1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitSelect function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/MDBuilder.h" 19 #include "llvm/IR/PatternMatch.h" 20 using namespace llvm; 21 using namespace PatternMatch; 22 23 #define DEBUG_TYPE "instcombine" 24 25 static SelectPatternFlavor 26 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) { 27 switch (SPF) { 28 default: 29 llvm_unreachable("unhandled!"); 30 31 case SPF_SMIN: 32 return SPF_SMAX; 33 case SPF_UMIN: 34 return SPF_UMAX; 35 case SPF_SMAX: 36 return SPF_SMIN; 37 case SPF_UMAX: 38 return SPF_UMIN; 39 } 40 } 41 42 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF, 43 bool Ordered=false) { 44 switch (SPF) { 45 default: 46 llvm_unreachable("unhandled!"); 47 48 case SPF_SMIN: 49 return ICmpInst::ICMP_SLT; 50 case SPF_UMIN: 51 return ICmpInst::ICMP_ULT; 52 case SPF_SMAX: 53 return ICmpInst::ICMP_SGT; 54 case SPF_UMAX: 55 return ICmpInst::ICMP_UGT; 56 case SPF_FMINNUM: 57 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 58 case SPF_FMAXNUM: 59 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 60 } 61 } 62 63 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder, 64 SelectPatternFlavor SPF, Value *A, 65 Value *B) { 66 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF); 67 assert(CmpInst::isIntPredicate(Pred)); 68 return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B); 69 } 70 71 /// We want to turn code that looks like this: 72 /// %C = or %A, %B 73 /// %D = select %cond, %C, %A 74 /// into: 75 /// %C = select %cond, %B, 0 76 /// %D = or %A, %C 77 /// 78 /// Assuming that the specified instruction is an operand to the select, return 79 /// a bitmask indicating which operands of this instruction are foldable if they 80 /// equal the other incoming value of the select. 81 /// 82 static unsigned getSelectFoldableOperands(Instruction *I) { 83 switch (I->getOpcode()) { 84 case Instruction::Add: 85 case Instruction::Mul: 86 case Instruction::And: 87 case Instruction::Or: 88 case Instruction::Xor: 89 return 3; // Can fold through either operand. 90 case Instruction::Sub: // Can only fold on the amount subtracted. 91 case Instruction::Shl: // Can only fold on the shift amount. 92 case Instruction::LShr: 93 case Instruction::AShr: 94 return 1; 95 default: 96 return 0; // Cannot fold 97 } 98 } 99 100 /// For the same transformation as the previous function, return the identity 101 /// constant that goes into the select. 102 static Constant *getSelectFoldableConstant(Instruction *I) { 103 switch (I->getOpcode()) { 104 default: llvm_unreachable("This cannot happen!"); 105 case Instruction::Add: 106 case Instruction::Sub: 107 case Instruction::Or: 108 case Instruction::Xor: 109 case Instruction::Shl: 110 case Instruction::LShr: 111 case Instruction::AShr: 112 return Constant::getNullValue(I->getType()); 113 case Instruction::And: 114 return Constant::getAllOnesValue(I->getType()); 115 case Instruction::Mul: 116 return ConstantInt::get(I->getType(), 1); 117 } 118 } 119 120 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 121 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 122 Instruction *FI) { 123 // If this is a cast from the same type, merge. 124 if (TI->getNumOperands() == 1 && TI->isCast()) { 125 Type *FIOpndTy = FI->getOperand(0)->getType(); 126 if (TI->getOperand(0)->getType() != FIOpndTy) 127 return nullptr; 128 129 // The select condition may be a vector. We may only change the operand 130 // type if the vector width remains the same (and matches the condition). 131 Type *CondTy = SI.getCondition()->getType(); 132 if (CondTy->isVectorTy()) { 133 if (!FIOpndTy->isVectorTy()) 134 return nullptr; 135 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 136 return nullptr; 137 138 // TODO: If the backend knew how to deal with casts better, we could 139 // remove this limitation. For now, there's too much potential to create 140 // worse codegen by promoting the select ahead of size-altering casts 141 // (PR28160). 142 // 143 // Note that ValueTracking's matchSelectPattern() looks through casts 144 // without checking 'hasOneUse' when it matches min/max patterns, so this 145 // transform may end up happening anyway. 146 if (TI->getOpcode() != Instruction::BitCast && 147 (!TI->hasOneUse() || !FI->hasOneUse())) 148 return nullptr; 149 150 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 151 // TODO: The one-use restrictions for a scalar select could be eased if 152 // the fold of a select in visitLoadInst() was enhanced to match a pattern 153 // that includes a cast. 154 return nullptr; 155 } 156 157 // Fold this by inserting a select from the input values. 158 Value *NewSI = 159 Builder->CreateSelect(SI.getCondition(), TI->getOperand(0), 160 FI->getOperand(0), SI.getName() + ".v", &SI); 161 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 162 TI->getType()); 163 } 164 165 // TODO: This function ends awkwardly in unreachable - fix to be more normal. 166 167 // Only handle binary operators with one-use here. As with the cast case 168 // above, it may be possible to relax the one-use constraint, but that needs 169 // be examined carefully since it may not reduce the total number of 170 // instructions. 171 if (!isa<BinaryOperator>(TI) || !TI->hasOneUse() || !FI->hasOneUse()) 172 return nullptr; 173 174 // Figure out if the operations have any operands in common. 175 Value *MatchOp, *OtherOpT, *OtherOpF; 176 bool MatchIsOpZero; 177 if (TI->getOperand(0) == FI->getOperand(0)) { 178 MatchOp = TI->getOperand(0); 179 OtherOpT = TI->getOperand(1); 180 OtherOpF = FI->getOperand(1); 181 MatchIsOpZero = true; 182 } else if (TI->getOperand(1) == FI->getOperand(1)) { 183 MatchOp = TI->getOperand(1); 184 OtherOpT = TI->getOperand(0); 185 OtherOpF = FI->getOperand(0); 186 MatchIsOpZero = false; 187 } else if (!TI->isCommutative()) { 188 return nullptr; 189 } else if (TI->getOperand(0) == FI->getOperand(1)) { 190 MatchOp = TI->getOperand(0); 191 OtherOpT = TI->getOperand(1); 192 OtherOpF = FI->getOperand(0); 193 MatchIsOpZero = true; 194 } else if (TI->getOperand(1) == FI->getOperand(0)) { 195 MatchOp = TI->getOperand(1); 196 OtherOpT = TI->getOperand(0); 197 OtherOpF = FI->getOperand(1); 198 MatchIsOpZero = true; 199 } else { 200 return nullptr; 201 } 202 203 // If we reach here, they do have operations in common. 