 883 ; // Nothing to do here. Values match without any sign/zero extension. 884 } 885 // Types do not match. Instead of calculating this with mixed types, promote 886 // all to the larger type. This enables scalar evolution to analyze this 887 // expression. 888 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 889 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 890 891 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 892 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 893 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 894 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 895 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 896 CmpLHS = TrueVal; 897 AdjustedRHS = SextRHS; 898 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 899 SextRHS == TrueVal) { 900 CmpLHS = FalseVal; 901 AdjustedRHS = SextRHS; 902 } else if (Cmp.isUnsigned()) { 903 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 904 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 905 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 906 // zext + signed compare cannot be changed: 907 // 0xff <s 0x00, but 0x00ff >s 0x0000 908 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 909 CmpLHS = TrueVal; 910 AdjustedRHS = ZextRHS; 911 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 912 ZextRHS == TrueVal) { 913 CmpLHS = FalseVal; 914 AdjustedRHS = ZextRHS; 915 } else { 916 return false; 917 } 918 } else { 919 return false; 920 } 921 } else { 922 return false; 923 } 924 925 Pred = ICmpInst::getSwappedPredicate(Pred); 926 CmpRHS = AdjustedRHS; 927 std::swap(FalseVal, TrueVal); 928 Cmp.setPredicate(Pred); 929 Cmp.setOperand(0, CmpLHS); 930 Cmp.setOperand(1, CmpRHS); 931 Sel.setOperand(1, TrueVal); 932 Sel.setOperand(2, FalseVal); 933 Sel.swapProfMetadata(); 934 935 // Move the compare instruction right before the select instruction. Otherwise 936 // the sext/zext value may be defined after the compare instruction uses it. 937 Cmp.moveBefore(&Sel); 938 939 return true; 940 } 941 942 /// If this is an integer min/max (icmp + select) with a constant operand, 943 /// create the canonical icmp for the min/max operation and canonicalize the 944 /// constant to the 'false' operand of the select: 945 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 946 /// Note: if C1 != C2, this will change the icmp constant to the existing 947 /// constant operand of the select. 948 static Instruction * 949 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 950 InstCombiner::BuilderTy &Builder) { 951 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 952 return nullptr; 953 954 // Canonicalize the compare predicate based on whether we have min or max. 955 Value *LHS, *RHS; 956 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 957 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 958 return nullptr; 959 960 // Is this already canonical? 961 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 962 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 963 Cmp.getPredicate() == CanonicalPred) 964 return nullptr; 965 966 // Create the canonical compare and plug it into the select. 967 Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS)); 968 969 // If the select operands did not change, we're done. 970 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 971 return &Sel; 972 973 // If we are swapping the select operands, swap the metadata too. 974 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 975 "Unexpected results from matchSelectPattern"); 976 Sel.swapValues(); 977 Sel.swapProfMetadata(); 978 return &Sel; 979 } 980 981 /// There are many select variants for each of ABS/NABS. 982 /// In matchSelectPattern(), there are different compare constants, compare 983 /// predicates/operands and select operands. 984 /// In isKnownNegation(), there are different formats of negated operands. 985 /// Canonicalize all these variants to 1 pattern. 986 /// This makes CSE more likely. 987 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 988 InstCombiner::BuilderTy &Builder) { 989 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 990 return nullptr; 991 992 // Choose a sign-bit check for the compare (likely simpler for codegen). 993 // ABS: (X <s 0) ? -X : X 994 // NABS: (X <s 0) ? X : -X 995 Value *LHS, *RHS; 996 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 997 if (SPF != SelectPatternFlavor::SPF_ABS && 998 SPF != SelectPatternFlavor::SPF_NABS) 999 return nullptr; 1000 1001 Value *TVal = Sel.getTrueValue(); 1002 Value *FVal = Sel.getFalseValue(); 1003 assert(isKnownNegation(TVal, FVal) && 1004 "Unexpected result from matchSelectPattern"); 1005 1006 // The compare may use the negated abs()/nabs() operand, or it may use 1007 // negation in non-canonical form such as: sub A, B. 1008 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || 1009 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); 1010 1011 bool CmpCanonicalized = !CmpUsesNegatedOp && 1012 match(Cmp.getOperand(1), m_ZeroInt()) && 1013 Cmp.getPredicate() == ICmpInst::ICMP_SLT; 1014 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); 1015 1016 // Is this already canonical? 1017 if (CmpCanonicalized && RHSCanonicalized) 1018 return nullptr; 1019 1020 // If RHS is used by other instructions except compare and select, don't 1021 // canonicalize it to not increase the instruction count. 1022 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) 1023 return nullptr; 1024 1025 // Create the canonical compare: icmp slt LHS 0. 1026 if (!CmpCanonicalized) { 1027 Cmp.setPredicate(ICmpInst::ICMP_SLT); 1028 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); 1029 if (CmpUsesNegatedOp) 1030 Cmp.setOperand(0, LHS); 1031 } 1032 1033 // Create the canonical RHS: RHS = sub (0, LHS). 1034 if (!RHSCanonicalized) { 1035 assert(RHS->hasOneUse() && "RHS use number is not right"); 1036 RHS = Builder.CreateNeg(LHS); 1037 if (TVal == LHS) { 1038 Sel.setFalseValue(RHS); 1039 FVal = RHS; 1040 } else { 1041 Sel.setTrueValue(RHS); 1042 TVal = RHS; 1043 } 1044 } 1045 1046 // If the select operands do not change, we're done. 1047 if (SPF == SelectPatternFlavor::SPF_NABS) { 1048 if (TVal == LHS) 1049 return &Sel; 1050 assert(FVal == LHS && "Unexpected results from matchSelectPattern"); 1051 } else { 1052 if (FVal == LHS) 1053 return &Sel; 1054 assert(TVal == LHS && "Unexpected results from matchSelectPattern"); 1055 } 1056 1057 // We are swapping the select operands, so swap the metadata too. 1058 Sel.swapValues(); 1059 Sel.swapProfMetadata(); 1060 return &Sel; 1061 } 1062 1063 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp, 1064 const SimplifyQuery &Q) { 1065 // If this is a binary operator, try to simplify it with the replaced op 1066 // because we know Op and ReplaceOp are equivalant. 1067 // For example: V = X + 1, Op = X, ReplaceOp = 42 1068 // Simplifies as: add(42, 1) --> 43 1069 if (auto *BO = dyn_cast<BinaryOperator>(V)) { 1070 if (BO->getOperand(0) == Op) 1071 return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q); 1072 if (BO->getOperand(1) == Op) 1073 return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q); 1074 } 1075 1076 return nullptr; 1077 } 1078 1079 /// If we have a select with an equality comparison, then we know the value in 1080 /// one of the arms of the select. See if substituting this value into an arm 1081 /// and simplifying the result yields the same value as the other arm. 1082 /// 1083 /// To make this transform safe, we must drop poison-generating flags 1084 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1085 /// that poison from propagating. If the existing binop already had no 1086 /// poison-generating flags, then this transform can be done by instsimplify. 