1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/IR/BasicBlock.h"
23 #include "llvm/IR/Constant.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/IRBuilder.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/User.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/KnownBits.h"
40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
41 #include "llvm/Transforms/InstCombine/InstCombiner.h"
42 #include <cassert>
43 #include <utility>
44 
45 using namespace llvm;
46 using namespace PatternMatch;
47 
48 #define DEBUG_TYPE "instcombine"
49 
50 /// FIXME: Enabled by default until the pattern is supported well.
51 static cl::opt<bool> EnableUnsafeSelectTransform(
52     "instcombine-unsafe-select-transform", cl::init(true),
53     cl::desc("Enable poison-unsafe select to and/or transform"));
54 
55 static Value *createMinMax(InstCombiner::BuilderTy &Builder,
56                            SelectPatternFlavor SPF, Value *A, Value *B) {
57   CmpInst::Predicate Pred = getMinMaxPred(SPF);
58   assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate");
59   return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B);
60 }
61 
62 /// Replace a select operand based on an equality comparison with the identity
63 /// constant of a binop.
64 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
65                                             const TargetLibraryInfo &TLI,
66                                             InstCombinerImpl &IC) {
67   // The select condition must be an equality compare with a constant operand.
68   Value *X;
69   Constant *C;
70   CmpInst::Predicate Pred;
71   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
72     return nullptr;
73 
74   bool IsEq;
75   if (ICmpInst::isEquality(Pred))
76     IsEq = Pred == ICmpInst::ICMP_EQ;
77   else if (Pred == FCmpInst::FCMP_OEQ)
78     IsEq = true;
79   else if (Pred == FCmpInst::FCMP_UNE)
80     IsEq = false;
81   else
82     return nullptr;
83 
84   // A select operand must be a binop.
85   BinaryOperator *BO;
86   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
87     return nullptr;
88 
89   // The compare constant must be the identity constant for that binop.
90   // If this a floating-point compare with 0.0, any zero constant will do.
91   Type *Ty = BO->getType();
92   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
93   if (IdC != C) {
94     if (!IdC || !CmpInst::isFPPredicate(Pred))
95       return nullptr;
96     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
97       return nullptr;
98   }
99 
100   // Last, match the compare variable operand with a binop operand.
101   Value *Y;
102   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
103     return nullptr;
104   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
105     return nullptr;
106 
107   // +0.0 compares equal to -0.0, and so it does not behave as required for this
108   // transform. Bail out if we can not exclude that possibility.
109   if (isa<FPMathOperator>(BO))
110     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
111       return nullptr;
112 
113   // BO = binop Y, X
114   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
115   // =>
116   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
117   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
118 }
119 
120 /// This folds:
121 ///  select (icmp eq (and X, C1)), TC, FC
122 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
123 /// To something like:
124 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
125 /// Or:
126 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
127 /// With some variations depending if FC is larger than TC, or the shift
128 /// isn't needed, or the bit widths don't match.
129 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
130                                 InstCombiner::BuilderTy &Builder) {
131   const APInt *SelTC, *SelFC;
132   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
133       !match(Sel.getFalseValue(), m_APInt(SelFC)))
134     return nullptr;
135 
136   // If this is a vector select, we need a vector compare.
137   Type *SelType = Sel.getType();
138   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
139     return nullptr;
140 
141   Value *V;
142   APInt AndMask;
143   bool CreateAnd = false;
144   ICmpInst::Predicate Pred = Cmp->getPredicate();
145   if (ICmpInst::isEquality(Pred)) {
146     if (!match(Cmp->getOperand(1), m_Zero()))
147       return nullptr;
148 
149     V = Cmp->getOperand(0);
150     const APInt *AndRHS;
151     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
152       return nullptr;
153 
154     AndMask = *AndRHS;
155   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
156                                   Pred, V, AndMask)) {
157     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
158     if (!AndMask.isPowerOf2())
159       return nullptr;
160 
161     CreateAnd = true;
162   } else {
163     return nullptr;
164   }
165 
166   // In general, when both constants are non-zero, we would need an offset to
167   // replace the select. This would require more instructions than we started
168   // with. But there's one special-case that we handle here because it can
169   // simplify/reduce the instructions.
170   APInt TC = *SelTC;
171   APInt FC = *SelFC;
172   if (!TC.isNullValue() && !FC.isNullValue()) {
173     // If the select constants differ by exactly one bit and that's the same
174     // bit that is masked and checked by the select condition, the select can
175     // be replaced by bitwise logic to set/clear one bit of the constant result.
176     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
177       return nullptr;
178     if (CreateAnd) {
179       // If we have to create an 'and', then we must kill the cmp to not
180       // increase the instruction count.
181       if (!Cmp->hasOneUse())
182         return nullptr;
183       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
184     }
185     bool ExtraBitInTC = TC.ugt(FC);
186     if (Pred == ICmpInst::ICMP_EQ) {
187       // If the masked bit in V is clear, clear or set the bit in the result:
188       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
189       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
190       Constant *C = ConstantInt::get(SelType, TC);
191       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
192     }
193     if (Pred == ICmpInst::ICMP_NE) {
194       // If the masked bit in V is set, set or clear the bit in the result:
195       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
196       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
197       Constant *C = ConstantInt::get(SelType, FC);
198       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
199     }
200     llvm_unreachable("Only expecting equality predicates");
201   }
202 
203   // Make sure one of the select arms is a power-of-2.
204   if (!TC.isPowerOf2() && !FC.isPowerOf2())
205     return nullptr;
206 
207   // Determine which shift is needed to transform result of the 'and' into the
208   // desired result.
209   const APInt &ValC = !TC.isNullValue() ? TC : FC;
210   unsigned ValZeros = ValC.logBase2();
211   unsigned AndZeros = AndMask.logBase2();
212 
213   // Insert the 'and' instruction on the input to the truncate.
214   if (CreateAnd)
215     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
216 
217   // If types don't match, we can still convert the select by introducing a zext
218   // or a trunc of the 'and'.
219   if (ValZeros > AndZeros) {
220     V = Builder.CreateZExtOrTrunc(V, SelType);
221     V = Builder.CreateShl(V, ValZeros - AndZeros);
222   } else if (ValZeros < AndZeros) {
223     V = Builder.CreateLShr(V, AndZeros - ValZeros);
224     V = Builder.CreateZExtOrTrunc(V, SelType);
225   } else {
226     V = Builder.CreateZExtOrTrunc(V, SelType);
227   }
228 
229   // Okay, now we know that everything is set up, we just don't know whether we
230   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
231   bool ShouldNotVal = !TC.isNullValue();
232   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
233   if (ShouldNotVal)
234     V = Builder.CreateXor(V, ValC);
235 
236   return V;
237 }
238 
239 /// We want to turn code that looks like this:
240 ///   %C = or %A, %B
241 ///   %D = select %cond, %C, %A
242 /// into:
243 ///   %C = select %cond, %B, 0
244 ///   %D = or %A, %C
245 ///
246 /// Assuming that the specified instruction is an operand to the select, return
247 /// a bitmask indicating which operands of this instruction are foldable if they
248 /// equal the other incoming value of the select.
249 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
250   switch (I->getOpcode()) {
251   case Instruction::Add:
252   case Instruction::Mul:
253   case Instruction::And:
254   case Instruction::Or:
255   case Instruction::Xor:
256     return 3;              // Can fold through either operand.
257   case Instruction::Sub:   // Can only fold on the amount subtracted.
258   case Instruction::Shl:   // Can only fold on the shift amount.
259   case Instruction::LShr:
260   case Instruction::AShr:
261     return 1;
262   default:
263     return 0;              // Cannot fold
264   }
265 }
266 
267 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
268 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
269                                               Instruction *FI) {
270   // Don't break up min/max patterns. The hasOneUse checks below prevent that
271   // for most cases, but vector min/max with bitcasts can be transformed. If the
272   // one-use restrictions are eased for other patterns, we still don't want to
273   // obfuscate min/max.
274   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
275        match(&SI, m_SMax(m_Value(), m_Value())) ||
276        match(&SI, m_UMin(m_Value(), m_Value())) ||
277        match(&SI, m_UMax(m_Value(), m_Value()))))
278     return nullptr;
279 
280   // If this is a cast from the same type, merge.
281   Value *Cond = SI.getCondition();
282   Type *CondTy = Cond->getType();
283   if (TI->getNumOperands() == 1 && TI->isCast()) {
284     Type *FIOpndTy = FI->getOperand(0)->getType();
285     if (TI->getOperand(0)->getType() != FIOpndTy)
286       return nullptr;
287 
288     // The select condition may be a vector. We may only change the operand
289     // type if the vector width remains the same (and matches the condition).
290     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
291       if (!FIOpndTy->isVectorTy() ||
292           CondVTy->getElementCount() !=
293               cast<VectorType>(FIOpndTy)->getElementCount())
294         return nullptr;
295 
296       // TODO: If the backend knew how to deal with casts better, we could
297       // remove this limitation. For now, there's too much potential to create
298       // worse codegen by promoting the select ahead of size-altering casts
299       // (PR28160).
300       //
301       // Note that ValueTracking's matchSelectPattern() looks through casts
302       // without checking 'hasOneUse' when it matches min/max patterns, so this
303       // transform may end up happening anyway.
304       if (TI->getOpcode() != Instruction::BitCast &&
305           (!TI->hasOneUse() || !FI->hasOneUse()))
306         return nullptr;
307     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
308       // TODO: The one-use restrictions for a scalar select could be eased if
309       // the fold of a select in visitLoadInst() was enhanced to match a pattern
310       // that includes a cast.
311       return nullptr;
312     }
313 
314     // Fold this by inserting a select from the input values.
315     Value *NewSI =
316         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
317                              SI.getName() + ".v", &SI);
318     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
319                             TI->getType());
320   }
321 
322   // Cond ? -X : -Y --> -(Cond ? X : Y)
323   Value *X, *Y;
324   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
325       (TI->hasOneUse() || FI->hasOneUse())) {
326     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
327     return UnaryOperator::CreateFNegFMF(NewSel, TI);
328   }
329 
330   // Only handle binary operators (including two-operand getelementptr) with
331   // one-use here. As with the cast case above, it may be possible to relax the
332   // one-use constraint, but that needs be examined carefully since it may not
333   // reduce the total number of instructions.
334   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
335       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
336       !TI->hasOneUse() || !FI->hasOneUse())
337     return nullptr;
338 
339   // Figure out if the operations have any operands in common.
340   Value *MatchOp, *OtherOpT, *OtherOpF;
341   bool MatchIsOpZero;
342   if (TI->getOperand(0) == FI->getOperand(0)) {
343     MatchOp  = TI->getOperand(0);
344     OtherOpT = TI->getOperand(1);
345     OtherOpF = FI->getOperand(1);
346     MatchIsOpZero = true;
347   } else if (TI->getOperand(1) == FI->getOperand(1)) {
348     MatchOp  = TI->getOperand(1);
349     OtherOpT = TI->getOperand(0);
350     OtherOpF = FI->getOperand(0);
351     MatchIsOpZero = false;
352   } else if (!TI->isCommutative()) {
353     return nullptr;
354   } else if (TI->getOperand(0) == FI->getOperand(1)) {
355     MatchOp  = TI->getOperand(0);
356     OtherOpT = TI->getOperand(1);
357     OtherOpF = FI->getOperand(0);
358     MatchIsOpZero = true;
359   } else if (TI->getOperand(1) == FI->getOperand(0)) {
360     MatchOp  = TI->getOperand(1);
361     OtherOpT = TI->getOperand(0);
362     OtherOpF = FI->getOperand(1);
363     MatchIsOpZero = true;
364   } else {
365     return nullptr;
366   }
367 
368   // If the select condition is a vector, the operands of the original select's
369   // operands also must be vectors. This may not be the case for getelementptr
370   // for example.
371   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
372                                !OtherOpF->getType()->isVectorTy()))
373     return nullptr;
374 
375   // If we reach here, they do have operations in common.