204 Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, 205 SI.getName() + ".v", &SI); 206 207 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) { 208 if (MatchIsOpZero) 209 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI); 210 else 211 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp); 212 } 213 llvm_unreachable("Shouldn't get here"); 214 } 215 216 static bool isSelect01(Constant *C1, Constant *C2) { 217 ConstantInt *C1I = dyn_cast<ConstantInt>(C1); 218 if (!C1I) 219 return false; 220 ConstantInt *C2I = dyn_cast<ConstantInt>(C2); 221 if (!C2I) 222 return false; 223 if (!C1I->isZero() && !C2I->isZero()) // One side must be zero. 224 return false; 225 return C1I->isOne() || C1I->isAllOnesValue() || 226 C2I->isOne() || C2I->isAllOnesValue(); 227 } 228 229 /// Try to fold the select into one of the operands to allow further 230 /// optimization. 231 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 232 Value *FalseVal) { 233 // See the comment above GetSelectFoldableOperands for a description of the 234 // transformation we are doing here. 235 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) { 236 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && 237 !isa<Constant>(FalseVal)) { 238 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 239 unsigned OpToFold = 0; 240 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 241 OpToFold = 1; 242 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 243 OpToFold = 2; 244 } 245 246 if (OpToFold) { 247 Constant *C = getSelectFoldableConstant(TVI); 248 Value *OOp = TVI->getOperand(2-OpToFold); 249 // Avoid creating select between 2 constants unless it's selecting 250 // between 0, 1 and -1. 251 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 252 Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C); 253 NewSel->takeName(TVI); 254 BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI); 255 BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(), 256 FalseVal, NewSel); 257 BO->copyIRFlags(TVI_BO); 258 return BO; 259 } 260 } 261 } 262 } 263 } 264 265 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) { 266 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && 267 !isa<Constant>(TrueVal)) { 268 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 269 unsigned OpToFold = 0; 270 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 271 OpToFold = 1; 272 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 273 OpToFold = 2; 274 } 275 276 if (OpToFold) { 277 Constant *C = getSelectFoldableConstant(FVI); 278 Value *OOp = FVI->getOperand(2-OpToFold); 279 // Avoid creating select between 2 constants unless it's selecting 280 // between 0, 1 and -1. 281 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 282 Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp); 283 NewSel->takeName(FVI); 284 BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI); 285 BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(), 286 TrueVal, NewSel); 287 BO->copyIRFlags(FVI_BO); 288 return BO; 289 } 290 } 291 } 292 } 293 } 294 295 return nullptr; 296 } 297 298 /// We want to turn: 299 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 300 /// into: 301 /// (or (shl (and X, C1), C3), y) 302 /// iff: 303 /// C1 and C2 are both powers of 2 304 /// where: 305 /// C3 = Log(C2) - Log(C1) 306 /// 307 /// This transform handles cases where: 308 /// 1. The icmp predicate is inverted 309 /// 2. The select operands are reversed 310 /// 3. The magnitude of C2 and C1 are flipped 311 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal, 312 Value *FalseVal, 313 InstCombiner::BuilderTy *Builder) { 314 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 315 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 316 return nullptr; 317 318 Value *CmpLHS = IC->getOperand(0); 319 Value *CmpRHS = IC->getOperand(1); 320 321 if (!match(CmpRHS, m_Zero())) 322 return nullptr; 323 324 Value *X; 325 const APInt *C1; 326 if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1)))) 327 return nullptr; 328 329 const APInt *C2; 330 bool OrOnTrueVal = false; 331 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 332 if (!OrOnFalseVal) 333 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 334 335 if (!OrOnFalseVal && !OrOnTrueVal) 336 return nullptr; 337 338 Value *V = CmpLHS; 339 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 340 341 unsigned C1Log = C1->logBase2(); 342 unsigned C2Log = C2->logBase2(); 343 if (C2Log > C1Log) { 344 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 345 V = Builder->CreateShl(V, C2Log - C1Log); 346 } else if (C1Log > C2Log) { 347 V = Builder->CreateLShr(V, C1Log - C2Log); 348 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 349 } else 350 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 351 352 ICmpInst::Predicate Pred = IC->getPredicate(); 353 if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) || 354 (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal)) 355 V = Builder->CreateXor(V, *C2); 356 357 return Builder->CreateOr(V, Y); 358 } 359 360 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 361 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 362 /// 363 /// For example, we can fold the following code sequence: 364 /// \code 365 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 366 /// %1 = icmp ne i32 %x, 0 367 /// %2 = select i1 %1, i32 %0, i32 32 368 /// \code 369 /// 370 /// into: 371 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 372 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 373 InstCombiner::BuilderTy *Builder) { 374 ICmpInst::Predicate Pred = ICI->getPredicate(); 375 Value *CmpLHS = ICI->getOperand(0); 376 Value *CmpRHS = ICI->getOperand(1); 377 378 // Check if the condition value compares a value for equality against zero. 379 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 380 return nullptr; 381 382 Value *Count = FalseVal; 383 Value *ValueOnZero = TrueVal; 384 if (Pred == ICmpInst::ICMP_NE) 385 std::swap(Count, ValueOnZero); 386 387 // Skip zero extend/truncate. 