1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
41 #include <cassert>
42 #include <utility>
43 
44 using namespace llvm;
45 using namespace PatternMatch;
46 
47 #define DEBUG_TYPE "instcombine"
48 
49 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
50                            SelectPatternFlavor SPF, Value *A, Value *B) {
51   CmpInst::Predicate Pred = getMinMaxPred(SPF);
52   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
53   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
54 }
55 
56 /// Replace a select operand based on an equality comparison with the identity
57 /// constant of a binop.
58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
59                                             const TargetLibraryInfo &TLI) {
60   // The select condition must be an equality compare with a constant operand.
61   Value *X;
62   Constant *C;
63   CmpInst::Predicate Pred;
64   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
65     return nullptr;
66 
67   bool IsEq;
68   if (ICmpInst::isEquality(Pred))
69     IsEq = Pred == ICmpInst::ICMP_EQ;
70   else if (Pred == FCmpInst::FCMP_OEQ)
71     IsEq = true;
72   else if (Pred == FCmpInst::FCMP_UNE)
73     IsEq = false;
74   else
75     return nullptr;
76 
77   // A select operand must be a binop.
78   BinaryOperator *BO;
79   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
80     return nullptr;
81 
82   // The compare constant must be the identity constant for that binop.
83   // If this a floating-point compare with 0.0, any zero constant will do.
84   Type *Ty = BO->getType();
85   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
86   if (IdC != C) {
87     if (!IdC || !CmpInst::isFPPredicate(Pred))
88       return nullptr;
89     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
90       return nullptr;
91   }
92 
93   // Last, match the compare variable operand with a binop operand.
94   Value *Y;
95   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
96     return nullptr;
97   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
98     return nullptr;
99 
100   // +0.0 compares equal to -0.0, and so it does not behave as required for this
101   // transform. Bail out if we can not exclude that possibility.
102   if (isa<FPMathOperator>(BO))
103     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
104       return nullptr;
105 
106   // BO = binop Y, X
107   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
108   // =>
109   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
110   Sel.setOperand(IsEq ? 1 : 2, Y);
111   return &Sel;
112 }
113 
114 /// This folds:
115 ///  select (icmp eq (and X, C1)), TC, FC
116 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
117 /// To something like:
118 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
119 /// Or:
120 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
121 /// With some variations depending if FC is larger than TC, or the shift
122 /// isn't needed, or the bit widths don't match.
123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
124                                 InstCombiner::BuilderTy &Builder) {
125   const APInt *SelTC, *SelFC;
126   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
127       !match(Sel.getFalseValue(), m_APInt(SelFC)))
128     return nullptr;
129 
130   // If this is a vector select, we need a vector compare.
131   Type *SelType = Sel.getType();
132   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
133     return nullptr;
134 
135   Value *V;
136   APInt AndMask;
137   bool CreateAnd = false;
138   ICmpInst::Predicate Pred = Cmp->getPredicate();
139   if (ICmpInst::isEquality(Pred)) {
140     if (!match(Cmp->getOperand(1), m_Zero()))
141       return nullptr;
142 
143     V = Cmp->getOperand(0);
144     const APInt *AndRHS;
145     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
146       return nullptr;
147 
148     AndMask = *AndRHS;
149   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
150                                   Pred, V, AndMask)) {
151     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
152     if (!AndMask.isPowerOf2())
153       return nullptr;
154 
155     CreateAnd = true;
156   } else {
157     return nullptr;
158   }
159 
160   // In general, when both constants are non-zero, we would need an offset to
161   // replace the select. This would require more instructions than we started
162   // with. But there's one special-case that we handle here because it can
163   // simplify/reduce the instructions.
164   APInt TC = *SelTC;
165   APInt FC = *SelFC;
166   if (!TC.isNullValue() && !FC.isNullValue()) {
167     // If the select constants differ by exactly one bit and that's the same
168     // bit that is masked and checked by the select condition, the select can
169     // be replaced by bitwise logic to set/clear one bit of the constant result.
170     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
171       return nullptr;
172     if (CreateAnd) {
173       // If we have to create an 'and', then we must kill the cmp to not
174       // increase the instruction count.
175       if (!Cmp->hasOneUse())
176         return nullptr;
177       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
178     }
179     bool ExtraBitInTC = TC.ugt(FC);
180     if (Pred == ICmpInst::ICMP_EQ) {
181       // If the masked bit in V is clear, clear or set the bit in the result:
182       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
183       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
184       Constant *C = ConstantInt::get(SelType, TC);
185       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
186     }
187     if (Pred == ICmpInst::ICMP_NE) {
188       // If the masked bit in V is set, set or clear the bit in the result:
189       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
190       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
191       Constant *C = ConstantInt::get(SelType, FC);
192       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
193     }
194     llvm_unreachable("Only expecting equality predicates");
195   }
196 
197   // Make sure one of the select arms is a power-of-2.
198   if (!TC.isPowerOf2() && !FC.isPowerOf2())
199     return nullptr;
200 
201   // Determine which shift is needed to transform result of the 'and' into the
202   // desired result.
203   const APInt &ValC = !TC.isNullValue() ? TC : FC;
204   unsigned ValZeros = ValC.logBase2();
205   unsigned AndZeros = AndMask.logBase2();
206 
207   // Insert the 'and' instruction on the input to the truncate.
208   if (CreateAnd)
209     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
210 
211   // If types don't match, we can still convert the select by introducing a zext
212   // or a trunc of the 'and'.
213   if (ValZeros > AndZeros) {
214     V = Builder.CreateZExtOrTrunc(V, SelType);
215     V = Builder.CreateShl(V, ValZeros - AndZeros);
216   } else if (ValZeros < AndZeros) {
217     V = Builder.CreateLShr(V, AndZeros - ValZeros);
218     V = Builder.CreateZExtOrTrunc(V, SelType);
219   } else {
220     V = Builder.CreateZExtOrTrunc(V, SelType);
221   }
222 
223   // Okay, now we know that everything is set up, we just don't know whether we
224   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
225   bool ShouldNotVal = !TC.isNullValue();
226   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
227   if (ShouldNotVal)
228     V = Builder.CreateXor(V, ValC);
229 
230   return V;
231 }
232 
233 /// We want to turn code that looks like this:
234 ///   %C = or %A, %B
235 ///   %D = select %cond, %C, %A
236 /// into:
237 ///   %C = select %cond, %B, 0
238 ///   %D = or %A, %C
239 ///
240 /// Assuming that the specified instruction is an operand to the select, return
241 /// a bitmask indicating which operands of this instruction are foldable if they
242 /// equal the other incoming value of the select.
243 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
244   switch (I->getOpcode()) {
245   case Instruction::Add:
246   case Instruction::Mul:
247   case Instruction::And:
248   case Instruction::Or:
249   case Instruction::Xor:
250     return 3;              // Can fold through either operand.
251   case Instruction::Sub:   // Can only fold on the amount subtracted.
252   case Instruction::Shl:   // Can only fold on the shift amount.
253   case Instruction::LShr:
254   case Instruction::AShr:
255     return 1;
256   default:
257     return 0;              // Cannot fold
258   }
259 }
260 
261 /// For the same transformation as the previous function, return the identity
262 /// constant that goes into the select.
263 static APInt getSelectFoldableConstant(BinaryOperator *I) {
264   switch (I->getOpcode()) {
265   default: llvm_unreachable("This cannot happen!");
266   case Instruction::Add:
267   case Instruction::Sub:
268   case Instruction::Or:
269   case Instruction::Xor:
270   case Instruction::Shl:
271   case Instruction::LShr:
272   case Instruction::AShr:
273     return APInt::getNullValue(I->getType()->getScalarSizeInBits());
274   case Instruction::And:
275     return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits());
276   case Instruction::Mul:
277     return APInt(I->getType()->getScalarSizeInBits(), 1);
278   }
279 }
280 
281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI,
283                                           Instruction *FI) {
284   // Don't break up min/max patterns. The hasOneUse checks below prevent that
285   // for most cases, but vector min/max with bitcasts can be transformed. If the
286   // one-use restrictions are eased for other patterns, we still don't want to
287   // obfuscate min/max.
288   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
289        match(&SI, m_SMax(m_Value(), m_Value())) ||
290        match(&SI, m_UMin(m_Value(), m_Value())) ||
291        match(&SI, m_UMax(m_Value(), m_Value()))))
292     return nullptr;
293 
294   // If this is a cast from the same type, merge.
295   Value *Cond = SI.getCondition();
296   Type *CondTy = Cond->getType();
297   if (TI->getNumOperands() == 1 && TI->isCast()) {
298     Type *FIOpndTy = FI->getOperand(0)->getType();
299     if (TI->getOperand(0)->getType() != FIOpndTy)
300       return nullptr;
301 
302     // The select condition may be a vector. We may only change the operand
303     // type if the vector width remains the same (and matches the condition).
304     if (CondTy->isVectorTy()) {
305       if (!FIOpndTy->isVectorTy())
306         return nullptr;
307       if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements())
308         return nullptr;
309 
310       // TODO: If the backend knew how to deal with casts better, we could
311       // remove this limitation. For now, there's too much potential to create
312       // worse codegen by promoting the select ahead of size-altering casts
313       // (PR28160).
314       //
315       // Note that ValueTracking's matchSelectPattern() looks through casts
316       // without checking 'hasOneUse' when it matches min/max patterns, so this
317       // transform may end up happening anyway.
318       if (TI->getOpcode() != Instruction::BitCast &&
319           (!TI->hasOneUse() || !FI->hasOneUse()))
320         return nullptr;
321     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
322       // TODO: The one-use restrictions for a scalar select could be eased if
323       // the fold of a select in visitLoadInst() was enhanced to match a pattern
324       // that includes a cast.
325       return nullptr;
326     }
327 
328     // Fold this by inserting a select from the input values.