1087 /// 1088 /// Consider: 1089 /// %cmp = icmp eq i32 %x, 2147483647 1090 /// %add = add nsw i32 %x, 1 1091 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1092 /// 1093 /// We can't replace %sel with %add unless we strip away the flags. 1094 static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp, 1095 const SimplifyQuery &Q) { 1096 if (!Cmp.isEquality()) 1097 return nullptr; 1098 1099 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1100 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1101 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) 1102 std::swap(TrueVal, FalseVal); 1103 1104 // Try each equivalence substitution possibility. 1105 // We have an 'EQ' comparison, so the select's false value will propagate. 1106 // Example: 1107 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1108 // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43 1109 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1110 if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal || 1111 simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal || 1112 simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal || 1113 simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) { 1114 if (auto *FalseInst = dyn_cast<Instruction>(FalseVal)) 1115 FalseInst->dropPoisonGeneratingFlags(); 1116 return FalseVal; 1117 } 1118 return nullptr; 1119 } 1120 1121 // See if this is a pattern like: 1122 // %old_cmp1 = icmp slt i32 %x, C2 1123 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1124 // %old_x_offseted = add i32 %x, C1 1125 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1126 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1127 // This can be rewritten as more canonical pattern: 1128 // %new_cmp1 = icmp slt i32 %x, -C1 1129 // %new_cmp2 = icmp sge i32 %x, C0-C1 1130 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1131 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1132 // Iff -C1 s<= C2 s<= C0-C1 1133 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1134 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1135 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1136 InstCombiner::BuilderTy &Builder) { 1137 Value *X = Sel0.getTrueValue(); 1138 Value *Sel1 = Sel0.getFalseValue(); 1139 1140 // First match the condition of the outermost select. 1141 // Said condition must be one-use. 1142 if (!Cmp0.hasOneUse()) 1143 return nullptr; 1144 Value *Cmp00 = Cmp0.getOperand(0); 1145 Constant *C0; 1146 if (!match(Cmp0.getOperand(1), 1147 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1148 return nullptr; 1149 // Canonicalize Cmp0 into the form we expect. 1150 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1151 switch (Cmp0.getPredicate()) { 1152 case ICmpInst::Predicate::ICMP_ULT: 1153 break; // Great! 1154 case ICmpInst::Predicate::ICMP_ULE: 1155 // We'd have to increment C0 by one, and for that it must not have all-ones 1156 // element, but then it would have been canonicalized to 'ult' before 1157 // we get here. So we can't do anything useful with 'ule'. 1158 return nullptr; 1159 case ICmpInst::Predicate::ICMP_UGT: 1160 // We want to canonicalize it to 'ult', so we'll need to increment C0, 1161 // which again means it must not have any all-ones elements. 1162 if (!match(C0, 1163 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1164 APInt::getAllOnesValue( 1165 C0->getType()->getScalarSizeInBits())))) 1166 return nullptr; // Can't do, have all-ones element[s]. 1167 C0 = AddOne(C0); 1168 std::swap(X, Sel1); 1169 break; 1170 case ICmpInst::Predicate::ICMP_UGE: 1171 // The only way we'd get this predicate if this `icmp` has extra uses, 1172 // but then we won't be able to do this fold. 1173 return nullptr; 1174 default: 1175 return nullptr; // Unknown predicate. 1176 } 1177 1178 // Now that we've canonicalized the ICmp, we know the X we expect; 1179 // the select in other hand should be one-use. 1180 if (!Sel1->hasOneUse()) 1181 return nullptr; 1182 1183 // We now can finish matching the condition of the outermost select: 1184 // it should either be the X itself, or an addition of some constant to X. 1185 Constant *C1; 1186 if (Cmp00 == X) 1187 C1 = ConstantInt::getNullValue(Sel0.getType()); 1188 else if (!match(Cmp00, 1189 m_Add(m_Specific(X), 1190 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1191 return nullptr; 1192 1193 Value *Cmp1; 1194 ICmpInst::Predicate Pred1; 1195 Constant *C2; 1196 Value *ReplacementLow, *ReplacementHigh; 1197 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1198 m_Value(ReplacementHigh))) || 1199 !match(Cmp1, 1200 m_ICmp(Pred1, m_Specific(X), 1201 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1202 return nullptr; 1203 1204 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1205 return nullptr; // Not enough one-use instructions for the fold. 1206 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1207 // two comparisons we'll need to build. 1208 1209 // Canonicalize Cmp1 into the form we expect. 1210 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1211 switch (Pred1) { 1212 case ICmpInst::Predicate::ICMP_SLT: 1213 break; 1214 case ICmpInst::Predicate::ICMP_SLE: 1215 // We'd have to increment C2 by one, and for that it must not have signed 1216 // max element, but then it would have been canonicalized to 'slt' before 1217 // we get here. So we can't do anything useful with 'sle'. 1218 return nullptr; 1219 case ICmpInst::Predicate::ICMP_SGT: 1220 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1221 // which again means it must not have any signed max elements. 1222 if (!match(C2, 1223 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1224 APInt::getSignedMaxValue( 1225 C2->getType()->getScalarSizeInBits())))) 1226 return nullptr; // Can't do, have signed max element[s]. 1227 C2 = AddOne(C2); 1228 LLVM_FALLTHROUGH; 1229 case ICmpInst::Predicate::ICMP_SGE: 1230 // Also non-canonical, but here we don't need to change C2, 1231 // so we don't have any restrictions on C2, so we can just handle it. 1232 std::swap(ReplacementLow, ReplacementHigh); 1233 break; 1234 default: 1235 return nullptr; // Unknown predicate. 1236 } 1237 1238 // The thresholds of this clamp-like pattern. 1239 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1240 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1241 1242 // The fold has a precondition 1: C2 s>= ThresholdLow 1243 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1244 ThresholdLowIncl); 1245 if (!match(Precond1, m_One())) 1246 return nullptr; 1247 // The fold has a precondition 2: C2 s<= ThresholdHigh 1248 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1249 ThresholdHighExcl); 1250 if (!match(Precond2, m_One())) 1251 return nullptr; 1252 1253 // All good, finally emit the new pattern. 1254 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1255 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1256 Value *MaybeReplacedLow = 1257 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1258 Instruction *MaybeReplacedHigh = 1259 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1260 1261 return MaybeReplacedHigh; 1262 } 1263 1264 /// Visit a SelectInst that has an ICmpInst as its first operand. 