388 Value *V = nullptr; 389 if (match(Count, m_ZExt(m_Value(V))) || 390 match(Count, m_Trunc(m_Value(V)))) 391 Count = V; 392 393 // Check if the value propagated on zero is a constant number equal to the 394 // sizeof in bits of 'Count'. 395 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 396 if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) 397 return nullptr; 398 399 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 400 // input to the cttz/ctlz is used as LHS for the compare instruction. 401 if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) || 402 match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) { 403 IntrinsicInst *II = cast<IntrinsicInst>(Count); 404 IRBuilder<> Builder(II); 405 // Explicitly clear the 'undef_on_zero' flag. 406 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 407 Type *Ty = NewI->getArgOperand(1)->getType(); 408 NewI->setArgOperand(1, Constant::getNullValue(Ty)); 409 Builder.Insert(NewI); 410 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 411 } 412 413 return nullptr; 414 } 415 416 /// Visit a SelectInst that has an ICmpInst as its first operand. 417 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 418 ICmpInst *ICI) { 419 bool Changed = false; 420 ICmpInst::Predicate Pred = ICI->getPredicate(); 421 Value *CmpLHS = ICI->getOperand(0); 422 Value *CmpRHS = ICI->getOperand(1); 423 Value *TrueVal = SI.getTrueValue(); 424 Value *FalseVal = SI.getFalseValue(); 425 426 // Check cases where the comparison is with a constant that 427 // can be adjusted to fit the min/max idiom. We may move or edit ICI 428 // here, so make sure the select is the only user. 429 if (ICI->hasOneUse()) 430 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) { 431 switch (Pred) { 432 default: break; 433 case ICmpInst::ICMP_ULT: 434 case ICmpInst::ICMP_SLT: 435 case ICmpInst::ICMP_UGT: 436 case ICmpInst::ICMP_SGT: { 437 // These transformations only work for selects over integers. 438 IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType()); 439 if (!SelectTy) 440 break; 441 442 Constant *AdjustedRHS; 443 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 444 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1); 445 else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 446 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1); 447 448 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 449 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 450 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 451 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) 452 ; // Nothing to do here. Values match without any sign/zero extension. 453 454 // Types do not match. Instead of calculating this with mixed types 455 // promote all to the larger type. This enables scalar evolution to 456 // analyze this expression. 457 else if (CmpRHS->getType()->getScalarSizeInBits() 458 < SelectTy->getBitWidth()) { 459 Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy); 460 461 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 462 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 463 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 464 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 465 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && 466 sextRHS == FalseVal) { 467 CmpLHS = TrueVal; 468 AdjustedRHS = sextRHS; 469 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 470 sextRHS == TrueVal) { 471 CmpLHS = FalseVal; 472 AdjustedRHS = sextRHS; 473 } else if (ICI->isUnsigned()) { 474 Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy); 475 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 476 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 477 // zext + signed compare cannot be changed: 478 // 0xff <s 0x00, but 0x00ff >s 0x0000 479 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && 480 zextRHS == FalseVal) { 481 CmpLHS = TrueVal; 482 AdjustedRHS = zextRHS; 483 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 484 zextRHS == TrueVal) { 485 CmpLHS = FalseVal; 486 AdjustedRHS = zextRHS; 487 } else 488 break; 489 } else 490 break; 491 } else 492 break; 493 494 Pred = ICmpInst::getSwappedPredicate(Pred); 495 CmpRHS = AdjustedRHS; 496 std::swap(FalseVal, TrueVal); 497 ICI->setPredicate(Pred); 498 ICI->setOperand(0, CmpLHS); 499 ICI->setOperand(1, CmpRHS); 500 SI.setOperand(1, TrueVal); 501 SI.setOperand(2, FalseVal); 502 SI.swapProfMetadata(); 503 504 // Move ICI instruction right before the select instruction. Otherwise 505 // the sext/zext value may be defined after the ICI instruction uses it. 506 ICI->moveBefore(&SI); 507 508 Changed = true; 509 break; 510 } 511 } 512 } 513 514 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 515 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 516 // FIXME: Type and constness constraints could be lifted, but we have to 517 // watch code size carefully. We should consider xor instead of 518 // sub/add when we decide to do that. 519 if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) { 520 if (TrueVal->getType() == Ty) { 521 if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) { 522 ConstantInt *C1 = nullptr, *C2 = nullptr; 523 if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) { 524 C1 = dyn_cast<ConstantInt>(TrueVal); 525 C2 = dyn_cast<ConstantInt>(FalseVal); 526 } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) { 527 C1 = dyn_cast<ConstantInt>(FalseVal); 528 C2 = dyn_cast<ConstantInt>(TrueVal); 529 } 530 if (C1 && C2) { 531 // This shift results in either -1 or 0. 