1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 41 #include "llvm/Transforms/InstCombine/InstCombiner.h" 42 #include <cassert> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 /// FIXME: Enabled by default until the pattern is supported well. 51 static cl::opt<bool> EnableUnsafeSelectTransform( 52 "instcombine-unsafe-select-transform", cl::init(true), 53 cl::desc("Enable poison-unsafe select to and/or transform")); 54 55 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 56 SelectPatternFlavor SPF, Value *A, Value *B) { 57 CmpInst::Predicate Pred = getMinMaxPred(SPF); 58 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 59 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 60 } 61 62 /// Replace a select operand based on an equality comparison with the identity 63 /// constant of a binop. 64 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 65 const TargetLibraryInfo &TLI, 66 InstCombinerImpl &IC) { 67 // The select condition must be an equality compare with a constant operand. 68 Value *X; 69 Constant *C; 70 CmpInst::Predicate Pred; 71 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 72 return nullptr; 73 74 bool IsEq; 75 if (ICmpInst::isEquality(Pred)) 76 IsEq = Pred == ICmpInst::ICMP_EQ; 77 else if (Pred == FCmpInst::FCMP_OEQ) 78 IsEq = true; 79 else if (Pred == FCmpInst::FCMP_UNE) 80 IsEq = false; 81 else 82 return nullptr; 83 84 // A select operand must be a binop. 85 BinaryOperator *BO; 86 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 87 return nullptr; 88 89 // The compare constant must be the identity constant for that binop. 90 // If this a floating-point compare with 0.0, any zero constant will do. 91 Type *Ty = BO->getType(); 92 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 93 if (IdC != C) { 94 if (!IdC || !CmpInst::isFPPredicate(Pred)) 95 return nullptr; 96 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 97 return nullptr; 98 } 99 100 // Last, match the compare variable operand with a binop operand. 101 Value *Y; 102 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 103 return nullptr; 104 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 105 return nullptr; 106 107 // +0.0 compares equal to -0.0, and so it does not behave as required for this 108 // transform. Bail out if we can not exclude that possibility. 109 if (isa<FPMathOperator>(BO)) 110 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 111 return nullptr; 112 113 // BO = binop Y, X 114 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 115 // => 116 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 117 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 118 } 119 120 /// This folds: 121 /// select (icmp eq (and X, C1)), TC, FC 122 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 123 /// To something like: 124 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 125 /// Or: 126 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 127 /// With some variations depending if FC is larger than TC, or the shift 128 /// isn't needed, or the bit widths don't match. 129 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 130 InstCombiner::BuilderTy &Builder) { 131 const APInt *SelTC, *SelFC; 132 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 133 !match(Sel.getFalseValue(), m_APInt(SelFC))) 134 return nullptr; 135 136 // If this is a vector select, we need a vector compare. 137 Type *SelType = Sel.getType(); 138 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 139 return nullptr; 140 141 Value *V; 142 APInt AndMask; 143 bool CreateAnd = false; 144 ICmpInst::Predicate Pred = Cmp->getPredicate(); 145 if (ICmpInst::isEquality(Pred)) { 146 if (!match(Cmp->getOperand(1), m_Zero())) 147 return nullptr; 148 149 V = Cmp->getOperand(0); 150 const APInt *AndRHS; 151 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 152 return nullptr; 153 154 AndMask = *AndRHS; 155 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 156 Pred, V, AndMask)) { 157 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 158 if (!AndMask.isPowerOf2()) 159 return nullptr; 160 161 CreateAnd = true; 162 } else { 163 return nullptr; 164 } 165 166 // In general, when both constants are non-zero, we would need an offset to 167 // replace the select. This would require more instructions than we started 168 // with. But there's one special-case that we handle here because it can 169 // simplify/reduce the instructions. 170 APInt TC = *SelTC; 171 APInt FC = *SelFC; 172 if (!TC.isNullValue() && !FC.isNullValue()) { 173 // If the select constants differ by exactly one bit and that's the same 174 // bit that is masked and checked by the select condition, the select can 175 // be replaced by bitwise logic to set/clear one bit of the constant result. 176 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 177 return nullptr; 178 if (CreateAnd) { 179 // If we have to create an 'and', then we must kill the cmp to not 180 // increase the instruction count. 181 if (!Cmp->hasOneUse()) 182 return nullptr; 183 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 184 } 185 bool ExtraBitInTC = TC.ugt(FC); 186 if (Pred == ICmpInst::ICMP_EQ) { 187 // If the masked bit in V is clear, clear or set the bit in the result: 188 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 189 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 190 Constant *C = ConstantInt::get(SelType, TC); 191 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 192 } 193 if (Pred == ICmpInst::ICMP_NE) { 194 // If the masked bit in V is set, set or clear the bit in the result: 195 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 196 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 197 Constant *C = ConstantInt::get(SelType, FC); 198 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 199 } 200 llvm_unreachable("Only expecting equality predicates"); 201 } 202 203 // Make sure one of the select arms is a power-of-2. 204 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 205 return nullptr; 206 207 // Determine which shift is needed to transform result of the 'and' into the 208 // desired result. 209 const APInt &ValC = !TC.isNullValue() ? TC : FC; 210 unsigned ValZeros = ValC.logBase2(); 211 unsigned AndZeros = AndMask.logBase2(); 212 213 // Insert the 'and' instruction on the input to the truncate. 214 if (CreateAnd) 215 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 216 217 // If types don't match, we can still convert the select by introducing a zext 218 // or a trunc of the 'and'. 219 if (ValZeros > AndZeros) { 220 V = Builder.CreateZExtOrTrunc(V, SelType); 221 V = Builder.CreateShl(V, ValZeros - AndZeros); 222 } else if (ValZeros < AndZeros) { 223 V = Builder.CreateLShr(V, AndZeros - ValZeros); 224 V = Builder.CreateZExtOrTrunc(V, SelType); 225 } else { 226 V = Builder.CreateZExtOrTrunc(V, SelType); 227 } 228 229 // Okay, now we know that everything is set up, we just don't know whether we 230 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 231 bool ShouldNotVal = !TC.isNullValue(); 232 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 233 if (ShouldNotVal) 234 V = Builder.CreateXor(V, ValC); 235 236 return V; 237 } 238 239 /// We want to turn code that looks like this: 240 /// %C = or %A, %B 241 /// %D = select %cond, %C, %A 242 /// into: 243 /// %C = select %cond, %B, 0 244 /// %D = or %A, %C 245 /// 246 /// Assuming that the specified instruction is an operand to the select, return 247 /// a bitmask indicating which operands of this instruction are foldable if they 248 /// equal the other incoming value of the select. 249 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 250 switch (I->getOpcode()) { 251 case Instruction::Add: 252 case Instruction::Mul: 253 case Instruction::And: 254 case Instruction::Or: 255 case Instruction::Xor: 256 return 3; // Can fold through either operand. 257 case Instruction::Sub: // Can only fold on the amount subtracted. 258 case Instruction::Shl: // Can only fold on the shift amount. 259 case Instruction::LShr: 260 case Instruction::AShr: 261 return 1; 262 default: 263 return 0; // Cannot fold 264 } 265 } 266 267 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 268 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 269 Instruction *FI) { 270 // Don't break up min/max patterns. The hasOneUse checks below prevent that 271 // for most cases, but vector min/max with bitcasts can be transformed. If the 272 // one-use restrictions are eased for other patterns, we still don't want to 273 // obfuscate min/max. 274 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 275 match(&SI, m_SMax(m_Value(), m_Value())) || 276 match(&SI, m_UMin(m_Value(), m_Value())) || 277 match(&SI, m_UMax(m_Value(), m_Value())))) 278 return nullptr; 279 280 // If this is a cast from the same type, merge. 281 Value *Cond = SI.getCondition(); 282 Type *CondTy = Cond->getType(); 283 if (TI->getNumOperands() == 1 && TI->isCast()) { 284 Type *FIOpndTy = FI->getOperand(0)->getType(); 285 if (TI->getOperand(0)->getType() != FIOpndTy) 286 return nullptr; 287 288 // The select condition may be a vector. We may only change the operand 289 // type if the vector width remains the same (and matches the condition). 290 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 291 if (!FIOpndTy->isVectorTy() || 292 CondVTy->getElementCount() != 293 cast<VectorType>(FIOpndTy)->getElementCount()) 294 return nullptr; 295 296 // TODO: If the backend knew how to deal with casts better, we could 297 // remove this limitation. For now, there's too much potential to create 298 // worse codegen by promoting the select ahead of size-altering casts 299 // (PR28160). 300 // 301 // Note that ValueTracking's matchSelectPattern() looks through casts 302 // without checking 'hasOneUse' when it matches min/max patterns, so this 303 // transform may end up happening anyway. 304 if (TI->getOpcode() != Instruction::BitCast && 305 (!TI->hasOneUse() || !FI->hasOneUse())) 306 return nullptr; 307 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 308 // TODO: The one-use restrictions for a scalar select could be eased if 309 // the fold of a select in visitLoadInst() was enhanced to match a pattern 310 // that includes a cast. 311 return nullptr; 312 } 313 314 // Fold this by inserting a select from the input values. 315 Value *NewSI = 316 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 317 SI.getName() + ".v", &SI); 318 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 319 TI->getType()); 320 } 321 322 // Cond ? -X : -Y --> -(Cond ? X : Y) 323 Value *X, *Y; 324 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 325 (TI->hasOneUse() || FI->hasOneUse())) { 326 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 327 return UnaryOperator::CreateFNegFMF(NewSel, TI); 328 } 329 330 // Only handle binary operators (including two-operand getelementptr) with 331 // one-use here. As with the cast case above, it may be possible to relax the 332 // one-use constraint, but that needs be examined carefully since it may not 333 // reduce the total number of instructions. 334 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 335 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 336 !TI->hasOneUse() || !FI->hasOneUse()) 337 return nullptr; 338 339 // Figure out if the operations have any operands in common. 340 Value *MatchOp, *OtherOpT, *OtherOpF; 341 bool MatchIsOpZero; 342 if (TI->getOperand(0) == FI->getOperand(0)) { 343 MatchOp = TI->getOperand(0); 344 OtherOpT = TI->getOperand(1); 345 OtherOpF = FI->getOperand(1); 346 MatchIsOpZero = true; 347 } else if (TI->getOperand(1) == FI->getOperand(1)) { 348 MatchOp = TI->getOperand(1); 349 OtherOpT = TI->getOperand(0); 350 OtherOpF = FI->getOperand(0); 351 MatchIsOpZero = false; 352 } else if (!TI->isCommutative()) { 353 return nullptr; 354 } else if (TI->getOperand(0) == FI->getOperand(1)) { 355 MatchOp = TI->getOperand(0); 356 OtherOpT = TI->getOperand(1); 357 OtherOpF = FI->getOperand(0); 358 MatchIsOpZero = true; 359 } else if (TI->getOperand(1) == FI->getOperand(0)) { 360 MatchOp = TI->getOperand(1); 361 OtherOpT = TI->getOperand(0); 362 OtherOpF = FI->getOperand(1); 363 MatchIsOpZero = true; 364 } else { 365 return nullptr; 366 } 367 368 // If the select condition is a vector, the operands of the original select's 369 // operands also must be vectors. This may not be the case for getelementptr 370 // for example. 371 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 372 !OtherOpF->getType()->isVectorTy())) 373 return nullptr; 374 375 // If we reach here, they do have operations in common. 376 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 377 SI.getName() + ".v", &SI); 378 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 379 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 380 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 381 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 382 NewBO->copyIRFlags(TI); 383 NewBO->andIRFlags(FI); 384 return NewBO; 385 } 386 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 387 auto *FGEP = cast<GetElementPtrInst>(FI); 388 Type *ElementType = TGEP->getResultElementType(); 389 return TGEP->isInBounds() && FGEP->isInBounds() 390 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 391 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 392 } 393 llvm_unreachable("Expected BinaryOperator or GEP"); 394 return nullptr; 395 } 396 397 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 398 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 399 return false; 400 return C1I.isOneValue() || C1I.isAllOnesValue() || 401 C2I.isOneValue() || C2I.isAllOnesValue(); 402 } 403 404 /// Try to fold the select into one of the operands to allow further 405 /// optimization. 