1265 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 1266 ICmpInst *ICI) { 1267 if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ)) 1268 return replaceInstUsesWith(SI, V); 1269 1270 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) 1271 return NewSel; 1272 1273 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder)) 1274 return NewAbs; 1275 1276 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder)) 1277 return NewAbs; 1278 1279 bool Changed = adjustMinMax(SI, *ICI); 1280 1281 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1282 return replaceInstUsesWith(SI, V); 1283 1284 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1285 Value *TrueVal = SI.getTrueValue(); 1286 Value *FalseVal = SI.getFalseValue(); 1287 ICmpInst::Predicate Pred = ICI->getPredicate(); 1288 Value *CmpLHS = ICI->getOperand(0); 1289 Value *CmpRHS = ICI->getOperand(1); 1290 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1291 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1292 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1293 SI.setOperand(1, CmpRHS); 1294 Changed = true; 1295 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1296 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1297 SI.setOperand(2, CmpRHS); 1298 Changed = true; 1299 } 1300 } 1301 1302 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1303 // decomposeBitTestICmp() might help. 1304 { 1305 unsigned BitWidth = 1306 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1307 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1308 Value *X; 1309 const APInt *Y, *C; 1310 bool TrueWhenUnset; 1311 bool IsBitTest = false; 1312 if (ICmpInst::isEquality(Pred) && 1313 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1314 match(CmpRHS, m_Zero())) { 1315 IsBitTest = true; 1316 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1317 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1318 X = CmpLHS; 1319 Y = &MinSignedValue; 1320 IsBitTest = true; 1321 TrueWhenUnset = false; 1322 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1323 X = CmpLHS; 1324 Y = &MinSignedValue; 1325 IsBitTest = true; 1326 TrueWhenUnset = true; 1327 } 1328 if (IsBitTest) { 1329 Value *V = nullptr; 1330 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1331 if (TrueWhenUnset && TrueVal == X && 1332 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1333 V = Builder.CreateAnd(X, ~(*Y)); 1334 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1335 else if (!TrueWhenUnset && FalseVal == X && 1336 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1337 V = Builder.CreateAnd(X, ~(*Y)); 1338 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1339 else if (TrueWhenUnset && FalseVal == X && 1340 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1341 V = Builder.CreateOr(X, *Y); 1342 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1343 else if (!TrueWhenUnset && TrueVal == X && 1344 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1345 V = Builder.CreateOr(X, *Y); 1346 1347 if (V) 1348 return replaceInstUsesWith(SI, V); 1349 } 1350 } 1351 1352 if (Instruction *V = 1353 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1354 return V; 1355 1356 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1357 return replaceInstUsesWith(SI, V); 1358 1359 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1360 return replaceInstUsesWith(SI, V); 1361 1362 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1363 return replaceInstUsesWith(SI, V); 1364 1365 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1366 return replaceInstUsesWith(SI, V); 1367 1368 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1369 return replaceInstUsesWith(SI, V); 1370 1371 return Changed ? &SI : nullptr; 1372 } 1373 1374 /// SI is a select whose condition is a PHI node (but the two may be in 1375 /// different blocks). See if the true/false values (V) are live in all of the 1376 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1377 /// 1378 /// X = phi [ C1, BB1], [C2, BB2] 1379 /// Y = add 1380 /// Z = select X, Y, 0 1381 /// 1382 /// because Y is not live in BB1/BB2. 1383 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1384 const SelectInst &SI) { 1385 // If the value is a non-instruction value like a constant or argument, it 1386 // can always be mapped. 1387 const Instruction *I = dyn_cast<Instruction>(V); 1388 if (!I) return true; 1389 1390 // If V is a PHI node defined in the same block as the condition PHI, we can 1391 // map the arguments. 1392 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1393 1394 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1395 if (VP->getParent() == CondPHI->getParent()) 1396 return true; 1397 1398 // Otherwise, if the PHI and select are defined in the same block and if V is 1399 // defined in a different block, then we can transform it. 1400 if (SI.getParent() == CondPHI->getParent() && 1401 I->getParent() != CondPHI->getParent()) 1402 return true; 1403 1404 // Otherwise we have a 'hard' case and we can't tell without doing more 1405 // detailed dominator based analysis, punt. 1406 return false; 1407 } 1408 1409 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1410 /// SPF2(SPF1(A, B), C) 1411 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 1412 SelectPatternFlavor SPF1, 1413 Value *A, Value *B, 1414 Instruction &Outer, 1415 SelectPatternFlavor SPF2, Value *C) { 1416 if (Outer.getType() != Inner->getType()) 1417 return nullptr; 1418 1419 if (C == A || C == B) { 1420 // MAX(MAX(A, B), B) -> MAX(A, B) 1421 // MIN(MIN(a, b), a) -> MIN(a, b) 1422 // TODO: This could be done in instsimplify. 1423 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1424 return replaceInstUsesWith(Outer, Inner); 1425 1426 // MAX(MIN(a, b), a) -> a 1427 // MIN(MAX(a, b), a) -> a 1428 // TODO: This could be done in instsimplify. 1429 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1430 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1431 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1432 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1433 return replaceInstUsesWith(Outer, C); 1434 } 1435 1436 if (SPF1 == SPF2) { 1437 const APInt *CB, *CC; 1438 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1439 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1440 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1441 // TODO: This could be done in instsimplify. 1442 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1443 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1444 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1445 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1446 return replaceInstUsesWith(Outer, Inner); 1447 1448 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1449 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1450 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1451 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1452 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1453 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1454 Outer.replaceUsesOfWith(Inner, A); 1455 return &Outer; 1456 } 1457 } 1458 } 1459 1460 // ABS(ABS(X)) -> ABS(X) 1461 // NABS(NABS(X)) -> NABS(X) 1462 // TODO: This could be done in instsimplify. 