532 Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1); 533 534 // Check if we can express the operation with a single or. 535 if (C2->isAllOnesValue()) 536 return replaceInstUsesWith(SI, Builder->CreateOr(AShr, C1)); 537 538 Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue()); 539 return replaceInstUsesWith(SI, Builder->CreateAdd(And, C1)); 540 } 541 } 542 } 543 } 544 545 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 546 547 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 548 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 549 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 550 SI.setOperand(1, CmpRHS); 551 Changed = true; 552 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 553 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 554 SI.setOperand(2, CmpRHS); 555 Changed = true; 556 } 557 } 558 559 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 560 // decomposeBitTestICmp() might help. 561 { 562 unsigned BitWidth = 563 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 564 APInt MinSignedValue = APInt::getSignBit(BitWidth); 565 Value *X; 566 const APInt *Y, *C; 567 bool TrueWhenUnset; 568 bool IsBitTest = false; 569 if (ICmpInst::isEquality(Pred) && 570 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 571 match(CmpRHS, m_Zero())) { 572 IsBitTest = true; 573 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 574 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 575 X = CmpLHS; 576 Y = &MinSignedValue; 577 IsBitTest = true; 578 TrueWhenUnset = false; 579 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 580 X = CmpLHS; 581 Y = &MinSignedValue; 582 IsBitTest = true; 583 TrueWhenUnset = true; 584 } 585 if (IsBitTest) { 586 Value *V = nullptr; 587 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 588 if (TrueWhenUnset && TrueVal == X && 589 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 590 V = Builder->CreateAnd(X, ~(*Y)); 591 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 592 else if (!TrueWhenUnset && FalseVal == X && 593 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 594 V = Builder->CreateAnd(X, ~(*Y)); 595 // (X & Y) == 0 ? X ^ Y : X --> X | Y 596 else if (TrueWhenUnset && FalseVal == X && 597 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 598 V = Builder->CreateOr(X, *Y); 599 // (X & Y) != 0 ? X : X ^ Y --> X | Y 600 else if (!TrueWhenUnset && TrueVal == X && 601 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 602 V = Builder->CreateOr(X, *Y); 603 604 if (V) 605 return replaceInstUsesWith(SI, V); 606 } 607 } 608 609 if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder)) 610 return replaceInstUsesWith(SI, V); 611 612 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 613 return replaceInstUsesWith(SI, V); 614 615 return Changed ? &SI : nullptr; 616 } 617 618 619 /// SI is a select whose condition is a PHI node (but the two may be in 620 /// different blocks). See if the true/false values (V) are live in all of the 621 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 622 /// 623 /// X = phi [ C1, BB1], [C2, BB2] 624 /// Y = add 625 /// Z = select X, Y, 0 626 /// 627 /// because Y is not live in BB1/BB2. 628 /// 629 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 630 const SelectInst &SI) { 631 // If the value is a non-instruction value like a constant or argument, it 632 // can always be mapped. 633 const Instruction *I = dyn_cast<Instruction>(V); 634 if (!I) return true; 635 636 // If V is a PHI node defined in the same block as the condition PHI, we can 637 // map the arguments. 638 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 639 640 if (const PHINode *VP = dyn_cast<PHINode>(I)) 641 if (VP->getParent() == CondPHI->getParent()) 642 return true; 643 644 // Otherwise, if the PHI and select are defined in the same block and if V is 645 // defined in a different block, then we can transform it. 646 if (SI.getParent() == CondPHI->getParent() && 647 I->getParent() != CondPHI->getParent()) 648 return true; 649 650 // Otherwise we have a 'hard' case and we can't tell without doing more 651 // detailed dominator based analysis, punt. 652 return false; 653 } 654 655 /// We have an SPF (e.g. a min or max) of an SPF of the form: 656 /// SPF2(SPF1(A, B), C) 657 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 658 SelectPatternFlavor SPF1, 659 Value *A, Value *B, 660 Instruction &Outer, 661 SelectPatternFlavor SPF2, Value *C) { 662 if (Outer.getType() != Inner->getType()) 663 return nullptr; 664 665 if (C == A || C == B) { 666 // MAX(MAX(A, B), B) -> MAX(A, B) 667 // MIN(MIN(a, b), a) -> MIN(a, b) 668 if (SPF1 == SPF2) 669 return replaceInstUsesWith(Outer, Inner); 670 671 // MAX(MIN(a, b), a) -> a 672 // MIN(MAX(a, b), a) -> a 673 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 674 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 675 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 676 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 677 return replaceInstUsesWith(Outer, C); 678 } 679 680 if (SPF1 == SPF2) { 681 if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) { 682 if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) { 683 const APInt &ACB = CB->getValue(); 684 const APInt &ACC = CC->getValue(); 685 686 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 687 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 688 if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) || 689 (SPF1 == SPF_SMIN && ACB.sle(ACC)) || 690 (SPF1 == SPF_UMAX && ACB.uge(ACC)) || 691 (SPF1 == SPF_SMAX && ACB.sge(ACC))) 692 return replaceInstUsesWith(Outer, Inner); 693 694 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 695 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 696 if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) || 697 (SPF1 == SPF_SMIN && ACB.sgt(ACC)) || 698 (SPF1 == SPF_UMAX && ACB.ult(ACC)) || 699 (SPF1 == SPF_SMAX && ACB.slt(ACC))) { 700 Outer.replaceUsesOfWith(Inner, A); 701 return &Outer; 702 } 703 } 704 } 705 } 706 707 // ABS(ABS(X)) -> ABS(X) 708 // NABS(NABS(X)) -> NABS(X) 709 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 710 return replaceInstUsesWith(Outer, Inner); 711 } 712 713 // ABS(NABS(X)) -> ABS(X) 714 // NABS(ABS(X)) -> NABS(X) 715 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 716 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 717 SelectInst *SI = cast<SelectInst>(Inner); 718 Value *NewSI = 719 Builder->CreateSelect(SI->getCondition(), SI->getFalseValue(), 720 SI->getTrueValue(), SI->getName(), SI); 721 return replaceInstUsesWith(Outer, NewSI); 722 } 723 724 auto IsFreeOrProfitableToInvert = 725 [&](Value *V, Value *&NotV, bool &ElidesXor) { 726 if (match(V, m_Not(m_Value(NotV)))) { 727 // If V has at most 2 uses then we can get rid of the xor operation 728 // entirely. 