406 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 407 Value *FalseVal) { 408 // See the comment above GetSelectFoldableOperands for a description of the 409 // transformation we are doing here. 410 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 411 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 412 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 413 unsigned OpToFold = 0; 414 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 415 OpToFold = 1; 416 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 417 OpToFold = 2; 418 } 419 420 if (OpToFold) { 421 Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(), 422 TVI->getType(), true); 423 Value *OOp = TVI->getOperand(2-OpToFold); 424 // Avoid creating select between 2 constants unless it's selecting 425 // between 0, 1 and -1. 426 const APInt *OOpC; 427 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 428 if (!isa<Constant>(OOp) || 429 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 430 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 431 NewSel->takeName(TVI); 432 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 433 FalseVal, NewSel); 434 BO->copyIRFlags(TVI); 435 return BO; 436 } 437 } 438 } 439 } 440 } 441 442 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 443 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 444 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 445 unsigned OpToFold = 0; 446 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 447 OpToFold = 1; 448 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 449 OpToFold = 2; 450 } 451 452 if (OpToFold) { 453 Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(), 454 FVI->getType(), true); 455 Value *OOp = FVI->getOperand(2-OpToFold); 456 // Avoid creating select between 2 constants unless it's selecting 457 // between 0, 1 and -1. 458 const APInt *OOpC; 459 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 460 if (!isa<Constant>(OOp) || 461 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 462 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 463 NewSel->takeName(FVI); 464 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 465 TrueVal, NewSel); 466 BO->copyIRFlags(FVI); 467 return BO; 468 } 469 } 470 } 471 } 472 } 473 474 return nullptr; 475 } 476 477 /// We want to turn: 478 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 479 /// into: 480 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 481 /// Note: 482 /// Z may be 0 if lshr is missing. 483 /// Worst-case scenario is that we will replace 5 instructions with 5 different 484 /// instructions, but we got rid of select. 485 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 486 Value *TVal, Value *FVal, 487 InstCombiner::BuilderTy &Builder) { 488 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 489 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 490 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 491 return nullptr; 492 493 // The TrueVal has general form of: and %B, 1 494 Value *B; 495 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 496 return nullptr; 497 498 // Where %B may be optionally shifted: lshr %X, %Z. 499 Value *X, *Z; 500 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 501 if (!HasShift) 502 X = B; 503 504 Value *Y; 505 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 506 return nullptr; 507 508 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 509 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 510 Constant *One = ConstantInt::get(SelType, 1); 511 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 512 Value *FullMask = Builder.CreateOr(Y, MaskB); 513 Value *MaskedX = Builder.CreateAnd(X, FullMask); 514 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 515 return new ZExtInst(ICmpNeZero, SelType); 516 } 517 518 /// We want to turn: 519 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 520 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 521 /// into: 522 /// ashr (X, Y) 523 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 524 Value *FalseVal, 525 InstCombiner::BuilderTy &Builder) { 526 ICmpInst::Predicate Pred = IC->getPredicate(); 527 Value *CmpLHS = IC->getOperand(0); 528 Value *CmpRHS = IC->getOperand(1); 529 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 530 return nullptr; 531 532 Value *X, *Y; 533 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 534 if ((Pred != ICmpInst::ICMP_SGT || 535 !match(CmpRHS, 536 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 537 (Pred != ICmpInst::ICMP_SLT || 538 !match(CmpRHS, 539 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 540 return nullptr; 541 542 // Canonicalize so that ashr is in FalseVal. 543 if (Pred == ICmpInst::ICMP_SLT) 544 std::swap(TrueVal, FalseVal); 545 546 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 547 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 548 match(CmpLHS, m_Specific(X))) { 549 const auto *Ashr = cast<Instruction>(FalseVal); 550 // if lshr is not exact and ashr is, this new ashr must not be exact. 551 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 552 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 553 } 554 555 return nullptr; 556 } 557 558 /// We want to turn: 559 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 560 /// into: 561 /// (or (shl (and X, C1), C3), Y) 562 /// iff: 563 /// C1 and C2 are both powers of 2 564 /// where: 565 /// C3 = Log(C2) - Log(C1) 566 /// 567 /// This transform handles cases where: 568 /// 1. The icmp predicate is inverted 569 /// 2. The select operands are reversed 570 /// 3. The magnitude of C2 and C1 are flipped 571 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 572 Value *FalseVal, 573 InstCombiner::BuilderTy &Builder) { 574 // Only handle integer compares. Also, if this is a vector select, we need a 575 // vector compare. 576 if (!TrueVal->getType()->isIntOrIntVectorTy() || 577 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 578 return nullptr; 579 580 Value *CmpLHS = IC->getOperand(0); 581 Value *CmpRHS = IC->getOperand(1); 582 583 Value *V; 584 unsigned C1Log; 585 bool IsEqualZero; 586 bool NeedAnd = false; 587 if (IC->isEquality()) { 588 if (!match(CmpRHS, m_Zero())) 589 return nullptr; 590 591 const APInt *C1; 592 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 593 return nullptr; 594 595 V = CmpLHS; 596 C1Log = C1->logBase2(); 597 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 598 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 599 IC->getPredicate() == ICmpInst::ICMP_SGT) { 600 // We also need to recognize (icmp slt (trunc (X)), 0) and 601 // (icmp sgt (trunc (X)), -1). 602 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 603 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 604 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 605 return nullptr; 606 607 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 608 return nullptr; 609 610 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 611 NeedAnd = true; 612 } else { 613 return nullptr; 614 } 615 616 const APInt *C2; 617 bool OrOnTrueVal = false; 618 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 619 if (!OrOnFalseVal) 620 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 621 622 if (!OrOnFalseVal && !OrOnTrueVal) 623 return nullptr; 624 625 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 626 627 unsigned C2Log = C2->logBase2(); 628 629 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 630 bool NeedShift = C1Log != C2Log; 631 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 632 V->getType()->getScalarSizeInBits(); 633 634 // Make sure we don't create more instructions than we save. 635 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 636 if ((NeedShift + NeedXor + NeedZExtTrunc) > 637 (IC->hasOneUse() + Or->hasOneUse())) 638 return nullptr; 639 640 if (NeedAnd) { 641 // Insert the AND instruction on the input to the truncate. 642 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 643 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 644 } 645 646 if (C2Log > C1Log) { 647 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 648 V = Builder.CreateShl(V, C2Log - C1Log); 649 } else if (C1Log > C2Log) { 650 V = Builder.CreateLShr(V, C1Log - C2Log); 651 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 652 } else 653 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 654 655 if (NeedXor) 656 V = Builder.CreateXor(V, *C2); 657 658 return Builder.CreateOr(V, Y); 659 } 660 661 /// Canonicalize a set or clear of a masked set of constant bits to 662 /// select-of-constants form. 663 static Instruction *foldSetClearBits(SelectInst &Sel, 664 InstCombiner::BuilderTy &Builder) { 665 Value *Cond = Sel.getCondition(); 666 Value *T = Sel.getTrueValue(); 667 Value *F = Sel.getFalseValue(); 668 Type *Ty = Sel.getType(); 669 Value *X; 670 const APInt *NotC, *C; 671 672 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 673 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 674 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 675 Constant *Zero = ConstantInt::getNullValue(Ty); 676 Constant *OrC = ConstantInt::get(Ty, *C); 677 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 678 return BinaryOperator::CreateOr(T, NewSel); 679 } 680 681 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 682 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 683 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 684 Constant *Zero = ConstantInt::getNullValue(Ty); 685 Constant *OrC = ConstantInt::get(Ty, *C); 686 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 687 return BinaryOperator::CreateOr(F, NewSel); 688 } 689 690 return nullptr; 691 } 692 693 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 694 /// There are 8 commuted/swapped variants of this pattern. 695 /// TODO: Also support a - UMIN(a,b) patterns. 696 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 697 const Value *TrueVal, 698 const Value *FalseVal, 699 InstCombiner::BuilderTy &Builder) { 700 ICmpInst::Predicate Pred = ICI->getPredicate(); 701 if (!ICmpInst::isUnsigned(Pred)) 702 return nullptr; 703 704 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 705 if (match(TrueVal, m_Zero())) { 706 Pred = ICmpInst::getInversePredicate(Pred); 707 std::swap(TrueVal, FalseVal); 708 } 709 if (!match(FalseVal, m_Zero())) 710 return nullptr; 711 712 Value *A = ICI->getOperand(0); 713 Value *B = ICI->getOperand(1); 714 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 715 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 716 std::swap(A, B); 717 Pred = ICmpInst::getSwappedPredicate(Pred); 718 } 719 720 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 721 "Unexpected isUnsigned predicate!"); 722 723 // Ensure the sub is of the form: 724 // (a > b) ? a - b : 0 -> usub.sat(a, b) 725 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 726 // Checking for both a-b and a+(-b) as a constant. 727 bool IsNegative = false; 728 const APInt *C; 729 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 730 (match(A, m_APInt(C)) && 731 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 732 IsNegative = true; 733 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 734 !(match(B, m_APInt(C)) && 735 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 736 return nullptr; 737 738 // If we are adding a negate and the sub and icmp are used anywhere else, we 739 // would end up with more instructions. 740 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 741 return nullptr; 742 743 // (a > b) ? a - b : 0 -> usub.sat(a, b) 744 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 745 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 746 if (IsNegative) 747 Result = Builder.CreateNeg(Result); 748 return Result; 749 } 750 751 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 752 InstCombiner::BuilderTy &Builder) { 753 if (!Cmp->hasOneUse()) 754 return nullptr; 755 756 // Match unsigned saturated add with constant. 757 Value *Cmp0 = Cmp->getOperand(0); 758 Value *Cmp1 = Cmp->getOperand(1); 759 ICmpInst::Predicate Pred = Cmp->getPredicate(); 760 Value *X; 761 const APInt *C, *CmpC; 762 if (Pred == ICmpInst::ICMP_ULT && 763 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 764 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 765 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 766 return Builder.CreateBinaryIntrinsic( 767 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 768 } 769 770 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 771 // There are 8 commuted variants. 772 // Canonicalize -1 (saturated result) to true value of the select. 773 if (match(FVal, m_AllOnes())) { 774 std::swap(TVal, FVal); 775 Pred = CmpInst::getInversePredicate(Pred); 776 } 777 if (!match(TVal, m_AllOnes())) 778 return nullptr; 779 780 // Canonicalize predicate to less-than or less-or-equal-than. 781 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 782 std::swap(Cmp0, Cmp1); 783 Pred = CmpInst::getSwappedPredicate(Pred); 784 } 785 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 786 return nullptr; 787 788 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 789 // Strictness of the comparison is irrelevant. 790 Value *Y; 791 if (match(Cmp0, m_Not(m_Value(X))) && 792 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 793 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 794 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 795 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 796 } 797 // The 'not' op may be included in the sum but not the compare. 798 // Strictness of the comparison is irrelevant. 799 X = Cmp0; 800 Y = Cmp1; 801 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 802 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 803 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 804 BinaryOperator *BO = cast<BinaryOperator>(FVal); 805 return Builder.CreateBinaryIntrinsic( 806 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 807 } 808 // The overflow may be detected via the add wrapping round. 809 // This is only valid for strict comparison! 