1463 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1464 return replaceInstUsesWith(Outer, Inner); 1465 } 1466 1467 // ABS(NABS(X)) -> ABS(X) 1468 // NABS(ABS(X)) -> NABS(X) 1469 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1470 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1471 SelectInst *SI = cast<SelectInst>(Inner); 1472 Value *NewSI = 1473 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1474 SI->getTrueValue(), SI->getName(), SI); 1475 return replaceInstUsesWith(Outer, NewSI); 1476 } 1477 1478 auto IsFreeOrProfitableToInvert = 1479 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1480 if (match(V, m_Not(m_Value(NotV)))) { 1481 // If V has at most 2 uses then we can get rid of the xor operation 1482 // entirely. 1483 ElidesXor |= !V->hasNUsesOrMore(3); 1484 return true; 1485 } 1486 1487 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1488 NotV = nullptr; 1489 return true; 1490 } 1491 1492 return false; 1493 }; 1494 1495 Value *NotA, *NotB, *NotC; 1496 bool ElidesXor = false; 1497 1498 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1499 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1500 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1501 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1502 // 1503 // This transform is performance neutral if we can elide at least one xor from 1504 // the set of three operands, since we'll be tacking on an xor at the very 1505 // end. 1506 if (SelectPatternResult::isMinOrMax(SPF1) && 1507 SelectPatternResult::isMinOrMax(SPF2) && 1508 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1509 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1510 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1511 if (!NotA) 1512 NotA = Builder.CreateNot(A); 1513 if (!NotB) 1514 NotB = Builder.CreateNot(B); 1515 if (!NotC) 1516 NotC = Builder.CreateNot(C); 1517 1518 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1519 NotB); 1520 Value *NewOuter = Builder.CreateNot( 1521 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1522 return replaceInstUsesWith(Outer, NewOuter); 1523 } 1524 1525 return nullptr; 1526 } 1527 1528 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1529 /// This is even legal for FP. 1530 static Instruction *foldAddSubSelect(SelectInst &SI, 1531 InstCombiner::BuilderTy &Builder) { 1532 Value *CondVal = SI.getCondition(); 1533 Value *TrueVal = SI.getTrueValue(); 1534 Value *FalseVal = SI.getFalseValue(); 1535 auto *TI = dyn_cast<Instruction>(TrueVal); 1536 auto *FI = dyn_cast<Instruction>(FalseVal); 1537 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1538 return nullptr; 1539 1540 Instruction *AddOp = nullptr, *SubOp = nullptr; 1541 if ((TI->getOpcode() == Instruction::Sub && 1542 FI->getOpcode() == Instruction::Add) || 1543 (TI->getOpcode() == Instruction::FSub && 1544 FI->getOpcode() == Instruction::FAdd)) { 1545 AddOp = FI; 1546 SubOp = TI; 1547 } else if ((FI->getOpcode() == Instruction::Sub && 1548 TI->getOpcode() == Instruction::Add) || 1549 (FI->getOpcode() == Instruction::FSub && 1550 TI->getOpcode() == Instruction::FAdd)) { 1551 AddOp = TI; 1552 SubOp = FI; 1553 } 1554 1555 if (AddOp) { 1556 Value *OtherAddOp = nullptr; 1557 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1558 OtherAddOp = AddOp->getOperand(1); 1559 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1560 OtherAddOp = AddOp->getOperand(0); 1561 } 1562 1563 if (OtherAddOp) { 1564 // So at this point we know we have (Y -> OtherAddOp): 1565 // select C, (add X, Y), (sub X, Z) 1566 Value *NegVal; // Compute -Z 1567 if (SI.getType()->isFPOrFPVectorTy()) { 1568 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1569 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1570 FastMathFlags Flags = AddOp->getFastMathFlags(); 1571 Flags &= SubOp->getFastMathFlags(); 1572 NegInst->setFastMathFlags(Flags); 1573 } 1574 } else { 1575 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1576 } 1577 1578 Value *NewTrueOp = OtherAddOp; 1579 Value *NewFalseOp = NegVal; 1580 if (AddOp != TI) 1581 std::swap(NewTrueOp, NewFalseOp); 1582 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1583 SI.getName() + ".p", &SI); 1584 1585 if (SI.getType()->isFPOrFPVectorTy()) { 1586 Instruction *RI = 1587 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1588 1589 FastMathFlags Flags = AddOp->getFastMathFlags(); 1590 Flags &= SubOp->getFastMathFlags(); 1591 RI->setFastMathFlags(Flags); 1592 return RI; 1593 } else 1594 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1595 } 1596 } 1597 return nullptr; 1598 } 1599 1600 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1601 Constant *C; 1602 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1603 !match(Sel.getFalseValue(), m_Constant(C))) 1604 return nullptr; 1605 1606 Instruction *ExtInst; 1607 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1608 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1609 return nullptr; 1610 1611 auto ExtOpcode = ExtInst->getOpcode(); 1612 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1613 return nullptr; 1614 1615 // If we are extending from a boolean type or if we can create a select that 1616 // has the same size operands as its condition, try to narrow the select. 1617 Value *X = ExtInst->getOperand(0); 1618 Type *SmallType = X->getType(); 1619 Value *Cond = Sel.getCondition(); 1620 auto *Cmp = dyn_cast<CmpInst>(Cond); 1621 if (!SmallType->isIntOrIntVectorTy(1) && 1622 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1623 return nullptr; 1624 1625 // If the constant is the same after truncation to the smaller type and 1626 // extension to the original type, we can narrow the select. 1627 Type *SelType = Sel.getType(); 1628 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1629 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1630 if (ExtC == C) { 1631 Value *TruncCVal = cast<Value>(TruncC); 1632 if (ExtInst == Sel.getFalseValue()) 1633 std::swap(X, TruncCVal); 1634 1635 // select Cond, (ext X), C --> ext(select Cond, X, C') 1636 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1637 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1638 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1639 } 1640 1641 // If one arm of the select is the extend of the condition, replace that arm 1642 // with the extension of the appropriate known bool value. 1643 if (Cond == X) { 1644 if (ExtInst == Sel.getTrueValue()) { 1645 // select X, (sext X), C --> select X, -1, C 1646 // select X, (zext X), C --> select X, 1, C 1647 Constant *One = ConstantInt::getTrue(SmallType); 1648 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1649 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1650 } else { 1651 // select X, C, (sext X) --> select X, C, 0 1652 // select X, C, (zext X) --> select X, C, 0 1653 Constant *Zero = ConstantInt::getNullValue(SelType); 1654 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1655 } 1656 } 1657 1658 return nullptr; 1659 } 1660 1661 /// Try to transform a vector select with a constant condition vector into a 1662 /// shuffle for easier combining with other shuffles and insert/extract. 1663 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1664 Value *CondVal = SI.getCondition(); 1665 Constant *CondC; 1666 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1667 return nullptr; 1668 1669 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1670 SmallVector<Constant *, 16> Mask; 1671 Mask.reserve(NumElts); 1672 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1673 for (unsigned i = 0; i != NumElts; ++i) { 1674 Constant *Elt = CondC->getAggregateElement(i); 1675 if (!Elt) 1676 return nullptr; 1677 1678 if (Elt->isOneValue()) { 1679 // If the select condition element is true, choose from the 1st vector. 