729 ElidesXor |= !V->hasNUsesOrMore(3); 730 return true; 731 } 732 733 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 734 NotV = nullptr; 735 return true; 736 } 737 738 return false; 739 }; 740 741 Value *NotA, *NotB, *NotC; 742 bool ElidesXor = false; 743 744 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 745 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 746 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 747 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 748 // 749 // This transform is performance neutral if we can elide at least one xor from 750 // the set of three operands, since we'll be tacking on an xor at the very 751 // end. 752 if (IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 753 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 754 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 755 if (!NotA) 756 NotA = Builder->CreateNot(A); 757 if (!NotB) 758 NotB = Builder->CreateNot(B); 759 if (!NotC) 760 NotC = Builder->CreateNot(C); 761 762 Value *NewInner = generateMinMaxSelectPattern( 763 Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB); 764 Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern( 765 Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC)); 766 return replaceInstUsesWith(Outer, NewOuter); 767 } 768 769 return nullptr; 770 } 771 772 /// If one of the constants is zero (we know they can't both be) and we have an 773 /// icmp instruction with zero, and we have an 'and' with the non-constant value 774 /// and a power of two we can turn the select into a shift on the result of the 775 /// 'and'. 776 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal, 777 ConstantInt *FalseVal, 778 InstCombiner::BuilderTy *Builder) { 779 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 780 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 781 return nullptr; 782 783 if (!match(IC->getOperand(1), m_Zero())) 784 return nullptr; 785 786 ConstantInt *AndRHS; 787 Value *LHS = IC->getOperand(0); 788 if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS)))) 789 return nullptr; 790 791 // If both select arms are non-zero see if we have a select of the form 792 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic 793 // for 'x ? 2^n : 0' and fix the thing up at the end. 794 ConstantInt *Offset = nullptr; 795 if (!TrueVal->isZero() && !FalseVal->isZero()) { 796 if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2()) 797 Offset = FalseVal; 798 else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2()) 799 Offset = TrueVal; 800 else 801 return nullptr; 802 803 // Adjust TrueVal and FalseVal to the offset. 804 TrueVal = ConstantInt::get(Builder->getContext(), 805 TrueVal->getValue() - Offset->getValue()); 806 FalseVal = ConstantInt::get(Builder->getContext(), 807 FalseVal->getValue() - Offset->getValue()); 808 } 809 810 // Make sure the mask in the 'and' and one of the select arms is a power of 2. 811 if (!AndRHS->getValue().isPowerOf2() || 812 (!TrueVal->getValue().isPowerOf2() && 813 !FalseVal->getValue().isPowerOf2())) 814 return nullptr; 815 816 // Determine which shift is needed to transform result of the 'and' into the 817 // desired result. 818 ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal; 819 unsigned ValZeros = ValC->getValue().logBase2(); 820 unsigned AndZeros = AndRHS->getValue().logBase2(); 821 822 // If types don't match we can still convert the select by introducing a zext 823 // or a trunc of the 'and'. The trunc case requires that all of the truncated 824 // bits are zero, we can figure that out by looking at the 'and' mask. 825 if (AndZeros >= ValC->getBitWidth()) 826 return nullptr; 827 828 Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType()); 829 if (ValZeros > AndZeros) 830 V = Builder->CreateShl(V, ValZeros - AndZeros); 831 else if (ValZeros < AndZeros) 832 V = Builder->CreateLShr(V, AndZeros - ValZeros); 833 834 // Okay, now we know that everything is set up, we just don't know whether we 835 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 836 bool ShouldNotVal = !TrueVal->isZero(); 837 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; 838 if (ShouldNotVal) 839 V = Builder->CreateXor(V, ValC); 840 841 // Apply an offset if needed. 842 if (Offset) 843 V = Builder->CreateAdd(V, Offset); 844 return V; 845 } 846 847 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 848 /// This is even legal for FP. 849 static Instruction *foldAddSubSelect(SelectInst &SI, 850 InstCombiner::BuilderTy &Builder) { 851 Value *CondVal = SI.getCondition(); 852 Value *TrueVal = SI.getTrueValue(); 853 Value *FalseVal = SI.getFalseValue(); 854 auto *TI = dyn_cast<Instruction>(TrueVal); 855 auto *FI = dyn_cast<Instruction>(FalseVal); 856 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 857 return nullptr; 858 859 Instruction *AddOp = nullptr, *SubOp = nullptr; 860 if ((TI->getOpcode() == Instruction::Sub && 861 FI->getOpcode() == Instruction::Add) || 862 (TI->getOpcode() == Instruction::FSub && 863 FI->getOpcode() == Instruction::FAdd)) { 864 AddOp = FI; 865 SubOp = TI; 866 } else if ((FI->getOpcode() == Instruction::Sub && 867 TI->getOpcode() == Instruction::Add) || 868 (FI->getOpcode() == Instruction::FSub && 869 TI->getOpcode() == Instruction::FAdd)) { 870 AddOp = TI; 871 SubOp = FI; 872 } 873 874 if (AddOp) { 875 Value *OtherAddOp = nullptr; 876 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 877 OtherAddOp = AddOp->getOperand(1); 878 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 879 OtherAddOp = AddOp->getOperand(0); 880 } 881 882 if (OtherAddOp) { 883 // So at this point we know we have (Y -> OtherAddOp): 884 // select C, (add X, Y), (sub X, Z) 885 Value *NegVal; // Compute -Z 886 if (SI.getType()->isFPOrFPVectorTy()) { 