810 if (Pred == ICmpInst::ICMP_ULT && 811 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 812 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 813 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 814 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 815 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 816 } 817 818 return nullptr; 819 } 820 821 /// Fold the following code sequence: 822 /// \code 823 /// int a = ctlz(x & -x); 824 // x ? 31 - a : a; 825 /// \code 826 /// 827 /// into: 828 /// cttz(x) 829 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 830 Value *FalseVal, 831 InstCombiner::BuilderTy &Builder) { 832 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 833 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 834 return nullptr; 835 836 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 837 std::swap(TrueVal, FalseVal); 838 839 if (!match(FalseVal, 840 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 841 return nullptr; 842 843 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 844 return nullptr; 845 846 Value *X = ICI->getOperand(0); 847 auto *II = cast<IntrinsicInst>(TrueVal); 848 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 849 return nullptr; 850 851 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 852 II->getType()); 853 return CallInst::Create(F, {X, II->getArgOperand(1)}); 854 } 855 856 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 857 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 858 /// 859 /// For example, we can fold the following code sequence: 860 /// \code 861 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 862 /// %1 = icmp ne i32 %x, 0 863 /// %2 = select i1 %1, i32 %0, i32 32 864 /// \code 865 /// 866 /// into: 867 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 868 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 869 InstCombiner::BuilderTy &Builder) { 870 ICmpInst::Predicate Pred = ICI->getPredicate(); 871 Value *CmpLHS = ICI->getOperand(0); 872 Value *CmpRHS = ICI->getOperand(1); 873 874 // Check if the condition value compares a value for equality against zero. 875 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 876 return nullptr; 877 878 Value *SelectArg = FalseVal; 879 Value *ValueOnZero = TrueVal; 880 if (Pred == ICmpInst::ICMP_NE) 881 std::swap(SelectArg, ValueOnZero); 882 883 // Skip zero extend/truncate. 884 Value *Count = nullptr; 885 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 886 !match(SelectArg, m_Trunc(m_Value(Count)))) 887 Count = SelectArg; 888 889 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 890 // input to the cttz/ctlz is used as LHS for the compare instruction. 891 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 892 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 893 return nullptr; 894 895 IntrinsicInst *II = cast<IntrinsicInst>(Count); 896 897 // Check if the value propagated on zero is a constant number equal to the 898 // sizeof in bits of 'Count'. 899 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 900 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 901 // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from 902 // true to false on this flag, so we can replace it for all users. 903 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 904 return SelectArg; 905 } 906 907 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 908 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 909 // not be used if the input is zero. Relax to 'undef_on_zero' for that case. 910 if (II->hasOneUse() && SelectArg->hasOneUse() && 911 !match(II->getArgOperand(1), m_One())) 912 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 913 914 return nullptr; 915 } 916 917 /// Return true if we find and adjust an icmp+select pattern where the compare 918 /// is with a constant that can be incremented or decremented to match the 919 /// minimum or maximum idiom. 920 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 921 ICmpInst::Predicate Pred = Cmp.getPredicate(); 922 Value *CmpLHS = Cmp.getOperand(0); 923 Value *CmpRHS = Cmp.getOperand(1); 924 Value *TrueVal = Sel.getTrueValue(); 925 Value *FalseVal = Sel.getFalseValue(); 926 927 // We may move or edit the compare, so make sure the select is the only user. 928 const APInt *CmpC; 929 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 930 return false; 931 932 // These transforms only work for selects of integers or vector selects of 933 // integer vectors. 934 Type *SelTy = Sel.getType(); 935 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 936 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 937 return false; 938 939 Constant *AdjustedRHS; 940 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 941 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 942 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 943 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 944 else 945 return false; 946 947 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 948 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 949 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 950 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 951 ; // Nothing to do here. Values match without any sign/zero extension. 952 } 953 // Types do not match. Instead of calculating this with mixed types, promote 954 // all to the larger type. This enables scalar evolution to analyze this 955 // expression. 956 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 957 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 958 959 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 960 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 961 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 962 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 963 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 964 CmpLHS = TrueVal; 965 AdjustedRHS = SextRHS; 966 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 967 SextRHS == TrueVal) { 968 CmpLHS = FalseVal; 969 AdjustedRHS = SextRHS; 970 } else if (Cmp.isUnsigned()) { 971 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 972 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 973 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 974 // zext + signed compare cannot be changed: 975 // 0xff <s 0x00, but 0x00ff >s 0x0000 976 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 977 CmpLHS = TrueVal; 978 AdjustedRHS = ZextRHS; 979 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 980 ZextRHS == TrueVal) { 981 CmpLHS = FalseVal; 982 AdjustedRHS = ZextRHS; 983 } else { 984 return false; 985 } 986 } else { 987 return false; 988 } 989 } else { 990 return false; 991 } 992 993 Pred = ICmpInst::getSwappedPredicate(Pred); 994 CmpRHS = AdjustedRHS; 995 std::swap(FalseVal, TrueVal); 996 Cmp.setPredicate(Pred); 997 Cmp.setOperand(0, CmpLHS); 998 Cmp.setOperand(1, CmpRHS); 999 Sel.setOperand(1, TrueVal); 1000 Sel.setOperand(2, FalseVal); 1001 Sel.swapProfMetadata(); 1002 1003 // Move the compare instruction right before the select instruction. Otherwise 1004 // the sext/zext value may be defined after the compare instruction uses it. 1005 Cmp.moveBefore(&Sel); 1006 1007 return true; 1008 } 1009 1010 /// If this is an integer min/max (icmp + select) with a constant operand, 1011 /// create the canonical icmp for the min/max operation and canonicalize the 1012 /// constant to the 'false' operand of the select: 1013 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 1014 /// Note: if C1 != C2, this will change the icmp constant to the existing 1015 /// constant operand of the select. 1016 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel, 1017 ICmpInst &Cmp, 1018 InstCombinerImpl &IC) { 1019 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1020 return nullptr; 1021 1022 // Canonicalize the compare predicate based on whether we have min or max. 1023 Value *LHS, *RHS; 1024 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1025 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1026 return nullptr; 1027 1028 // Is this already canonical? 1029 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1030 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1031 Cmp.getPredicate() == CanonicalPred) 1032 return nullptr; 1033 1034 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1035 // as this may cause an infinite combine loop. Let the sub be folded first. 1036 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1037 match(RHS, m_Sub(m_Value(), m_Zero()))) 1038 return nullptr; 1039 1040 // Create the canonical compare and plug it into the select. 1041 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1042 1043 // If the select operands did not change, we're done. 1044 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1045 return &Sel; 1046 1047 // If we are swapping the select operands, swap the metadata too. 1048 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1049 "Unexpected results from matchSelectPattern"); 1050 Sel.swapValues(); 1051 Sel.swapProfMetadata(); 1052 return &Sel; 1053 } 1054 1055 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 1056 InstCombinerImpl &IC) { 1057 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1058 return nullptr; 1059 1060 Value *LHS, *RHS; 1061 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1062 if (SPF != SelectPatternFlavor::SPF_ABS && 1063 SPF != SelectPatternFlavor::SPF_NABS) 1064 return nullptr; 1065 1066 // Note that NSW flag can only be propagated for normal, non-negated abs! 1067 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1068 match(RHS, m_NSWNeg(m_Specific(LHS))); 1069 Constant *IntMinIsPoisonC = 1070 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison); 1071 Instruction *Abs = 1072 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1073 1074 if (SPF == SelectPatternFlavor::SPF_NABS) 1075 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag! 1076 1077 return IC.replaceInstUsesWith(Sel, Abs); 1078 } 1079 1080 /// If we have a select with an equality comparison, then we know the value in 1081 /// one of the arms of the select. See if substituting this value into an arm 1082 /// and simplifying the result yields the same value as the other arm. 1083 /// 1084 /// To make this transform safe, we must drop poison-generating flags 1085 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1086 /// that poison from propagating. If the existing binop already had no 1087 /// poison-generating flags, then this transform can be done by instsimplify. 1088 /// 1089 /// Consider: 1090 /// %cmp = icmp eq i32 %x, 2147483647 1091 /// %add = add nsw i32 %x, 1 1092 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1093 /// 1094 /// We can't replace %sel with %add unless we strip away the flags. 1095 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1096 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1097 ICmpInst &Cmp) { 1098 if (!Cmp.isEquality()) 1099 return nullptr; 1100 1101 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1102 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1103 bool Swapped = false; 1104 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1105 std::swap(TrueVal, FalseVal); 1106 Swapped = true; 1107 } 1108 1109 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1110 // Make sure Y cannot be undef though, as we might pick different values for 1111 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1112 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1113 // replacement cycle. 1114 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1115 if (TrueVal != CmpLHS && 1116 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) 1117 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1118 /* AllowRefinement */ true)) 1119 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1120 if (TrueVal != CmpRHS && 1121 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1122 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1123 /* AllowRefinement */ true)) 1124 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1125 1126 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1127 if (!FalseInst) 1128 return nullptr; 1129 1130 // InstSimplify already performed this fold if it was possible subject to 1131 // current poison-generating flags. Try the transform again with 1132 // poison-generating flags temporarily dropped. 1133 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1134 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1135 WasNUW = OBO->hasNoUnsignedWrap(); 1136 WasNSW = OBO->hasNoSignedWrap(); 1137 FalseInst->setHasNoUnsignedWrap(false); 1138 FalseInst->setHasNoSignedWrap(false); 1139 } 1140 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1141 WasExact = PEO->isExact(); 1142 FalseInst->setIsExact(false); 1143 } 1144 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1145 WasInBounds = GEP->isInBounds(); 1146 GEP->setIsInBounds(false); 1147 } 1148 1149 // Try each equivalence substitution possibility. 1150 // We have an 'EQ' comparison, so the select's false value will propagate. 1151 // Example: 1152 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1153 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1154 /* AllowRefinement */ false) == TrueVal || 1155 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1156 /* AllowRefinement */ false) == TrueVal) { 1157 return replaceInstUsesWith(Sel, FalseVal); 1158 } 1159 1160 // Restore poison-generating flags if the transform did not apply. 1161 if (WasNUW) 1162 FalseInst->setHasNoUnsignedWrap(); 1163 if (WasNSW) 1164 FalseInst->setHasNoSignedWrap(); 1165 if (WasExact) 1166 FalseInst->setIsExact(); 1167 if (WasInBounds) 1168 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1169 1170 return nullptr; 1171 } 1172 1173 // See if this is a pattern like: 1174 // %old_cmp1 = icmp slt i32 %x, C2 1175 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1176 // %old_x_offseted = add i32 %x, C1 1177 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1178 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1179 // This can be rewritten as more canonical pattern: 1180 // %new_cmp1 = icmp slt i32 %x, -C1 1181 // %new_cmp2 = icmp sge i32 %x, C0-C1 1182 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1183 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1184 // Iff -C1 s<= C2 s<= C0-C1 1185 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1186 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1187 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1188 InstCombiner::BuilderTy &Builder) { 1189 Value *X = Sel0.getTrueValue(); 1190 Value *Sel1 = Sel0.getFalseValue(); 1191 1192 // First match the condition of the outermost select. 