376   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
377                                       SI.getName() + ".v", &SI);
378   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
379   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
380   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
381     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
382     NewBO->copyIRFlags(TI);
383     NewBO->andIRFlags(FI);
384     return NewBO;
385   }
386   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
387     auto *FGEP = cast<GetElementPtrInst>(FI);
388     Type *ElementType = TGEP->getResultElementType();
389     return TGEP->isInBounds() && FGEP->isInBounds()
390                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
391                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
392   }
393   llvm_unreachable("Expected BinaryOperator or GEP");
394   return nullptr;
395 }
396 
397 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
398   if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero.
399     return false;
400   return C1I.isOneValue() || C1I.isAllOnesValue() ||
401          C2I.isOneValue() || C2I.isAllOnesValue();
402 }
403 
404 /// Try to fold the select into one of the operands to allow further
405 /// optimization.
406 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
407                                                 Value *FalseVal) {
408   // See the comment above GetSelectFoldableOperands for a description of the
409   // transformation we are doing here.
410   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
411     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
412       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
413         unsigned OpToFold = 0;
414         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
415           OpToFold = 1;
416         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
417           OpToFold = 2;
418         }
419 
420         if (OpToFold) {
421           Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(),
422                                                        TVI->getType(), true);
423           Value *OOp = TVI->getOperand(2-OpToFold);
424           // Avoid creating select between 2 constants unless it's selecting
425           // between 0, 1 and -1.
426           const APInt *OOpC;
427           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
428           if (!isa<Constant>(OOp) ||
429               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
430             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
431             NewSel->takeName(TVI);
432             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
433                                                         FalseVal, NewSel);
434             BO->copyIRFlags(TVI);
435             return BO;
436           }
437         }
438       }
439     }
440   }
441 
442   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
443     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
444       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
445         unsigned OpToFold = 0;
446         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
447           OpToFold = 1;
448         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
449           OpToFold = 2;
450         }
451 
452         if (OpToFold) {
453           Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(),
454                                                        FVI->getType(), true);
455           Value *OOp = FVI->getOperand(2-OpToFold);
456           // Avoid creating select between 2 constants unless it's selecting
457           // between 0, 1 and -1.
458           const APInt *OOpC;
459           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
460           if (!isa<Constant>(OOp) ||
461               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
462             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
463             NewSel->takeName(FVI);
464             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
465                                                         TrueVal, NewSel);
466             BO->copyIRFlags(FVI);
467             return BO;
468           }
469         }
470       }
471     }
472   }
473 
474   return nullptr;
475 }
476 
477 /// We want to turn:
478 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
479 /// into:
480 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
481 /// Note:
482 ///   Z may be 0 if lshr is missing.
483 /// Worst-case scenario is that we will replace 5 instructions with 5 different
484 /// instructions, but we got rid of select.
485 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
486                                          Value *TVal, Value *FVal,
487                                          InstCombiner::BuilderTy &Builder) {
488   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
489         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
490         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
491     return nullptr;
492 
493   // The TrueVal has general form of:  and %B, 1
494   Value *B;
495   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
496     return nullptr;
497 
498   // Where %B may be optionally shifted:  lshr %X, %Z.
499   Value *X, *Z;
500   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
501   if (!HasShift)
502     X = B;
503 
504   Value *Y;
505   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
506     return nullptr;
507 
508   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
509   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
510   Constant *One = ConstantInt::get(SelType, 1);
511   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
512   Value *FullMask = Builder.CreateOr(Y, MaskB);
513   Value *MaskedX = Builder.CreateAnd(X, FullMask);
514   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
515   return new ZExtInst(ICmpNeZero, SelType);
516 }
517 
518 /// We want to turn:
519 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
520 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
521 /// into:
522 ///   ashr (X, Y)
523 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
524                                      Value *FalseVal,
525                                      InstCombiner::BuilderTy &Builder) {
526   ICmpInst::Predicate Pred = IC->getPredicate();
527   Value *CmpLHS = IC->getOperand(0);
528   Value *CmpRHS = IC->getOperand(1);
529   if (!CmpRHS->getType()->isIntOrIntVectorTy())
530     return nullptr;
531 
532   Value *X, *Y;
533   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
534   if ((Pred != ICmpInst::ICMP_SGT ||
535        !match(CmpRHS,
536               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
537       (Pred != ICmpInst::ICMP_SLT ||
538        !match(CmpRHS,
539               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
540     return nullptr;
541 
542   // Canonicalize so that ashr is in FalseVal.
543   if (Pred == ICmpInst::ICMP_SLT)
544     std::swap(TrueVal, FalseVal);
545 
546   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
547       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
548       match(CmpLHS, m_Specific(X))) {
549     const auto *Ashr = cast<Instruction>(FalseVal);
550     // if lshr is not exact and ashr is, this new ashr must not be exact.
551     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
552     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
553   }
554 
555   return nullptr;
556 }
557 
558 /// We want to turn:
559 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
560 /// into:
561 ///   (or (shl (and X, C1), C3), Y)
562 /// iff:
563 ///   C1 and C2 are both powers of 2
564 /// where:
565 ///   C3 = Log(C2) - Log(C1)
566 ///
567 /// This transform handles cases where:
568 /// 1. The icmp predicate is inverted
569 /// 2. The select operands are reversed
570 /// 3. The magnitude of C2 and C1 are flipped
571 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
572                                   Value *FalseVal,
573                                   InstCombiner::BuilderTy &Builder) {
574   // Only handle integer compares. Also, if this is a vector select, we need a
575   // vector compare.
576   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
577       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
578     return nullptr;
579 
580   Value *CmpLHS = IC->getOperand(0);
581   Value *CmpRHS = IC->getOperand(1);
582 
583   Value *V;
584   unsigned C1Log;
585   bool IsEqualZero;
586   bool NeedAnd = false;
587   if (IC->isEquality()) {
588     if (!match(CmpRHS, m_Zero()))
589       return nullptr;
590 
591     const APInt *C1;
592     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
593       return nullptr;
594 
595     V = CmpLHS;
596     C1Log = C1->logBase2();
597     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
598   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
599              IC->getPredicate() == ICmpInst::ICMP_SGT) {
600     // We also need to recognize (icmp slt (trunc (X)), 0) and
601     // (icmp sgt (trunc (X)), -1).
602     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
603     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
604         (!IsEqualZero && !match(CmpRHS, m_Zero())))
605       return nullptr;
606 
607     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
608       return nullptr;
609 
610     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
611     NeedAnd = true;
612   } else {
613     return nullptr;
614   }
615 
616   const APInt *C2;
617   bool OrOnTrueVal = false;
618   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
619   if (!OrOnFalseVal)
620     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
621 
622   if (!OrOnFalseVal && !OrOnTrueVal)
623     return nullptr;
624 
625   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
626 
627   unsigned C2Log = C2->logBase2();
628 
629   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
630   bool NeedShift = C1Log != C2Log;
631   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
632                        V->getType()->getScalarSizeInBits();
633 
634   // Make sure we don't create more instructions than we save.
635   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
636   if ((NeedShift + NeedXor + NeedZExtTrunc) >
637       (IC->hasOneUse() + Or->hasOneUse()))
638     return nullptr;
639 
640   if (NeedAnd) {
641     // Insert the AND instruction on the input to the truncate.
642     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
643     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
644   }
645 
646   if (C2Log > C1Log) {
647     V = Builder.CreateZExtOrTrunc(V, Y->getType());
648     V = Builder.CreateShl(V, C2Log - C1Log);
649   } else if (C1Log > C2Log) {
650     V = Builder.CreateLShr(V, C1Log - C2Log);
651     V = Builder.CreateZExtOrTrunc(V, Y->getType());
652   } else
653     V = Builder.CreateZExtOrTrunc(V, Y->getType());
654 
655   if (NeedXor)
656     V = Builder.CreateXor(V, *C2);
657 
658   return Builder.CreateOr(V, Y);
659 }
660 
661 /// Canonicalize a set or clear of a masked set of constant bits to
662 /// select-of-constants form.
663 static Instruction *foldSetClearBits(SelectInst &Sel,
664                                      InstCombiner::BuilderTy &Builder) {
665   Value *Cond = Sel.getCondition();
666   Value *T = Sel.getTrueValue();
667   Value *F = Sel.getFalseValue();
668   Type *Ty = Sel.getType();
669   Value *X;
670   const APInt *NotC, *C;
671 
672   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
673   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
674       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
675     Constant *Zero = ConstantInt::getNullValue(Ty);
676     Constant *OrC = ConstantInt::get(Ty, *C);
677     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
678     return BinaryOperator::CreateOr(T, NewSel);
679   }
680 
681   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
682   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
683       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
684     Constant *Zero = ConstantInt::getNullValue(Ty);
685     Constant *OrC = ConstantInt::get(Ty, *C);
686     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
687     return BinaryOperator::CreateOr(F, NewSel);
688   }
689 
690   return nullptr;
691 }
692 
693 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
694 /// There are 8 commuted/swapped variants of this pattern.
695 /// TODO: Also support a - UMIN(a,b) patterns.
696 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
697                                             const Value *TrueVal,
698                                             const Value *FalseVal,
699                                             InstCombiner::BuilderTy &Builder) {
700   ICmpInst::Predicate Pred = ICI->getPredicate();
701   if (!ICmpInst::isUnsigned(Pred))
702     return nullptr;
703 
704   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
705   if (match(TrueVal, m_Zero())) {
706     Pred = ICmpInst::getInversePredicate(Pred);
707     std::swap(TrueVal, FalseVal);
708   }
709   if (!match(FalseVal, m_Zero()))
710     return nullptr;
711 
712   Value *A = ICI->getOperand(0);
713   Value *B = ICI->getOperand(1);
714   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
715     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
716     std::swap(A, B);
717     Pred = ICmpInst::getSwappedPredicate(Pred);
718   }
719 
720   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
721          "Unexpected isUnsigned predicate!");
722 
723   // Ensure the sub is of the form:
724   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
725   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
726   // Checking for both a-b and a+(-b) as a constant.
727   bool IsNegative = false;
728   const APInt *C;
729   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
730       (match(A, m_APInt(C)) &&
731        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
732     IsNegative = true;
733   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
734            !(match(B, m_APInt(C)) &&
735              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
736     return nullptr;
737 
738   // If we are adding a negate and the sub and icmp are used anywhere else, we
739   // would end up with more instructions.
740   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
741     return nullptr;
742 
743   // (a > b) ? a - b : 0 -> usub.sat(a, b)
744   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
745   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
746   if (IsNegative)
747     Result = Builder.CreateNeg(Result);
748   return Result;
749 }
750 
751 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
752                                        InstCombiner::BuilderTy &Builder) {
753   if (!Cmp->hasOneUse())
754     return nullptr;
755 
756   // Match unsigned saturated add with constant.
757   Value *Cmp0 = Cmp->getOperand(0);
758   Value *Cmp1 = Cmp->getOperand(1);
759   ICmpInst::Predicate Pred = Cmp->getPredicate();
760   Value *X;
761   const APInt *C, *CmpC;
762   if (Pred == ICmpInst::ICMP_ULT &&
763       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
764       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
765     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
766     return Builder.CreateBinaryIntrinsic(
767         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
768   }
769 
770   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
771   // There are 8 commuted variants.
772   // Canonicalize -1 (saturated result) to true value of the select.
773   if (match(FVal, m_AllOnes())) {
774     std::swap(TVal, FVal);
775     Pred = CmpInst::getInversePredicate(Pred);
776   }
777   if (!match(TVal, m_AllOnes()))
778     return nullptr;
779 
780   // Canonicalize predicate to less-than or less-or-equal-than.
781   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
782     std::swap(Cmp0, Cmp1);
783     Pred = CmpInst::getSwappedPredicate(Pred);
784   }
785   if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
786     return nullptr;
787 
788   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
789   // Strictness of the comparison is irrelevant.
790   Value *Y;
791   if (match(Cmp0, m_Not(m_Value(X))) &&
792       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
793     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
794     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
795     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
796   }
797   // The 'not' op may be included in the sum but not the compare.
798   // Strictness of the comparison is irrelevant.
