1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitSelect function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/MDBuilder.h" 19 #include "llvm/IR/PatternMatch.h" 20 #include "llvm/Support/KnownBits.h" 21 using namespace llvm; 22 using namespace PatternMatch; 23 24 #define DEBUG_TYPE "instcombine" 25 26 static SelectPatternFlavor 27 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) { 28 switch (SPF) { 29 default: 30 llvm_unreachable("unhandled!"); 31 32 case SPF_SMIN: 33 return SPF_SMAX; 34 case SPF_UMIN: 35 return SPF_UMAX; 36 case SPF_SMAX: 37 return SPF_SMIN; 38 case SPF_UMAX: 39 return SPF_UMIN; 40 } 41 } 42 43 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF, 44 bool Ordered=false) { 45 switch (SPF) { 46 default: 47 llvm_unreachable("unhandled!"); 48 49 case SPF_SMIN: 50 return ICmpInst::ICMP_SLT; 51 case SPF_UMIN: 52 return ICmpInst::ICMP_ULT; 53 case SPF_SMAX: 54 return ICmpInst::ICMP_SGT; 55 case SPF_UMAX: 56 return ICmpInst::ICMP_UGT; 57 case SPF_FMINNUM: 58 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 59 case SPF_FMAXNUM: 60 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 61 } 62 } 63 64 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy &Builder, 65 SelectPatternFlavor SPF, Value *A, 66 Value *B) { 67 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF); 68 assert(CmpInst::isIntPredicate(Pred)); 69 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 70 } 71 72 /// We want to turn code that looks like this: 73 /// %C = or %A, %B 74 /// %D = select %cond, %C, %A 75 /// into: 76 /// %C = select %cond, %B, 0 77 /// %D = or %A, %C 78 /// 79 /// Assuming that the specified instruction is an operand to the select, return 80 /// a bitmask indicating which operands of this instruction are foldable if they 81 /// equal the other incoming value of the select. 82 /// 83 static unsigned getSelectFoldableOperands(Instruction *I) { 84 switch (I->getOpcode()) { 85 case Instruction::Add: 86 case Instruction::Mul: 87 case Instruction::And: 88 case Instruction::Or: 89 case Instruction::Xor: 90 return 3; // Can fold through either operand. 91 case Instruction::Sub: // Can only fold on the amount subtracted. 92 case Instruction::Shl: // Can only fold on the shift amount. 93 case Instruction::LShr: 94 case Instruction::AShr: 95 return 1; 96 default: 97 return 0; // Cannot fold 98 } 99 } 100 101 /// For the same transformation as the previous function, return the identity 102 /// constant that goes into the select. 103 static Constant *getSelectFoldableConstant(Instruction *I) { 104 switch (I->getOpcode()) { 105 default: llvm_unreachable("This cannot happen!"); 106 case Instruction::Add: 107 case Instruction::Sub: 108 case Instruction::Or: 109 case Instruction::Xor: 110 case Instruction::Shl: 111 case Instruction::LShr: 112 case Instruction::AShr: 113 return Constant::getNullValue(I->getType()); 114 case Instruction::And: 115 return Constant::getAllOnesValue(I->getType()); 116 case Instruction::Mul: 117 return ConstantInt::get(I->getType(), 1); 118 } 119 } 120 121 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 122 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 123 Instruction *FI) { 124 // Don't break up min/max patterns. The hasOneUse checks below prevent that 125 // for most cases, but vector min/max with bitcasts can be transformed. If the 126 // one-use restrictions are eased for other patterns, we still don't want to 127 // obfuscate min/max. 128 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 129 match(&SI, m_SMax(m_Value(), m_Value())) || 130 match(&SI, m_UMin(m_Value(), m_Value())) || 131 match(&SI, m_UMax(m_Value(), m_Value())))) 132 return nullptr; 133 134 // If this is a cast from the same type, merge. 135 if (TI->getNumOperands() == 1 && TI->isCast()) { 136 Type *FIOpndTy = FI->getOperand(0)->getType(); 137 if (TI->getOperand(0)->getType() != FIOpndTy) 138 return nullptr; 139 140 // The select condition may be a vector. We may only change the operand 141 // type if the vector width remains the same (and matches the condition). 142 Type *CondTy = SI.getCondition()->getType(); 143 if (CondTy->isVectorTy()) { 144 if (!FIOpndTy->isVectorTy()) 145 return nullptr; 146 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 147 return nullptr; 148 149 // TODO: If the backend knew how to deal with casts better, we could 150 // remove this limitation. For now, there's too much potential to create 151 // worse codegen by promoting the select ahead of size-altering casts 152 // (PR28160). 153 // 154 // Note that ValueTracking's matchSelectPattern() looks through casts 155 // without checking 'hasOneUse' when it matches min/max patterns, so this 156 // transform may end up happening anyway. 157 if (TI->getOpcode() != Instruction::BitCast && 158 (!TI->hasOneUse() || !FI->hasOneUse())) 159 return nullptr; 160 161 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 162 // TODO: The one-use restrictions for a scalar select could be eased if 163 // the fold of a select in visitLoadInst() was enhanced to match a pattern 164 // that includes a cast. 165 return nullptr; 166 } 167 168 // Fold this by inserting a select from the input values. 