329     Value *NewSI =
330         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
331                              SI.getName() + ".v", &SI);
332     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
333                             TI->getType());
334   }
335 
336   // Cond ? -X : -Y --> -(Cond ? X : Y)
337   Value *X, *Y;
338   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
339       (TI->hasOneUse() || FI->hasOneUse())) {
340     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
341     // TODO: Remove the hack for the binop form when the unary op is optimized
342     //       properly with all IR passes.
343     if (TI->getOpcode() != Instruction::FNeg)
344       return BinaryOperator::CreateFNegFMF(NewSel, cast<BinaryOperator>(TI));
345     return UnaryOperator::CreateFNeg(NewSel);
346   }
347 
348   // Only handle binary operators (including two-operand getelementptr) with
349   // one-use here. As with the cast case above, it may be possible to relax the
350   // one-use constraint, but that needs be examined carefully since it may not
351   // reduce the total number of instructions.
352   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
353       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
354       !TI->hasOneUse() || !FI->hasOneUse())
355     return nullptr;
356 
357   // Figure out if the operations have any operands in common.
358   Value *MatchOp, *OtherOpT, *OtherOpF;
359   bool MatchIsOpZero;
360   if (TI->getOperand(0) == FI->getOperand(0)) {
361     MatchOp  = TI->getOperand(0);
362     OtherOpT = TI->getOperand(1);
363     OtherOpF = FI->getOperand(1);
364     MatchIsOpZero = true;
365   } else if (TI->getOperand(1) == FI->getOperand(1)) {
366     MatchOp  = TI->getOperand(1);
367     OtherOpT = TI->getOperand(0);
368     OtherOpF = FI->getOperand(0);
369     MatchIsOpZero = false;
370   } else if (!TI->isCommutative()) {
371     return nullptr;
372   } else if (TI->getOperand(0) == FI->getOperand(1)) {
373     MatchOp  = TI->getOperand(0);
374     OtherOpT = TI->getOperand(1);
375     OtherOpF = FI->getOperand(0);
376     MatchIsOpZero = true;
377   } else if (TI->getOperand(1) == FI->getOperand(0)) {
378     MatchOp  = TI->getOperand(1);
379     OtherOpT = TI->getOperand(0);
380     OtherOpF = FI->getOperand(1);
381     MatchIsOpZero = true;
382   } else {
383     return nullptr;
384   }
385 
386   // If the select condition is a vector, the operands of the original select's
387   // operands also must be vectors. This may not be the case for getelementptr
388   // for example.
389   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
390                                !OtherOpF->getType()->isVectorTy()))
391     return nullptr;
392 
393   // If we reach here, they do have operations in common.
394   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
395                                       SI.getName() + ".v", &SI);
396   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
397   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
398   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
399     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
400     NewBO->copyIRFlags(TI);
401     NewBO->andIRFlags(FI);
402     return NewBO;
403   }
404   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
405     auto *FGEP = cast<GetElementPtrInst>(FI);
406     Type *ElementType = TGEP->getResultElementType();
407     return TGEP->isInBounds() && FGEP->isInBounds()
408                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
409                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
410   }
411   llvm_unreachable("Expected BinaryOperator or GEP");
412   return nullptr;
413 }
414 
415 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
416   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
417     return false;
418   return C1I.isOneValue() || C1I.isAllOnesValue() ||
419          C2I.isOneValue() || C2I.isAllOnesValue();
420 }
421 
422 /// Try to fold the select into one of the operands to allow further
423 /// optimization.
424 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
425                                             Value *FalseVal) {
426   // See the comment above GetSelectFoldableOperands for a description of the
427   // transformation we are doing here.
428   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
429     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
430       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
431         unsigned OpToFold = 0;
432         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
433           OpToFold = 1;
434         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
435           OpToFold = 2;
436         }
437 
438         if (OpToFold) {
439           APInt CI = getSelectFoldableConstant(TVI);
440           Value *OOp = TVI->getOperand(2-OpToFold);
441           // Avoid creating select between 2 constants unless it's selecting
442           // between 0, 1 and -1.
443           const APInt *OOpC;
444           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
445           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
446             Value *C = ConstantInt::get(OOp->getType(), CI);
447             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
448             NewSel->takeName(TVI);
449             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
450                                                         FalseVal, NewSel);
451             BO->copyIRFlags(TVI);
452             return BO;
453           }
454         }
455       }
456     }
457   }
458 
459   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
460     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
461       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
462         unsigned OpToFold = 0;
463         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
464           OpToFold = 1;
465         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
466           OpToFold = 2;
467         }
468 
469         if (OpToFold) {
470           APInt CI = getSelectFoldableConstant(FVI);
471           Value *OOp = FVI->getOperand(2-OpToFold);
472           // Avoid creating select between 2 constants unless it's selecting
473           // between 0, 1 and -1.
474           const APInt *OOpC;
475           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
476           if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) {
477             Value *C = ConstantInt::get(OOp->getType(), CI);
478             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
479             NewSel->takeName(FVI);
480             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
481                                                         TrueVal, NewSel);
482             BO->copyIRFlags(FVI);
483             return BO;
484           }
485         }
486       }
487     }
488   }
489 
490   return nullptr;
491 }
492 
493 /// We want to turn:
494 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
495 /// into:
496 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
497 /// Note:
498 ///   Z may be 0 if lshr is missing.
499 /// Worst-case scenario is that we will replace 5 instructions with 5 different
500 /// instructions, but we got rid of select.
501 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
502                                          Value *TVal, Value *FVal,
503                                          InstCombiner::BuilderTy &Builder) {
504   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
505         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
506         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
507     return nullptr;
508 
509   // The TrueVal has general form of:  and %B, 1
510   Value *B;
511   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
512     return nullptr;
513 
514   // Where %B may be optionally shifted:  lshr %X, %Z.
515   Value *X, *Z;
516   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
517   if (!HasShift)
518     X = B;
519 
520   Value *Y;
521   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
522     return nullptr;
523 
524   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
525   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
526   Constant *One = ConstantInt::get(SelType, 1);
527   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
528   Value *FullMask = Builder.CreateOr(Y, MaskB);
529   Value *MaskedX = Builder.CreateAnd(X, FullMask);
530   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
531   return new ZExtInst(ICmpNeZero, SelType);
532 }
533 
534 /// We want to turn:
535 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
536 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
537 /// into:
538 ///   ashr (X, Y)
539 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
540                                      Value *FalseVal,
541                                      InstCombiner::BuilderTy &Builder) {
542   ICmpInst::Predicate Pred = IC->getPredicate();
543   Value *CmpLHS = IC->getOperand(0);
544   Value *CmpRHS = IC->getOperand(1);
545   if (!CmpRHS->getType()->isIntOrIntVectorTy())
546     return nullptr;
547 
548   Value *X, *Y;
549   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
550   if ((Pred != ICmpInst::ICMP_SGT ||
551        !match(CmpRHS,
552               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
553       (Pred != ICmpInst::ICMP_SLT ||
554        !match(CmpRHS,
555               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
556     return nullptr;
557 
558   // Canonicalize so that ashr is in FalseVal.
559   if (Pred == ICmpInst::ICMP_SLT)
560     std::swap(TrueVal, FalseVal);
561 
562   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
563       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
564       match(CmpLHS, m_Specific(X))) {
565     const auto *Ashr = cast<Instruction>(FalseVal);
566     // if lshr is not exact and ashr is, this new ashr must not be exact.
567     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
568     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
569   }
570 
571   return nullptr;
572 }
573 
574 /// We want to turn:
575 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
576 /// into:
577 ///   (or (shl (and X, C1), C3), Y)
578 /// iff:
579 ///   C1 and C2 are both powers of 2
580 /// where:
581 ///   C3 = Log(C2) - Log(C1)
582 ///
583 /// This transform handles cases where:
584 /// 1. The icmp predicate is inverted
585 /// 2. The select operands are reversed
586 /// 3. The magnitude of C2 and C1 are flipped
587 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
588                                   Value *FalseVal,
589                                   InstCombiner::BuilderTy &Builder) {
590   // Only handle integer compares. Also, if this is a vector select, we need a
591   // vector compare.
592   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
593       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
594     return nullptr;
595 
596   Value *CmpLHS = IC->getOperand(0);
597   Value *CmpRHS = IC->getOperand(1);
598 
599   Value *V;
600   unsigned C1Log;
601   bool IsEqualZero;
602   bool NeedAnd = false;
603   if (IC->isEquality()) {
604     if (!match(CmpRHS, m_Zero()))
605       return nullptr;
606 
607     const APInt *C1;
608     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
609       return nullptr;
610 
611     V = CmpLHS;
612     C1Log = C1->logBase2();
613     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
614   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
615              IC->getPredicate() == ICmpInst::ICMP_SGT) {
616     // We also need to recognize (icmp slt (trunc (X)), 0) and
617     // (icmp sgt (trunc (X)), -1).
618     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
619     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
620         (!IsEqualZero && !match(CmpRHS, m_Zero())))
621       return nullptr;
622 
623     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
624       return nullptr;
625 
626     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
627     NeedAnd = true;
628   } else {
629     return nullptr;
630   }
631 
632   const APInt *C2;
633   bool OrOnTrueVal = false;
634   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
635   if (!OrOnFalseVal)
636     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
637 
638   if (!OrOnFalseVal && !OrOnTrueVal)
639     return nullptr;
640 
641   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
642 
643   unsigned C2Log = C2->logBase2();
644 
645   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
646   bool NeedShift = C1Log != C2Log;
647   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
648                        V->getType()->getScalarSizeInBits();
649 
650   // Make sure we don't create more instructions than we save.
651   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
652   if ((NeedShift + NeedXor + NeedZExtTrunc) >
653       (IC->hasOneUse() + Or->hasOneUse()))
654     return nullptr;
655 
656   if (NeedAnd) {
657     // Insert the AND instruction on the input to the truncate.