799   X = Cmp0;
800   Y = Cmp1;
801   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
802     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
803     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
804     BinaryOperator *BO = cast<BinaryOperator>(FVal);
805     return Builder.CreateBinaryIntrinsic(
806         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
807   }
808   // The overflow may be detected via the add wrapping round.
809   // This is only valid for strict comparison!
810   if (Pred == ICmpInst::ICMP_ULT &&
811       match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
812       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
813     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
814     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
815     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
816   }
817 
818   return nullptr;
819 }
820 
821 /// Fold the following code sequence:
822 /// \code
823 ///   int a = ctlz(x & -x);
824 //    x ? 31 - a : a;
825 /// \code
826 ///
827 /// into:
828 ///   cttz(x)
829 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
830                                          Value *FalseVal,
831                                          InstCombiner::BuilderTy &Builder) {
832   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
833   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
834     return nullptr;
835 
836   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
837     std::swap(TrueVal, FalseVal);
838 
839   if (!match(FalseVal,
840              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
841     return nullptr;
842 
843   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
844     return nullptr;
845 
846   Value *X = ICI->getOperand(0);
847   auto *II = cast<IntrinsicInst>(TrueVal);
848   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
849     return nullptr;
850 
851   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
852                                           II->getType());
853   return CallInst::Create(F, {X, II->getArgOperand(1)});
854 }
855 
856 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
857 /// call to cttz/ctlz with flag 'is_zero_undef' cleared.
858 ///
859 /// For example, we can fold the following code sequence:
860 /// \code
861 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
862 ///   %1 = icmp ne i32 %x, 0
863 ///   %2 = select i1 %1, i32 %0, i32 32
864 /// \code
865 ///
866 /// into:
867 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
868 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
869                                  InstCombiner::BuilderTy &Builder) {
870   ICmpInst::Predicate Pred = ICI->getPredicate();
871   Value *CmpLHS = ICI->getOperand(0);
872   Value *CmpRHS = ICI->getOperand(1);
873 
874   // Check if the condition value compares a value for equality against zero.
875   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
876     return nullptr;
877 
878   Value *SelectArg = FalseVal;
879   Value *ValueOnZero = TrueVal;
880   if (Pred == ICmpInst::ICMP_NE)
881     std::swap(SelectArg, ValueOnZero);
882 
883   // Skip zero extend/truncate.
884   Value *Count = nullptr;
885   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
886       !match(SelectArg, m_Trunc(m_Value(Count))))
887     Count = SelectArg;
888 
889   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
890   // input to the cttz/ctlz is used as LHS for the compare instruction.
891   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
892       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
893     return nullptr;
894 
895   IntrinsicInst *II = cast<IntrinsicInst>(Count);
896 
897   // Check if the value propagated on zero is a constant number equal to the
898   // sizeof in bits of 'Count'.
899   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
900   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
901     // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from
902     // true to false on this flag, so we can replace it for all users.
903     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
904     return SelectArg;
905   }
906 
907   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
908   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
909   // not be used if the input is zero. Relax to 'undef_on_zero' for that case.
910   if (II->hasOneUse() && SelectArg->hasOneUse() &&
911       !match(II->getArgOperand(1), m_One()))
912     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
913 
914   return nullptr;
915 }
916 
917 /// Return true if we find and adjust an icmp+select pattern where the compare
918 /// is with a constant that can be incremented or decremented to match the
919 /// minimum or maximum idiom.
920 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
921   ICmpInst::Predicate Pred = Cmp.getPredicate();
922   Value *CmpLHS = Cmp.getOperand(0);
923   Value *CmpRHS = Cmp.getOperand(1);
924   Value *TrueVal = Sel.getTrueValue();
925   Value *FalseVal = Sel.getFalseValue();
926 
927   // We may move or edit the compare, so make sure the select is the only user.
928   const APInt *CmpC;
929   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
930     return false;
931 
932   // These transforms only work for selects of integers or vector selects of
933   // integer vectors.
934   Type *SelTy = Sel.getType();
935   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
936   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
937     return false;
938 
939   Constant *AdjustedRHS;
940   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
941     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
942   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
943     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
944   else
945     return false;
946 
947   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
948   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
949   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
950       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
951     ; // Nothing to do here. Values match without any sign/zero extension.
952   }
953   // Types do not match. Instead of calculating this with mixed types, promote
954   // all to the larger type. This enables scalar evolution to analyze this
955   // expression.
956   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
957     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
958 
959     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
960     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
961     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
962     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
963     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
964       CmpLHS = TrueVal;
965       AdjustedRHS = SextRHS;
966     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
967                SextRHS == TrueVal) {
968       CmpLHS = FalseVal;
969       AdjustedRHS = SextRHS;
970     } else if (Cmp.isUnsigned()) {
971       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
972       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
973       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
974       // zext + signed compare cannot be changed:
975       //    0xff <s 0x00, but 0x00ff >s 0x0000
976       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
977         CmpLHS = TrueVal;
978         AdjustedRHS = ZextRHS;
979       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
980                  ZextRHS == TrueVal) {
981         CmpLHS = FalseVal;
982         AdjustedRHS = ZextRHS;
983       } else {
984         return false;
985       }
986     } else {
987       return false;
988     }
989   } else {
990     return false;
991   }
992 
993   Pred = ICmpInst::getSwappedPredicate(Pred);
994   CmpRHS = AdjustedRHS;
995   std::swap(FalseVal, TrueVal);
996   Cmp.setPredicate(Pred);
997   Cmp.setOperand(0, CmpLHS);
998   Cmp.setOperand(1, CmpRHS);
999   Sel.setOperand(1, TrueVal);
1000   Sel.setOperand(2, FalseVal);
1001   Sel.swapProfMetadata();
1002 
1003   // Move the compare instruction right before the select instruction. Otherwise
1004   // the sext/zext value may be defined after the compare instruction uses it.
1005   Cmp.moveBefore(&Sel);
1006 
1007   return true;
1008 }
1009 
1010 /// If this is an integer min/max (icmp + select) with a constant operand,
1011 /// create the canonical icmp for the min/max operation and canonicalize the
1012 /// constant to the 'false' operand of the select:
1013 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2
1014 /// Note: if C1 != C2, this will change the icmp constant to the existing
1015 /// constant operand of the select.
1016 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel,
1017                                                    ICmpInst &Cmp,
1018                                                    InstCombinerImpl &IC) {
1019   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1020     return nullptr;
1021 
1022   // Canonicalize the compare predicate based on whether we have min or max.
1023   Value *LHS, *RHS;
1024   SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS);
1025   if (!SelectPatternResult::isMinOrMax(SPR.Flavor))
1026     return nullptr;
1027 
1028   // Is this already canonical?
1029   ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor);
1030   if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS &&
1031       Cmp.getPredicate() == CanonicalPred)
1032     return nullptr;
1033 
1034   // Bail out on unsimplified X-0 operand (due to some worklist management bug),
1035   // as this may cause an infinite combine loop. Let the sub be folded first.
1036   if (match(LHS, m_Sub(m_Value(), m_Zero())) ||
1037       match(RHS, m_Sub(m_Value(), m_Zero())))
1038     return nullptr;
1039 
1040   // Create the canonical compare and plug it into the select.
1041   IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS));
1042 
1043   // If the select operands did not change, we're done.
1044   if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS)
1045     return &Sel;
1046 
1047   // If we are swapping the select operands, swap the metadata too.
1048   assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS &&
1049          "Unexpected results from matchSelectPattern");
1050   Sel.swapValues();
1051   Sel.swapProfMetadata();
1052   return &Sel;
1053 }
1054 
1055 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp,
1056                                         InstCombinerImpl &IC) {
1057   if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1)))
1058     return nullptr;
1059 
1060   Value *LHS, *RHS;
1061   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1062   if (SPF != SelectPatternFlavor::SPF_ABS &&
1063       SPF != SelectPatternFlavor::SPF_NABS)
1064     return nullptr;
1065 
1066   // Note that NSW flag can only be propagated for normal, non-negated abs!
1067   bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1068                         match(RHS, m_NSWNeg(m_Specific(LHS)));
1069   Constant *IntMinIsPoisonC =
1070       ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
1071   Instruction *Abs =
1072       IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1073 
1074   if (SPF == SelectPatternFlavor::SPF_NABS)
1075     return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
1076 
1077   return IC.replaceInstUsesWith(Sel, Abs);
1078 }
1079 
1080 /// If we have a select with an equality comparison, then we know the value in
1081 /// one of the arms of the select. See if substituting this value into an arm
1082 /// and simplifying the result yields the same value as the other arm.
1083 ///
1084 /// To make this transform safe, we must drop poison-generating flags
1085 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1086 /// that poison from propagating. If the existing binop already had no
1087 /// poison-generating flags, then this transform can be done by instsimplify.
1088 ///
1089 /// Consider:
1090 ///   %cmp = icmp eq i32 %x, 2147483647
1091 ///   %add = add nsw i32 %x, 1
1092 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1093 ///
1094 /// We can't replace %sel with %add unless we strip away the flags.
1095 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1096 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1097                                                           ICmpInst &Cmp) {
1098   if (!Cmp.isEquality())
1099     return nullptr;
1100 
1101   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1102   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1103   bool Swapped = false;
1104   if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1105     std::swap(TrueVal, FalseVal);
1106     Swapped = true;
1107   }
1108 
1109   // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1110   // Make sure Y cannot be undef though, as we might pick different values for
1111   // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1112   // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1113   // replacement cycle.
1114   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1115   if (TrueVal != CmpLHS &&
1116       isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT))
1117     if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1118                                           /* AllowRefinement */ true))
1119       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1120   if (TrueVal != CmpRHS &&
1121       isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1122     if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1123                                           /* AllowRefinement */ true))
1124       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1125 
1126   auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1127   if (!FalseInst)
1128     return nullptr;
1129 
1130   // InstSimplify already performed this fold if it was possible subject to
1131   // current poison-generating flags. Try the transform again with
1132   // poison-generating flags temporarily dropped.
1133   bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1134   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1135     WasNUW = OBO->hasNoUnsignedWrap();
1136     WasNSW = OBO->hasNoSignedWrap();
1137     FalseInst->setHasNoUnsignedWrap(false);
1138     FalseInst->setHasNoSignedWrap(false);
1139   }
1140   if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1141     WasExact = PEO->isExact();
1142     FalseInst->setIsExact(false);
1143   }
1144   if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1145     WasInBounds = GEP->isInBounds();
1146     GEP->setIsInBounds(false);
1147   }
1148 
1149   // Try each equivalence substitution possibility.
1150   // We have an 'EQ' comparison, so the select's false value will propagate.
1151   // Example:
1152   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1153   if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1154                              /* AllowRefinement */ false) == TrueVal ||
1155       SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1156                              /* AllowRefinement */ false) == TrueVal) {
1157     return replaceInstUsesWith(Sel, FalseVal);
1158   }
1159 
1160   // Restore poison-generating flags if the transform did not apply.
1161   if (WasNUW)
1162     FalseInst->setHasNoUnsignedWrap();
1163   if (WasNSW)
1164     FalseInst->setHasNoSignedWrap();
1165   if (WasExact)
1166     FalseInst->setIsExact();
1167   if (WasInBounds)
1168     cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1169 
1170   return nullptr;
1171 }
1172 
1173 // See if this is a pattern like:
1174 //   %old_cmp1 = icmp slt i32 %x, C2
1175 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1176 //   %old_x_offseted = add i32 %x, C1
1177 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1178 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1179 // This can be rewritten as more canonical pattern:
1180 //   %new_cmp1 = icmp slt i32 %x, -C1
1181 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1182 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1183 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1184 // Iff -C1 s<= C2 s<= C0-C1
1185 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1186 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1187 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1188                                           InstCombiner::BuilderTy &Builder) {
1189   Value *X = Sel0.getTrueValue();
1190   Value *Sel1 = Sel0.getFalseValue();
1191 
1192   // First match the condition of the outermost select.
1193   // Said condition must be one-use.
1194   if (!Cmp0.hasOneUse())
1195     return nullptr;
1196   Value *Cmp00 = Cmp0.getOperand(0);
1197   Constant *C0;
1198   if (!match(Cmp0.getOperand(1),
1199              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1200     return nullptr;
1201   // Canonicalize Cmp0 into the form we expect.