169 Value *NewSI = 170 Builder.CreateSelect(SI.getCondition(), TI->getOperand(0), 171 FI->getOperand(0), SI.getName() + ".v", &SI); 172 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 173 TI->getType()); 174 } 175 176 // Only handle binary operators with one-use here. As with the cast case 177 // above, it may be possible to relax the one-use constraint, but that needs 178 // be examined carefully since it may not reduce the total number of 179 // instructions. 180 BinaryOperator *BO = dyn_cast<BinaryOperator>(TI); 181 if (!BO || !TI->hasOneUse() || !FI->hasOneUse()) 182 return nullptr; 183 184 // Figure out if the operations have any operands in common. 185 Value *MatchOp, *OtherOpT, *OtherOpF; 186 bool MatchIsOpZero; 187 if (TI->getOperand(0) == FI->getOperand(0)) { 188 MatchOp = TI->getOperand(0); 189 OtherOpT = TI->getOperand(1); 190 OtherOpF = FI->getOperand(1); 191 MatchIsOpZero = true; 192 } else if (TI->getOperand(1) == FI->getOperand(1)) { 193 MatchOp = TI->getOperand(1); 194 OtherOpT = TI->getOperand(0); 195 OtherOpF = FI->getOperand(0); 196 MatchIsOpZero = false; 197 } else if (!TI->isCommutative()) { 198 return nullptr; 199 } else if (TI->getOperand(0) == FI->getOperand(1)) { 200 MatchOp = TI->getOperand(0); 201 OtherOpT = TI->getOperand(1); 202 OtherOpF = FI->getOperand(0); 203 MatchIsOpZero = true; 204 } else if (TI->getOperand(1) == FI->getOperand(0)) { 205 MatchOp = TI->getOperand(1); 206 OtherOpT = TI->getOperand(0); 207 OtherOpF = FI->getOperand(1); 208 MatchIsOpZero = true; 209 } else { 210 return nullptr; 211 } 212 213 // If we reach here, they do have operations in common. 214 Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, 215 SI.getName() + ".v", &SI); 216 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 217 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 218 return BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 219 } 220 221 static bool isSelect01(Constant *C1, Constant *C2) { 222 ConstantInt *C1I = dyn_cast<ConstantInt>(C1); 223 if (!C1I) 224 return false; 225 ConstantInt *C2I = dyn_cast<ConstantInt>(C2); 226 if (!C2I) 227 return false; 228 if (!C1I->isZero() && !C2I->isZero()) // One side must be zero. 229 return false; 230 return C1I->isOne() || C1I->isMinusOne() || 231 C2I->isOne() || C2I->isMinusOne(); 232 } 233 234 /// Try to fold the select into one of the operands to allow further 235 /// optimization. 236 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 237 Value *FalseVal) { 238 // See the comment above GetSelectFoldableOperands for a description of the 239 // transformation we are doing here. 240 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) { 241 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && 242 !isa<Constant>(FalseVal)) { 243 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 244 unsigned OpToFold = 0; 245 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 246 OpToFold = 1; 247 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 248 OpToFold = 2; 249 } 250 251 if (OpToFold) { 252 Constant *C = getSelectFoldableConstant(TVI); 253 Value *OOp = TVI->getOperand(2-OpToFold); 254 // Avoid creating select between 2 constants unless it's selecting 255 // between 0, 1 and -1. 256 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 257 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 258 NewSel->takeName(TVI); 259 BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI); 260 BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(), 261 FalseVal, NewSel); 262 BO->copyIRFlags(TVI_BO); 263 return BO; 264 } 265 } 266 } 267 } 268 } 269 270 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) { 271 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && 272 !isa<Constant>(TrueVal)) { 273 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 274 unsigned OpToFold = 0; 275 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 276 OpToFold = 1; 277 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 278 OpToFold = 2; 279 } 280 281 if (OpToFold) { 282 Constant *C = getSelectFoldableConstant(FVI); 283 Value *OOp = FVI->getOperand(2-OpToFold); 284 // Avoid creating select between 2 constants unless it's selecting 285 // between 0, 1 and -1. 286 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 287 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 288 NewSel->takeName(FVI); 289 BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI); 290 BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(), 291 TrueVal, NewSel); 292 BO->copyIRFlags(FVI_BO); 293 return BO; 294 } 295 } 296 } 297 } 298 } 299 300 return nullptr; 301 } 302 303 /// We want to turn: 304 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 305 /// into: 306 /// (or (shl (and X, C1), C3), Y) 307 /// iff: 308 /// C1 and C2 are both powers of 2 309 /// where: 310 /// C3 = Log(C2) - Log(C1) 311 /// 312 /// This transform handles cases where: 313 /// 1. The icmp predicate is inverted 314 /// 2. The select operands are reversed 315 /// 3. The magnitude of C2 and C1 are flipped 316 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal, 317 Value *FalseVal, 318 InstCombiner::BuilderTy &Builder) { 319 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 320 if (!IC || !SI.getType()->isIntegerTy()) 321 return nullptr; 322 323 Value *CmpLHS = IC->getOperand(0); 324 Value *CmpRHS = IC->getOperand(1); 325 326 Value *V; 327 unsigned C1Log; 328 bool IsEqualZero; 329 bool NeedAnd = false; 330 if (IC->isEquality()) { 331 if (!match(CmpRHS, m_Zero())) 332 return nullptr; 333 334 const APInt *C1; 335 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 336 return nullptr; 337 338 V = CmpLHS; 339 C1Log = C1->logBase2(); 340 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 341 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 342 IC->getPredicate() == ICmpInst::ICMP_SGT) { 343 // We also need to recognize (icmp slt (trunc (X)), 0) and 344 // (icmp sgt (trunc (X)), -1). 