658     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
659     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
660   }
661 
662   if (C2Log > C1Log) {
663     V = Builder.CreateZExtOrTrunc(V, Y->getType());
664     V = Builder.CreateShl(V, C2Log - C1Log);
665   } else if (C1Log > C2Log) {
666     V = Builder.CreateLShr(V, C1Log - C2Log);
667     V = Builder.CreateZExtOrTrunc(V, Y->getType());
668   } else
669     V = Builder.CreateZExtOrTrunc(V, Y->getType());
670 
671   if (NeedXor)
672     V = Builder.CreateXor(V, *C2);
673 
674   return Builder.CreateOr(V, Y);
675 }
676 
677 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
678 /// There are 8 commuted/swapped variants of this pattern.
679 /// TODO: Also support a - UMIN(a,b) patterns.
680 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
681                                             const Value *TrueVal,
682                                             const Value *FalseVal,
683                                             InstCombiner::BuilderTy &Builder) {
684   ICmpInst::Predicate Pred = ICI->getPredicate();
685   if (!ICmpInst::isUnsigned(Pred))
686     return nullptr;
687 
688   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
689   if (match(TrueVal, m_Zero())) {
690     Pred = ICmpInst::getInversePredicate(Pred);
691     std::swap(TrueVal, FalseVal);
692   }
693   if (!match(FalseVal, m_Zero()))
694     return nullptr;
695 
696   Value *A = ICI->getOperand(0);
697   Value *B = ICI->getOperand(1);
698   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
699     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
700     std::swap(A, B);
701     Pred = ICmpInst::getSwappedPredicate(Pred);
702   }
703 
704   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
705          "Unexpected isUnsigned predicate!");
706 
707   // Account for swapped form of subtraction: ((a > b) ? b - a : 0).
708   bool IsNegative = false;
709   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))))
710     IsNegative = true;
711   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))))
712     return nullptr;
713 
714   // If sub is used anywhere else, we wouldn't be able to eliminate it
715   // afterwards.
716   if (!TrueVal->hasOneUse())
717     return nullptr;
718 
719   // (a > b) ? a - b : 0 -> usub.sat(a, b)
720   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
721   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
722   if (IsNegative)
723     Result = Builder.CreateNeg(Result);
724   return Result;
725 }
726 
727 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
728                                        InstCombiner::BuilderTy &Builder) {
729   if (!Cmp->hasOneUse())
730     return nullptr;
731 
732   // Match unsigned saturated add with constant.
733   Value *Cmp0 = Cmp->getOperand(0);
734   Value *Cmp1 = Cmp->getOperand(1);
735   ICmpInst::Predicate Pred = Cmp->getPredicate();
736   Value *X;
737   const APInt *C, *CmpC;
738   if (Pred == ICmpInst::ICMP_ULT &&
739       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
740       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
741     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
742     return Builder.CreateBinaryIntrinsic(
743         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
744   }
745 
746   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
747   // There are 8 commuted variants.
748   // Canonicalize -1 (saturated result) to true value of the select. Just
749   // swapping the compare operands is legal, because the selected value is the
750   // same in case of equality, so we can interchange u< and u<=.
751   if (match(FVal, m_AllOnes())) {
752     std::swap(TVal, FVal);
753     std::swap(Cmp0, Cmp1);
754   }
755   if (!match(TVal, m_AllOnes()))
756     return nullptr;
757 
758   // Canonicalize predicate to 'ULT'.
759   if (Pred == ICmpInst::ICMP_UGT) {
760     Pred = ICmpInst::ICMP_ULT;
761     std::swap(Cmp0, Cmp1);
762   }
763   if (Pred != ICmpInst::ICMP_ULT)
764     return nullptr;
765 
766   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
767   Value *Y;
768   if (match(Cmp0, m_Not(m_Value(X))) &&
769       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
770     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
771     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
772     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
773   }
774   // The 'not' op may be included in the sum but not the compare.
775   X = Cmp0;
776   Y = Cmp1;
777   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
778     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
779     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
780     BinaryOperator *BO = cast<BinaryOperator>(FVal);
781     return Builder.CreateBinaryIntrinsic(
782         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
783   }
784 
785   return nullptr;
786 }
787 
788 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
789 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
790 ///
791 /// For example, we can fold the following code sequence:
792 /// \code
793 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
794 ///   %1 = icmp ne i32 %x, 0
795 ///   %2 = select i1 %1, i32 %0, i32 32
796 /// \code
797 ///
798 /// into:
799 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
800 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
801                                  InstCombiner::BuilderTy &Builder) {
802   ICmpInst::Predicate Pred = ICI->getPredicate();
803   Value *CmpLHS = ICI->getOperand(0);
804   Value *CmpRHS = ICI->getOperand(1);
805 
806   // Check if the condition value compares a value for equality against zero.
807   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
808     return nullptr;
809 
810   Value *Count = FalseVal;
811   Value *ValueOnZero = TrueVal;
812   if (Pred == ICmpInst::ICMP_NE)
813     std::swap(Count, ValueOnZero);
814 
815   // Skip zero extend/truncate.
816   Value *V = nullptr;
817   if (match(Count, m_ZExt(m_Value(V))) ||
818       match(Count, m_Trunc(m_Value(V))))
819     Count = V;
820 
821   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
822   // input to the cttz/ctlz is used as LHS for the compare instruction.
823   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
824       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
825     return nullptr;
826 
827   IntrinsicInst *II = cast<IntrinsicInst>(Count);
828 
829   // Check if the value propagated on zero is a constant number equal to the
830   // sizeof in bits of 'Count'.
831   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
832   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
833     // Explicitly clear the 'undef_on_zero' flag.
834     IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone());
835     NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext()));
836     Builder.Insert(NewI);
837     return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType());
838   }
839 
840   // If the ValueOnZero is not the bitwidth, we can at least make use of the
841   // fact that the cttz/ctlz result will not be used if the input is zero, so
842   // it's okay to relax it to undef for that case.
843   if (II->hasOneUse() && !match(II->getArgOperand(1), m_One()))
844     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
845 
846   return nullptr;
847 }
848 
849 /// Return true if we find and adjust an icmp+select pattern where the compare
850 /// is with a constant that can be incremented or decremented to match the
851 /// minimum or maximum idiom.
852 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
853   ICmpInst::Predicate Pred = Cmp.getPredicate();
854   Value *CmpLHS = Cmp.getOperand(0);
855   Value *CmpRHS = Cmp.getOperand(1);
856   Value *TrueVal = Sel.getTrueValue();
857   Value *FalseVal = Sel.getFalseValue();
858 
859   // We may move or edit the compare, so make sure the select is the only user.
860   const APInt *CmpC;
861   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
862     return false;
863 
864   // These transforms only work for selects of integers or vector selects of
865   // integer vectors.
866   Type *SelTy = Sel.getType();
867   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
868   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
869     return false;
870 
871   Constant *AdjustedRHS;
872   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
873     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
874   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
875     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
876   else
877     return false;
878 
879   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
880   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
881   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
882       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
883     ; // Nothing to do here. Values match without any sign/zero extension.
884   }
885   // Types do not match. Instead of calculating this with mixed types, promote
886   // all to the larger type. This enables scalar evolution to analyze this
887   // expression.
888   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
889     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
890 
891     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
892     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
893     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
894     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
895     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
896       CmpLHS = TrueVal;
897       AdjustedRHS = SextRHS;
898     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
899                SextRHS == TrueVal) {
900       CmpLHS = FalseVal;
901       AdjustedRHS = SextRHS;
902     } else if (Cmp.isUnsigned()) {
903       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
904       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
905       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
906       // zext + signed compare cannot be changed:
907       //    0xff <s 0x00, but 0x00ff >s 0x0000
908       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
909         CmpLHS = TrueVal;
910         AdjustedRHS = ZextRHS;
911       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
912                  ZextRHS == TrueVal) {
913         CmpLHS = FalseVal;
914         AdjustedRHS = ZextRHS;
915       } else {
916         return false;
917       }
918     } else {
919       return false;
920     }
921   } else {
922     return false;
923   }
924 
925   Pred = ICmpInst::getSwappedPredicate(Pred);
926   CmpRHS = AdjustedRHS;
927   std::swap(FalseVal, TrueVal);
928   Cmp.setPredicate(Pred);
929   Cmp.setOperand(0, CmpLHS);
930   Cmp.setOperand(1, CmpRHS);
931   Sel.setOperand(1, TrueVal);
932   Sel.setOperand(2, FalseVal);
933   Sel.swapProfMetadata();
934 
935   // Move the compare instruction right before the select instruction. Otherwise
936   // the sext/zext value may be defined after the compare instruction uses it.
937   Cmp.moveBefore(&Sel);
938 
939   return true;
940 }
941 
942 /// If this is an integer min/max (icmp + select) with a constant operand,
943 /// create the canonical icmp for the min/max operation and canonicalize the
944 /// constant to the 'false' operand of the select:
945 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
946 /// Note: if C1 != C2, this will change the icmp constant to the existing
947 /// constant operand of the select.
948 static Instruction *
949 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp,
950                                InstCombiner::BuilderTy &Builder) {
951   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
952     return nullptr;
953 
954   // Canonicalize the compare predicate based on whether we have min or max.
955   Value *LHS, *RHS;
956   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
957   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
958     return nullptr;
959 
960   // Is this already canonical?
961   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
962   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
963       Cmp.getPredicate() == CanonicalPred)
964     return nullptr;
965 
966   // Create the canonical compare and plug it into the select.
967   Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS));
968 
969   // If the select operands did not change, we're done.
970   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
971     return &Sel;
972 
973   // If we are swapping the select operands, swap the metadata too.
974   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
975          "Unexpected results from matchSelectPattern");
976   Sel.swapValues();
977   Sel.swapProfMetadata();
978   return &Sel;
979 }
980 
981 /// There are many select variants for each of ABS/NABS.
982 /// In matchSelectPattern(), there are different compare constants, compare
983 /// predicates/operands and select operands.
984 /// In isKnownNegation(), there are different formats of negated operands.