1202   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1203   switch (Cmp0.getPredicate()) {
1204   case ICmpInst::Predicate::ICMP_ULT:
1205     break; // Great!
1206   case ICmpInst::Predicate::ICMP_ULE:
1207     // We'd have to increment C0 by one, and for that it must not have all-ones
1208     // element, but then it would have been canonicalized to 'ult' before
1209     // we get here. So we can't do anything useful with 'ule'.
1210     return nullptr;
1211   case ICmpInst::Predicate::ICMP_UGT:
1212     // We want to canonicalize it to 'ult', so we'll need to increment C0,
1213     // which again means it must not have any all-ones elements.
1214     if (!match(C0,
1215                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1216                                   APInt::getAllOnesValue(
1217                                       C0->getType()->getScalarSizeInBits()))))
1218       return nullptr; // Can't do, have all-ones element[s].
1219     C0 = InstCombiner::AddOne(C0);
1220     std::swap(X, Sel1);
1221     break;
1222   case ICmpInst::Predicate::ICMP_UGE:
1223     // The only way we'd get this predicate if this `icmp` has extra uses,
1224     // but then we won't be able to do this fold.
1225     return nullptr;
1226   default:
1227     return nullptr; // Unknown predicate.
1228   }
1229 
1230   // Now that we've canonicalized the ICmp, we know the X we expect;
1231   // the select in other hand should be one-use.
1232   if (!Sel1->hasOneUse())
1233     return nullptr;
1234 
1235   // We now can finish matching the condition of the outermost select:
1236   // it should either be the X itself, or an addition of some constant to X.
1237   Constant *C1;
1238   if (Cmp00 == X)
1239     C1 = ConstantInt::getNullValue(Sel0.getType());
1240   else if (!match(Cmp00,
1241                   m_Add(m_Specific(X),
1242                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1243     return nullptr;
1244 
1245   Value *Cmp1;
1246   ICmpInst::Predicate Pred1;
1247   Constant *C2;
1248   Value *ReplacementLow, *ReplacementHigh;
1249   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1250                             m_Value(ReplacementHigh))) ||
1251       !match(Cmp1,
1252              m_ICmp(Pred1, m_Specific(X),
1253                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1254     return nullptr;
1255 
1256   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1257     return nullptr; // Not enough one-use instructions for the fold.
1258   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1259   //        two comparisons we'll need to build.
1260 
1261   // Canonicalize Cmp1 into the form we expect.
1262   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1263   switch (Pred1) {
1264   case ICmpInst::Predicate::ICMP_SLT:
1265     break;
1266   case ICmpInst::Predicate::ICMP_SLE:
1267     // We'd have to increment C2 by one, and for that it must not have signed
1268     // max element, but then it would have been canonicalized to 'slt' before
1269     // we get here. So we can't do anything useful with 'sle'.
1270     return nullptr;
1271   case ICmpInst::Predicate::ICMP_SGT:
1272     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1273     // which again means it must not have any signed max elements.
1274     if (!match(C2,
1275                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1276                                   APInt::getSignedMaxValue(
1277                                       C2->getType()->getScalarSizeInBits()))))
1278       return nullptr; // Can't do, have signed max element[s].
1279     C2 = InstCombiner::AddOne(C2);
1280     LLVM_FALLTHROUGH;
1281   case ICmpInst::Predicate::ICMP_SGE:
1282     // Also non-canonical, but here we don't need to change C2,
1283     // so we don't have any restrictions on C2, so we can just handle it.
1284     std::swap(ReplacementLow, ReplacementHigh);
1285     break;
1286   default:
1287     return nullptr; // Unknown predicate.
1288   }
1289 
1290   // The thresholds of this clamp-like pattern.
1291   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1292   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1293 
1294   // The fold has a precondition 1: C2 s>= ThresholdLow
1295   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1296                                          ThresholdLowIncl);
1297   if (!match(Precond1, m_One()))
1298     return nullptr;
1299   // The fold has a precondition 2: C2 s<= ThresholdHigh
1300   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1301                                          ThresholdHighExcl);
1302   if (!match(Precond2, m_One()))
1303     return nullptr;
1304 
1305   // All good, finally emit the new pattern.
1306   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1307   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1308   Value *MaybeReplacedLow =
1309       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1310   Instruction *MaybeReplacedHigh =
1311       SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1312 
1313   return MaybeReplacedHigh;
1314 }
1315 
1316 // If we have
1317 //  %cmp = icmp [canonical predicate] i32 %x, C0
1318 //  %r = select i1 %cmp, i32 %y, i32 C1
1319 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1320 // will have if we flip the strictness of the predicate (i.e. without changing
1321 // the result) is identical to the C1 in select. If it matches we can change
1322 // original comparison to one with swapped predicate, reuse the constant,
1323 // and swap the hands of select.
1324 static Instruction *
1325 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1326                                          InstCombinerImpl &IC) {
1327   ICmpInst::Predicate Pred;
1328   Value *X;
1329   Constant *C0;
1330   if (!match(&Cmp, m_OneUse(m_ICmp(
1331                        Pred, m_Value(X),
1332                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1333     return nullptr;
1334 
1335   // If comparison predicate is non-relational, we won't be able to do anything.
1336   if (ICmpInst::isEquality(Pred))
1337     return nullptr;
1338 
1339   // If comparison predicate is non-canonical, then we certainly won't be able
1340   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1341   if (!InstCombiner::isCanonicalPredicate(Pred))
1342     return nullptr;
1343 
1344   // If the [input] type of comparison and select type are different, lets abort
1345   // for now. We could try to compare constants with trunc/[zs]ext though.
1346   if (C0->getType() != Sel.getType())
1347     return nullptr;
1348 
1349   // FIXME: are there any magic icmp predicate+constant pairs we must not touch?
1350 
1351   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1352   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1353   // At least one of these values we are selecting between must be a constant
1354   // else we'll never succeed.
1355   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1356       !match(SelVal1, m_AnyIntegralConstant()))
1357     return nullptr;
1358 
1359   // Does this constant C match any of the `select` values?
1360   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1361     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1362   };
1363 
1364   // If C0 *already* matches true/false value of select, we are done.
1365   if (MatchesSelectValue(C0))
1366     return nullptr;
1367 
1368   // Check the constant we'd have with flipped-strictness predicate.
1369   auto FlippedStrictness =
1370       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1371   if (!FlippedStrictness)
1372     return nullptr;
1373 
1374   // If said constant doesn't match either, then there is no hope,
1375   if (!MatchesSelectValue(FlippedStrictness->second))
1376     return nullptr;
1377 
1378   // It matched! Lets insert the new comparison just before select.
1379   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1380   IC.Builder.SetInsertPoint(&Sel);
1381 
1382   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1383   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1384                                         Cmp.getName() + ".inv");
1385   IC.replaceOperand(Sel, 0, NewCmp);
1386   Sel.swapValues();
1387   Sel.swapProfMetadata();
1388 
1389   return &Sel;
1390 }
1391 
1392 /// Visit a SelectInst that has an ICmpInst as its first operand.
1393 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1394                                                       ICmpInst *ICI) {
1395   if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1396     return NewSel;
1397 
1398   if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this))
1399     return NewSel;
1400 
1401   if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this))
1402     return NewAbs;
1403 
1404   if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder))
1405     return NewAbs;
1406 
1407   if (Instruction *NewSel =
1408           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1409     return NewSel;
1410 
1411   bool Changed = adjustMinMax(SI, *ICI);
1412 
1413   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1414     return replaceInstUsesWith(SI, V);
1415 
1416   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1417   Value *TrueVal = SI.getTrueValue();
1418   Value *FalseVal = SI.getFalseValue();
1419   ICmpInst::Predicate Pred = ICI->getPredicate();
1420   Value *CmpLHS = ICI->getOperand(0);
1421   Value *CmpRHS = ICI->getOperand(1);
1422   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1423     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1424       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1425       SI.setOperand(1, CmpRHS);
1426       Changed = true;
1427     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1428       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1429       SI.setOperand(2, CmpRHS);
1430       Changed = true;
1431     }
1432   }
1433 
1434   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1435   // decomposeBitTestICmp() might help.
1436   {
1437     unsigned BitWidth =
1438         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1439     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1440     Value *X;
1441     const APInt *Y, *C;
1442     bool TrueWhenUnset;
1443     bool IsBitTest = false;
1444     if (ICmpInst::isEquality(Pred) &&
1445         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1446         match(CmpRHS, m_Zero())) {
1447       IsBitTest = true;
1448       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1449     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1450       X = CmpLHS;
1451       Y = &MinSignedValue;
1452       IsBitTest = true;
1453       TrueWhenUnset = false;
1454     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1455       X = CmpLHS;
1456       Y = &MinSignedValue;
1457       IsBitTest = true;
1458       TrueWhenUnset = true;
1459     }
1460     if (IsBitTest) {
1461       Value *V = nullptr;
1462       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1463       if (TrueWhenUnset && TrueVal == X &&
1464           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1465         V = Builder.CreateAnd(X, ~(*Y));
1466       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1467       else if (!TrueWhenUnset && FalseVal == X &&
1468                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1469         V = Builder.CreateAnd(X, ~(*Y));
1470       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1471       else if (TrueWhenUnset && FalseVal == X &&
1472                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1473         V = Builder.CreateOr(X, *Y);
1474       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1475       else if (!TrueWhenUnset && TrueVal == X &&
1476                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1477         V = Builder.CreateOr(X, *Y);
1478 
1479       if (V)
1480         return replaceInstUsesWith(SI, V);
1481     }
1482   }
1483 
1484   if (Instruction *V =
1485           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1486     return V;
1487 
1488   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1489     return V;
1490 
1491   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1492     return replaceInstUsesWith(SI, V);
1493 
1494   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1495     return replaceInstUsesWith(SI, V);
1496 
1497   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1498     return replaceInstUsesWith(SI, V);
1499 
1500   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1501     return replaceInstUsesWith(SI, V);
1502 
1503   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1504     return replaceInstUsesWith(SI, V);
1505 
1506   return Changed ? &SI : nullptr;
1507 }
1508 
1509 /// SI is a select whose condition is a PHI node (but the two may be in
1510 /// different blocks). See if the true/false values (V) are live in all of the
1511 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1512 ///
1513 ///   X = phi [ C1, BB1], [C2, BB2]
1514 ///   Y = add
1515 ///   Z = select X, Y, 0
1516 ///
1517 /// because Y is not live in BB1/BB2.
1518 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1519                                                    const SelectInst &SI) {
1520   // If the value is a non-instruction value like a constant or argument, it
1521   // can always be mapped.
1522   const Instruction *I = dyn_cast<Instruction>(V);
1523   if (!I) return true;
1524 
1525   // If V is a PHI node defined in the same block as the condition PHI, we can
1526   // map the arguments.
1527   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1528 
1529   if (const PHINode *VP = dyn_cast<PHINode>(I))
1530     if (VP->getParent() == CondPHI->getParent())
1531       return true;
1532 
1533   // Otherwise, if the PHI and select are defined in the same block and if V is
1534   // defined in a different block, then we can transform it.
1535   if (SI.getParent() == CondPHI->getParent() &&
1536       I->getParent() != CondPHI->getParent())
1537     return true;
1538 
1539   // Otherwise we have a 'hard' case and we can't tell without doing more
1540   // detailed dominator based analysis, punt.
1541   return false;
1542 }
1543 
1544 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1545 ///   SPF2(SPF1(A, B), C)
1546 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1547                                             SelectPatternFlavor SPF1, Value *A,
1548                                             Value *B, Instruction &Outer,
1549                                             SelectPatternFlavor SPF2,
1550                                             Value *C) {
1551   if (Outer.getType() != Inner->getType())
1552     return nullptr;
1553 
1554   if (C == A || C == B) {
1555     // MAX(MAX(A, B), B) -> MAX(A, B)
1556     // MIN(MIN(a, b), a) -> MIN(a, b)
1557     // TODO: This could be done in instsimplify.