1680 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1681 } else if (Elt->isNullValue()) { 1682 // If the select condition element is false, choose from the 2nd vector. 1683 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1684 } else if (isa<UndefValue>(Elt)) { 1685 // Undef in a select condition (choose one of the operands) does not mean 1686 // the same thing as undef in a shuffle mask (any value is acceptable), so 1687 // give up. 1688 return nullptr; 1689 } else { 1690 // Bail out on a constant expression. 1691 return nullptr; 1692 } 1693 } 1694 1695 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1696 ConstantVector::get(Mask)); 1697 } 1698 1699 /// Reuse bitcasted operands between a compare and select: 1700 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1701 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1702 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1703 InstCombiner::BuilderTy &Builder) { 1704 Value *Cond = Sel.getCondition(); 1705 Value *TVal = Sel.getTrueValue(); 1706 Value *FVal = Sel.getFalseValue(); 1707 1708 CmpInst::Predicate Pred; 1709 Value *A, *B; 1710 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1711 return nullptr; 1712 1713 // The select condition is a compare instruction. If the select's true/false 1714 // values are already the same as the compare operands, there's nothing to do. 1715 if (TVal == A || TVal == B || FVal == A || FVal == B) 1716 return nullptr; 1717 1718 Value *C, *D; 1719 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1720 return nullptr; 1721 1722 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1723 Value *TSrc, *FSrc; 1724 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1725 !match(FVal, m_BitCast(m_Value(FSrc)))) 1726 return nullptr; 1727 1728 // If the select true/false values are *different bitcasts* of the same source 1729 // operands, make the select operands the same as the compare operands and 1730 // cast the result. This is the canonical select form for min/max. 1731 Value *NewSel; 1732 if (TSrc == C && FSrc == D) { 1733 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1734 // bitcast (select (cmp A, B), A, B) 1735 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1736 } else if (TSrc == D && FSrc == C) { 1737 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1738 // bitcast (select (cmp A, B), B, A) 1739 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1740 } else { 1741 return nullptr; 1742 } 1743 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1744 } 1745 1746 /// Try to eliminate select instructions that test the returned flag of cmpxchg 1747 /// instructions. 1748 /// 1749 /// If a select instruction tests the returned flag of a cmpxchg instruction and 1750 /// selects between the returned value of the cmpxchg instruction its compare 1751 /// operand, the result of the select will always be equal to its false value. 1752 /// For example: 1753 /// 1754 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1755 /// %1 = extractvalue { i64, i1 } %0, 1 1756 /// %2 = extractvalue { i64, i1 } %0, 0 1757 /// %3 = select i1 %1, i64 %compare, i64 %2 1758 /// ret i64 %3 1759 /// 1760 /// The returned value of the cmpxchg instruction (%2) is the original value 1761 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 1762 /// must have been equal to %compare. Thus, the result of the select is always 1763 /// equal to %2, and the code can be simplified to: 1764 /// 1765 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1766 /// %1 = extractvalue { i64, i1 } %0, 0 1767 /// ret i64 %1 1768 /// 1769 static Instruction *foldSelectCmpXchg(SelectInst &SI) { 1770 // A helper that determines if V is an extractvalue instruction whose 1771 // aggregate operand is a cmpxchg instruction and whose single index is equal 1772 // to I. If such conditions are true, the helper returns the cmpxchg 1773 // instruction; otherwise, a nullptr is returned. 1774 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 1775 auto *Extract = dyn_cast<ExtractValueInst>(V); 1776 if (!Extract) 1777 return nullptr; 1778 if (Extract->getIndices()[0] != I) 1779 return nullptr; 1780 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 1781 }; 1782 1783 // If the select has a single user, and this user is a select instruction that 1784 // we can simplify, skip the cmpxchg simplification for now. 1785 if (SI.hasOneUse()) 1786 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 1787 if (Select->getCondition() == SI.getCondition()) 1788 if (Select->getFalseValue() == SI.getTrueValue() || 1789 Select->getTrueValue() == SI.getFalseValue()) 1790 return nullptr; 1791 1792 // Ensure the select condition is the returned flag of a cmpxchg instruction. 1793 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 1794 if (!CmpXchg) 1795 return nullptr; 1796 1797 // Check the true value case: The true value of the select is the returned 1798 // value of the same cmpxchg used by the condition, and the false value is the 1799 // cmpxchg instruction's compare operand. 1800 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 1801 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) { 1802 SI.setTrueValue(SI.getFalseValue()); 1803 return &SI; 1804 } 1805 1806 // Check the false value case: The false value of the select is the returned 1807 // value of the same cmpxchg used by the condition, and the true value is the 1808 // cmpxchg instruction's compare operand. 1809 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 1810 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) { 1811 SI.setTrueValue(SI.getFalseValue()); 1812 return &SI; 1813 } 1814 1815 return nullptr; 1816 } 1817 1818 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 1819 Value *Y, 1820 InstCombiner::BuilderTy &Builder) { 1821 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 1822 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 1823 SPF == SelectPatternFlavor::SPF_UMAX; 1824 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 1825 // the constant value check to an assert. 1826 Value *A; 1827 const APInt *C1, *C2; 1828 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 1829 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 1830 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 1831 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 1832 Value *NewMinMax = createMinMax(Builder, SPF, A, 1833 ConstantInt::get(X->getType(), *C2 - *C1)); 1834 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 1835 ConstantInt::get(X->getType(), *C1)); 1836 } 1837 1838 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 1839 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 1840 bool Overflow; 1841 APInt Diff = C2->ssub_ov(*C1, Overflow); 1842 if (!Overflow) { 1843 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 1844 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 1845 Value *NewMinMax = createMinMax(Builder, SPF, A, 1846 ConstantInt::get(X->getType(), Diff)); 1847 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 1848 ConstantInt::get(X->getType(), *C1)); 1849 } 1850 } 1851 1852 return nullptr; 1853 } 1854 1855 /// Reduce a sequence of min/max with a common operand. 