985 /// Canonicalize all these variants to 1 pattern.
986 /// This makes CSE more likely.
987 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
988                                         InstCombiner::BuilderTy &Builder) {
989   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
990     return nullptr;
991 
992   // Choose a sign-bit check for the compare (likely simpler for codegen).
993   // ABS:  (X <s 0) ? -X : X
994   // NABS: (X <s 0) ? X : -X
995   Value *LHS, *RHS;
996   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
997   if (SPF != SelectPatternFlavor::SPF_ABS &&
998       SPF != SelectPatternFlavor::SPF_NABS)
999     return nullptr;
1000 
1001   Value *TVal = Sel.getTrueValue();
1002   Value *FVal = Sel.getFalseValue();
1003   assert(isKnownNegation(TVal, FVal) &&
1004          "Unexpected result from matchSelectPattern");
1005 
1006   // The compare may use the negated abs()/nabs() operand, or it may use
1007   // negation in non-canonical form such as: sub A, B.
1008   bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) ||
1009                           match(Cmp.getOperand(0), m_Neg(m_Specific(FVal)));
1010 
1011   bool CmpCanonicalized = !CmpUsesNegatedOp &&
1012                           match(Cmp.getOperand(1), m_ZeroInt()) &&
1013                           Cmp.getPredicate() == ICmpInst::ICMP_SLT;
1014   bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS)));
1015 
1016   // Is this already canonical?
1017   if (CmpCanonicalized && RHSCanonicalized)
1018     return nullptr;
1019 
1020   // If RHS is used by other instructions except compare and select, don't
1021   // canonicalize it to not increase the instruction count.
1022   if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp)))
1023     return nullptr;
1024 
1025   // Create the canonical compare: icmp slt LHS 0.
1026   if (!CmpCanonicalized) {
1027     Cmp.setPredicate(ICmpInst::ICMP_SLT);
1028     Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType()));
1029     if (CmpUsesNegatedOp)
1030       Cmp.setOperand(0, LHS);
1031   }
1032 
1033   // Create the canonical RHS: RHS = sub (0, LHS).
1034   if (!RHSCanonicalized) {
1035     assert(RHS->hasOneUse() && "RHS use number is not right");
1036     RHS = Builder.CreateNeg(LHS);
1037     if (TVal == LHS) {
1038       Sel.setFalseValue(RHS);
1039       FVal = RHS;
1040     } else {
1041       Sel.setTrueValue(RHS);
1042       TVal = RHS;
1043     }
1044   }
1045 
1046   // If the select operands do not change, we're done.
1047   if (SPF == SelectPatternFlavor::SPF_NABS) {
1048     if (TVal == LHS)
1049       return &Sel;
1050     assert(FVal == LHS && "Unexpected results from matchSelectPattern");
1051   } else {
1052     if (FVal == LHS)
1053       return &Sel;
1054     assert(TVal == LHS && "Unexpected results from matchSelectPattern");
1055   }
1056 
1057   // We are swapping the select operands, so swap the metadata too.
1058   Sel.swapValues();
1059   Sel.swapProfMetadata();
1060   return &Sel;
1061 }
1062 
1063 static Value *simplifyWithOpReplaced(Value *V, Value *Op, Value *ReplaceOp,
1064                                      const SimplifyQuery &Q) {
1065   // If this is a binary operator, try to simplify it with the replaced op
1066   // because we know Op and ReplaceOp are equivalant.
1067   // For example: V = X + 1, Op = X, ReplaceOp = 42
1068   // Simplifies as: add(42, 1) --> 43
1069   if (auto *BO = dyn_cast<BinaryOperator>(V)) {
1070     if (BO->getOperand(0) == Op)
1071       return SimplifyBinOp(BO->getOpcode(), ReplaceOp, BO->getOperand(1), Q);
1072     if (BO->getOperand(1) == Op)
1073       return SimplifyBinOp(BO->getOpcode(), BO->getOperand(0), ReplaceOp, Q);
1074   }
1075 
1076   return nullptr;
1077 }
1078 
1079 /// If we have a select with an equality comparison, then we know the value in
1080 /// one of the arms of the select. See if substituting this value into an arm
1081 /// and simplifying the result yields the same value as the other arm.
1082 ///
1083 /// To make this transform safe, we must drop poison-generating flags
1084 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1085 /// that poison from propagating. If the existing binop already had no
1086 /// poison-generating flags, then this transform can be done by instsimplify.
1087 ///
1088 /// Consider:
1089 ///   %cmp = icmp eq i32 %x, 2147483647
1090 ///   %add = add nsw i32 %x, 1
1091 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1092 ///
1093 /// We can't replace %sel with %add unless we strip away the flags.
1094 static Value *foldSelectValueEquivalence(SelectInst &Sel, ICmpInst &Cmp,
1095                                          const SimplifyQuery &Q) {
1096   if (!Cmp.isEquality())
1097     return nullptr;
1098 
1099   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1100   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1101   if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1102     std::swap(TrueVal, FalseVal);
1103 
1104   // Try each equivalence substitution possibility.
1105   // We have an 'EQ' comparison, so the select's false value will propagate.
1106   // Example:
1107   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1108   // (X == 42) ? (X + 1) : 43 --> (X == 42) ? (42 + 1) : 43 --> 43
1109   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1110   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, Q) == TrueVal ||
1111       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, Q) == TrueVal ||
1112       simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, Q) == FalseVal ||
1113       simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, Q) == FalseVal) {
1114     if (auto *FalseInst = dyn_cast<Instruction>(FalseVal))
1115       FalseInst->dropPoisonGeneratingFlags();
1116     return FalseVal;
1117   }
1118   return nullptr;
1119 }
1120 
1121 // See if this is a pattern like:
1122 //   %old_cmp1 = icmp slt i32 %x, C2
1123 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1124 //   %old_x_offseted = add i32 %x, C1
1125 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1126 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1127 // This can be rewritten as more canonical pattern:
1128 //   %new_cmp1 = icmp slt i32 %x, -C1
1129 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1130 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1131 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1132 // Iff -C1 s<= C2 s<= C0-C1
1133 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1134 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1135 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1136                                           InstCombiner::BuilderTy &Builder) {
1137   Value *X = Sel0.getTrueValue();
1138   Value *Sel1 = Sel0.getFalseValue();
1139 
1140   // First match the condition of the outermost select.
1141   // Said condition must be one-use.
1142   if (!Cmp0.hasOneUse())
1143     return nullptr;
1144   Value *Cmp00 = Cmp0.getOperand(0);
1145   Constant *C0;
1146   if (!match(Cmp0.getOperand(1),
1147              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1148     return nullptr;
1149   // Canonicalize Cmp0 into the form we expect.
1150   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1151   switch (Cmp0.getPredicate()) {
1152   case ICmpInst::Predicate::ICMP_ULT:
1153     break; // Great!
1154   case ICmpInst::Predicate::ICMP_ULE:
1155     // We'd have to increment C0 by one, and for that it must not have all-ones
1156     // element, but then it would have been canonicalized to 'ult' before
1157     // we get here. So we can't do anything useful with 'ule'.
1158     return nullptr;
1159   case ICmpInst::Predicate::ICMP_UGT:
1160     // We want to canonicalize it to 'ult', so we'll need to increment C0,
1161     // which again means it must not have any all-ones elements.
1162     if (!match(C0,
1163                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1164                                   APInt::getAllOnesValue(
1165                                       C0->getType()->getScalarSizeInBits()))))
1166       return nullptr; // Can't do, have all-ones element[s].
1167     C0 = AddOne(C0);
1168     std::swap(X, Sel1);
1169     break;
1170   case ICmpInst::Predicate::ICMP_UGE:
1171     // The only way we'd get this predicate if this `icmp` has extra uses,
1172     // but then we won't be able to do this fold.
1173     return nullptr;
1174   default:
1175     return nullptr; // Unknown predicate.
1176   }
1177 
1178   // Now that we've canonicalized the ICmp, we know the X we expect;
1179   // the select in other hand should be one-use.
1180   if (!Sel1->hasOneUse())
1181     return nullptr;
1182 
1183   // We now can finish matching the condition of the outermost select:
1184   // it should either be the X itself, or an addition of some constant to X.
1185   Constant *C1;
1186   if (Cmp00 == X)
1187     C1 = ConstantInt::getNullValue(Sel0.getType());
1188   else if (!match(Cmp00,
1189                   m_Add(m_Specific(X),
1190                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1191     return nullptr;
1192 
1193   Value *Cmp1;
1194   ICmpInst::Predicate Pred1;
1195   Constant *C2;
1196   Value *ReplacementLow, *ReplacementHigh;
1197   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1198                             m_Value(ReplacementHigh))) ||
1199       !match(Cmp1,
1200              m_ICmp(Pred1, m_Specific(X),
1201                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1202     return nullptr;
1203 
1204   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1205     return nullptr; // Not enough one-use instructions for the fold.
1206   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1207   //        two comparisons we'll need to build.
1208 
1209   // Canonicalize Cmp1 into the form we expect.
1210   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1211   switch (Pred1) {
1212   case ICmpInst::Predicate::ICMP_SLT:
1213     break;
1214   case ICmpInst::Predicate::ICMP_SLE:
1215     // We'd have to increment C2 by one, and for that it must not have signed
1216     // max element, but then it would have been canonicalized to 'slt' before
1217     // we get here. So we can't do anything useful with 'sle'.
1218     return nullptr;
1219   case ICmpInst::Predicate::ICMP_SGT:
1220     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1221     // which again means it must not have any signed max elements.
1222     if (!match(C2,
1223                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1224                                   APInt::getSignedMaxValue(
1225                                       C2->getType()->getScalarSizeInBits()))))
1226       return nullptr; // Can't do, have signed max element[s].