887 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 888 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 889 FastMathFlags Flags = AddOp->getFastMathFlags(); 890 Flags &= SubOp->getFastMathFlags(); 891 NegInst->setFastMathFlags(Flags); 892 } 893 } else { 894 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 895 } 896 897 Value *NewTrueOp = OtherAddOp; 898 Value *NewFalseOp = NegVal; 899 if (AddOp != TI) 900 std::swap(NewTrueOp, NewFalseOp); 901 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 902 SI.getName() + ".p", &SI); 903 904 if (SI.getType()->isFPOrFPVectorTy()) { 905 Instruction *RI = 906 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 907 908 FastMathFlags Flags = AddOp->getFastMathFlags(); 909 Flags &= SubOp->getFastMathFlags(); 910 RI->setFastMathFlags(Flags); 911 return RI; 912 } else 913 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 914 } 915 } 916 return nullptr; 917 } 918 919 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 920 Instruction *ExtInst; 921 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 922 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 923 return nullptr; 924 925 auto ExtOpcode = ExtInst->getOpcode(); 926 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 927 return nullptr; 928 929 // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too. 930 Value *X = ExtInst->getOperand(0); 931 Type *SmallType = X->getType(); 932 if (!SmallType->getScalarType()->isIntegerTy(1)) 933 return nullptr; 934 935 Constant *C; 936 if (!match(Sel.getTrueValue(), m_Constant(C)) && 937 !match(Sel.getFalseValue(), m_Constant(C))) 938 return nullptr; 939 940 // If the constant is the same after truncation to the smaller type and 941 // extension to the original type, we can narrow the select. 942 Value *Cond = Sel.getCondition(); 943 Type *SelType = Sel.getType(); 944 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 945 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 946 if (ExtC == C) { 947 Value *TruncCVal = cast<Value>(TruncC); 948 if (ExtInst == Sel.getFalseValue()) 949 std::swap(X, TruncCVal); 950 951 // select Cond, (ext X), C --> ext(select Cond, X, C') 952 // select Cond, C, (ext X) --> ext(select Cond, C', X) 953 Value *NewSel = Builder->CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 954 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 955 } 956 957 // If one arm of the select is the extend of the condition, replace that arm 958 // with the extension of the appropriate known bool value. 959 if (Cond == X) { 960 SelectInst *NewSel; 961 if (ExtInst == Sel.getTrueValue()) { 962 // select X, (sext X), C --> select X, -1, C 963 // select X, (zext X), C --> select X, 1, C 964 Constant *One = ConstantInt::getTrue(SmallType); 965 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 966 NewSel = SelectInst::Create(Cond, AllOnesOrOne, C); 967 } else { 968 // select X, C, (sext X) --> select X, C, 0 969 // select X, C, (zext X) --> select X, C, 0 970 Constant *Zero = ConstantInt::getNullValue(SelType); 971 NewSel = SelectInst::Create(Cond, C, Zero); 972 } 973 NewSel->copyMetadata(Sel); 974 return NewSel; 975 } 976 977 return nullptr; 978 } 979 980 /// Try to transform a vector select with a constant condition vector into a 981 /// shuffle for easier combining with other shuffles and insert/extract. 982 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 983 Value *CondVal = SI.getCondition(); 984 Constant *CondC; 985 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 986 return nullptr; 987 988 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 989 SmallVector<Constant *, 16> Mask; 990 Mask.reserve(NumElts); 991 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 992 for (unsigned i = 0; i != NumElts; ++i) { 993 Constant *Elt = CondC->getAggregateElement(i); 994 if (!Elt) 995 return nullptr; 996 997 if (Elt->isOneValue()) { 998 // If the select condition element is true, choose from the 1st vector. 999 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1000 } else if (Elt->isNullValue()) { 1001 // If the select condition element is false, choose from the 2nd vector. 1002 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1003 } else if (isa<UndefValue>(Elt)) { 1004 // If the select condition element is undef, the shuffle mask is undef. 1005 Mask.push_back(UndefValue::get(Int32Ty)); 1006 } else { 1007 // Bail out on a constant expression. 1008 return nullptr; 1009 } 1010 } 1011 1012 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1013 ConstantVector::get(Mask)); 1014 } 1015 1016 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1017 Value *CondVal = SI.getCondition(); 1018 Value *TrueVal = SI.getTrueValue(); 1019 Value *FalseVal = SI.getFalseValue(); 1020 Type *SelType = SI.getType(); 1021 1022 if (Value *V = 1023 SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, &TLI, &DT, &AC)) 1024 return replaceInstUsesWith(SI, V); 1025 1026 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1027 return I; 1028 1029 if (SelType->getScalarType()->isIntegerTy(1) && 1030 TrueVal->getType() == CondVal->getType()) { 1031 if (match(TrueVal, m_One())) { 1032 // Change: A = select B, true, C --> A = or B, C 1033 return BinaryOperator::CreateOr(CondVal, FalseVal); 1034 } 1035 if (match(TrueVal, m_Zero())) { 1036 // Change: A = select B, false, C --> A = and !B, C 1037 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 1038 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1039 } 1040 if (match(FalseVal, m_Zero())) { 1041 // Change: A = select B, C, false --> A = and B, C 1042 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1043 } 1044 if (match(FalseVal, m_One())) { 1045 // Change: A = select B, C, true --> A = or !B, C 1046 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 1047 return BinaryOperator::CreateOr(NotCond, TrueVal); 1048 } 1049 1050 // select a, a, b -> a | b 1051 // select a, b, a -> a & b 1052 if (CondVal == TrueVal) 1053 return BinaryOperator::CreateOr(CondVal, FalseVal); 1054 if (CondVal == FalseVal) 1055 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1056 1057 // select a, ~a, b -> (~a) & b 1058 // select a, b, ~a -> (~a) | b 1059 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1060 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1061 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1062 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1063 } 1064 1065 // Selecting between two integer or vector splat integer constants? 