1856 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 1857 Value *RHS, 1858 InstCombiner::BuilderTy &Builder) { 1859 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 1860 // TODO: Allow FP min/max with nnan/nsz. 1861 if (!LHS->getType()->isIntOrIntVectorTy()) 1862 return nullptr; 1863 1864 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 1865 Value *A, *B, *C, *D; 1866 SelectPatternResult L = matchSelectPattern(LHS, A, B); 1867 SelectPatternResult R = matchSelectPattern(RHS, C, D); 1868 if (SPF != L.Flavor || L.Flavor != R.Flavor) 1869 return nullptr; 1870 1871 // Look for a common operand. The use checks are different than usual because 1872 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 1873 // the select. 1874 Value *MinMaxOp = nullptr; 1875 Value *ThirdOp = nullptr; 1876 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 1877 // If the LHS is only used in this chain and the RHS is used outside of it, 1878 // reuse the RHS min/max because that will eliminate the LHS. 1879 if (D == A || C == A) { 1880 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 1881 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 1882 MinMaxOp = RHS; 1883 ThirdOp = B; 1884 } else if (D == B || C == B) { 1885 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 1886 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 1887 MinMaxOp = RHS; 1888 ThirdOp = A; 1889 } 1890 } else if (!RHS->hasNUsesOrMore(3)) { 1891 // Reuse the LHS. This will eliminate the RHS. 1892 if (D == A || D == B) { 1893 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 1894 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 1895 MinMaxOp = LHS; 1896 ThirdOp = C; 1897 } else if (C == A || C == B) { 1898 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 1899 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 1900 MinMaxOp = LHS; 1901 ThirdOp = D; 1902 } 1903 } 1904 if (!MinMaxOp || !ThirdOp) 1905 return nullptr; 1906 1907 CmpInst::Predicate P = getMinMaxPred(SPF); 1908 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 1909 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 1910 } 1911 1912 /// Try to reduce a rotate pattern that includes a compare and select into a 1913 /// funnel shift intrinsic. Example: 1914 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 1915 /// --> call llvm.fshl.i32(a, a, b) 1916 static Instruction *foldSelectRotate(SelectInst &Sel) { 1917 // The false value of the select must be a rotate of the true value. 1918 Value *Or0, *Or1; 1919 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 1920 return nullptr; 1921 1922 Value *TVal = Sel.getTrueValue(); 1923 Value *SA0, *SA1; 1924 if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) || 1925 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1))))) 1926 return nullptr; 1927 1928 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 1929 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 1930 if (ShiftOpcode0 == ShiftOpcode1) 1931 return nullptr; 1932 1933 // We have one of these patterns so far: 1934 // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1)) 1935 // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1)) 1936 // This must be a power-of-2 rotate for a bitmasking transform to be valid. 1937 unsigned Width = Sel.getType()->getScalarSizeInBits(); 1938 if (!isPowerOf2_32(Width)) 1939 return nullptr; 1940 1941 // Check the shift amounts to see if they are an opposite pair. 1942 Value *ShAmt; 1943 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 1944 ShAmt = SA0; 1945 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 1946 ShAmt = SA1; 1947 else 1948 return nullptr; 1949 1950 // Finally, see if the select is filtering out a shift-by-zero. 1951 Value *Cond = Sel.getCondition(); 1952 ICmpInst::Predicate Pred; 1953 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 1954 Pred != ICmpInst::ICMP_EQ) 1955 return nullptr; 1956 1957 // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way. 1958 // Convert to funnel shift intrinsic. 1959 bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) || 1960 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl); 1961 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 1962 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 1963 return IntrinsicInst::Create(F, { TVal, TVal, ShAmt }); 1964 } 1965 1966 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1967 Value *CondVal = SI.getCondition(); 1968 Value *TrueVal = SI.getTrueValue(); 1969 Value *FalseVal = SI.getFalseValue(); 1970 Type *SelType = SI.getType(); 1971 1972 // FIXME: Remove this workaround when freeze related patches are done. 1973 // For select with undef operand which feeds into an equality comparison, 1974 // don't simplify it so loop unswitch can know the equality comparison 1975 // may have an undef operand. This is a workaround for PR31652 caused by 1976 // descrepancy about branch on undef between LoopUnswitch and GVN. 1977 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 1978 if (llvm::any_of(SI.users(), [&](User *U) { 1979 ICmpInst *CI = dyn_cast<ICmpInst>(U); 1980 if (CI && CI->isEquality()) 1981 return true; 1982 return false; 1983 })) { 1984 return nullptr; 1985 } 1986 } 1987 1988 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 1989 SQ.getWithInstruction(&SI))) 1990 return replaceInstUsesWith(SI, V); 1991 1992 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1993 return I; 1994 1995 // Canonicalize a one-use integer compare with a non-canonical predicate by 1996 // inverting the predicate and swapping the select operands. This matches a 1997 // compare canonicalization for conditional branches. 1998 // TODO: Should we do the same for FP compares? 1999 CmpInst::Predicate Pred; 2000 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && 2001 !isCanonicalPredicate(Pred)) { 2002 // Swap true/false values and condition. 2003 CmpInst *Cond = cast<CmpInst>(CondVal); 2004 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 2005 SI.setOperand(1, FalseVal); 2006 SI.setOperand(2, TrueVal); 2007 SI.swapProfMetadata(); 2008 Worklist.Add(Cond); 2009 return &SI; 2010 } 2011 2012 if (SelType->isIntOrIntVectorTy(1) && 2013 TrueVal->getType() == CondVal->getType()) { 2014 if (match(TrueVal, m_One())) { 2015 // Change: A = select B, true, C --> A = or B, C 2016 return BinaryOperator::CreateOr(CondVal, FalseVal); 2017 } 2018 if (match(TrueVal, m_Zero())) { 2019 // Change: A = select B, false, C --> A = and !B, C 2020 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2021 return BinaryOperator::CreateAnd(NotCond, FalseVal); 2022 } 2023 if (match(FalseVal, m_Zero())) { 2024 // Change: A = select B, C, false --> A = and B, C 2025 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2026 } 2027 if (match(FalseVal, m_One())) { 2028 // Change: A = select B, C, true --> A = or !B, C 2029 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2030 return BinaryOperator::CreateOr(NotCond, TrueVal); 2031 } 2032 2033 // select a, a, b -> a | b 2034 // select a, b, a -> a & b 2035 if (CondVal == TrueVal) 2036 return BinaryOperator::CreateOr(CondVal, FalseVal); 2037 if (CondVal == FalseVal) 2038 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2039 2040 // select a, ~a, b -> (~a) & b 2041 // select a, b, ~a -> (~a) | b 2042 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2043 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 2044 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2045 return BinaryOperator::CreateOr(TrueVal, FalseVal); 2046 } 2047 2048 // Selecting between two integer or vector splat integer constants? 