1227     C2 = AddOne(C2);
1228     LLVM_FALLTHROUGH;
1229   case ICmpInst::Predicate::ICMP_SGE:
1230     // Also non-canonical, but here we don't need to change C2,
1231     // so we don't have any restrictions on C2, so we can just handle it.
1232     std::swap(ReplacementLow, ReplacementHigh);
1233     break;
1234   default:
1235     return nullptr; // Unknown predicate.
1236   }
1237 
1238   // The thresholds of this clamp-like pattern.
1239   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1240   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1241 
1242   // The fold has a precondition 1: C2 s>= ThresholdLow
1243   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1244                                          ThresholdLowIncl);
1245   if (!match(Precond1, m_One()))
1246     return nullptr;
1247   // The fold has a precondition 2: C2 s<= ThresholdHigh
1248   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1249                                          ThresholdHighExcl);
1250   if (!match(Precond2, m_One()))
1251     return nullptr;
1252 
1253   // All good, finally emit the new pattern.
1254   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1255   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1256   Value *MaybeReplacedLow =
1257       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1258   Instruction *MaybeReplacedHigh =
1259       SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1260 
1261   return MaybeReplacedHigh;
1262 }
1263 
1264 /// Visit a SelectInst that has an ICmpInst as its first operand.
1265 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI,
1266                                                   ICmpInst *ICI) {
1267   if (Value *V = foldSelectValueEquivalence(SI, *ICI, SQ))
1268     return replaceInstUsesWith(SI, V);
1269 
1270   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder))
1271     return NewSel;
1272 
1273   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder))
1274     return NewAbs;
1275 
1276   if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
1277     return NewAbs;
1278 
1279   bool Changed = adjustMinMax(SI, *ICI);
1280 
1281   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1282     return replaceInstUsesWith(SI, V);
1283 
1284   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1285   Value *TrueVal = SI.getTrueValue();
1286   Value *FalseVal = SI.getFalseValue();
1287   ICmpInst::Predicate Pred = ICI->getPredicate();
1288   Value *CmpLHS = ICI->getOperand(0);
1289   Value *CmpRHS = ICI->getOperand(1);
1290   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1291     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1292       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1293       SI.setOperand(1, CmpRHS);
1294       Changed = true;
1295     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1296       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1297       SI.setOperand(2, CmpRHS);
1298       Changed = true;
1299     }
1300   }
1301 
1302   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1303   // decomposeBitTestICmp() might help.
1304   {
1305     unsigned BitWidth =
1306         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1307     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1308     Value *X;
1309     const APInt *Y, *C;
1310     bool TrueWhenUnset;
1311     bool IsBitTest = false;
1312     if (ICmpInst::isEquality(Pred) &&
1313         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1314         match(CmpRHS, m_Zero())) {
1315       IsBitTest = true;
1316       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1317     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1318       X = CmpLHS;
1319       Y = &MinSignedValue;
1320       IsBitTest = true;
1321       TrueWhenUnset = false;
1322     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1323       X = CmpLHS;
1324       Y = &MinSignedValue;
1325       IsBitTest = true;
1326       TrueWhenUnset = true;
1327     }
1328     if (IsBitTest) {
1329       Value *V = nullptr;
1330       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1331       if (TrueWhenUnset && TrueVal == X &&
1332           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1333         V = Builder.CreateAnd(X, ~(*Y));
1334       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1335       else if (!TrueWhenUnset && FalseVal == X &&
1336                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1337         V = Builder.CreateAnd(X, ~(*Y));
1338       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1339       else if (TrueWhenUnset && FalseVal == X &&
1340                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1341         V = Builder.CreateOr(X, *Y);
1342       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1343       else if (!TrueWhenUnset && TrueVal == X &&
1344                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1345         V = Builder.CreateOr(X, *Y);
1346 
1347       if (V)
1348         return replaceInstUsesWith(SI, V);
1349     }
1350   }
1351 
1352   if (Instruction *V =
1353           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1354     return V;
1355 
1356   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1357     return replaceInstUsesWith(SI, V);
1358 
1359   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1360     return replaceInstUsesWith(SI, V);
1361 
1362   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1363     return replaceInstUsesWith(SI, V);
1364 
1365   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1366     return replaceInstUsesWith(SI, V);
1367 
1368   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1369     return replaceInstUsesWith(SI, V);
1370 
1371   return Changed ? &SI : nullptr;
1372 }
1373 
1374 /// SI is a select whose condition is a PHI node (but the two may be in
1375 /// different blocks). See if the true/false values (V) are live in all of the
1376 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1377 ///
1378 ///   X = phi [ C1, BB1], [C2, BB2]
1379 ///   Y = add
1380 ///   Z = select X, Y, 0
1381 ///
1382 /// because Y is not live in BB1/BB2.
1383 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1384                                                    const SelectInst &SI) {
1385   // If the value is a non-instruction value like a constant or argument, it
1386   // can always be mapped.
1387   const Instruction *I = dyn_cast<Instruction>(V);
1388   if (!I) return true;
1389 
1390   // If V is a PHI node defined in the same block as the condition PHI, we can
1391   // map the arguments.
1392   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1393 
1394   if (const PHINode *VP = dyn_cast<PHINode>(I))
1395     if (VP->getParent() == CondPHI->getParent())
1396       return true;
1397 
1398   // Otherwise, if the PHI and select are defined in the same block and if V is
1399   // defined in a different block, then we can transform it.
1400   if (SI.getParent() == CondPHI->getParent() &&
1401       I->getParent() != CondPHI->getParent())
1402     return true;
1403 
1404   // Otherwise we have a 'hard' case and we can't tell without doing more
1405   // detailed dominator based analysis, punt.
1406   return false;
1407 }
1408 
1409 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1410 ///   SPF2(SPF1(A, B), C)
1411 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner,
1412                                         SelectPatternFlavor SPF1,
1413                                         Value *A, Value *B,
1414                                         Instruction &Outer,
1415                                         SelectPatternFlavor SPF2, Value *C) {
1416   if (Outer.getType() != Inner->getType())
1417     return nullptr;
1418 
1419   if (C == A || C == B) {
1420     // MAX(MAX(A, B), B) -> MAX(A, B)
1421     // MIN(MIN(a, b), a) -> MIN(a, b)
1422     // TODO: This could be done in instsimplify.
1423     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1424       return replaceInstUsesWith(Outer, Inner);
1425 
1426     // MAX(MIN(a, b), a) -> a
1427     // MIN(MAX(a, b), a) -> a
1428     // TODO: This could be done in instsimplify.
1429     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1430         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1431         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1432         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1433       return replaceInstUsesWith(Outer, C);
1434   }
1435 
1436   if (SPF1 == SPF2) {
1437     const APInt *CB, *CC;
1438     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1439       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1440       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1441       // TODO: This could be done in instsimplify.
1442       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1443           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1444           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1445           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1446         return replaceInstUsesWith(Outer, Inner);
1447 
1448       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1449       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1450       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1451           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1452           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1453           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1454         Outer.replaceUsesOfWith(Inner, A);
1455         return &Outer;
1456       }
1457     }
1458   }
1459 
1460   // ABS(ABS(X)) -> ABS(X)
1461   // NABS(NABS(X)) -> NABS(X)
1462   // TODO: This could be done in instsimplify.
1463   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1464     return replaceInstUsesWith(Outer, Inner);
1465   }
1466 
1467   // ABS(NABS(X)) -> ABS(X)
1468   // NABS(ABS(X)) -> NABS(X)
1469   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1470       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1471     SelectInst *SI = cast<SelectInst>(Inner);
1472     Value *NewSI =
1473         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1474                              SI->getTrueValue(), SI->getName(), SI);
1475     return replaceInstUsesWith(Outer, NewSI);
1476   }
1477 
1478   auto IsFreeOrProfitableToInvert =
1479       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1480     if (match(V, m_Not(m_Value(NotV)))) {
1481       // If V has at most 2 uses then we can get rid of the xor operation
1482       // entirely.
1483       ElidesXor |= !V->hasNUsesOrMore(3);
1484       return true;
1485     }
1486 
1487     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1488       NotV = nullptr;
1489       return true;
1490     }
1491 
1492     return false;
1493   };
1494 
1495   Value *NotA, *NotB, *NotC;
1496   bool ElidesXor = false;
1497 
1498   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1499   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1500   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1501   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1502   //
1503   // This transform is performance neutral if we can elide at least one xor from
1504   // the set of three operands, since we'll be tacking on an xor at the very
1505   // end.
1506   if (SelectPatternResult::isMinOrMax(SPF1) &&
1507       SelectPatternResult::isMinOrMax(SPF2) &&
1508       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1509       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1510       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1511     if (!NotA)
1512       NotA = Builder.CreateNot(A);
1513     if (!NotB)
1514       NotB = Builder.CreateNot(B);
1515     if (!NotC)
1516       NotC = Builder.CreateNot(C);
1517 
1518     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1519                                    NotB);
1520     Value *NewOuter = Builder.CreateNot(
1521         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1522     return replaceInstUsesWith(Outer, NewOuter);
1523   }
1524 
1525   return nullptr;
1526 }
1527 
1528 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1529 /// This is even legal for FP.