1193 // Said condition must be one-use. 1194 if (!Cmp0.hasOneUse()) 1195 return nullptr; 1196 Value *Cmp00 = Cmp0.getOperand(0); 1197 Constant *C0; 1198 if (!match(Cmp0.getOperand(1), 1199 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1200 return nullptr; 1201 // Canonicalize Cmp0 into the form we expect. 1202 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1203 switch (Cmp0.getPredicate()) { 1204 case ICmpInst::Predicate::ICMP_ULT: 1205 break; // Great! 1206 case ICmpInst::Predicate::ICMP_ULE: 1207 // We'd have to increment C0 by one, and for that it must not have all-ones 1208 // element, but then it would have been canonicalized to 'ult' before 1209 // we get here. So we can't do anything useful with 'ule'. 1210 return nullptr; 1211 case ICmpInst::Predicate::ICMP_UGT: 1212 // We want to canonicalize it to 'ult', so we'll need to increment C0, 1213 // which again means it must not have any all-ones elements. 1214 if (!match(C0, 1215 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1216 APInt::getAllOnesValue( 1217 C0->getType()->getScalarSizeInBits())))) 1218 return nullptr; // Can't do, have all-ones element[s]. 1219 C0 = InstCombiner::AddOne(C0); 1220 std::swap(X, Sel1); 1221 break; 1222 case ICmpInst::Predicate::ICMP_UGE: 1223 // The only way we'd get this predicate if this `icmp` has extra uses, 1224 // but then we won't be able to do this fold. 1225 return nullptr; 1226 default: 1227 return nullptr; // Unknown predicate. 1228 } 1229 1230 // Now that we've canonicalized the ICmp, we know the X we expect; 1231 // the select in other hand should be one-use. 1232 if (!Sel1->hasOneUse()) 1233 return nullptr; 1234 1235 // We now can finish matching the condition of the outermost select: 1236 // it should either be the X itself, or an addition of some constant to X. 1237 Constant *C1; 1238 if (Cmp00 == X) 1239 C1 = ConstantInt::getNullValue(Sel0.getType()); 1240 else if (!match(Cmp00, 1241 m_Add(m_Specific(X), 1242 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1243 return nullptr; 1244 1245 Value *Cmp1; 1246 ICmpInst::Predicate Pred1; 1247 Constant *C2; 1248 Value *ReplacementLow, *ReplacementHigh; 1249 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1250 m_Value(ReplacementHigh))) || 1251 !match(Cmp1, 1252 m_ICmp(Pred1, m_Specific(X), 1253 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1254 return nullptr; 1255 1256 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1257 return nullptr; // Not enough one-use instructions for the fold. 1258 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1259 // two comparisons we'll need to build. 1260 1261 // Canonicalize Cmp1 into the form we expect. 1262 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1263 switch (Pred1) { 1264 case ICmpInst::Predicate::ICMP_SLT: 1265 break; 1266 case ICmpInst::Predicate::ICMP_SLE: 1267 // We'd have to increment C2 by one, and for that it must not have signed 1268 // max element, but then it would have been canonicalized to 'slt' before 1269 // we get here. So we can't do anything useful with 'sle'. 1270 return nullptr; 1271 case ICmpInst::Predicate::ICMP_SGT: 1272 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1273 // which again means it must not have any signed max elements. 1274 if (!match(C2, 1275 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1276 APInt::getSignedMaxValue( 1277 C2->getType()->getScalarSizeInBits())))) 1278 return nullptr; // Can't do, have signed max element[s]. 1279 C2 = InstCombiner::AddOne(C2); 1280 LLVM_FALLTHROUGH; 1281 case ICmpInst::Predicate::ICMP_SGE: 1282 // Also non-canonical, but here we don't need to change C2, 1283 // so we don't have any restrictions on C2, so we can just handle it. 1284 std::swap(ReplacementLow, ReplacementHigh); 1285 break; 1286 default: 1287 return nullptr; // Unknown predicate. 1288 } 1289 1290 // The thresholds of this clamp-like pattern. 1291 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1292 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1293 1294 // The fold has a precondition 1: C2 s>= ThresholdLow 1295 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1296 ThresholdLowIncl); 1297 if (!match(Precond1, m_One())) 1298 return nullptr; 1299 // The fold has a precondition 2: C2 s<= ThresholdHigh 1300 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1301 ThresholdHighExcl); 1302 if (!match(Precond2, m_One())) 1303 return nullptr; 1304 1305 // All good, finally emit the new pattern. 1306 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1307 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1308 Value *MaybeReplacedLow = 1309 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1310 Instruction *MaybeReplacedHigh = 1311 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1312 1313 return MaybeReplacedHigh; 1314 } 1315 1316 // If we have 1317 // %cmp = icmp [canonical predicate] i32 %x, C0 1318 // %r = select i1 %cmp, i32 %y, i32 C1 1319 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1320 // will have if we flip the strictness of the predicate (i.e. without changing 1321 // the result) is identical to the C1 in select. If it matches we can change 1322 // original comparison to one with swapped predicate, reuse the constant, 1323 // and swap the hands of select. 1324 static Instruction * 1325 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1326 InstCombinerImpl &IC) { 1327 ICmpInst::Predicate Pred; 1328 Value *X; 1329 Constant *C0; 1330 if (!match(&Cmp, m_OneUse(m_ICmp( 1331 Pred, m_Value(X), 1332 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1333 return nullptr; 1334 1335 // If comparison predicate is non-relational, we won't be able to do anything. 1336 if (ICmpInst::isEquality(Pred)) 1337 return nullptr; 1338 1339 // If comparison predicate is non-canonical, then we certainly won't be able 1340 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1341 if (!InstCombiner::isCanonicalPredicate(Pred)) 1342 return nullptr; 1343 1344 // If the [input] type of comparison and select type are different, lets abort 1345 // for now. We could try to compare constants with trunc/[zs]ext though. 1346 if (C0->getType() != Sel.getType()) 1347 return nullptr; 1348 1349 // FIXME: are there any magic icmp predicate+constant pairs we must not touch? 1350 1351 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1352 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1353 // At least one of these values we are selecting between must be a constant 1354 // else we'll never succeed. 1355 if (!match(SelVal0, m_AnyIntegralConstant()) && 1356 !match(SelVal1, m_AnyIntegralConstant())) 1357 return nullptr; 1358 1359 // Does this constant C match any of the `select` values? 1360 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1361 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1362 }; 1363 1364 // If C0 *already* matches true/false value of select, we are done. 1365 if (MatchesSelectValue(C0)) 1366 return nullptr; 1367 1368 // Check the constant we'd have with flipped-strictness predicate. 1369 auto FlippedStrictness = 1370 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1371 if (!FlippedStrictness) 1372 return nullptr; 1373 1374 // If said constant doesn't match either, then there is no hope, 1375 if (!MatchesSelectValue(FlippedStrictness->second)) 1376 return nullptr; 1377 1378 // It matched! Lets insert the new comparison just before select. 1379 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1380 IC.Builder.SetInsertPoint(&Sel); 1381 1382 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1383 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1384 Cmp.getName() + ".inv"); 1385 IC.replaceOperand(Sel, 0, NewCmp); 1386 Sel.swapValues(); 1387 Sel.swapProfMetadata(); 1388 1389 return &Sel; 1390 } 1391 1392 /// Visit a SelectInst that has an ICmpInst as its first operand. 1393 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1394 ICmpInst *ICI) { 1395 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1396 return NewSel; 1397 1398 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this)) 1399 return NewSel; 1400 1401 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this)) 1402 return NewAbs; 1403 1404 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder)) 1405 return NewAbs; 1406 1407 if (Instruction *NewSel = 1408 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1409 return NewSel; 1410 1411 bool Changed = adjustMinMax(SI, *ICI); 1412 1413 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1414 return replaceInstUsesWith(SI, V); 1415 1416 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1417 Value *TrueVal = SI.getTrueValue(); 1418 Value *FalseVal = SI.getFalseValue(); 1419 ICmpInst::Predicate Pred = ICI->getPredicate(); 1420 Value *CmpLHS = ICI->getOperand(0); 1421 Value *CmpRHS = ICI->getOperand(1); 1422 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1423 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1424 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1425 SI.setOperand(1, CmpRHS); 1426 Changed = true; 1427 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1428 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1429 SI.setOperand(2, CmpRHS); 1430 Changed = true; 1431 } 1432 } 1433 1434 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1435 // decomposeBitTestICmp() might help. 1436 { 1437 unsigned BitWidth = 1438 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1439 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1440 Value *X; 1441 const APInt *Y, *C; 1442 bool TrueWhenUnset; 1443 bool IsBitTest = false; 1444 if (ICmpInst::isEquality(Pred) && 1445 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1446 match(CmpRHS, m_Zero())) { 1447 IsBitTest = true; 1448 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1449 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1450 X = CmpLHS; 1451 Y = &MinSignedValue; 1452 IsBitTest = true; 1453 TrueWhenUnset = false; 1454 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1455 X = CmpLHS; 1456 Y = &MinSignedValue; 1457 IsBitTest = true; 1458 TrueWhenUnset = true; 1459 } 1460 if (IsBitTest) { 1461 Value *V = nullptr; 1462 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1463 if (TrueWhenUnset && TrueVal == X && 1464 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1465 V = Builder.CreateAnd(X, ~(*Y)); 1466 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1467 else if (!TrueWhenUnset && FalseVal == X && 1468 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1469 V = Builder.CreateAnd(X, ~(*Y)); 1470 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1471 else if (TrueWhenUnset && FalseVal == X && 1472 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1473 V = Builder.CreateOr(X, *Y); 1474 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1475 else if (!TrueWhenUnset && TrueVal == X && 1476 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1477 V = Builder.CreateOr(X, *Y); 1478 1479 if (V) 1480 return replaceInstUsesWith(SI, V); 1481 } 1482 } 1483 1484 if (Instruction *V = 1485 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1486 return V; 1487 1488 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1489 return V; 1490 1491 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1492 return replaceInstUsesWith(SI, V); 1493 1494 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1495 return replaceInstUsesWith(SI, V); 1496 1497 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1498 return replaceInstUsesWith(SI, V); 1499 1500 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1501 return replaceInstUsesWith(SI, V); 1502 1503 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1504 return replaceInstUsesWith(SI, V); 1505 1506 return Changed ? &SI : nullptr; 1507 } 1508 1509 /// SI is a select whose condition is a PHI node (but the two may be in 1510 /// different blocks). See if the true/false values (V) are live in all of the 1511 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1512 /// 1513 /// X = phi [ C1, BB1], [C2, BB2] 1514 /// Y = add 1515 /// Z = select X, Y, 0 1516 /// 1517 /// because Y is not live in BB1/BB2. 1518 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1519 const SelectInst &SI) { 1520 // If the value is a non-instruction value like a constant or argument, it 1521 // can always be mapped. 1522 const Instruction *I = dyn_cast<Instruction>(V); 1523 if (!I) return true; 1524 1525 // If V is a PHI node defined in the same block as the condition PHI, we can 1526 // map the arguments. 1527 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1528 1529 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1530 if (VP->getParent() == CondPHI->getParent()) 1531 return true; 1532 1533 // Otherwise, if the PHI and select are defined in the same block and if V is 1534 // defined in a different block, then we can transform it. 1535 if (SI.getParent() == CondPHI->getParent() && 1536 I->getParent() != CondPHI->getParent()) 1537 return true; 1538 1539 // Otherwise we have a 'hard' case and we can't tell without doing more 1540 // detailed dominator based analysis, punt. 1541 return false; 1542 } 1543 1544 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1545 /// SPF2(SPF1(A, B), C) 1546 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1547 SelectPatternFlavor SPF1, Value *A, 1548 Value *B, Instruction &Outer, 1549 SelectPatternFlavor SPF2, 1550 Value *C) { 1551 if (Outer.getType() != Inner->getType()) 1552 return nullptr; 1553 1554 if (C == A || C == B) { 1555 // MAX(MAX(A, B), B) -> MAX(A, B) 1556 // MIN(MIN(a, b), a) -> MIN(a, b) 1557 // TODO: This could be done in instsimplify. 