1558     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1559       return replaceInstUsesWith(Outer, Inner);
1560 
1561     // MAX(MIN(a, b), a) -> a
1562     // MIN(MAX(a, b), a) -> a
1563     // TODO: This could be done in instsimplify.
1564     if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
1565         (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
1566         (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
1567         (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
1568       return replaceInstUsesWith(Outer, C);
1569   }
1570 
1571   if (SPF1 == SPF2) {
1572     const APInt *CB, *CC;
1573     if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) {
1574       // MIN(MIN(A, 23), 97) -> MIN(A, 23)
1575       // MAX(MAX(A, 97), 23) -> MAX(A, 97)
1576       // TODO: This could be done in instsimplify.
1577       if ((SPF1 == SPF_UMIN && CB->ule(*CC)) ||
1578           (SPF1 == SPF_SMIN && CB->sle(*CC)) ||
1579           (SPF1 == SPF_UMAX && CB->uge(*CC)) ||
1580           (SPF1 == SPF_SMAX && CB->sge(*CC)))
1581         return replaceInstUsesWith(Outer, Inner);
1582 
1583       // MIN(MIN(A, 97), 23) -> MIN(A, 23)
1584       // MAX(MAX(A, 23), 97) -> MAX(A, 97)
1585       if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) ||
1586           (SPF1 == SPF_SMIN && CB->sgt(*CC)) ||
1587           (SPF1 == SPF_UMAX && CB->ult(*CC)) ||
1588           (SPF1 == SPF_SMAX && CB->slt(*CC))) {
1589         Outer.replaceUsesOfWith(Inner, A);
1590         return &Outer;
1591       }
1592     }
1593   }
1594 
1595   // max(max(A, B), min(A, B)) --> max(A, B)
1596   // min(min(A, B), max(A, B)) --> min(A, B)
1597   // TODO: This could be done in instsimplify.
1598   if (SPF1 == SPF2 &&
1599       ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) ||
1600        (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) ||
1601        (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) ||
1602        (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B))))))
1603     return replaceInstUsesWith(Outer, Inner);
1604 
1605   // ABS(ABS(X)) -> ABS(X)
1606   // NABS(NABS(X)) -> NABS(X)
1607   // TODO: This could be done in instsimplify.
1608   if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) {
1609     return replaceInstUsesWith(Outer, Inner);
1610   }
1611 
1612   // ABS(NABS(X)) -> ABS(X)
1613   // NABS(ABS(X)) -> NABS(X)
1614   if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) ||
1615       (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) {
1616     SelectInst *SI = cast<SelectInst>(Inner);
1617     Value *NewSI =
1618         Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(),
1619                              SI->getTrueValue(), SI->getName(), SI);
1620     return replaceInstUsesWith(Outer, NewSI);
1621   }
1622 
1623   auto IsFreeOrProfitableToInvert =
1624       [&](Value *V, Value *&NotV, bool &ElidesXor) {
1625     if (match(V, m_Not(m_Value(NotV)))) {
1626       // If V has at most 2 uses then we can get rid of the xor operation
1627       // entirely.
1628       ElidesXor |= !V->hasNUsesOrMore(3);
1629       return true;
1630     }
1631 
1632     if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) {
1633       NotV = nullptr;
1634       return true;
1635     }
1636 
1637     return false;
1638   };
1639 
1640   Value *NotA, *NotB, *NotC;
1641   bool ElidesXor = false;
1642 
1643   // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C)
1644   // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C)
1645   // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C)
1646   // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C)
1647   //
1648   // This transform is performance neutral if we can elide at least one xor from
1649   // the set of three operands, since we'll be tacking on an xor at the very
1650   // end.
1651   if (SelectPatternResult::isMinOrMax(SPF1) &&
1652       SelectPatternResult::isMinOrMax(SPF2) &&
1653       IsFreeOrProfitableToInvert(A, NotA, ElidesXor) &&
1654       IsFreeOrProfitableToInvert(B, NotB, ElidesXor) &&
1655       IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) {
1656     if (!NotA)
1657       NotA = Builder.CreateNot(A);
1658     if (!NotB)
1659       NotB = Builder.CreateNot(B);
1660     if (!NotC)
1661       NotC = Builder.CreateNot(C);
1662 
1663     Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA,
1664                                    NotB);
1665     Value *NewOuter = Builder.CreateNot(
1666         createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC));
1667     return replaceInstUsesWith(Outer, NewOuter);
1668   }
1669 
1670   return nullptr;
1671 }
1672 
1673 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1674 /// This is even legal for FP.
1675 static Instruction *foldAddSubSelect(SelectInst &SI,
1676                                      InstCombiner::BuilderTy &Builder) {
1677   Value *CondVal = SI.getCondition();
1678   Value *TrueVal = SI.getTrueValue();
1679   Value *FalseVal = SI.getFalseValue();
1680   auto *TI = dyn_cast<Instruction>(TrueVal);
1681   auto *FI = dyn_cast<Instruction>(FalseVal);
1682   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1683     return nullptr;
1684 
1685   Instruction *AddOp = nullptr, *SubOp = nullptr;
1686   if ((TI->getOpcode() == Instruction::Sub &&
1687        FI->getOpcode() == Instruction::Add) ||
1688       (TI->getOpcode() == Instruction::FSub &&
1689        FI->getOpcode() == Instruction::FAdd)) {
1690     AddOp = FI;
1691     SubOp = TI;
1692   } else if ((FI->getOpcode() == Instruction::Sub &&
1693               TI->getOpcode() == Instruction::Add) ||
1694              (FI->getOpcode() == Instruction::FSub &&
1695               TI->getOpcode() == Instruction::FAdd)) {
1696     AddOp = TI;
1697     SubOp = FI;
1698   }
1699 
1700   if (AddOp) {
1701     Value *OtherAddOp = nullptr;
1702     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1703       OtherAddOp = AddOp->getOperand(1);
1704     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1705       OtherAddOp = AddOp->getOperand(0);
1706     }
1707 
1708     if (OtherAddOp) {
1709       // So at this point we know we have (Y -> OtherAddOp):
1710       //        select C, (add X, Y), (sub X, Z)
1711       Value *NegVal; // Compute -Z
1712       if (SI.getType()->isFPOrFPVectorTy()) {
1713         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1714         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1715           FastMathFlags Flags = AddOp->getFastMathFlags();
1716           Flags &= SubOp->getFastMathFlags();
1717           NegInst->setFastMathFlags(Flags);
1718         }
1719       } else {
1720         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1721       }
1722 
1723       Value *NewTrueOp = OtherAddOp;
1724       Value *NewFalseOp = NegVal;
1725       if (AddOp != TI)
1726         std::swap(NewTrueOp, NewFalseOp);
1727       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1728                                            SI.getName() + ".p", &SI);
1729 
1730       if (SI.getType()->isFPOrFPVectorTy()) {
1731         Instruction *RI =
1732             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1733 
1734         FastMathFlags Flags = AddOp->getFastMathFlags();
1735         Flags &= SubOp->getFastMathFlags();
1736         RI->setFastMathFlags(Flags);
1737         return RI;
1738       } else
1739         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1740     }
1741   }
1742   return nullptr;
1743 }
1744 
1745 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1746 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1747 /// Along with a number of patterns similar to:
1748 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1749 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1750 static Instruction *
1751 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1752   Value *CondVal = SI.getCondition();
1753   Value *TrueVal = SI.getTrueValue();
1754   Value *FalseVal = SI.getFalseValue();
1755 
1756   WithOverflowInst *II;
1757   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1758       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1759     return nullptr;
1760 
1761   Value *X = II->getLHS();
1762   Value *Y = II->getRHS();
1763 
1764   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1765     Type *Ty = Limit->getType();
1766 
1767     ICmpInst::Predicate Pred;
1768     Value *TrueVal, *FalseVal, *Op;
1769     const APInt *C;
1770     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1771                                m_Value(TrueVal), m_Value(FalseVal))))
1772       return false;
1773 
1774     auto IsZeroOrOne = [](const APInt &C) {
1775       return C.isNullValue() || C.isOneValue();
1776     };
1777     auto IsMinMax = [&](Value *Min, Value *Max) {
1778       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1779       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1780       return match(Min, m_SpecificInt(MinVal)) &&
1781              match(Max, m_SpecificInt(MaxVal));
1782     };
1783 
1784     if (Op != X && Op != Y)
1785       return false;
1786 
1787     if (IsAdd) {
1788       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1789       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1790       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1791       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1792       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1793           IsMinMax(TrueVal, FalseVal))
1794         return true;
1795       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1796       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1797       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1798       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1799       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1800           IsMinMax(FalseVal, TrueVal))
1801         return true;
1802     } else {
1803       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1804       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1805       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1806           IsMinMax(TrueVal, FalseVal))
1807         return true;
1808       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1809       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1810       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1811           IsMinMax(FalseVal, TrueVal))
1812         return true;
1813       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1814       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1815       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1816           IsMinMax(FalseVal, TrueVal))
1817         return true;
1818       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1819       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1820       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1821           IsMinMax(TrueVal, FalseVal))
1822         return true;
1823     }
1824 
1825     return false;
1826   };
1827 
1828   Intrinsic::ID NewIntrinsicID;
1829   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1830       match(TrueVal, m_AllOnes()))
1831     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1832     NewIntrinsicID = Intrinsic::uadd_sat;
1833   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1834            match(TrueVal, m_Zero()))
1835     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1836     NewIntrinsicID = Intrinsic::usub_sat;
1837   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1838            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1839     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1840     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1841     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1842     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1843     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1844     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1845     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1846     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1847     NewIntrinsicID = Intrinsic::sadd_sat;
1848   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1849            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1850     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1851     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1852     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1853     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1854     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1855     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1856     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1857     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1858     NewIntrinsicID = Intrinsic::ssub_sat;
1859   else
1860     return nullptr;
1861 
1862   Function *F =
1863       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1864   return CallInst::Create(F, {X, Y});
1865 }
1866 
1867 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
1868   Constant *C;
1869   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1870       !match(Sel.getFalseValue(), m_Constant(C)))
1871     return nullptr;
1872 
1873   Instruction *ExtInst;
1874   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1875       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1876     return nullptr;
1877 
1878   auto ExtOpcode = ExtInst->getOpcode();
1879   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1880     return nullptr;
1881 
1882   // If we are extending from a boolean type or if we can create a select that
1883   // has the same size operands as its condition, try to narrow the select.
1884   Value *X = ExtInst->getOperand(0);
1885   Type *SmallType = X->getType();
1886   Value *Cond = Sel.getCondition();
1887   auto *Cmp = dyn_cast<CmpInst>(Cond);
1888   if (!SmallType->isIntOrIntVectorTy(1) &&
1889       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1890     return nullptr;
1891 
1892   // If the constant is the same after truncation to the smaller type and
1893   // extension to the original type, we can narrow the select.
1894   Type *SelType = Sel.getType();
1895   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1896   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1897   if (ExtC == C && ExtInst->hasOneUse()) {
1898     Value *TruncCVal = cast<Value>(TruncC);
1899     if (ExtInst == Sel.getFalseValue())
1900       std::swap(X, TruncCVal);
1901 
1902     // select Cond, (ext X), C --> ext(select Cond, X, C')
1903     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1904     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1905     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1906   }
1907 
1908   // If one arm of the select is the extend of the condition, replace that arm
1909   // with the extension of the appropriate known bool value.
1910   if (Cond == X) {
1911     if (ExtInst == Sel.getTrueValue()) {
1912       // select X, (sext X), C --> select X, -1, C
1913       // select X, (zext X), C --> select X,  1, C
1914       Constant *One = ConstantInt::getTrue(SmallType);
1915       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1916       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1917     } else {
1918       // select X, C, (sext X) --> select X, C, 0
1919       // select X, C, (zext X) --> select X, C, 0
1920       Constant *Zero = ConstantInt::getNullValue(SelType);
1921       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1922     }
1923   }
1924 
1925   return nullptr;
1926 }
1927 
1928 /// Try to transform a vector select with a constant condition vector into a
1929 /// shuffle for easier combining with other shuffles and insert/extract.