1530 static Instruction *foldAddSubSelect(SelectInst &SI,
1531                                      InstCombiner::BuilderTy &Builder) {
1532   Value *CondVal = SI.getCondition();
1533   Value *TrueVal = SI.getTrueValue();
1534   Value *FalseVal = SI.getFalseValue();
1535   auto *TI = dyn_cast<Instruction>(TrueVal);
1536   auto *FI = dyn_cast<Instruction>(FalseVal);
1537   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1538     return nullptr;
1539 
1540   Instruction *AddOp = nullptr, *SubOp = nullptr;
1541   if ((TI->getOpcode() == Instruction::Sub &&
1542        FI->getOpcode() == Instruction::Add) ||
1543       (TI->getOpcode() == Instruction::FSub &&
1544        FI->getOpcode() == Instruction::FAdd)) {
1545     AddOp = FI;
1546     SubOp = TI;
1547   } else if ((FI->getOpcode() == Instruction::Sub &&
1548               TI->getOpcode() == Instruction::Add) ||
1549              (FI->getOpcode() == Instruction::FSub &&
1550               TI->getOpcode() == Instruction::FAdd)) {
1551     AddOp = TI;
1552     SubOp = FI;
1553   }
1554 
1555   if (AddOp) {
1556     Value *OtherAddOp = nullptr;
1557     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1558       OtherAddOp = AddOp->getOperand(1);
1559     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1560       OtherAddOp = AddOp->getOperand(0);
1561     }
1562 
1563     if (OtherAddOp) {
1564       // So at this point we know we have (Y -> OtherAddOp):
1565       //        select C, (add X, Y), (sub X, Z)
1566       Value *NegVal; // Compute -Z
1567       if (SI.getType()->isFPOrFPVectorTy()) {
1568         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1569         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1570           FastMathFlags Flags = AddOp->getFastMathFlags();
1571           Flags &= SubOp->getFastMathFlags();
1572           NegInst->setFastMathFlags(Flags);
1573         }
1574       } else {
1575         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1576       }
1577 
1578       Value *NewTrueOp = OtherAddOp;
1579       Value *NewFalseOp = NegVal;
1580       if (AddOp != TI)
1581         std::swap(NewTrueOp, NewFalseOp);
1582       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1583                                            SI.getName() + ".p", &SI);
1584 
1585       if (SI.getType()->isFPOrFPVectorTy()) {
1586         Instruction *RI =
1587             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1588 
1589         FastMathFlags Flags = AddOp->getFastMathFlags();
1590         Flags &= SubOp->getFastMathFlags();
1591         RI->setFastMathFlags(Flags);
1592         return RI;
1593       } else
1594         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1595     }
1596   }
1597   return nullptr;
1598 }
1599 
1600 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) {
1601   Constant *C;
1602   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1603       !match(Sel.getFalseValue(), m_Constant(C)))
1604     return nullptr;
1605 
1606   Instruction *ExtInst;
1607   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1608       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1609     return nullptr;
1610 
1611   auto ExtOpcode = ExtInst->getOpcode();
1612   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1613     return nullptr;
1614 
1615   // If we are extending from a boolean type or if we can create a select that
1616   // has the same size operands as its condition, try to narrow the select.
1617   Value *X = ExtInst->getOperand(0);
1618   Type *SmallType = X->getType();
1619   Value *Cond = Sel.getCondition();
1620   auto *Cmp = dyn_cast<CmpInst>(Cond);
1621   if (!SmallType->isIntOrIntVectorTy(1) &&
1622       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1623     return nullptr;
1624 
1625   // If the constant is the same after truncation to the smaller type and
1626   // extension to the original type, we can narrow the select.
1627   Type *SelType = Sel.getType();
1628   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1629   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1630   if (ExtC == C) {
1631     Value *TruncCVal = cast<Value>(TruncC);
1632     if (ExtInst == Sel.getFalseValue())
1633       std::swap(X, TruncCVal);
1634 
1635     // select Cond, (ext X), C --> ext(select Cond, X, C')
1636     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1637     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1638     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1639   }
1640 
1641   // If one arm of the select is the extend of the condition, replace that arm
1642   // with the extension of the appropriate known bool value.
1643   if (Cond == X) {
1644     if (ExtInst == Sel.getTrueValue()) {
1645       // select X, (sext X), C --> select X, -1, C
1646       // select X, (zext X), C --> select X,  1, C
1647       Constant *One = ConstantInt::getTrue(SmallType);
1648       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1649       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1650     } else {
1651       // select X, C, (sext X) --> select X, C, 0
1652       // select X, C, (zext X) --> select X, C, 0
1653       Constant *Zero = ConstantInt::getNullValue(SelType);
1654       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1655     }
1656   }
1657 
1658   return nullptr;
1659 }
1660 
1661 /// Try to transform a vector select with a constant condition vector into a
1662 /// shuffle for easier combining with other shuffles and insert/extract.
1663 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1664   Value *CondVal = SI.getCondition();
1665   Constant *CondC;
1666   if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC)))
1667     return nullptr;
1668 
1669   unsigned NumElts = CondVal->getType()->getVectorNumElements();
1670   SmallVector<Constant *, 16> Mask;
1671   Mask.reserve(NumElts);
1672   Type *Int32Ty = Type::getInt32Ty(CondVal->getContext());
1673   for (unsigned i = 0; i != NumElts; ++i) {
1674     Constant *Elt = CondC->getAggregateElement(i);
1675     if (!Elt)
1676       return nullptr;
1677 
1678     if (Elt->isOneValue()) {
1679       // If the select condition element is true, choose from the 1st vector.
1680       Mask.push_back(ConstantInt::get(Int32Ty, i));
1681     } else if (Elt->isNullValue()) {
1682       // If the select condition element is false, choose from the 2nd vector.
1683       Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts));
1684     } else if (isa<UndefValue>(Elt)) {
1685       // Undef in a select condition (choose one of the operands) does not mean
1686       // the same thing as undef in a shuffle mask (any value is acceptable), so
1687       // give up.
1688       return nullptr;
1689     } else {
1690       // Bail out on a constant expression.
1691       return nullptr;
1692     }
1693   }
1694 
1695   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(),
1696                                ConstantVector::get(Mask));
1697 }
1698 
1699 /// Reuse bitcasted operands between a compare and select:
1700 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1701 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1702 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1703                                           InstCombiner::BuilderTy &Builder) {
1704   Value *Cond = Sel.getCondition();
1705   Value *TVal = Sel.getTrueValue();
1706   Value *FVal = Sel.getFalseValue();
1707 
1708   CmpInst::Predicate Pred;
1709   Value *A, *B;
1710   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1711     return nullptr;
1712 
1713   // The select condition is a compare instruction. If the select's true/false
1714   // values are already the same as the compare operands, there's nothing to do.
1715   if (TVal == A || TVal == B || FVal == A || FVal == B)
1716     return nullptr;
1717 
1718   Value *C, *D;
1719   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
1720     return nullptr;
1721 
1722   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
1723   Value *TSrc, *FSrc;
1724   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
1725       !match(FVal, m_BitCast(m_Value(FSrc))))
1726     return nullptr;
1727 
1728   // If the select true/false values are *different bitcasts* of the same source
1729   // operands, make the select operands the same as the compare operands and
1730   // cast the result. This is the canonical select form for min/max.
1731   Value *NewSel;
1732   if (TSrc == C && FSrc == D) {
1733     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1734     // bitcast (select (cmp A, B), A, B)
1735     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
1736   } else if (TSrc == D && FSrc == C) {
1737     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
1738     // bitcast (select (cmp A, B), B, A)
1739     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
1740   } else {
1741     return nullptr;
1742   }
1743   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
1744 }
1745 
1746 /// Try to eliminate select instructions that test the returned flag of cmpxchg
1747 /// instructions.
1748 ///
1749 /// If a select instruction tests the returned flag of a cmpxchg instruction and
1750 /// selects between the returned value of the cmpxchg instruction its compare
1751 /// operand, the result of the select will always be equal to its false value.
1752 /// For example:
1753 ///
1754 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1755 ///   %1 = extractvalue { i64, i1 } %0, 1
1756 ///   %2 = extractvalue { i64, i1 } %0, 0
1757 ///   %3 = select i1 %1, i64 %compare, i64 %2
1758 ///   ret i64 %3
1759 ///
1760 /// The returned value of the cmpxchg instruction (%2) is the original value
1761 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
1762 /// must have been equal to %compare. Thus, the result of the select is always
1763 /// equal to %2, and the code can be simplified to:
1764 ///
1765 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
1766 ///   %1 = extractvalue { i64, i1 } %0, 0
1767 ///   ret i64 %1
1768 ///
1769 static Instruction *foldSelectCmpXchg(SelectInst &SI) {
1770   // A helper that determines if V is an extractvalue instruction whose
1771   // aggregate operand is a cmpxchg instruction and whose single index is equal
1772   // to I. If such conditions are true, the helper returns the cmpxchg
1773   // instruction; otherwise, a nullptr is returned.
1774   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
1775     auto *Extract = dyn_cast<ExtractValueInst>(V);
1776     if (!Extract)
1777       return nullptr;
1778     if (Extract->getIndices()[0] != I)
1779       return nullptr;
1780     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
1781   };
1782 
1783   // If the select has a single user, and this user is a select instruction that
1784   // we can simplify, skip the cmpxchg simplification for now.
1785   if (SI.hasOneUse())
1786     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
1787       if (Select->getCondition() == SI.getCondition())
1788         if (Select->getFalseValue() == SI.getTrueValue() ||
1789             Select->getTrueValue() == SI.getFalseValue())
1790           return nullptr;
1791 
1792   // Ensure the select condition is the returned flag of a cmpxchg instruction.
1793   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
1794   if (!CmpXchg)
1795     return nullptr;
1796 
1797   // Check the true value case: The true value of the select is the returned
1798   // value of the same cmpxchg used by the condition, and the false value is the
1799   // cmpxchg instruction's compare operand.
1800   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
1801     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) {
1802       SI.setTrueValue(SI.getFalseValue());
1803       return &SI;
1804     }
1805 
1806   // Check the false value case: The false value of the select is the returned
1807   // value of the same cmpxchg used by the condition, and the true value is the
1808   // cmpxchg instruction's compare operand.
1809   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
1810     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) {
1811       SI.setTrueValue(SI.getFalseValue());
1812       return &SI;
1813     }
1814 
1815   return nullptr;
1816 }
1817 
1818 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
1819                                        Value *Y,
1820                                        InstCombiner::BuilderTy &Builder) {
1821   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
1822   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
1823                     SPF == SelectPatternFlavor::SPF_UMAX;
1824   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
1825   // the constant value check to an assert.