1066 // 1067 // Note that we don't handle a scalar select of vectors: 1068 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1069 // because that may need 3 instructions to splat the condition value: 1070 // extend, insertelement, shufflevector. 1071 if (CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1072 // select C, 1, 0 -> zext C to int 1073 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1074 return new ZExtInst(CondVal, SelType); 1075 1076 // select C, -1, 0 -> sext C to int 1077 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1078 return new SExtInst(CondVal, SelType); 1079 1080 // select C, 0, 1 -> zext !C to int 1081 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1082 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 1083 return new ZExtInst(NotCond, SelType); 1084 } 1085 1086 // select C, 0, -1 -> sext !C to int 1087 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1088 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 1089 return new SExtInst(NotCond, SelType); 1090 } 1091 } 1092 1093 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) 1094 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) 1095 if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder)) 1096 return replaceInstUsesWith(SI, V); 1097 1098 // See if we are selecting two values based on a comparison of the two values. 1099 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1100 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1101 // Transform (X == Y) ? X : Y -> Y 1102 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1103 // This is not safe in general for floating point: 1104 // consider X== -0, Y== +0. 1105 // It becomes safe if either operand is a nonzero constant. 1106 ConstantFP *CFPt, *CFPf; 1107 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1108 !CFPt->getValueAPF().isZero()) || 1109 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1110 !CFPf->getValueAPF().isZero())) 1111 return replaceInstUsesWith(SI, FalseVal); 1112 } 1113 // Transform (X une Y) ? X : Y -> X 1114 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1115 // This is not safe in general for floating point: 1116 // consider X== -0, Y== +0. 1117 // It becomes safe if either operand is a nonzero constant. 1118 ConstantFP *CFPt, *CFPf; 1119 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1120 !CFPt->getValueAPF().isZero()) || 1121 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1122 !CFPf->getValueAPF().isZero())) 1123 return replaceInstUsesWith(SI, TrueVal); 1124 } 1125 1126 // Canonicalize to use ordered comparisons by swapping the select 1127 // operands. 1128 // 1129 // e.g. 1130 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1131 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1132 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1133 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1134 Builder->setFastMathFlags(FCI->getFastMathFlags()); 1135 Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal, 1136 FCI->getName() + ".inv"); 1137 1138 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1139 SI.getName() + ".p"); 1140 } 1141 1142 // NOTE: if we wanted to, this is where to detect MIN/MAX 1143 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1144 // Transform (X == Y) ? Y : X -> X 1145 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1146 // This is not safe in general for floating point: 1147 // consider X== -0, Y== +0. 1148 // It becomes safe if either operand is a nonzero constant. 1149 ConstantFP *CFPt, *CFPf; 1150 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1151 !CFPt->getValueAPF().isZero()) || 1152 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1153 !CFPf->getValueAPF().isZero())) 1154 return replaceInstUsesWith(SI, FalseVal); 1155 } 1156 // Transform (X une Y) ? Y : X -> Y 1157 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1158 // This is not safe in general for floating point: 1159 // consider X== -0, Y== +0. 1160 // It becomes safe if either operand is a nonzero constant. 1161 ConstantFP *CFPt, *CFPf; 1162 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1163 !CFPt->getValueAPF().isZero()) || 1164 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1165 !CFPf->getValueAPF().isZero())) 1166 return replaceInstUsesWith(SI, TrueVal); 1167 } 1168 1169 // Canonicalize to use ordered comparisons by swapping the select 1170 // operands. 1171 // 1172 // e.g. 1173 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1174 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1175 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1176 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1177 Builder->setFastMathFlags(FCI->getFastMathFlags()); 1178 Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal, 1179 FCI->getName() + ".inv"); 1180 1181 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1182 SI.getName() + ".p"); 1183 } 1184 1185 // NOTE: if we wanted to, this is where to detect MIN/MAX 1186 } 1187 // NOTE: if we wanted to, this is where to detect ABS 1188 } 1189 1190 // See if we are selecting two values based on a comparison of the two values. 1191 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1192 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1193 return Result; 1194 1195 if (Instruction *Add = foldAddSubSelect(SI, *Builder)) 1196 return Add; 1197 1198 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1199 auto *TI = dyn_cast<Instruction>(TrueVal); 1200 auto *FI = dyn_cast<Instruction>(FalseVal); 1201 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1202 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1203 return IV; 1204 1205 if (Instruction *I = foldSelectExtConst(SI)) 1206 return I; 1207 1208 // See if we can fold the select into one of our operands. 