1930 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1931   Value *CondVal = SI.getCondition();
1932   Constant *CondC;
1933   auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
1934   if (!CondValTy || !match(CondVal, m_Constant(CondC)))
1935     return nullptr;
1936 
1937   unsigned NumElts = CondValTy->getNumElements();
1938   SmallVector<int, 16> Mask;
1939   Mask.reserve(NumElts);
1940   for (unsigned i = 0; i != NumElts; ++i) {
1941     Constant *Elt = CondC->getAggregateElement(i);
1942     if (!Elt)
1943       return nullptr;
1944 
1945     if (Elt->isOneValue()) {
1946       // If the select condition element is true, choose from the 1st vector.
1947       Mask.push_back(i);
1948     } else if (Elt->isNullValue()) {
1949       // If the select condition element is false, choose from the 2nd vector.
1950       Mask.push_back(i + NumElts);
1951     } else if (isa<UndefValue>(Elt)) {
1952       // Undef in a select condition (choose one of the operands) does not mean
1953       // the same thing as undef in a shuffle mask (any value is acceptable), so
1954       // give up.
1955       return nullptr;
1956     } else {
1957       // Bail out on a constant expression.
1958       return nullptr;
1959     }
1960   }
1961 
1962   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
1963 }
1964 
1965 /// If we have a select of vectors with a scalar condition, try to convert that
1966 /// to a vector select by splatting the condition. A splat may get folded with
1967 /// other operations in IR and having all operands of a select be vector types
1968 /// is likely better for vector codegen.
1969 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
1970                                                    InstCombinerImpl &IC) {
1971   auto *Ty = dyn_cast<VectorType>(Sel.getType());
1972   if (!Ty)
1973     return nullptr;
1974 
1975   // We can replace a single-use extract with constant index.
1976   Value *Cond = Sel.getCondition();
1977   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
1978     return nullptr;
1979 
1980   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
1981   // Splatting the extracted condition reduces code (we could directly create a
1982   // splat shuffle of the source vector to eliminate the intermediate step).
1983   return IC.replaceOperand(
1984       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
1985 }
1986 
1987 /// Reuse bitcasted operands between a compare and select:
1988 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
1989 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
1990 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
1991                                           InstCombiner::BuilderTy &Builder) {
1992   Value *Cond = Sel.getCondition();
1993   Value *TVal = Sel.getTrueValue();
1994   Value *FVal = Sel.getFalseValue();
1995 
1996   CmpInst::Predicate Pred;
1997   Value *A, *B;
1998   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
1999     return nullptr;
2000 
2001   // The select condition is a compare instruction. If the select's true/false
2002   // values are already the same as the compare operands, there's nothing to do.
2003   if (TVal == A || TVal == B || FVal == A || FVal == B)
2004     return nullptr;
2005 
2006   Value *C, *D;
2007   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2008     return nullptr;
2009 
2010   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2011   Value *TSrc, *FSrc;
2012   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2013       !match(FVal, m_BitCast(m_Value(FSrc))))
2014     return nullptr;
2015 
2016   // If the select true/false values are *different bitcasts* of the same source
2017   // operands, make the select operands the same as the compare operands and
2018   // cast the result. This is the canonical select form for min/max.
2019   Value *NewSel;
2020   if (TSrc == C && FSrc == D) {
2021     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2022     // bitcast (select (cmp A, B), A, B)
2023     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2024   } else if (TSrc == D && FSrc == C) {
2025     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2026     // bitcast (select (cmp A, B), B, A)
2027     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2028   } else {
2029     return nullptr;
2030   }
2031   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2032 }
2033 
2034 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2035 /// instructions.
2036 ///
2037 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2038 /// selects between the returned value of the cmpxchg instruction its compare
2039 /// operand, the result of the select will always be equal to its false value.
2040 /// For example:
2041 ///
2042 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2043 ///   %1 = extractvalue { i64, i1 } %0, 1
2044 ///   %2 = extractvalue { i64, i1 } %0, 0
2045 ///   %3 = select i1 %1, i64 %compare, i64 %2
2046 ///   ret i64 %3
2047 ///
2048 /// The returned value of the cmpxchg instruction (%2) is the original value
2049 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2050 /// must have been equal to %compare. Thus, the result of the select is always
2051 /// equal to %2, and the code can be simplified to:
2052 ///
2053 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2054 ///   %1 = extractvalue { i64, i1 } %0, 0
2055 ///   ret i64 %1
2056 ///
2057 static Value *foldSelectCmpXchg(SelectInst &SI) {
2058   // A helper that determines if V is an extractvalue instruction whose
2059   // aggregate operand is a cmpxchg instruction and whose single index is equal
2060   // to I. If such conditions are true, the helper returns the cmpxchg
2061   // instruction; otherwise, a nullptr is returned.
2062   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2063     auto *Extract = dyn_cast<ExtractValueInst>(V);
2064     if (!Extract)
2065       return nullptr;
2066     if (Extract->getIndices()[0] != I)
2067       return nullptr;
2068     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2069   };
2070 
2071   // If the select has a single user, and this user is a select instruction that
2072   // we can simplify, skip the cmpxchg simplification for now.
2073   if (SI.hasOneUse())
2074     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2075       if (Select->getCondition() == SI.getCondition())
2076         if (Select->getFalseValue() == SI.getTrueValue() ||
2077             Select->getTrueValue() == SI.getFalseValue())
2078           return nullptr;
2079 
2080   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2081   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2082   if (!CmpXchg)
2083     return nullptr;
2084 
2085   // Check the true value case: The true value of the select is the returned
2086   // value of the same cmpxchg used by the condition, and the false value is the
2087   // cmpxchg instruction's compare operand.
2088   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2089     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2090       return SI.getFalseValue();
2091 
2092   // Check the false value case: The false value of the select is the returned
2093   // value of the same cmpxchg used by the condition, and the true value is the
2094   // cmpxchg instruction's compare operand.
2095   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2096     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2097       return SI.getFalseValue();
2098 
2099   return nullptr;
2100 }
2101 
2102 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X,
2103                                        Value *Y,
2104                                        InstCombiner::BuilderTy &Builder) {
2105   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern");
2106   bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN ||
2107                     SPF == SelectPatternFlavor::SPF_UMAX;
2108   // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change
2109   // the constant value check to an assert.
2110   Value *A;
2111   const APInt *C1, *C2;
2112   if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) &&
2113       match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) {
2114     // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1
2115     // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1
2116     Value *NewMinMax = createMinMax(Builder, SPF, A,
2117                                     ConstantInt::get(X->getType(), *C2 - *C1));
2118     return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax,
2119                                      ConstantInt::get(X->getType(), *C1));
2120   }
2121 
2122   if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) &&
2123       match(Y, m_APInt(C2)) && X->hasNUses(2)) {
2124     bool Overflow;
2125     APInt Diff = C2->ssub_ov(*C1, Overflow);
2126     if (!Overflow) {
2127       // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1
2128       // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1
2129       Value *NewMinMax = createMinMax(Builder, SPF, A,
2130                                       ConstantInt::get(X->getType(), Diff));
2131       return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax,
2132                                        ConstantInt::get(X->getType(), *C1));
2133     }
2134   }
2135 
2136   return nullptr;
2137 }
2138 
2139 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value.
2140 Instruction *InstCombinerImpl::matchSAddSubSat(SelectInst &MinMax1) {
2141   Type *Ty = MinMax1.getType();
2142 
2143   // We are looking for a tree of:
2144   // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B))))
2145   // Where the min and max could be reversed
2146   Instruction *MinMax2;
2147   BinaryOperator *AddSub;
2148   const APInt *MinValue, *MaxValue;
2149   if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) {
2150     if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue))))
2151       return nullptr;
2152   } else if (match(&MinMax1,
2153                    m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) {
2154     if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue))))
2155       return nullptr;
2156   } else
2157     return nullptr;
2158 
2159   // Check that the constants clamp a saturate, and that the new type would be
2160   // sensible to convert to.
2161   if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1)
2162     return nullptr;
2163   // In what bitwidth can this be treated as saturating arithmetics?
2164   unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1;
2165   // FIXME: This isn't quite right for vectors, but using the scalar type is a
2166   // good first approximation for what should be done there.
2167   if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth))
2168     return nullptr;
2169 
2170   // Also make sure that the number of uses is as expected. The "3"s are for the
2171   // the two items of min/max (the compare and the select).
2172   if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3))
2173     return nullptr;
2174 
2175   // Create the new type (which can be a vector type)
2176   Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth);
2177   // Match the two extends from the add/sub
2178   Value *A, *B;
2179   if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B)))))
2180     return nullptr;
2181   // And check the incoming values are of a type smaller than or equal to the
2182   // size of the saturation. Otherwise the higher bits can cause different
2183   // results.
2184   if (A->getType()->getScalarSizeInBits() > NewBitWidth ||
2185       B->getType()->getScalarSizeInBits() > NewBitWidth)
2186     return nullptr;
2187 
2188   Intrinsic::ID IntrinsicID;
2189   if (AddSub->getOpcode() == Instruction::Add)
2190     IntrinsicID = Intrinsic::sadd_sat;
2191   else if (AddSub->getOpcode() == Instruction::Sub)
2192     IntrinsicID = Intrinsic::ssub_sat;
2193   else
2194     return nullptr;
2195 
2196   // Finally create and return the sat intrinsic, truncated to the new type
2197   Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy);
2198   Value *AT = Builder.CreateSExt(A, NewTy);
2199   Value *BT = Builder.CreateSExt(B, NewTy);
2200   Value *Sat = Builder.CreateCall(F, {AT, BT});
2201   return CastInst::Create(Instruction::SExt, Sat, Ty);
2202 }
2203 
2204 /// Reduce a sequence of min/max with a common operand.
2205 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS,
2206                                         Value *RHS,
2207                                         InstCombiner::BuilderTy &Builder) {
2208   assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max");
2209   // TODO: Allow FP min/max with nnan/nsz.
2210   if (!LHS->getType()->isIntOrIntVectorTy())
2211     return nullptr;
2212 
2213   // Match 3 of the same min/max ops. Example: umin(umin(), umin()).
2214   Value *A, *B, *C, *D;
2215   SelectPatternResult L = matchSelectPattern(LHS, A, B);
2216   SelectPatternResult R = matchSelectPattern(RHS, C, D);
2217   if (SPF != L.Flavor || L.Flavor != R.Flavor)
2218     return nullptr;
2219 
2220   // Look for a common operand. The use checks are different than usual because
2221   // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by
2222   // the select.
2223   Value *MinMaxOp = nullptr;
2224   Value *ThirdOp = nullptr;
2225   if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) {
2226     // If the LHS is only used in this chain and the RHS is used outside of it,
2227     // reuse the RHS min/max because that will eliminate the LHS.
2228     if (D == A || C == A) {
2229       // min(min(a, b), min(c, a)) --> min(min(c, a), b)
2230       // min(min(a, b), min(a, d)) --> min(min(a, d), b)
2231       MinMaxOp = RHS;
2232       ThirdOp = B;
2233     } else if (D == B || C == B) {
2234       // min(min(a, b), min(c, b)) --> min(min(c, b), a)
2235       // min(min(a, b), min(b, d)) --> min(min(b, d), a)
2236       MinMaxOp = RHS;
2237       ThirdOp = A;
2238     }
2239   } else if (!RHS->hasNUsesOrMore(3)) {
2240     // Reuse the LHS. This will eliminate the RHS.