1558 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1559 return replaceInstUsesWith(Outer, Inner); 1560 1561 // MAX(MIN(a, b), a) -> a 1562 // MIN(MAX(a, b), a) -> a 1563 // TODO: This could be done in instsimplify. 1564 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1565 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1566 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1567 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1568 return replaceInstUsesWith(Outer, C); 1569 } 1570 1571 if (SPF1 == SPF2) { 1572 const APInt *CB, *CC; 1573 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1574 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1575 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1576 // TODO: This could be done in instsimplify. 1577 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1578 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1579 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1580 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1581 return replaceInstUsesWith(Outer, Inner); 1582 1583 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1584 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1585 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1586 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1587 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1588 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1589 Outer.replaceUsesOfWith(Inner, A); 1590 return &Outer; 1591 } 1592 } 1593 } 1594 1595 // max(max(A, B), min(A, B)) --> max(A, B) 1596 // min(min(A, B), max(A, B)) --> min(A, B) 1597 // TODO: This could be done in instsimplify. 1598 if (SPF1 == SPF2 && 1599 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1600 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1601 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1602 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1603 return replaceInstUsesWith(Outer, Inner); 1604 1605 // ABS(ABS(X)) -> ABS(X) 1606 // NABS(NABS(X)) -> NABS(X) 1607 // TODO: This could be done in instsimplify. 1608 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1609 return replaceInstUsesWith(Outer, Inner); 1610 } 1611 1612 // ABS(NABS(X)) -> ABS(X) 1613 // NABS(ABS(X)) -> NABS(X) 1614 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1615 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1616 SelectInst *SI = cast<SelectInst>(Inner); 1617 Value *NewSI = 1618 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1619 SI->getTrueValue(), SI->getName(), SI); 1620 return replaceInstUsesWith(Outer, NewSI); 1621 } 1622 1623 auto IsFreeOrProfitableToInvert = 1624 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1625 if (match(V, m_Not(m_Value(NotV)))) { 1626 // If V has at most 2 uses then we can get rid of the xor operation 1627 // entirely. 1628 ElidesXor |= !V->hasNUsesOrMore(3); 1629 return true; 1630 } 1631 1632 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1633 NotV = nullptr; 1634 return true; 1635 } 1636 1637 return false; 1638 }; 1639 1640 Value *NotA, *NotB, *NotC; 1641 bool ElidesXor = false; 1642 1643 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1644 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1645 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1646 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1647 // 1648 // This transform is performance neutral if we can elide at least one xor from 1649 // the set of three operands, since we'll be tacking on an xor at the very 1650 // end. 1651 if (SelectPatternResult::isMinOrMax(SPF1) && 1652 SelectPatternResult::isMinOrMax(SPF2) && 1653 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1654 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1655 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1656 if (!NotA) 1657 NotA = Builder.CreateNot(A); 1658 if (!NotB) 1659 NotB = Builder.CreateNot(B); 1660 if (!NotC) 1661 NotC = Builder.CreateNot(C); 1662 1663 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1664 NotB); 1665 Value *NewOuter = Builder.CreateNot( 1666 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1667 return replaceInstUsesWith(Outer, NewOuter); 1668 } 1669 1670 return nullptr; 1671 } 1672 1673 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1674 /// This is even legal for FP. 1675 static Instruction *foldAddSubSelect(SelectInst &SI, 1676 InstCombiner::BuilderTy &Builder) { 1677 Value *CondVal = SI.getCondition(); 1678 Value *TrueVal = SI.getTrueValue(); 1679 Value *FalseVal = SI.getFalseValue(); 1680 auto *TI = dyn_cast<Instruction>(TrueVal); 1681 auto *FI = dyn_cast<Instruction>(FalseVal); 1682 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1683 return nullptr; 1684 1685 Instruction *AddOp = nullptr, *SubOp = nullptr; 1686 if ((TI->getOpcode() == Instruction::Sub && 1687 FI->getOpcode() == Instruction::Add) || 1688 (TI->getOpcode() == Instruction::FSub && 1689 FI->getOpcode() == Instruction::FAdd)) { 1690 AddOp = FI; 1691 SubOp = TI; 1692 } else if ((FI->getOpcode() == Instruction::Sub && 1693 TI->getOpcode() == Instruction::Add) || 1694 (FI->getOpcode() == Instruction::FSub && 1695 TI->getOpcode() == Instruction::FAdd)) { 1696 AddOp = TI; 1697 SubOp = FI; 1698 } 1699 1700 if (AddOp) { 1701 Value *OtherAddOp = nullptr; 1702 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1703 OtherAddOp = AddOp->getOperand(1); 1704 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1705 OtherAddOp = AddOp->getOperand(0); 1706 } 1707 1708 if (OtherAddOp) { 1709 // So at this point we know we have (Y -> OtherAddOp): 1710 // select C, (add X, Y), (sub X, Z) 1711 Value *NegVal; // Compute -Z 1712 if (SI.getType()->isFPOrFPVectorTy()) { 1713 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1714 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1715 FastMathFlags Flags = AddOp->getFastMathFlags(); 1716 Flags &= SubOp->getFastMathFlags(); 1717 NegInst->setFastMathFlags(Flags); 1718 } 1719 } else { 1720 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1721 } 1722 1723 Value *NewTrueOp = OtherAddOp; 1724 Value *NewFalseOp = NegVal; 1725 if (AddOp != TI) 1726 std::swap(NewTrueOp, NewFalseOp); 1727 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1728 SI.getName() + ".p", &SI); 1729 1730 if (SI.getType()->isFPOrFPVectorTy()) { 1731 Instruction *RI = 1732 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1733 1734 FastMathFlags Flags = AddOp->getFastMathFlags(); 1735 Flags &= SubOp->getFastMathFlags(); 1736 RI->setFastMathFlags(Flags); 1737 return RI; 1738 } else 1739 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1740 } 1741 } 1742 return nullptr; 1743 } 1744 1745 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1746 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1747 /// Along with a number of patterns similar to: 1748 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1749 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1750 static Instruction * 1751 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1752 Value *CondVal = SI.getCondition(); 1753 Value *TrueVal = SI.getTrueValue(); 1754 Value *FalseVal = SI.getFalseValue(); 1755 1756 WithOverflowInst *II; 1757 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1758 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1759 return nullptr; 1760 1761 Value *X = II->getLHS(); 1762 Value *Y = II->getRHS(); 1763 1764 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1765 Type *Ty = Limit->getType(); 1766 1767 ICmpInst::Predicate Pred; 1768 Value *TrueVal, *FalseVal, *Op; 1769 const APInt *C; 1770 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1771 m_Value(TrueVal), m_Value(FalseVal)))) 1772 return false; 1773 1774 auto IsZeroOrOne = [](const APInt &C) { 1775 return C.isNullValue() || C.isOneValue(); 1776 }; 1777 auto IsMinMax = [&](Value *Min, Value *Max) { 1778 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1779 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1780 return match(Min, m_SpecificInt(MinVal)) && 1781 match(Max, m_SpecificInt(MaxVal)); 1782 }; 1783 1784 if (Op != X && Op != Y) 1785 return false; 1786 1787 if (IsAdd) { 1788 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1789 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1790 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1791 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1792 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1793 IsMinMax(TrueVal, FalseVal)) 1794 return true; 1795 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1796 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1797 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1798 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1799 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1800 IsMinMax(FalseVal, TrueVal)) 1801 return true; 1802 } else { 1803 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1804 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1805 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1806 IsMinMax(TrueVal, FalseVal)) 1807 return true; 1808 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1809 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1810 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1811 IsMinMax(FalseVal, TrueVal)) 1812 return true; 1813 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1814 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1815 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1816 IsMinMax(FalseVal, TrueVal)) 1817 return true; 1818 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1819 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1820 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1821 IsMinMax(TrueVal, FalseVal)) 1822 return true; 1823 } 1824 1825 return false; 1826 }; 1827 1828 Intrinsic::ID NewIntrinsicID; 1829 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1830 match(TrueVal, m_AllOnes())) 1831 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1832 NewIntrinsicID = Intrinsic::uadd_sat; 1833 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1834 match(TrueVal, m_Zero())) 1835 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1836 NewIntrinsicID = Intrinsic::usub_sat; 1837 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1838 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1839 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1840 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1841 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1842 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1843 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1844 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1845 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1846 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1847 NewIntrinsicID = Intrinsic::sadd_sat; 1848 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1849 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1850 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1851 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1852 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1853 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1854 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1855 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1856 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1857 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1858 NewIntrinsicID = Intrinsic::ssub_sat; 1859 else 1860 return nullptr; 1861 1862 Function *F = 1863 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 1864 return CallInst::Create(F, {X, Y}); 1865 } 1866 1867 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 1868 Constant *C; 1869 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1870 !match(Sel.getFalseValue(), m_Constant(C))) 1871 return nullptr; 1872 1873 Instruction *ExtInst; 1874 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1875 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1876 return nullptr; 1877 1878 auto ExtOpcode = ExtInst->getOpcode(); 1879 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1880 return nullptr; 1881 1882 // If we are extending from a boolean type or if we can create a select that 1883 // has the same size operands as its condition, try to narrow the select. 1884 Value *X = ExtInst->getOperand(0); 1885 Type *SmallType = X->getType(); 1886 Value *Cond = Sel.getCondition(); 1887 auto *Cmp = dyn_cast<CmpInst>(Cond); 1888 if (!SmallType->isIntOrIntVectorTy(1) && 1889 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1890 return nullptr; 1891 1892 // If the constant is the same after truncation to the smaller type and 1893 // extension to the original type, we can narrow the select. 1894 Type *SelType = Sel.getType(); 1895 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1896 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1897 if (ExtC == C && ExtInst->hasOneUse()) { 1898 Value *TruncCVal = cast<Value>(TruncC); 1899 if (ExtInst == Sel.getFalseValue()) 1900 std::swap(X, TruncCVal); 1901 1902 // select Cond, (ext X), C --> ext(select Cond, X, C') 1903 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1904 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1905 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1906 } 1907 1908 // If one arm of the select is the extend of the condition, replace that arm 1909 // with the extension of the appropriate known bool value. 1910 if (Cond == X) { 1911 if (ExtInst == Sel.getTrueValue()) { 1912 // select X, (sext X), C --> select X, -1, C 1913 // select X, (zext X), C --> select X, 1, C 1914 Constant *One = ConstantInt::getTrue(SmallType); 1915 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1916 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1917 } else { 1918 // select X, C, (sext X) --> select X, C, 0 1919 // select X, C, (zext X) --> select X, C, 0 1920 Constant *Zero = ConstantInt::getNullValue(SelType); 1921 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1922 } 1923 } 1924 1925 return nullptr; 1926 } 1927 1928 /// Try to transform a vector select with a constant condition vector into a 1929 /// shuffle for easier combining with other shuffles and insert/extract. 