1209 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1210 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1211 return FoldI; 1212 1213 Value *LHS, *RHS, *LHS2, *RHS2; 1214 Instruction::CastOps CastOp; 1215 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1216 auto SPF = SPR.Flavor; 1217 1218 if (SelectPatternResult::isMinOrMax(SPF)) { 1219 // Canonicalize so that type casts are outside select patterns. 1220 if (LHS->getType()->getPrimitiveSizeInBits() != 1221 SelType->getPrimitiveSizeInBits()) { 1222 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered); 1223 1224 Value *Cmp; 1225 if (CmpInst::isIntPredicate(Pred)) { 1226 Cmp = Builder->CreateICmp(Pred, LHS, RHS); 1227 } else { 1228 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1229 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1230 Builder->setFastMathFlags(FMF); 1231 Cmp = Builder->CreateFCmp(Pred, LHS, RHS); 1232 } 1233 1234 Value *NewSI = Builder->CreateCast( 1235 CastOp, Builder->CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI), 1236 SelType); 1237 return replaceInstUsesWith(SI, NewSI); 1238 } 1239 } 1240 1241 if (SPF) { 1242 // MAX(MAX(a, b), a) -> MAX(a, b) 1243 // MIN(MIN(a, b), a) -> MIN(a, b) 1244 // MAX(MIN(a, b), a) -> a 1245 // MIN(MAX(a, b), a) -> a 1246 // ABS(ABS(a)) -> ABS(a) 1247 // NABS(NABS(a)) -> NABS(a) 1248 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1249 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 1250 SI, SPF, RHS)) 1251 return R; 1252 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1253 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, 1254 SI, SPF, LHS)) 1255 return R; 1256 } 1257 1258 // MAX(~a, ~b) -> ~MIN(a, b) 1259 if (SPF == SPF_SMAX || SPF == SPF_UMAX) { 1260 if (IsFreeToInvert(LHS, LHS->hasNUses(2)) && 1261 IsFreeToInvert(RHS, RHS->hasNUses(2))) { 1262 1263 // This transform adds a xor operation and that extra cost needs to be 1264 // justified. We look for simplifications that will result from 1265 // applying this rule: 1266 1267 bool Profitable = 1268 (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) || 1269 (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) || 1270 (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value()))); 1271 1272 if (Profitable) { 1273 Value *NewLHS = Builder->CreateNot(LHS); 1274 Value *NewRHS = Builder->CreateNot(RHS); 1275 Value *NewCmp = SPF == SPF_SMAX 1276 ? Builder->CreateICmpSLT(NewLHS, NewRHS) 1277 : Builder->CreateICmpULT(NewLHS, NewRHS); 1278 Value *NewSI = 1279 Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS)); 1280 return replaceInstUsesWith(SI, NewSI); 1281 } 1282 } 1283 } 1284 1285 // TODO. 1286 // ABS(-X) -> ABS(X) 1287 } 1288 1289 // See if we can fold the select into a phi node if the condition is a select. 1290 if (isa<PHINode>(SI.getCondition())) 1291 // The true/false values have to be live in the PHI predecessor's blocks. 1292 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1293 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1294 if (Instruction *NV = FoldOpIntoPhi(SI)) 1295 return NV; 1296 1297 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1298 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 1299 // select(C, select(C, a, b), c) -> select(C, a, c) 1300 if (TrueSI->getCondition() == CondVal) { 1301 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1302 return nullptr; 1303 SI.setOperand(1, TrueSI->getTrueValue()); 1304 return &SI; 1305 } 1306 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1307 // We choose this as normal form to enable folding on the And and shortening 1308 // paths for the values (this helps GetUnderlyingObjects() for example). 1309 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1310 Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition()); 1311 SI.setOperand(0, And); 1312 SI.setOperand(1, TrueSI->getTrueValue()); 1313 return &SI; 1314 } 1315 } 1316 } 1317 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1318 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 1319 // select(C, a, select(C, b, c)) -> select(C, a, c) 1320 if (FalseSI->getCondition() == CondVal) { 1321 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1322 return nullptr; 1323 SI.setOperand(2, FalseSI->getFalseValue()); 1324 return &SI; 1325 } 1326 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1327 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1328 Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition()); 1329 SI.setOperand(0, Or); 1330 SI.setOperand(2, FalseSI->getFalseValue()); 1331 return &SI; 1332 } 1333 } 1334 } 1335 1336 if (BinaryOperator::isNot(CondVal)) { 1337 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); 1338 SI.setOperand(1, FalseVal); 1339 SI.setOperand(2, TrueVal); 1340 return &SI; 1341 } 1342 1343 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 1344 unsigned VWidth = VecTy->getNumElements(); 1345 APInt UndefElts(VWidth, 0); 1346 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1347 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 1348 if (V != &SI) 1349 return replaceInstUsesWith(SI, V); 1350 return &SI; 1351 } 1352 1353 if (isa<ConstantAggregateZero>(CondVal)) { 1354 return replaceInstUsesWith(SI, FalseVal); 1355 } 1356 } 1357 1358 // See if we can determine the result of this select based on a dominating 1359 // condition. 1360 BasicBlock *Parent = SI.getParent(); 1361 if (BasicBlock *Dom = Parent->getSinglePredecessor()) { 1362 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 1363 if (PBI && PBI->isConditional() && 1364 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 1365 (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) { 1366 bool CondIsFalse = PBI->getSuccessor(1) == Parent; 1367 Optional<bool> Implication = isImpliedCondition( 1368 PBI->getCondition(), SI.getCondition(), DL, CondIsFalse); 1369 if (Implication) { 1370 Value *V = *Implication ? TrueVal : FalseVal; 1371 return replaceInstUsesWith(SI, V); 1372 } 1373 } 1374 } 1375 1376 return nullptr; 1377 } 1378