2241     if (D == A || D == B) {
2242       // min(min(a, b), min(c, a)) --> min(min(a, b), c)
2243       // min(min(a, b), min(c, b)) --> min(min(a, b), c)
2244       MinMaxOp = LHS;
2245       ThirdOp = C;
2246     } else if (C == A || C == B) {
2247       // min(min(a, b), min(b, d)) --> min(min(a, b), d)
2248       // min(min(a, b), min(c, b)) --> min(min(a, b), d)
2249       MinMaxOp = LHS;
2250       ThirdOp = D;
2251     }
2252   }
2253   if (!MinMaxOp || !ThirdOp)
2254     return nullptr;
2255 
2256   CmpInst::Predicate P = getMinMaxPred(SPF);
2257   Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp);
2258   return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp);
2259 }
2260 
2261 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2262 /// into a funnel shift intrinsic. Example:
2263 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2264 ///              --> call llvm.fshl.i32(a, a, b)
2265 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2266 ///                 --> call llvm.fshl.i32(a, b, c)
2267 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2268 ///                 --> call llvm.fshr.i32(a, b, c)
2269 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2270                                           InstCombiner::BuilderTy &Builder) {
2271   // This must be a power-of-2 type for a bitmasking transform to be valid.
2272   unsigned Width = Sel.getType()->getScalarSizeInBits();
2273   if (!isPowerOf2_32(Width))
2274     return nullptr;
2275 
2276   BinaryOperator *Or0, *Or1;
2277   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2278     return nullptr;
2279 
2280   Value *SV0, *SV1, *SA0, *SA1;
2281   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2282                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2283       !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2284                                           m_ZExtOrSelf(m_Value(SA1))))) ||
2285       Or0->getOpcode() == Or1->getOpcode())
2286     return nullptr;
2287 
2288   // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2289   if (Or0->getOpcode() == BinaryOperator::LShr) {
2290     std::swap(Or0, Or1);
2291     std::swap(SV0, SV1);
2292     std::swap(SA0, SA1);
2293   }
2294   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2295          Or1->getOpcode() == BinaryOperator::LShr &&
2296          "Illegal or(shift,shift) pair");
2297 
2298   // Check the shift amounts to see if they are an opposite pair.
2299   Value *ShAmt;
2300   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2301     ShAmt = SA0;
2302   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2303     ShAmt = SA1;
2304   else
2305     return nullptr;
2306 
2307   // We should now have this pattern:
2308   // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2309   // The false value of the select must be a funnel-shift of the true value:
2310   // IsFShl -> TVal must be SV0 else TVal must be SV1.
2311   bool IsFshl = (ShAmt == SA0);
2312   Value *TVal = Sel.getTrueValue();
2313   if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2314     return nullptr;
2315 
2316   // Finally, see if the select is filtering out a shift-by-zero.
2317   Value *Cond = Sel.getCondition();
2318   ICmpInst::Predicate Pred;
2319   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2320       Pred != ICmpInst::ICMP_EQ)
2321     return nullptr;
2322 
2323   // If this is not a rotate then the select was blocking poison from the
2324   // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2325   if (SV0 != SV1) {
2326     if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2327       SV1 = Builder.CreateFreeze(SV1);
2328     else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2329       SV0 = Builder.CreateFreeze(SV0);
2330   }
2331 
2332   // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2333   // Convert to funnel shift intrinsic.
2334   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2335   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2336   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2337   return IntrinsicInst::Create(F, { SV0, SV1, ShAmt });
2338 }
2339 
2340 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2341                                          InstCombiner::BuilderTy &Builder) {
2342   Value *Cond = Sel.getCondition();
2343   Value *TVal = Sel.getTrueValue();
2344   Value *FVal = Sel.getFalseValue();
2345   Type *SelType = Sel.getType();
2346 
2347   // Match select ?, TC, FC where the constants are equal but negated.
2348   // TODO: Generalize to handle a negated variable operand?
2349   const APFloat *TC, *FC;
2350   if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
2351       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2352     return nullptr;
2353 
2354   assert(TC != FC && "Expected equal select arms to simplify");
2355 
2356   Value *X;
2357   const APInt *C;
2358   bool IsTrueIfSignSet;
2359   ICmpInst::Predicate Pred;
2360   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2361       !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2362       X->getType() != SelType)
2363     return nullptr;
2364 
2365   // If needed, negate the value that will be the sign argument of the copysign:
2366   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2367   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2368   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2369   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2370   if (IsTrueIfSignSet ^ TC->isNegative())
2371     X = Builder.CreateFNegFMF(X, &Sel);
2372 
2373   // Canonicalize the magnitude argument as the positive constant since we do
2374   // not care about its sign.
2375   Value *MagArg = TC->isNegative() ? FVal : TVal;
2376   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2377                                           Sel.getType());
2378   Instruction *CopySign = IntrinsicInst::Create(F, { MagArg, X });
2379   CopySign->setFastMathFlags(Sel.getFastMathFlags());
2380   return CopySign;
2381 }
2382 
2383 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2384   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2385   if (!VecTy)
2386     return nullptr;
2387 
2388   unsigned NumElts = VecTy->getNumElements();
2389   APInt UndefElts(NumElts, 0);
2390   APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts));
2391   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2392     if (V != &Sel)
2393       return replaceInstUsesWith(Sel, V);
2394     return &Sel;
2395   }
2396 
2397   // A select of a "select shuffle" with a common operand can be rearranged
2398   // to select followed by "select shuffle". Because of poison, this only works
2399   // in the case of a shuffle with no undefined mask elements.
2400   Value *Cond = Sel.getCondition();
2401   Value *TVal = Sel.getTrueValue();
2402   Value *FVal = Sel.getFalseValue();
2403   Value *X, *Y;
2404   ArrayRef<int> Mask;
2405   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2406       !is_contained(Mask, UndefMaskElem) &&
2407       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2408     if (X == FVal) {
2409       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2410       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2411       return new ShuffleVectorInst(X, NewSel, Mask);
2412     }
2413     if (Y == FVal) {
2414       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2415       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2416       return new ShuffleVectorInst(NewSel, Y, Mask);
2417     }
2418   }
2419   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2420       !is_contained(Mask, UndefMaskElem) &&
2421       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2422     if (X == TVal) {
2423       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2424       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2425       return new ShuffleVectorInst(X, NewSel, Mask);
2426     }
2427     if (Y == TVal) {
2428       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2429       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2430       return new ShuffleVectorInst(NewSel, Y, Mask);
2431     }
2432   }
2433 
2434   return nullptr;
2435 }
2436 
2437 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2438                                         const DominatorTree &DT,
2439                                         InstCombiner::BuilderTy &Builder) {
2440   // Find the block's immediate dominator that ends with a conditional branch
2441   // that matches select's condition (maybe inverted).
2442   auto *IDomNode = DT[BB]->getIDom();
2443   if (!IDomNode)
2444     return nullptr;
2445   BasicBlock *IDom = IDomNode->getBlock();
2446 
2447   Value *Cond = Sel.getCondition();
2448   Value *IfTrue, *IfFalse;
2449   BasicBlock *TrueSucc, *FalseSucc;
2450   if (match(IDom->getTerminator(),
2451             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2452                  m_BasicBlock(FalseSucc)))) {
2453     IfTrue = Sel.getTrueValue();
2454     IfFalse = Sel.getFalseValue();
2455   } else if (match(IDom->getTerminator(),
2456                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2457                         m_BasicBlock(FalseSucc)))) {
2458     IfTrue = Sel.getFalseValue();
2459     IfFalse = Sel.getTrueValue();
2460   } else
2461     return nullptr;
2462 
2463   // Make sure the branches are actually different.
2464   if (TrueSucc == FalseSucc)
2465     return nullptr;
2466 
2467   // We want to replace select %cond, %a, %b with a phi that takes value %a
2468   // for all incoming edges that are dominated by condition `%cond == true`,
2469   // and value %b for edges dominated by condition `%cond == false`. If %a
2470   // or %b are also phis from the same basic block, we can go further and take
2471   // their incoming values from the corresponding blocks.
2472   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2473   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2474   DenseMap<BasicBlock *, Value *> Inputs;
2475   for (auto *Pred : predecessors(BB)) {
2476     // Check implication.
2477     BasicBlockEdge Incoming(Pred, BB);
2478     if (DT.dominates(TrueEdge, Incoming))
2479       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2480     else if (DT.dominates(FalseEdge, Incoming))
2481       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2482     else
2483       return nullptr;
2484     // Check availability.
2485     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2486       if (!DT.dominates(Insn, Pred->getTerminator()))
2487         return nullptr;
2488   }
2489 
2490   Builder.SetInsertPoint(&*BB->begin());
2491   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2492   for (auto *Pred : predecessors(BB))
2493     PN->addIncoming(Inputs[Pred], Pred);
2494   PN->takeName(&Sel);
2495   return PN;
2496 }
2497 
2498 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2499                                     InstCombiner::BuilderTy &Builder) {
2500   // Try to replace this select with Phi in one of these blocks.
2501   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2502   CandidateBlocks.insert(Sel.getParent());
2503   for (Value *V : Sel.operands())
2504     if (auto *I = dyn_cast<Instruction>(V))
2505       CandidateBlocks.insert(I->getParent());
2506 
2507   for (BasicBlock *BB : CandidateBlocks)
2508     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2509       return PN;
2510   return nullptr;
2511 }
2512 
2513 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2514   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2515   if (!FI)
2516     return nullptr;
2517 
2518   Value *Cond = FI->getOperand(0);
2519   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2520 
2521   //   select (freeze(x == y)), x, y --> y
2522   //   select (freeze(x != y)), x, y --> x
2523   // The freeze should be only used by this select. Otherwise, remaining uses of
2524   // the freeze can observe a contradictory value.
2525   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2526   //   a = select c, x, y   ;
2527   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2528   //                        ; to y, this can happen.
2529   CmpInst::Predicate Pred;
2530   if (FI->hasOneUse() &&
2531       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2532       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2533     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2534   }
2535 
2536   return nullptr;
2537 }
2538 
2539 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
2540   Value *CondVal = SI.getCondition();
2541   Value *TrueVal = SI.getTrueValue();
2542   Value *FalseVal = SI.getFalseValue();
2543   Type *SelType = SI.getType();
2544 
2545   // FIXME: Remove this workaround when freeze related patches are done.
2546   // For select with undef operand which feeds into an equality comparison,
2547   // don't simplify it so loop unswitch can know the equality comparison
2548   // may have an undef operand. This is a workaround for PR31652 caused by
2549   // descrepancy about branch on undef between LoopUnswitch and GVN.
2550   if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) {
2551     if (llvm::any_of(SI.users(), [&](User *U) {
2552           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2553           if (CI && CI->isEquality())
2554             return true;
2555           return false;
2556         })) {
2557       return nullptr;
2558     }
2559   }
2560 
2561   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2562                                     SQ.getWithInstruction(&SI)))
2563     return replaceInstUsesWith(SI, V);
2564 
2565   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2566     return I;
2567 
2568   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
2569     return I;
2570 
2571   CmpInst::Predicate Pred;
2572 
2573   if (SelType->isIntOrIntVectorTy(1) &&
2574       TrueVal->getType() == CondVal->getType()) {
2575     if (EnableUnsafeSelectTransform && match(TrueVal, m_One())) {
2576       // Change: A = select B, true, C --> A = or B, C
2577       return BinaryOperator::CreateOr(CondVal, FalseVal);
2578     }
2579     if (EnableUnsafeSelectTransform && match(FalseVal, m_Zero())) {
2580       // Change: A = select B, C, false --> A = and B, C
2581       return BinaryOperator::CreateAnd(CondVal, TrueVal);
2582     }
2583 
2584     // select a, false, b -> select !a, b, false
2585     if (match(TrueVal, m_Zero())) {
2586       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2587       return SelectInst::Create(NotCond, FalseVal,
2588                                 ConstantInt::getFalse(SelType));
2589     }
2590     // select a, b, true -> select !a, true, b
2591     if (match(FalseVal, m_One())) {
2592       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2593       return SelectInst::Create(NotCond, ConstantInt::getTrue(SelType),
2594                                 TrueVal);
2595     }
2596 
2597     // select a, a, b -> select a, true, b
2598     if (CondVal == TrueVal)
2599       return replaceOperand(SI, 1, ConstantInt::getTrue(SelType));
2600     // select a, b, a -> select a, b, false
2601     if (CondVal == FalseVal)
2602       return replaceOperand(SI, 2, ConstantInt::getFalse(SelType));
2603 
2604     // select a, !a, b -> select !a, b, false
2605     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2606       return SelectInst::Create(TrueVal, FalseVal,
2607                                 ConstantInt::getFalse(SelType));
2608     // select a, b, !a -> select !a, true, b
2609     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2610       return SelectInst::Create(FalseVal, ConstantInt::getTrue(SelType),
2611                                 TrueVal);
2612   }
2613 
2614   // Selecting between two integer or vector splat integer constants?