1930 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1931 Value *CondVal = SI.getCondition(); 1932 Constant *CondC; 1933 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 1934 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 1935 return nullptr; 1936 1937 unsigned NumElts = CondValTy->getNumElements(); 1938 SmallVector<int, 16> Mask; 1939 Mask.reserve(NumElts); 1940 for (unsigned i = 0; i != NumElts; ++i) { 1941 Constant *Elt = CondC->getAggregateElement(i); 1942 if (!Elt) 1943 return nullptr; 1944 1945 if (Elt->isOneValue()) { 1946 // If the select condition element is true, choose from the 1st vector. 1947 Mask.push_back(i); 1948 } else if (Elt->isNullValue()) { 1949 // If the select condition element is false, choose from the 2nd vector. 1950 Mask.push_back(i + NumElts); 1951 } else if (isa<UndefValue>(Elt)) { 1952 // Undef in a select condition (choose one of the operands) does not mean 1953 // the same thing as undef in a shuffle mask (any value is acceptable), so 1954 // give up. 1955 return nullptr; 1956 } else { 1957 // Bail out on a constant expression. 1958 return nullptr; 1959 } 1960 } 1961 1962 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 1963 } 1964 1965 /// If we have a select of vectors with a scalar condition, try to convert that 1966 /// to a vector select by splatting the condition. A splat may get folded with 1967 /// other operations in IR and having all operands of a select be vector types 1968 /// is likely better for vector codegen. 1969 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 1970 InstCombinerImpl &IC) { 1971 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 1972 if (!Ty) 1973 return nullptr; 1974 1975 // We can replace a single-use extract with constant index. 1976 Value *Cond = Sel.getCondition(); 1977 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 1978 return nullptr; 1979 1980 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 1981 // Splatting the extracted condition reduces code (we could directly create a 1982 // splat shuffle of the source vector to eliminate the intermediate step). 1983 return IC.replaceOperand( 1984 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 1985 } 1986 1987 /// Reuse bitcasted operands between a compare and select: 1988 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1989 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1990 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1991 InstCombiner::BuilderTy &Builder) { 1992 Value *Cond = Sel.getCondition(); 1993 Value *TVal = Sel.getTrueValue(); 1994 Value *FVal = Sel.getFalseValue(); 1995 1996 CmpInst::Predicate Pred; 1997 Value *A, *B; 1998 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1999 return nullptr; 2000 2001 // The select condition is a compare instruction. If the select's true/false 2002 // values are already the same as the compare operands, there's nothing to do. 2003 if (TVal == A || TVal == B || FVal == A || FVal == B) 2004 return nullptr; 2005 2006 Value *C, *D; 2007 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2008 return nullptr; 2009 2010 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2011 Value *TSrc, *FSrc; 2012 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2013 !match(FVal, m_BitCast(m_Value(FSrc)))) 2014 return nullptr; 2015 2016 // If the select true/false values are *different bitcasts* of the same source 2017 // operands, make the select operands the same as the compare operands and 2018 // cast the result. This is the canonical select form for min/max. 2019 Value *NewSel; 2020 if (TSrc == C && FSrc == D) { 2021 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2022 // bitcast (select (cmp A, B), A, B) 2023 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2024 } else if (TSrc == D && FSrc == C) { 2025 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2026 // bitcast (select (cmp A, B), B, A) 2027 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2028 } else { 2029 return nullptr; 2030 } 2031 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2032 } 2033 2034 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2035 /// instructions. 2036 /// 2037 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2038 /// selects between the returned value of the cmpxchg instruction its compare 2039 /// operand, the result of the select will always be equal to its false value. 2040 /// For example: 2041 /// 2042 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2043 /// %1 = extractvalue { i64, i1 } %0, 1 2044 /// %2 = extractvalue { i64, i1 } %0, 0 2045 /// %3 = select i1 %1, i64 %compare, i64 %2 2046 /// ret i64 %3 2047 /// 2048 /// The returned value of the cmpxchg instruction (%2) is the original value 2049 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2050 /// must have been equal to %compare. Thus, the result of the select is always 2051 /// equal to %2, and the code can be simplified to: 2052 /// 2053 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2054 /// %1 = extractvalue { i64, i1 } %0, 0 2055 /// ret i64 %1 2056 /// 2057 static Value *foldSelectCmpXchg(SelectInst &SI) { 2058 // A helper that determines if V is an extractvalue instruction whose 2059 // aggregate operand is a cmpxchg instruction and whose single index is equal 2060 // to I. If such conditions are true, the helper returns the cmpxchg 2061 // instruction; otherwise, a nullptr is returned. 2062 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2063 auto *Extract = dyn_cast<ExtractValueInst>(V); 2064 if (!Extract) 2065 return nullptr; 2066 if (Extract->getIndices()[0] != I) 2067 return nullptr; 2068 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2069 }; 2070 2071 // If the select has a single user, and this user is a select instruction that 2072 // we can simplify, skip the cmpxchg simplification for now. 2073 if (SI.hasOneUse()) 2074 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2075 if (Select->getCondition() == SI.getCondition()) 2076 if (Select->getFalseValue() == SI.getTrueValue() || 2077 Select->getTrueValue() == SI.getFalseValue()) 2078 return nullptr; 2079 2080 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2081 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2082 if (!CmpXchg) 2083 return nullptr; 2084 2085 // Check the true value case: The true value of the select is the returned 2086 // value of the same cmpxchg used by the condition, and the false value is the 2087 // cmpxchg instruction's compare operand. 2088 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2089 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2090 return SI.getFalseValue(); 2091 2092 // Check the false value case: The false value of the select is the returned 2093 // value of the same cmpxchg used by the condition, and the true value is the 2094 // cmpxchg instruction's compare operand. 2095 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2096 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2097 return SI.getFalseValue(); 2098 2099 return nullptr; 2100 } 2101 2102 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2103 Value *Y, 2104 InstCombiner::BuilderTy &Builder) { 2105 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2106 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2107 SPF == SelectPatternFlavor::SPF_UMAX; 2108 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2109 // the constant value check to an assert. 2110 Value *A; 2111 const APInt *C1, *C2; 2112 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2113 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2114 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2115 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2116 Value *NewMinMax = createMinMax(Builder, SPF, A, 2117 ConstantInt::get(X->getType(), *C2 - *C1)); 2118 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2119 ConstantInt::get(X->getType(), *C1)); 2120 } 2121 2122 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2123 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2124 bool Overflow; 2125 APInt Diff = C2->ssub_ov(*C1, Overflow); 2126 if (!Overflow) { 2127 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2128 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2129 Value *NewMinMax = createMinMax(Builder, SPF, A, 2130 ConstantInt::get(X->getType(), Diff)); 2131 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2132 ConstantInt::get(X->getType(), *C1)); 2133 } 2134 } 2135 2136 return nullptr; 2137 } 2138 2139 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2140 Instruction *InstCombinerImpl::matchSAddSubSat(SelectInst &MinMax1) { 2141 Type *Ty = MinMax1.getType(); 2142 2143 // We are looking for a tree of: 2144 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2145 // Where the min and max could be reversed 2146 Instruction *MinMax2; 2147 BinaryOperator *AddSub; 2148 const APInt *MinValue, *MaxValue; 2149 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2150 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2151 return nullptr; 2152 } else if (match(&MinMax1, 2153 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2154 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2155 return nullptr; 2156 } else 2157 return nullptr; 2158 2159 // Check that the constants clamp a saturate, and that the new type would be 2160 // sensible to convert to. 2161 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2162 return nullptr; 2163 // In what bitwidth can this be treated as saturating arithmetics? 2164 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2165 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2166 // good first approximation for what should be done there. 2167 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2168 return nullptr; 2169 2170 // Also make sure that the number of uses is as expected. The "3"s are for the 2171 // the two items of min/max (the compare and the select). 2172 if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3)) 2173 return nullptr; 2174 2175 // Create the new type (which can be a vector type) 2176 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2177 // Match the two extends from the add/sub 2178 Value *A, *B; 2179 if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B))))) 2180 return nullptr; 2181 // And check the incoming values are of a type smaller than or equal to the 2182 // size of the saturation. Otherwise the higher bits can cause different 2183 // results. 2184 if (A->getType()->getScalarSizeInBits() > NewBitWidth || 2185 B->getType()->getScalarSizeInBits() > NewBitWidth) 2186 return nullptr; 2187 2188 Intrinsic::ID IntrinsicID; 2189 if (AddSub->getOpcode() == Instruction::Add) 2190 IntrinsicID = Intrinsic::sadd_sat; 2191 else if (AddSub->getOpcode() == Instruction::Sub) 2192 IntrinsicID = Intrinsic::ssub_sat; 2193 else 2194 return nullptr; 2195 2196 // Finally create and return the sat intrinsic, truncated to the new type 2197 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2198 Value *AT = Builder.CreateSExt(A, NewTy); 2199 Value *BT = Builder.CreateSExt(B, NewTy); 2200 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2201 return CastInst::Create(Instruction::SExt, Sat, Ty); 2202 } 2203 2204 /// Reduce a sequence of min/max with a common operand. 2205 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2206 Value *RHS, 2207 InstCombiner::BuilderTy &Builder) { 2208 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2209 // TODO: Allow FP min/max with nnan/nsz. 2210 if (!LHS->getType()->isIntOrIntVectorTy()) 2211 return nullptr; 2212 2213 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2214 Value *A, *B, *C, *D; 2215 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2216 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2217 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2218 return nullptr; 2219 2220 // Look for a common operand. The use checks are different than usual because 2221 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2222 // the select. 2223 Value *MinMaxOp = nullptr; 2224 Value *ThirdOp = nullptr; 2225 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2226 // If the LHS is only used in this chain and the RHS is used outside of it, 2227 // reuse the RHS min/max because that will eliminate the LHS. 2228 if (D == A || C == A) { 2229 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2230 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2231 MinMaxOp = RHS; 2232 ThirdOp = B; 2233 } else if (D == B || C == B) { 2234 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2235 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2236 MinMaxOp = RHS; 2237 ThirdOp = A; 2238 } 2239 } else if (!RHS->hasNUsesOrMore(3)) { 2240 // Reuse the LHS. This will eliminate the RHS. 2241 if (D == A || D == B) { 2242 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2243 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2244 MinMaxOp = LHS; 2245 ThirdOp = C; 2246 } else if (C == A || C == B) { 2247 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2248 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2249 MinMaxOp = LHS; 2250 ThirdOp = D; 2251 } 2252 } 2253 if (!MinMaxOp || !ThirdOp) 2254 return nullptr; 2255 2256 CmpInst::Predicate P = getMinMaxPred(SPF); 2257 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2258 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2259 } 2260 2261 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2262 /// into a funnel shift intrinsic. Example: 2263 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2264 /// --> call llvm.fshl.i32(a, a, b) 2265 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2266 /// --> call llvm.fshl.i32(a, b, c) 2267 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2268 /// --> call llvm.fshr.i32(a, b, c) 2269 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2270 InstCombiner::BuilderTy &Builder) { 2271 // This must be a power-of-2 type for a bitmasking transform to be valid. 