1826   Value *A;
1827   const APInt *C1, *C2;
1828   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
1829       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
1830     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
1831     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
1832     Value *NewMinMax = createMinMax(Builder, SPF, A,
1833                                     ConstantInt::get(X->getType(), *C2 - *C1));
1834     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
1835                                      ConstantInt::get(X->getType(), *C1));
1836   }
1837 
1838   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
1839       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
1840     bool Overflow;
1841     APInt Diff = C2->ssub_ov(*C1, Overflow);
1842     if (!Overflow) {
1843       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
1844       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
1845       Value *NewMinMax = createMinMax(Builder, SPF, A,
1846                                       ConstantInt::get(X->getType(), Diff));
1847       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
1848                                        ConstantInt::get(X->getType(), *C1));
1849     }
1850   }
1851 
1852   return nullptr;
1853 }
1854 
1855 /// Reduce a sequence of min/max with a common operand.
1856 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
1857                                         Value *RHS,
1858                                         InstCombiner::BuilderTy &Builder) {
1859   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
1860   // TODO: Allow FP min/max with nnan/nsz.
1861   if (!LHS->getType()->isIntOrIntVectorTy())
1862     return nullptr;
1863 
1864   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
1865   Value *A, *B, *C, *D;
1866   SelectPatternResult L = matchSelectPattern(LHS, A, B);
1867   SelectPatternResult R = matchSelectPattern(RHS, C, D);
1868   if (SPF != L.Flavor || L.Flavor != R.Flavor)
1869     return nullptr;
1870 
1871   // Look for a common operand. The use checks are different than usual because
1872   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
1873   // the select.
1874   Value *MinMaxOp = nullptr;
1875   Value *ThirdOp = nullptr;
1876   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
1877     // If the LHS is only used in this chain and the RHS is used outside of it,
1878     // reuse the RHS min/max because that will eliminate the LHS.
1879     if (D == A || C == A) {
1880       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
1881       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
1882       MinMaxOp = RHS;
1883       ThirdOp = B;
1884     } else if (D == B || C == B) {
1885       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
1886       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
1887       MinMaxOp = RHS;
1888       ThirdOp = A;
1889     }
1890   } else if (!RHS->hasNUsesOrMore(3)) {
1891     // Reuse the LHS. This will eliminate the RHS.
1892     if (D == A || D == B) {
1893       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
1894       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
1895       MinMaxOp = LHS;
1896       ThirdOp = C;
1897     } else if (C == A || C == B) {
1898       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
1899       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
1900       MinMaxOp = LHS;
1901       ThirdOp = D;
1902     }
1903   }
1904   if (!MinMaxOp || !ThirdOp)
1905     return nullptr;
1906 
1907   CmpInst::Predicate P = getMinMaxPred(SPF);
1908   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
1909   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
1910 }
1911 
1912 /// Try to reduce a rotate pattern that includes a compare and select into a
1913 /// funnel shift intrinsic. Example:
1914 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
1915 ///              --> call llvm.fshl.i32(a, a, b)
1916 static Instruction *foldSelectRotate(SelectInst &Sel) {
1917   // The false value of the select must be a rotate of the true value.
1918   Value *Or0, *Or1;
1919   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1)))))
1920     return nullptr;
1921 
1922   Value *TVal = Sel.getTrueValue();
1923   Value *SA0, *SA1;
1924   if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) ||
1925       !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1)))))
1926     return nullptr;
1927 
1928   auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode();
1929   auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode();
1930   if (ShiftOpcode0 == ShiftOpcode1)
1931     return nullptr;
1932 
1933   // We have one of these patterns so far:
1934   // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1))
1935   // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1))
1936   // This must be a power-of-2 rotate for a bitmasking transform to be valid.
1937   unsigned Width = Sel.getType()->getScalarSizeInBits();
1938   if (!isPowerOf2_32(Width))
1939     return nullptr;
1940 
1941   // Check the shift amounts to see if they are an opposite pair.
1942   Value *ShAmt;
1943   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
1944     ShAmt = SA0;
1945   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
1946     ShAmt = SA1;
1947   else
1948     return nullptr;
1949 
1950   // Finally, see if the select is filtering out a shift-by-zero.
1951   Value *Cond = Sel.getCondition();
1952   ICmpInst::Predicate Pred;
1953   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
1954       Pred != ICmpInst::ICMP_EQ)
1955     return nullptr;
1956 
1957   // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way.
1958   // Convert to funnel shift intrinsic.
1959   bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) ||
1960                 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl);
1961   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
1962   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
1963   return IntrinsicInst::Create(F, { TVal, TVal, ShAmt });
1964 }
1965 
1966 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
1967   Value *CondVal = SI.getCondition();
1968   Value *TrueVal = SI.getTrueValue();
1969   Value *FalseVal = SI.getFalseValue();
1970   Type *SelType = SI.getType();
1971 
1972   // FIXME: Remove this workaround when freeze related patches are done.
1973   // For select with undef operand which feeds into an equality comparison,
1974   // don't simplify it so loop unswitch can know the equality comparison
1975   // may have an undef operand. This is a workaround for PR31652 caused by
1976   // descrepancy about branch on undef between LoopUnswitch and GVN.
1977   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
1978     if (llvm::any_of(SI.users(), [&](User *U) {
1979           ICmpInst *CI = dyn_cast<ICmpInst>(U);
1980           if (CI && CI->isEquality())
1981             return true;
1982           return false;
1983         })) {
1984       return nullptr;
1985     }
1986   }
1987 
1988   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
1989                                     SQ.getWithInstruction(&SI)))
1990     return replaceInstUsesWith(SI, V);
1991 
1992   if (Instruction *I = canonicalizeSelectToShuffle(SI))
1993     return I;
1994 
1995   // Canonicalize a one-use integer compare with a non-canonical predicate by
1996   // inverting the predicate and swapping the select operands. This matches a
1997   // compare canonicalization for conditional branches.
1998   // TODO: Should we do the same for FP compares?
1999   CmpInst::Predicate Pred;
2000   if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) &&
2001       !isCanonicalPredicate(Pred)) {
2002     // Swap true/false values and condition.
2003     CmpInst *Cond = cast<CmpInst>(CondVal);
2004     Cond->setPredicate(CmpInst::getInversePredicate(Pred));
2005     SI.setOperand(1, FalseVal);
2006     SI.setOperand(2, TrueVal);
2007     SI.swapProfMetadata();
2008     Worklist.Add(Cond);
2009     return &SI;
2010   }
2011 
2012   if (SelType->isIntOrIntVectorTy(1) &&
2013       TrueVal->getType() == CondVal->getType()) {
2014     if (match(TrueVal, m_One())) {
2015       // Change: A = select B, true, C --> A = or B, C
2016       return BinaryOperator::CreateOr(CondVal, FalseVal);
2017     }
2018     if (match(TrueVal, m_Zero())) {
2019       // Change: A = select B, false, C --> A = and !B, C
2020       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2021       return BinaryOperator::CreateAnd(NotCond, FalseVal);
2022     }
2023     if (match(FalseVal, m_Zero())) {
2024       // Change: A = select B, C, false --> A = and B, C
2025       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2026     }
2027     if (match(FalseVal, m_One())) {
2028       // Change: A = select B, C, true --> A = or !B, C
2029       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2030       return BinaryOperator::CreateOr(NotCond, TrueVal);
2031     }
2032 
2033     // select a, a, b  -> a | b
2034     // select a, b, a  -> a & b
2035     if (CondVal == TrueVal)
2036       return BinaryOperator::CreateOr(CondVal, FalseVal);
2037     if (CondVal == FalseVal)
2038       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2039 
2040     // select a, ~a, b -> (~a) & b
2041     // select a, b, ~a -> (~a) | b
2042     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2043       return BinaryOperator::CreateAnd(TrueVal, FalseVal);
2044     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2045       return BinaryOperator::CreateOr(TrueVal, FalseVal);
2046   }
2047 
2048   // Selecting between two integer or vector splat integer constants?
2049   //
2050   // Note that we don't handle a scalar select of vectors:
2051   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2052   // because that may need 3 instructions to splat the condition value:
2053   // extend, insertelement, shufflevector.
2054   if (SelType->isIntOrIntVectorTy() &&
2055       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2056     // select C, 1, 0 -> zext C to int
2057     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2058       return new ZExtInst(CondVal, SelType);
2059 
2060     // select C, -1, 0 -> sext C to int
2061     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2062       return new SExtInst(CondVal, SelType);
2063 
2064     // select C, 0, 1 -> zext !C to int
2065     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2066       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2067       return new ZExtInst(NotCond, SelType);
2068     }
2069 
2070     // select C, 0, -1 -> sext !C to int
2071     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2072       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2073       return new SExtInst(NotCond, SelType);
2074     }
2075   }
2076 
2077   // See if we are selecting two values based on a comparison of the two values.
2078   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
2079     if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
2080       // Canonicalize to use ordered comparisons by swapping the select
2081       // operands.
2082       //
2083       // e.g.
2084       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2085       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2086         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2087         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2088         Builder.setFastMathFlags(FCI->getFastMathFlags());
2089         Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal,
2090                                             FCI->getName() + ".inv");
2091 
2092         return SelectInst::Create(NewCond, FalseVal, TrueVal,
2093                                   SI.getName() + ".p");
2094       }
2095 
2096       // NOTE: if we wanted to, this is where to detect MIN/MAX
2097     } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
2098       // Canonicalize to use ordered comparisons by swapping the select
2099       // operands.
2100       //
2101       // e.g.
2102       // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y
2103       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2104         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2105         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2106         Builder.setFastMathFlags(FCI->getFastMathFlags());
2107         Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal,
2108                                             FCI->getName() + ".inv");
2109 
2110         return SelectInst::Create(NewCond, FalseVal, TrueVal,
2111                                   SI.getName() + ".p");
2112       }
2113 
2114       // NOTE: if we wanted to, this is where to detect MIN/MAX
2115     }
2116   }
2117 
2118   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2119   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
2120   // also require nnan because we do not want to unintentionally change the
2121   // sign of a NaN value.