2615   //
2616   // Note that we don't handle a scalar select of vectors:
2617   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2618   // because that may need 3 instructions to splat the condition value:
2619   // extend, insertelement, shufflevector.
2620   //
2621   // Do not handle i1 TrueVal and FalseVal otherwise would result in
2622   // zext/sext i1 to i1.
2623   if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
2624       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2625     // select C, 1, 0 -> zext C to int
2626     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2627       return new ZExtInst(CondVal, SelType);
2628 
2629     // select C, -1, 0 -> sext C to int
2630     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2631       return new SExtInst(CondVal, SelType);
2632 
2633     // select C, 0, 1 -> zext !C to int
2634     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2635       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2636       return new ZExtInst(NotCond, SelType);
2637     }
2638 
2639     // select C, 0, -1 -> sext !C to int
2640     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2641       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2642       return new SExtInst(NotCond, SelType);
2643     }
2644   }
2645 
2646   // See if we are selecting two values based on a comparison of the two values.
2647   if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
2648     Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1);
2649     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2650         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2651       // Canonicalize to use ordered comparisons by swapping the select
2652       // operands.
2653       //
2654       // e.g.
2655       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2656       if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) {
2657         FCmpInst::Predicate InvPred = FCI->getInversePredicate();
2658         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2659         // FIXME: The FMF should propagate from the select, not the fcmp.
2660         Builder.setFastMathFlags(FCI->getFastMathFlags());
2661         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2662                                             FCI->getName() + ".inv");
2663         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2664         return replaceInstUsesWith(SI, NewSel);
2665       }
2666 
2667       // NOTE: if we wanted to, this is where to detect MIN/MAX
2668     }
2669   }
2670 
2671   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2672   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We
2673   // also require nnan because we do not want to unintentionally change the
2674   // sign of a NaN value.
2675   // FIXME: These folds should test/propagate FMF from the select, not the
2676   //        fsub or fneg.
2677   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2678   Instruction *FSub;
2679   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2680       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2681       match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2682       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2683     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub);
2684     return replaceInstUsesWith(SI, Fabs);
2685   }
2686   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2687   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2688       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2689       match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() &&
2690       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2691     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub);
2692     return replaceInstUsesWith(SI, Fabs);
2693   }
2694   // With nnan and nsz:
2695   // (X <  +/-0.0) ? -X : X --> fabs(X)
2696   // (X <= +/-0.0) ? -X : X --> fabs(X)
2697   Instruction *FNeg;
2698   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2699       match(TrueVal, m_FNeg(m_Specific(FalseVal))) &&
2700       match(TrueVal, m_Instruction(FNeg)) &&
2701       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2702       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2703        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2704     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg);
2705     return replaceInstUsesWith(SI, Fabs);
2706   }
2707   // With nnan and nsz:
2708   // (X >  +/-0.0) ? X : -X --> fabs(X)
2709   // (X >= +/-0.0) ? X : -X --> fabs(X)
2710   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2711       match(FalseVal, m_FNeg(m_Specific(TrueVal))) &&
2712       match(FalseVal, m_Instruction(FNeg)) &&
2713       FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() &&
2714       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2715        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2716     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg);
2717     return replaceInstUsesWith(SI, Fabs);
2718   }
2719 
2720   // See if we are selecting two values based on a comparison of the two values.
2721   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2722     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2723       return Result;
2724 
2725   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2726     return Add;
2727   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2728     return Add;
2729   if (Instruction *Or = foldSetClearBits(SI, Builder))
2730     return Or;
2731 
2732   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2733   auto *TI = dyn_cast<Instruction>(TrueVal);
2734   auto *FI = dyn_cast<Instruction>(FalseVal);
2735   if (TI && FI && TI->getOpcode() == FI->getOpcode())
2736     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2737       return IV;
2738 
2739   if (Instruction *I = foldSelectExtConst(SI))
2740     return I;
2741 
2742   // See if we can fold the select into one of our operands.
2743   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2744     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2745       return FoldI;
2746 
2747     Value *LHS, *RHS;
2748     Instruction::CastOps CastOp;
2749     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2750     auto SPF = SPR.Flavor;
2751     if (SPF) {
2752       Value *LHS2, *RHS2;
2753       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2754         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2755                                           RHS2, SI, SPF, RHS))
2756           return R;
2757       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2758         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2759                                           RHS2, SI, SPF, LHS))
2760           return R;
2761       // TODO.
2762       // ABS(-X) -> ABS(X)
2763     }
2764 
2765     if (SelectPatternResult::isMinOrMax(SPF)) {
2766       // Canonicalize so that
2767       // - type casts are outside select patterns.
2768       // - float clamp is transformed to min/max pattern
2769 
2770       bool IsCastNeeded = LHS->getType() != SelType;
2771       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2772       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2773       if (IsCastNeeded ||
2774           (LHS->getType()->isFPOrFPVectorTy() &&
2775            ((CmpLHS != LHS && CmpLHS != RHS) ||
2776             (CmpRHS != LHS && CmpRHS != RHS)))) {
2777         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
2778 
2779         Value *Cmp;
2780         if (CmpInst::isIntPredicate(MinMaxPred)) {
2781           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
2782         } else {
2783           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2784           auto FMF =
2785               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2786           Builder.setFastMathFlags(FMF);
2787           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
2788         }
2789 
2790         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2791         if (!IsCastNeeded)
2792           return replaceInstUsesWith(SI, NewSI);
2793 
2794         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2795         return replaceInstUsesWith(SI, NewCast);
2796       }
2797 
2798       // MAX(~a, ~b) -> ~MIN(a, b)
2799       // MAX(~a, C)  -> ~MIN(a, ~C)
2800       // MIN(~a, ~b) -> ~MAX(a, b)
2801       // MIN(~a, C)  -> ~MAX(a, ~C)
2802       auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * {
2803         Value *A;
2804         if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) &&
2805             !isFreeToInvert(A, A->hasOneUse()) &&
2806             // Passing false to only consider m_Not and constants.
2807             isFreeToInvert(Y, false)) {
2808           Value *B = Builder.CreateNot(Y);
2809           Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF),
2810                                           A, B);
2811           // Copy the profile metadata.
2812           if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) {
2813             cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD);
2814             // Swap the metadata if the operands are swapped.
2815             if (X == SI.getFalseValue() && Y == SI.getTrueValue())
2816               cast<SelectInst>(NewMinMax)->swapProfMetadata();
2817           }
2818 
2819           return BinaryOperator::CreateNot(NewMinMax);
2820         }
2821 
2822         return nullptr;
2823       };
2824 
2825       if (Instruction *I = moveNotAfterMinMax(LHS, RHS))
2826         return I;
2827       if (Instruction *I = moveNotAfterMinMax(RHS, LHS))
2828         return I;
2829 
2830       if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder))
2831         return I;
2832 
2833       if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder))
2834         return I;
2835       if (Instruction *I = matchSAddSubSat(SI))
2836         return I;
2837     }
2838   }
2839 
2840   // Canonicalize select of FP values where NaN and -0.0 are not valid as
2841   // minnum/maxnum intrinsics.
2842   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2843     Value *X, *Y;
2844     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2845       return replaceInstUsesWith(
2846           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2847 
2848     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2849       return replaceInstUsesWith(
2850           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2851   }
2852 
2853   // See if we can fold the select into a phi node if the condition is a select.
2854   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2855     // The true/false values have to be live in the PHI predecessor's blocks.
2856     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2857         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2858       if (Instruction *NV = foldOpIntoPhi(SI, PN))
2859         return NV;
2860 
2861   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2862     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2863       // select(C, select(C, a, b), c) -> select(C, a, c)
2864       if (TrueSI->getCondition() == CondVal) {
2865         if (SI.getTrueValue() == TrueSI->getTrueValue())
2866           return nullptr;
2867         return replaceOperand(SI, 1, TrueSI->getTrueValue());
2868       }
2869       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2870       // We choose this as normal form to enable folding on the And and
2871       // shortening paths for the values (this helps getUnderlyingObjects() for
2872       // example).
2873       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2874         Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition());
2875         replaceOperand(SI, 0, And);
2876         replaceOperand(SI, 1, TrueSI->getTrueValue());
2877         return &SI;
2878       }
2879     }
2880   }
2881   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2882     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2883       // select(C, a, select(C, b, c)) -> select(C, a, c)
2884       if (FalseSI->getCondition() == CondVal) {
2885         if (SI.getFalseValue() == FalseSI->getFalseValue())
2886           return nullptr;
2887         return replaceOperand(SI, 2, FalseSI->getFalseValue());
2888       }
2889       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2890       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2891         Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition());
2892         replaceOperand(SI, 0, Or);
2893         replaceOperand(SI, 2, FalseSI->getFalseValue());
2894         return &SI;
2895       }
2896     }
2897   }
2898 
2899   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2900     // The select might be preventing a division by 0.
2901     switch (BO->getOpcode()) {
2902     default:
2903       return true;
2904     case Instruction::SRem:
2905     case Instruction::URem:
2906     case Instruction::SDiv:
2907     case Instruction::UDiv:
2908       return false;
2909     }
2910   };
2911 
2912   // Try to simplify a binop sandwiched between 2 selects with the same
2913   // condition.
2914   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2915   BinaryOperator *TrueBO;
2916   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2917       canMergeSelectThroughBinop(TrueBO)) {
2918     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2919       if (TrueBOSI->getCondition() == CondVal) {
2920         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
2921         Worklist.push(TrueBO);
2922         return &SI;
2923       }
2924     }
2925     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2926       if (TrueBOSI->getCondition() == CondVal) {
2927         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
2928         Worklist.push(TrueBO);
2929         return &SI;
2930       }
2931     }
2932   }
2933 
2934   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2935   BinaryOperator *FalseBO;
2936   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2937       canMergeSelectThroughBinop(FalseBO)) {
2938     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2939       if (FalseBOSI->getCondition() == CondVal) {
2940         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
2941         Worklist.push(FalseBO);
2942         return &SI;
2943       }
2944     }
2945     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2946       if (FalseBOSI->getCondition() == CondVal) {
2947         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
2948         Worklist.push(FalseBO);
2949         return &SI;
2950       }
2951     }
2952   }
2953 
2954   Value *NotCond;
2955   if (match(CondVal, m_Not(m_Value(NotCond))) &&
2956       !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
2957     replaceOperand(SI, 0, NotCond);
2958     SI.swapValues();
2959     SI.swapProfMetadata();
2960     return &SI;
2961   }
2962 
2963   if (Instruction *I = foldVectorSelect(SI))
2964     return I;
2965 
2966   // If we can compute the condition, there's no need for a select.
2967   // Like the above fold, we are attempting to reduce compile-time cost by
2968   // putting this fold here with limitations rather than in InstSimplify.
2969   // The motivation for this call into value tracking is to take advantage of
2970   // the assumption cache, so make sure that is populated.
2971   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
2972     KnownBits Known(1);
2973     computeKnownBits(CondVal, Known, 0, &SI);
2974     if (Known.One.isOneValue())
2975       return replaceInstUsesWith(SI, TrueVal);
2976     if (Known.Zero.isOneValue())
2977       return replaceInstUsesWith(SI, FalseVal);
2978   }
2979 
2980   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
2981     return BitCastSel;
2982 
2983   // Simplify selects that test the returned flag of cmpxchg instructions.
2984   if (Value *V = foldSelectCmpXchg(SI))
2985     return replaceInstUsesWith(SI, V);
2986 
2987   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
2988     return Select;
2989 
2990   if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
2991     return Funnel;
2992 
2993   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
2994     return Copysign;
2995 
2996   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
2997     return replaceInstUsesWith(SI, PN);
2998 
2999   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3000     return replaceInstUsesWith(SI, Fr);
3001 
3002   return nullptr;
3003 }
3004