2272 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2273 if (!isPowerOf2_32(Width)) 2274 return nullptr; 2275 2276 BinaryOperator *Or0, *Or1; 2277 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2278 return nullptr; 2279 2280 Value *SV0, *SV1, *SA0, *SA1; 2281 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2282 m_ZExtOrSelf(m_Value(SA0))))) || 2283 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2284 m_ZExtOrSelf(m_Value(SA1))))) || 2285 Or0->getOpcode() == Or1->getOpcode()) 2286 return nullptr; 2287 2288 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2289 if (Or0->getOpcode() == BinaryOperator::LShr) { 2290 std::swap(Or0, Or1); 2291 std::swap(SV0, SV1); 2292 std::swap(SA0, SA1); 2293 } 2294 assert(Or0->getOpcode() == BinaryOperator::Shl && 2295 Or1->getOpcode() == BinaryOperator::LShr && 2296 "Illegal or(shift,shift) pair"); 2297 2298 // Check the shift amounts to see if they are an opposite pair. 2299 Value *ShAmt; 2300 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2301 ShAmt = SA0; 2302 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2303 ShAmt = SA1; 2304 else 2305 return nullptr; 2306 2307 // We should now have this pattern: 2308 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2309 // The false value of the select must be a funnel-shift of the true value: 2310 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2311 bool IsFshl = (ShAmt == SA0); 2312 Value *TVal = Sel.getTrueValue(); 2313 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2314 return nullptr; 2315 2316 // Finally, see if the select is filtering out a shift-by-zero. 2317 Value *Cond = Sel.getCondition(); 2318 ICmpInst::Predicate Pred; 2319 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2320 Pred != ICmpInst::ICMP_EQ) 2321 return nullptr; 2322 2323 // If this is not a rotate then the select was blocking poison from the 2324 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2325 if (SV0 != SV1) { 2326 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2327 SV1 = Builder.CreateFreeze(SV1); 2328 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2329 SV0 = Builder.CreateFreeze(SV0); 2330 } 2331 2332 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2333 // Convert to funnel shift intrinsic. 2334 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2335 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2336 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2337 return IntrinsicInst::Create(F, { SV0, SV1, ShAmt }); 2338 } 2339 2340 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2341 InstCombiner::BuilderTy &Builder) { 2342 Value *Cond = Sel.getCondition(); 2343 Value *TVal = Sel.getTrueValue(); 2344 Value *FVal = Sel.getFalseValue(); 2345 Type *SelType = Sel.getType(); 2346 2347 // Match select ?, TC, FC where the constants are equal but negated. 2348 // TODO: Generalize to handle a negated variable operand? 2349 const APFloat *TC, *FC; 2350 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2351 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2352 return nullptr; 2353 2354 assert(TC != FC && "Expected equal select arms to simplify"); 2355 2356 Value *X; 2357 const APInt *C; 2358 bool IsTrueIfSignSet; 2359 ICmpInst::Predicate Pred; 2360 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2361 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2362 X->getType() != SelType) 2363 return nullptr; 2364 2365 // If needed, negate the value that will be the sign argument of the copysign: 2366 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2367 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2368 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2369 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2370 if (IsTrueIfSignSet ^ TC->isNegative()) 2371 X = Builder.CreateFNegFMF(X, &Sel); 2372 2373 // Canonicalize the magnitude argument as the positive constant since we do 2374 // not care about its sign. 2375 Value *MagArg = TC->isNegative() ? FVal : TVal; 2376 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2377 Sel.getType()); 2378 Instruction *CopySign = IntrinsicInst::Create(F, { MagArg, X }); 2379 CopySign->setFastMathFlags(Sel.getFastMathFlags()); 2380 return CopySign; 2381 } 2382 2383 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2384 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2385 if (!VecTy) 2386 return nullptr; 2387 2388 unsigned NumElts = VecTy->getNumElements(); 2389 APInt UndefElts(NumElts, 0); 2390 APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts)); 2391 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2392 if (V != &Sel) 2393 return replaceInstUsesWith(Sel, V); 2394 return &Sel; 2395 } 2396 2397 // A select of a "select shuffle" with a common operand can be rearranged 2398 // to select followed by "select shuffle". Because of poison, this only works 2399 // in the case of a shuffle with no undefined mask elements. 2400 Value *Cond = Sel.getCondition(); 2401 Value *TVal = Sel.getTrueValue(); 2402 Value *FVal = Sel.getFalseValue(); 2403 Value *X, *Y; 2404 ArrayRef<int> Mask; 2405 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2406 !is_contained(Mask, UndefMaskElem) && 2407 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2408 if (X == FVal) { 2409 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2410 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2411 return new ShuffleVectorInst(X, NewSel, Mask); 2412 } 2413 if (Y == FVal) { 2414 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2415 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2416 return new ShuffleVectorInst(NewSel, Y, Mask); 2417 } 2418 } 2419 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2420 !is_contained(Mask, UndefMaskElem) && 2421 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2422 if (X == TVal) { 2423 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2424 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2425 return new ShuffleVectorInst(X, NewSel, Mask); 2426 } 2427 if (Y == TVal) { 2428 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2429 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2430 return new ShuffleVectorInst(NewSel, Y, Mask); 2431 } 2432 } 2433 2434 return nullptr; 2435 } 2436 2437 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2438 const DominatorTree &DT, 2439 InstCombiner::BuilderTy &Builder) { 2440 // Find the block's immediate dominator that ends with a conditional branch 2441 // that matches select's condition (maybe inverted). 2442 auto *IDomNode = DT[BB]->getIDom(); 2443 if (!IDomNode) 2444 return nullptr; 2445 BasicBlock *IDom = IDomNode->getBlock(); 2446 2447 Value *Cond = Sel.getCondition(); 2448 Value *IfTrue, *IfFalse; 2449 BasicBlock *TrueSucc, *FalseSucc; 2450 if (match(IDom->getTerminator(), 2451 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2452 m_BasicBlock(FalseSucc)))) { 2453 IfTrue = Sel.getTrueValue(); 2454 IfFalse = Sel.getFalseValue(); 2455 } else if (match(IDom->getTerminator(), 2456 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2457 m_BasicBlock(FalseSucc)))) { 2458 IfTrue = Sel.getFalseValue(); 2459 IfFalse = Sel.getTrueValue(); 2460 } else 2461 return nullptr; 2462 2463 // Make sure the branches are actually different. 2464 if (TrueSucc == FalseSucc) 2465 return nullptr; 2466 2467 // We want to replace select %cond, %a, %b with a phi that takes value %a 2468 // for all incoming edges that are dominated by condition `%cond == true`, 2469 // and value %b for edges dominated by condition `%cond == false`. If %a 2470 // or %b are also phis from the same basic block, we can go further and take 2471 // their incoming values from the corresponding blocks. 2472 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2473 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2474 DenseMap<BasicBlock *, Value *> Inputs; 2475 for (auto *Pred : predecessors(BB)) { 2476 // Check implication. 2477 BasicBlockEdge Incoming(Pred, BB); 2478 if (DT.dominates(TrueEdge, Incoming)) 2479 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2480 else if (DT.dominates(FalseEdge, Incoming)) 2481 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2482 else 2483 return nullptr; 2484 // Check availability. 2485 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2486 if (!DT.dominates(Insn, Pred->getTerminator())) 2487 return nullptr; 2488 } 2489 2490 Builder.SetInsertPoint(&*BB->begin()); 2491 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2492 for (auto *Pred : predecessors(BB)) 2493 PN->addIncoming(Inputs[Pred], Pred); 2494 PN->takeName(&Sel); 2495 return PN; 2496 } 2497 2498 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2499 InstCombiner::BuilderTy &Builder) { 2500 // Try to replace this select with Phi in one of these blocks. 2501 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2502 CandidateBlocks.insert(Sel.getParent()); 2503 for (Value *V : Sel.operands()) 2504 if (auto *I = dyn_cast<Instruction>(V)) 2505 CandidateBlocks.insert(I->getParent()); 2506 2507 for (BasicBlock *BB : CandidateBlocks) 2508 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2509 return PN; 2510 return nullptr; 2511 } 2512 2513 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2514 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2515 if (!FI) 2516 return nullptr; 2517 2518 Value *Cond = FI->getOperand(0); 2519 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2520 2521 // select (freeze(x == y)), x, y --> y 2522 // select (freeze(x != y)), x, y --> x 2523 // The freeze should be only used by this select. Otherwise, remaining uses of 2524 // the freeze can observe a contradictory value. 2525 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2526 // a = select c, x, y ; 2527 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2528 // ; to y, this can happen. 2529 CmpInst::Predicate Pred; 2530 if (FI->hasOneUse() && 2531 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2532 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2533 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2534 } 2535 2536 return nullptr; 2537 } 2538 2539 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2540 Value *CondVal = SI.getCondition(); 2541 Value *TrueVal = SI.getTrueValue(); 2542 Value *FalseVal = SI.getFalseValue(); 2543 Type *SelType = SI.getType(); 2544 2545 // FIXME: Remove this workaround when freeze related patches are done. 2546 // For select with undef operand which feeds into an equality comparison, 2547 // don't simplify it so loop unswitch can know the equality comparison 2548 // may have an undef operand. This is a workaround for PR31652 caused by 2549 // descrepancy about branch on undef between LoopUnswitch and GVN. 2550 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 2551 if (llvm::any_of(SI.users(), [&](User *U) { 2552 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2553 if (CI && CI->isEquality()) 2554 return true; 2555 return false; 2556 })) { 2557 return nullptr; 2558 } 2559 } 2560 2561 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2562 SQ.getWithInstruction(&SI))) 2563 return replaceInstUsesWith(SI, V); 2564 2565 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2566 return I; 2567 2568 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2569 return I; 2570 2571 CmpInst::Predicate Pred; 2572 2573 if (SelType->isIntOrIntVectorTy(1) && 2574 TrueVal->getType() == CondVal->getType()) { 2575 if (EnableUnsafeSelectTransform && match(TrueVal, m_One())) { 2576 // Change: A = select B, true, C --> A = or B, C 2577 return BinaryOperator::CreateOr(CondVal, FalseVal); 2578 } 2579 if (EnableUnsafeSelectTransform && match(FalseVal, m_Zero())) { 2580 // Change: A = select B, C, false --> A = and B, C 2581 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2582 } 2583 2584 // select a, false, b -> select !a, b, false 2585 if (match(TrueVal, m_Zero())) { 2586 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2587 return SelectInst::Create(NotCond, FalseVal, 2588 ConstantInt::getFalse(SelType)); 2589 } 2590 // select a, b, true -> select !a, true, b 2591 if (match(FalseVal, m_One())) { 2592 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2593 return SelectInst::Create(NotCond, ConstantInt::getTrue(SelType), 2594 TrueVal); 2595 } 2596 2597 // select a, a, b -> select a, true, b 2598 if (CondVal == TrueVal) 2599 return replaceOperand(SI, 1, ConstantInt::getTrue(SelType)); 2600 // select a, b, a -> select a, b, false 2601 if (CondVal == FalseVal) 2602 return replaceOperand(SI, 2, ConstantInt::getFalse(SelType)); 2603 2604 // select a, !a, b -> select !a, b, false 2605 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2606 return SelectInst::Create(TrueVal, FalseVal, 2607 ConstantInt::getFalse(SelType)); 2608 // select a, b, !a -> select !a, true, b 2609 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2610 return SelectInst::Create(FalseVal, ConstantInt::getTrue(SelType), 2611 TrueVal); 2612 } 2613 2614 // Selecting between two integer or vector splat integer constants? 2615 // 2616 // Note that we don't handle a scalar select of vectors: 2617 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2618 // because that may need 3 instructions to splat the condition value: 2619 // extend, insertelement, shufflevector. 2620 // 2621 // Do not handle i1 TrueVal and FalseVal otherwise would result in 2622 // zext/sext i1 to i1. 