2122   // FIXME: These folds should test/propagate FMF from the select, not the
2123   //        fsub or fneg.
2124   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2125   Instruction *FSub;
2126   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2127       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2128       match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2129       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2130     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
2131     return replaceInstUsesWith(SI, Fabs);
2132   }
2133   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2134   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2135       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2136       match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2137       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2138     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
2139     return replaceInstUsesWith(SI, Fabs);
2140   }
2141   // With nnan and nsz:
2142   // (X <  +/-0.0) ? -X : X --> fabs(X)
2143   // (X <= +/-0.0) ? -X : X --> fabs(X)
2144   Instruction *FNeg;
2145   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2146       match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
2147       match(TrueVal, m_Instruction(FNeg)) &&
2148       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2149       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2150        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2151     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
2152     return replaceInstUsesWith(SI, Fabs);
2153   }
2154   // With nnan and nsz:
2155   // (X >  +/-0.0) ? X : -X --> fabs(X)
2156   // (X >= +/-0.0) ? X : -X --> fabs(X)
2157   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2158       match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
2159       match(FalseVal, m_Instruction(FNeg)) &&
2160       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2161       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2162        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2163     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
2164     return replaceInstUsesWith(SI, Fabs);
2165   }
2166 
2167   // See if we are selecting two values based on a comparison of the two values.
2168   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2169     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2170       return Result;
2171 
2172   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2173     return Add;
2174 
2175   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2176   auto *TI = dyn_cast<Instruction>(TrueVal);
2177   auto *FI = dyn_cast<Instruction>(FalseVal);
2178   if (TI && FI && TI->getOpcode() == FI->getOpcode())
2179     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2180       return IV;
2181 
2182   if (Instruction *I = foldSelectExtConst(SI))
2183     return I;
2184 
2185   // See if we can fold the select into one of our operands.
2186   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2187     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2188       return FoldI;
2189 
2190     Value *LHS, *RHS;
2191     Instruction::CastOps CastOp;
2192     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2193     auto SPF = SPR.Flavor;
2194     if (SPF) {
2195       Value *LHS2, *RHS2;
2196       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2197         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2198                                           RHS2, SI, SPF, RHS))
2199           return R;
2200       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2201         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2202                                           RHS2, SI, SPF, LHS))
2203           return R;
2204       // TODO.
2205       // ABS(-X) -> ABS(X)
2206     }
2207 
2208     if (SelectPatternResult::isMinOrMax(SPF)) {
2209       // Canonicalize so that
2210       // - type casts are outside select patterns.
2211       // - float clamp is transformed to min/max pattern
2212 
2213       bool IsCastNeeded = LHS->getType() != SelType;
2214       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2215       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2216       if (IsCastNeeded ||
2217           (LHS->getType()->isFPOrFPVectorTy() &&
2218            ((CmpLHS != LHS && CmpLHS != RHS) ||
2219             (CmpRHS != LHS && CmpRHS != RHS)))) {
2220         CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered);
2221 
2222         Value *Cmp;
2223         if (CmpInst::isIntPredicate(Pred)) {
2224           Cmp = Builder.CreateICmp(Pred, LHS, RHS);
2225         } else {
2226           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2227           auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2228           Builder.setFastMathFlags(FMF);
2229           Cmp = Builder.CreateFCmp(Pred, LHS, RHS);
2230         }
2231 
2232         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2233         if (!IsCastNeeded)
2234           return replaceInstUsesWith(SI, NewSI);
2235 
2236         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2237         return replaceInstUsesWith(SI, NewCast);
2238       }
2239 
2240       // MAX(~a, ~b) -> ~MIN(a, b)
2241       // MAX(~a, C)  -> ~MIN(a, ~C)
2242       // MIN(~a, ~b) -> ~MAX(a, b)
2243       // MIN(~a, C)  -> ~MAX(a, ~C)
2244       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2245         Value *A;
2246         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2247             !isFreeToInvert(A, A->hasOneUse()) &&
2248             // Passing false to only consider m_Not and constants.
2249             isFreeToInvert(Y, false)) {
2250           Value *B = Builder.CreateNot(Y);
2251           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2252                                           A, B);
2253           // Copy the profile metadata.
2254           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2255             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2256             // Swap the metadata if the operands are swapped.
2257             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2258               cast<SelectInst>(NewMinMax)->swapProfMetadata();
2259           }
2260 
2261           return BinaryOperator::CreateNot(NewMinMax);
2262         }
2263 
2264         return nullptr;
2265       };
2266 
2267       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2268         return I;
2269       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2270         return I;
2271 
2272       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2273         return I;
2274 
2275       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2276         return I;
2277     }
2278   }
2279 
2280   // Canonicalize select of FP values where NaN and -0.0 are not valid as
2281   // minnum/maxnum intrinsics.
2282   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2283     Value *X, *Y;
2284     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2285       return replaceInstUsesWith(
2286           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2287 
2288     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2289       return replaceInstUsesWith(
2290           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2291   }
2292 
2293   // See if we can fold the select into a phi node if the condition is a select.
2294   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2295     // The true/false values have to be live in the PHI predecessor's blocks.
2296     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2297         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2298       if (Instruction *NV = foldOpIntoPhi(SI, PN))
2299         return NV;
2300 
2301   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2302     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2303       // select(C, select(C, a, b), c) -> select(C, a, c)
2304       if (TrueSI->getCondition() == CondVal) {
2305         if (SI.getTrueValue() == TrueSI->getTrueValue())
2306           return nullptr;
2307         SI.setOperand(1, TrueSI->getTrueValue());
2308         return &SI;
2309       }
2310       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2311       // We choose this as normal form to enable folding on the And and shortening
2312       // paths for the values (this helps GetUnderlyingObjects() for example).
2313       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2314         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2315         SI.setOperand(0, And);
2316         SI.setOperand(1, TrueSI->getTrueValue());
2317         return &SI;
2318       }
2319     }
2320   }
2321   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2322     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2323       // select(C, a, select(C, b, c)) -> select(C, a, c)
2324       if (FalseSI->getCondition() == CondVal) {
2325         if (SI.getFalseValue() == FalseSI->getFalseValue())
2326           return nullptr;
2327         SI.setOperand(2, FalseSI->getFalseValue());
2328         return &SI;
2329       }
2330       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2331       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2332         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2333         SI.setOperand(0, Or);
2334         SI.setOperand(2, FalseSI->getFalseValue());
2335         return &SI;
2336       }
2337     }
2338   }
2339 
2340   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2341     // The select might be preventing a division by 0.
2342     switch (BO->getOpcode()) {
2343     default:
2344       return true;
2345     case Instruction::SRem:
2346     case Instruction::URem:
2347     case Instruction::SDiv:
2348     case Instruction::UDiv:
2349       return false;
2350     }
2351   };
2352 
2353   // Try to simplify a binop sandwiched between 2 selects with the same
2354   // condition.
2355   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2356   BinaryOperator *TrueBO;
2357   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2358       canMergeSelectThroughBinop(TrueBO)) {
2359     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2360       if (TrueBOSI->getCondition() == CondVal) {
2361         TrueBO->setOperand(0, TrueBOSI->getTrueValue());
2362         Worklist.Add(TrueBO);
2363         return &SI;
2364       }
2365     }
2366     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2367       if (TrueBOSI->getCondition() == CondVal) {
2368         TrueBO->setOperand(1, TrueBOSI->getTrueValue());
2369         Worklist.Add(TrueBO);
2370         return &SI;
2371       }
2372     }
2373   }
2374 
2375   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2376   BinaryOperator *FalseBO;
2377   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2378       canMergeSelectThroughBinop(FalseBO)) {
2379     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2380       if (FalseBOSI->getCondition() == CondVal) {
2381         FalseBO->setOperand(0, FalseBOSI->getFalseValue());
2382         Worklist.Add(FalseBO);
2383         return &SI;
2384       }
2385     }
2386     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2387       if (FalseBOSI->getCondition() == CondVal) {
2388         FalseBO->setOperand(1, FalseBOSI->getFalseValue());
2389         Worklist.Add(FalseBO);
2390         return &SI;
2391       }
2392     }
2393   }
2394 
2395   Value *NotCond;
2396   if (match(CondVal, m_Not(m_Value(NotCond)))) {
2397     SI.setOperand(0, NotCond);
2398     SI.setOperand(1, FalseVal);
2399     SI.setOperand(2, TrueVal);
2400     SI.swapProfMetadata();
2401     return &SI;
2402   }
2403 
2404   if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) {
2405     unsigned VWidth = VecTy->getNumElements();
2406     APInt UndefElts(VWidth, 0);
2407     APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth));
2408     if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) {
2409       if (V != &SI)
2410         return replaceInstUsesWith(SI, V);
2411       return &SI;
2412     }
2413   }
2414 
2415   // If we can compute the condition, there's no need for a select.
2416   // Like the above fold, we are attempting to reduce compile-time cost by
2417   // putting this fold here with limitations rather than in InstSimplify.
2418   // The motivation for this call into value tracking is to take advantage of
2419   // the assumption cache, so make sure that is populated.
2420   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2421     KnownBits Known(1);
2422     computeKnownBits(CondVal, Known, 0, &SI);
2423     if (Known.One.isOneValue())
2424       return replaceInstUsesWith(SI, TrueVal);
2425     if (Known.Zero.isOneValue())
2426       return replaceInstUsesWith(SI, FalseVal);
2427   }
2428 
2429   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2430     return BitCastSel;
2431 
2432   // Simplify selects that test the returned flag of cmpxchg instructions.
2433   if (Instruction *Select = foldSelectCmpXchg(SI))
2434     return Select;
2435 
2436   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI))
2437     return Select;
2438 
2439   if (Instruction *Rot = foldSelectRotate(SI))
2440     return Rot;
2441 
2442   return nullptr;
2443 }
2444