2049 // 2050 // Note that we don't handle a scalar select of vectors: 2051 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2052 // because that may need 3 instructions to splat the condition value: 2053 // extend, insertelement, shufflevector. 2054 if (SelType->isIntOrIntVectorTy() && 2055 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2056 // select C, 1, 0 -> zext C to int 2057 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2058 return new ZExtInst(CondVal, SelType); 2059 2060 // select C, -1, 0 -> sext C to int 2061 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2062 return new SExtInst(CondVal, SelType); 2063 2064 // select C, 0, 1 -> zext !C to int 2065 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2066 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2067 return new ZExtInst(NotCond, SelType); 2068 } 2069 2070 // select C, 0, -1 -> sext !C to int 2071 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2072 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2073 return new SExtInst(NotCond, SelType); 2074 } 2075 } 2076 2077 // See if we are selecting two values based on a comparison of the two values. 2078 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 2079 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 2080 // Canonicalize to use ordered comparisons by swapping the select 2081 // operands. 2082 // 2083 // e.g. 2084 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2085 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 2086 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 2087 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2088 Builder.setFastMathFlags(FCI->getFastMathFlags()); 2089 Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, 2090 FCI->getName() + ".inv"); 2091 2092 return SelectInst::Create(NewCond, FalseVal, TrueVal, 2093 SI.getName() + ".p"); 2094 } 2095 2096 // NOTE: if we wanted to, this is where to detect MIN/MAX 2097 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 2098 // Canonicalize to use ordered comparisons by swapping the select 2099 // operands. 2100 // 2101 // e.g. 2102 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 2103 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 2104 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 2105 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2106 Builder.setFastMathFlags(FCI->getFastMathFlags()); 2107 Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, 2108 FCI->getName() + ".inv"); 2109 2110 return SelectInst::Create(NewCond, FalseVal, TrueVal, 2111 SI.getName() + ".p"); 2112 } 2113 2114 // NOTE: if we wanted to, this is where to detect MIN/MAX 2115 } 2116 } 2117 2118 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2119 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 2120 // also require nnan because we do not want to unintentionally change the 2121 // sign of a NaN value. 2122 // FIXME: These folds should test/propagate FMF from the select, not the 2123 // fsub or fneg. 2124 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2125 Instruction *FSub; 2126 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2127 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2128 match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2129 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2130 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub); 2131 return replaceInstUsesWith(SI, Fabs); 2132 } 2133 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2134 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2135 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2136 match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2137 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2138 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub); 2139 return replaceInstUsesWith(SI, Fabs); 2140 } 2141 // With nnan and nsz: 2142 // (X < +/-0.0) ? -X : X --> fabs(X) 2143 // (X <= +/-0.0) ? -X : X --> fabs(X) 2144 Instruction *FNeg; 2145 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2146 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && 2147 match(TrueVal, m_Instruction(FNeg)) && 2148 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2149 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2150 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2151 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg); 2152 return replaceInstUsesWith(SI, Fabs); 2153 } 2154 // With nnan and nsz: 2155 // (X > +/-0.0) ? X : -X --> fabs(X) 2156 // (X >= +/-0.0) ? X : -X --> fabs(X) 2157 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2158 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && 2159 match(FalseVal, m_Instruction(FNeg)) && 2160 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2161 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2162 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2163 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg); 2164 return replaceInstUsesWith(SI, Fabs); 2165 } 2166 2167 // See if we are selecting two values based on a comparison of the two values. 2168 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2169 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2170 return Result; 2171 2172 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2173 return Add; 2174 2175 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2176 auto *TI = dyn_cast<Instruction>(TrueVal); 2177 auto *FI = dyn_cast<Instruction>(FalseVal); 2178 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2179 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2180 return IV; 2181 2182 if (Instruction *I = foldSelectExtConst(SI)) 2183 return I; 2184 2185 // See if we can fold the select into one of our operands. 2186 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2187 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2188 return FoldI; 2189 2190 Value *LHS, *RHS; 2191 Instruction::CastOps CastOp; 2192 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2193 auto SPF = SPR.Flavor; 2194 if (SPF) { 2195 Value *LHS2, *RHS2; 2196 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2197 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2198 RHS2, SI, SPF, RHS)) 2199 return R; 2200 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2201 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2202 RHS2, SI, SPF, LHS)) 2203 return R; 2204 // TODO. 2205 // ABS(-X) -> ABS(X) 2206 } 2207 2208 if (SelectPatternResult::isMinOrMax(SPF)) { 2209 // Canonicalize so that 2210 // - type casts are outside select patterns. 2211 // - float clamp is transformed to min/max pattern 2212 2213 bool IsCastNeeded = LHS->getType() != SelType; 2214 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2215 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 2216 if (IsCastNeeded || 2217 (LHS->getType()->isFPOrFPVectorTy() && 2218 ((CmpLHS != LHS && CmpLHS != RHS) || 2219 (CmpRHS != LHS && CmpRHS != RHS)))) { 2220 CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered); 2221 2222 Value *Cmp; 2223 if (CmpInst::isIntPredicate(Pred)) { 2224 Cmp = Builder.CreateICmp(Pred, LHS, RHS); 2225 } else { 2226 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2227 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 2228 Builder.setFastMathFlags(FMF); 2229 Cmp = Builder.CreateFCmp(Pred, LHS, RHS); 2230 } 2231 2232 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 2233 if (!IsCastNeeded) 2234 return replaceInstUsesWith(SI, NewSI); 2235 2236 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 2237 return replaceInstUsesWith(SI, NewCast); 2238 } 2239 2240 // MAX(~a, ~b) -> ~MIN(a, b) 2241 // MAX(~a, C) -> ~MIN(a, ~C) 2242 // MIN(~a, ~b) -> ~MAX(a, b) 2243 // MIN(~a, C) -> ~MAX(a, ~C) 2244 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 2245 Value *A; 2246 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 2247 !isFreeToInvert(A, A->hasOneUse()) && 2248 // Passing false to only consider m_Not and constants. 