2623 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 2624 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2625 // select C, 1, 0 -> zext C to int 2626 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2627 return new ZExtInst(CondVal, SelType); 2628 2629 // select C, -1, 0 -> sext C to int 2630 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2631 return new SExtInst(CondVal, SelType); 2632 2633 // select C, 0, 1 -> zext !C to int 2634 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2635 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2636 return new ZExtInst(NotCond, SelType); 2637 } 2638 2639 // select C, 0, -1 -> sext !C to int 2640 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2641 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2642 return new SExtInst(NotCond, SelType); 2643 } 2644 } 2645 2646 // See if we are selecting two values based on a comparison of the two values. 2647 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 2648 Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1); 2649 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2650 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2651 // Canonicalize to use ordered comparisons by swapping the select 2652 // operands. 2653 // 2654 // e.g. 2655 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2656 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 2657 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 2658 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2659 // FIXME: The FMF should propagate from the select, not the fcmp. 2660 Builder.setFastMathFlags(FCI->getFastMathFlags()); 2661 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2662 FCI->getName() + ".inv"); 2663 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2664 return replaceInstUsesWith(SI, NewSel); 2665 } 2666 2667 // NOTE: if we wanted to, this is where to detect MIN/MAX 2668 } 2669 } 2670 2671 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2672 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 2673 // also require nnan because we do not want to unintentionally change the 2674 // sign of a NaN value. 2675 // FIXME: These folds should test/propagate FMF from the select, not the 2676 // fsub or fneg. 2677 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2678 Instruction *FSub; 2679 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2680 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2681 match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2682 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2683 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub); 2684 return replaceInstUsesWith(SI, Fabs); 2685 } 2686 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2687 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2688 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2689 match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2690 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2691 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub); 2692 return replaceInstUsesWith(SI, Fabs); 2693 } 2694 // With nnan and nsz: 2695 // (X < +/-0.0) ? -X : X --> fabs(X) 2696 // (X <= +/-0.0) ? -X : X --> fabs(X) 2697 Instruction *FNeg; 2698 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2699 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && 2700 match(TrueVal, m_Instruction(FNeg)) && 2701 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2702 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2703 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2704 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg); 2705 return replaceInstUsesWith(SI, Fabs); 2706 } 2707 // With nnan and nsz: 2708 // (X > +/-0.0) ? X : -X --> fabs(X) 2709 // (X >= +/-0.0) ? X : -X --> fabs(X) 2710 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2711 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && 2712 match(FalseVal, m_Instruction(FNeg)) && 2713 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2714 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2715 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2716 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg); 2717 return replaceInstUsesWith(SI, Fabs); 2718 } 2719 2720 // See if we are selecting two values based on a comparison of the two values. 2721 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2722 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2723 return Result; 2724 2725 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2726 return Add; 2727 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2728 return Add; 2729 if (Instruction *Or = foldSetClearBits(SI, Builder)) 2730 return Or; 2731 2732 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2733 auto *TI = dyn_cast<Instruction>(TrueVal); 2734 auto *FI = dyn_cast<Instruction>(FalseVal); 2735 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2736 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2737 return IV; 2738 2739 if (Instruction *I = foldSelectExtConst(SI)) 2740 return I; 2741 2742 // See if we can fold the select into one of our operands. 2743 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2744 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2745 return FoldI; 2746 2747 Value *LHS, *RHS; 2748 Instruction::CastOps CastOp; 2749 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2750 auto SPF = SPR.Flavor; 2751 if (SPF) { 2752 Value *LHS2, *RHS2; 2753 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2754 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2755 RHS2, SI, SPF, RHS)) 2756 return R; 2757 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2758 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2759 RHS2, SI, SPF, LHS)) 2760 return R; 2761 // TODO. 2762 // ABS(-X) -> ABS(X) 2763 } 2764 2765 if (SelectPatternResult::isMinOrMax(SPF)) { 2766 // Canonicalize so that 2767 // - type casts are outside select patterns. 2768 // - float clamp is transformed to min/max pattern 2769 2770 bool IsCastNeeded = LHS->getType() != SelType; 2771 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2772 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 2773 if (IsCastNeeded || 2774 (LHS->getType()->isFPOrFPVectorTy() && 2775 ((CmpLHS != LHS && CmpLHS != RHS) || 2776 (CmpRHS != LHS && CmpRHS != RHS)))) { 2777 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 2778 2779 Value *Cmp; 2780 if (CmpInst::isIntPredicate(MinMaxPred)) { 2781 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 2782 } else { 2783 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2784 auto FMF = 2785 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 2786 Builder.setFastMathFlags(FMF); 2787 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 2788 } 2789 2790 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 2791 if (!IsCastNeeded) 2792 return replaceInstUsesWith(SI, NewSI); 2793 2794 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 2795 return replaceInstUsesWith(SI, NewCast); 2796 } 2797 2798 // MAX(~a, ~b) -> ~MIN(a, b) 2799 // MAX(~a, C) -> ~MIN(a, ~C) 2800 // MIN(~a, ~b) -> ~MAX(a, b) 2801 // MIN(~a, C) -> ~MAX(a, ~C) 2802 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 2803 Value *A; 2804 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 2805 !isFreeToInvert(A, A->hasOneUse()) && 2806 // Passing false to only consider m_Not and constants. 2807 isFreeToInvert(Y, false)) { 2808 Value *B = Builder.CreateNot(Y); 2809 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 2810 A, B); 2811 // Copy the profile metadata. 2812 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 2813 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 2814 // Swap the metadata if the operands are swapped. 2815 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 2816 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 2817 } 2818 2819 return BinaryOperator::CreateNot(NewMinMax); 2820 } 2821 2822 return nullptr; 2823 }; 2824 2825 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 2826 return I; 2827 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 2828 return I; 2829 2830 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 2831 return I; 2832 2833 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 2834 return I; 2835 if (Instruction *I = matchSAddSubSat(SI)) 2836 return I; 2837 } 2838 } 2839 2840 // Canonicalize select of FP values where NaN and -0.0 are not valid as 2841 // minnum/maxnum intrinsics. 2842 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 2843 Value *X, *Y; 2844 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 2845 return replaceInstUsesWith( 2846 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 2847 2848 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 2849 return replaceInstUsesWith( 2850 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 2851 } 2852 2853 // See if we can fold the select into a phi node if the condition is a select. 2854 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2855 // The true/false values have to be live in the PHI predecessor's blocks. 2856 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2857 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2858 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2859 return NV; 2860 2861 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2862 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2863 // select(C, select(C, a, b), c) -> select(C, a, c) 2864 if (TrueSI->getCondition() == CondVal) { 2865 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2866 return nullptr; 2867 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 2868 } 2869 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2870 // We choose this as normal form to enable folding on the And and 2871 // shortening paths for the values (this helps getUnderlyingObjects() for 2872 // example). 2873 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 2874 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 2875 replaceOperand(SI, 0, And); 2876 replaceOperand(SI, 1, TrueSI->getTrueValue()); 2877 return &SI; 2878 } 2879 } 2880 } 2881 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 2882 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 2883 // select(C, a, select(C, b, c)) -> select(C, a, c) 2884 if (FalseSI->getCondition() == CondVal) { 2885 if (SI.getFalseValue() == FalseSI->getFalseValue()) 2886 return nullptr; 2887 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 2888 } 2889 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 2890 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 2891 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 2892 replaceOperand(SI, 0, Or); 2893 replaceOperand(SI, 2, FalseSI->getFalseValue()); 2894 return &SI; 2895 } 2896 } 2897 } 2898 2899 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 2900 // The select might be preventing a division by 0. 2901 switch (BO->getOpcode()) { 2902 default: 2903 return true; 2904 case Instruction::SRem: 2905 case Instruction::URem: 2906 case Instruction::SDiv: 2907 case Instruction::UDiv: 2908 return false; 2909 } 2910 }; 2911 2912 // Try to simplify a binop sandwiched between 2 selects with the same 2913 // condition. 2914 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 2915 BinaryOperator *TrueBO; 2916 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 2917 canMergeSelectThroughBinop(TrueBO)) { 2918 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 2919 if (TrueBOSI->getCondition() == CondVal) { 2920 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 2921 Worklist.push(TrueBO); 2922 return &SI; 2923 } 2924 } 2925 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 2926 if (TrueBOSI->getCondition() == CondVal) { 2927 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 2928 Worklist.push(TrueBO); 2929 return &SI; 2930 } 2931 } 2932 } 2933 2934 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 2935 BinaryOperator *FalseBO; 2936 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 2937 canMergeSelectThroughBinop(FalseBO)) { 2938 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 2939 if (FalseBOSI->getCondition() == CondVal) { 2940 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 2941 Worklist.push(FalseBO); 2942 return &SI; 2943 } 2944 } 2945 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 2946 if (FalseBOSI->getCondition() == CondVal) { 2947 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 2948 Worklist.push(FalseBO); 2949 return &SI; 2950 } 2951 } 2952 } 2953 2954 Value *NotCond; 2955 if (match(CondVal, m_Not(m_Value(NotCond))) && 2956 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 2957 replaceOperand(SI, 0, NotCond); 2958 SI.swapValues(); 2959 SI.swapProfMetadata(); 2960 return &SI; 2961 } 2962 2963 if (Instruction *I = foldVectorSelect(SI)) 2964 return I; 2965 2966 // If we can compute the condition, there's no need for a select. 2967 // Like the above fold, we are attempting to reduce compile-time cost by 2968 // putting this fold here with limitations rather than in InstSimplify. 2969 // The motivation for this call into value tracking is to take advantage of 2970 // the assumption cache, so make sure that is populated. 2971 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 2972 KnownBits Known(1); 2973 computeKnownBits(CondVal, Known, 0, &SI); 2974 if (Known.One.isOneValue()) 2975 return replaceInstUsesWith(SI, TrueVal); 2976 if (Known.Zero.isOneValue()) 2977 return replaceInstUsesWith(SI, FalseVal); 2978 } 2979 2980 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 2981 return BitCastSel; 2982 2983 // Simplify selects that test the returned flag of cmpxchg instructions. 2984 if (Value *V = foldSelectCmpXchg(SI)) 2985 return replaceInstUsesWith(SI, V); 2986 2987 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 2988 return Select; 2989 2990 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 2991 return Funnel; 2992 2993 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 2994 return Copysign; 2995 2996 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 2997 return replaceInstUsesWith(SI, PN); 2998 2999 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3000 return replaceInstUsesWith(SI, Fr); 3001 3002 return nullptr; 3003 } 3004