2249 isFreeToInvert(Y, false)) { 2250 Value *B = Builder.CreateNot(Y); 2251 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 2252 A, B); 2253 // Copy the profile metadata. 2254 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 2255 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 2256 // Swap the metadata if the operands are swapped. 2257 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 2258 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 2259 } 2260 2261 return BinaryOperator::CreateNot(NewMinMax); 2262 } 2263 2264 return nullptr; 2265 }; 2266 2267 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 2268 return I; 2269 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 2270 return I; 2271 2272 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 2273 return I; 2274 2275 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 2276 return I; 2277 } 2278 } 2279 2280 // Canonicalize select of FP values where NaN and -0.0 are not valid as 2281 // minnum/maxnum intrinsics. 2282 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 2283 Value *X, *Y; 2284 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 2285 return replaceInstUsesWith( 2286 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 2287 2288 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 2289 return replaceInstUsesWith( 2290 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 2291 } 2292 2293 // See if we can fold the select into a phi node if the condition is a select. 2294 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2295 // The true/false values have to be live in the PHI predecessor's blocks. 2296 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2297 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2298 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2299 return NV; 2300 2301 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2302 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2303 // select(C, select(C, a, b), c) -> select(C, a, c) 2304 if (TrueSI->getCondition() == CondVal) { 2305 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2306 return nullptr; 2307 SI.setOperand(1, TrueSI->getTrueValue()); 2308 return &SI; 2309 } 2310 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2311 // We choose this as normal form to enable folding on the And and shortening 2312 // paths for the values (this helps GetUnderlyingObjects() for example). 2313 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 2314 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 2315 SI.setOperand(0, And); 2316 SI.setOperand(1, TrueSI->getTrueValue()); 2317 return &SI; 2318 } 2319 } 2320 } 2321 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 2322 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 2323 // select(C, a, select(C, b, c)) -> select(C, a, c) 2324 if (FalseSI->getCondition() == CondVal) { 2325 if (SI.getFalseValue() == FalseSI->getFalseValue()) 2326 return nullptr; 2327 SI.setOperand(2, FalseSI->getFalseValue()); 2328 return &SI; 2329 } 2330 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 2331 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 2332 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 2333 SI.setOperand(0, Or); 2334 SI.setOperand(2, FalseSI->getFalseValue()); 2335 return &SI; 2336 } 2337 } 2338 } 2339 2340 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 2341 // The select might be preventing a division by 0. 2342 switch (BO->getOpcode()) { 2343 default: 2344 return true; 2345 case Instruction::SRem: 2346 case Instruction::URem: 2347 case Instruction::SDiv: 2348 case Instruction::UDiv: 2349 return false; 2350 } 2351 }; 2352 2353 // Try to simplify a binop sandwiched between 2 selects with the same 2354 // condition. 2355 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 2356 BinaryOperator *TrueBO; 2357 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 2358 canMergeSelectThroughBinop(TrueBO)) { 2359 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 2360 if (TrueBOSI->getCondition() == CondVal) { 2361 TrueBO->setOperand(0, TrueBOSI->getTrueValue()); 2362 Worklist.Add(TrueBO); 2363 return &SI; 2364 } 2365 } 2366 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 2367 if (TrueBOSI->getCondition() == CondVal) { 2368 TrueBO->setOperand(1, TrueBOSI->getTrueValue()); 2369 Worklist.Add(TrueBO); 2370 return &SI; 2371 } 2372 } 2373 } 2374 2375 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 2376 BinaryOperator *FalseBO; 2377 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 2378 canMergeSelectThroughBinop(FalseBO)) { 2379 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 2380 if (FalseBOSI->getCondition() == CondVal) { 2381 FalseBO->setOperand(0, FalseBOSI->getFalseValue()); 2382 Worklist.Add(FalseBO); 2383 return &SI; 2384 } 2385 } 2386 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 2387 if (FalseBOSI->getCondition() == CondVal) { 2388 FalseBO->setOperand(1, FalseBOSI->getFalseValue()); 2389 Worklist.Add(FalseBO); 2390 return &SI; 2391 } 2392 } 2393 } 2394 2395 Value *NotCond; 2396 if (match(CondVal, m_Not(m_Value(NotCond)))) { 2397 SI.setOperand(0, NotCond); 2398 SI.setOperand(1, FalseVal); 2399 SI.setOperand(2, TrueVal); 2400 SI.swapProfMetadata(); 2401 return &SI; 2402 } 2403 2404 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 2405 unsigned VWidth = VecTy->getNumElements(); 2406 APInt UndefElts(VWidth, 0); 2407 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2408 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 2409 if (V != &SI) 2410 return replaceInstUsesWith(SI, V); 2411 return &SI; 2412 } 2413 } 2414 2415 // If we can compute the condition, there's no need for a select. 2416 // Like the above fold, we are attempting to reduce compile-time cost by 2417 // putting this fold here with limitations rather than in InstSimplify. 2418 // The motivation for this call into value tracking is to take advantage of 2419 // the assumption cache, so make sure that is populated. 2420 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 2421 KnownBits Known(1); 2422 computeKnownBits(CondVal, Known, 0, &SI); 2423 if (Known.One.isOneValue()) 2424 return replaceInstUsesWith(SI, TrueVal); 2425 if (Known.Zero.isOneValue()) 2426 return replaceInstUsesWith(SI, FalseVal); 2427 } 2428 2429 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 2430 return BitCastSel; 2431 2432 // Simplify selects that test the returned flag of cmpxchg instructions. 2433 if (Instruction *Select = foldSelectCmpXchg(SI)) 2434 return Select; 2435 2436 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI)) 2437 return Select; 2438 2439 if (Instruction *Rot = foldSelectRotate(SI)) 2440 return Rot; 2441 2442 return nullptr; 2443 } 2444