345 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 346 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 347 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 348 return nullptr; 349 350 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 351 return nullptr; 352 353 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 354 NeedAnd = true; 355 } else { 356 return nullptr; 357 } 358 359 const APInt *C2; 360 bool OrOnTrueVal = false; 361 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 362 if (!OrOnFalseVal) 363 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 364 365 if (!OrOnFalseVal && !OrOnTrueVal) 366 return nullptr; 367 368 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 369 370 unsigned C2Log = C2->logBase2(); 371 372 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 373 bool NeedShift = C1Log != C2Log; 374 bool NeedZExtTrunc = Y->getType()->getIntegerBitWidth() != 375 V->getType()->getIntegerBitWidth(); 376 377 // Make sure we don't create more instructions than we save. 378 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 379 if ((NeedShift + NeedXor + NeedZExtTrunc) > 380 (IC->hasOneUse() + Or->hasOneUse())) 381 return nullptr; 382 383 if (NeedAnd) { 384 // Insert the AND instruction on the input to the truncate. 385 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 386 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 387 } 388 389 if (C2Log > C1Log) { 390 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 391 V = Builder.CreateShl(V, C2Log - C1Log); 392 } else if (C1Log > C2Log) { 393 V = Builder.CreateLShr(V, C1Log - C2Log); 394 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 395 } else 396 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 397 398 if (NeedXor) 399 V = Builder.CreateXor(V, *C2); 400 401 return Builder.CreateOr(V, Y); 402 } 403 404 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 405 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 406 /// 407 /// For example, we can fold the following code sequence: 408 /// \code 409 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 410 /// %1 = icmp ne i32 %x, 0 411 /// %2 = select i1 %1, i32 %0, i32 32 412 /// \code 413 /// 414 /// into: 415 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 416 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 417 InstCombiner::BuilderTy &Builder) { 418 ICmpInst::Predicate Pred = ICI->getPredicate(); 419 Value *CmpLHS = ICI->getOperand(0); 420 Value *CmpRHS = ICI->getOperand(1); 421 422 // Check if the condition value compares a value for equality against zero. 423 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 424 return nullptr; 425 426 Value *Count = FalseVal; 427 Value *ValueOnZero = TrueVal; 428 if (Pred == ICmpInst::ICMP_NE) 429 std::swap(Count, ValueOnZero); 430 431 // Skip zero extend/truncate. 432 Value *V = nullptr; 433 if (match(Count, m_ZExt(m_Value(V))) || 434 match(Count, m_Trunc(m_Value(V)))) 435 Count = V; 436 437 // Check if the value propagated on zero is a constant number equal to the 438 // sizeof in bits of 'Count'. 439 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 440 if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) 441 return nullptr; 442 443 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 444 // input to the cttz/ctlz is used as LHS for the compare instruction. 445 if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) || 446 match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) { 447 IntrinsicInst *II = cast<IntrinsicInst>(Count); 448 // Explicitly clear the 'undef_on_zero' flag. 449 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 450 Type *Ty = NewI->getArgOperand(1)->getType(); 451 NewI->setArgOperand(1, Constant::getNullValue(Ty)); 452 Builder.Insert(NewI); 453 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 454 } 455 456 return nullptr; 457 } 458 459 /// Return true if we find and adjust an icmp+select pattern where the compare 460 /// is with a constant that can be incremented or decremented to match the 461 /// minimum or maximum idiom. 462 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 463 ICmpInst::Predicate Pred = Cmp.getPredicate(); 464 Value *CmpLHS = Cmp.getOperand(0); 465 Value *CmpRHS = Cmp.getOperand(1); 466 Value *TrueVal = Sel.getTrueValue(); 467 Value *FalseVal = Sel.getFalseValue(); 468 469 // We may move or edit the compare, so make sure the select is the only user. 470 const APInt *CmpC; 471 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 472 return false; 473 474 // These transforms only work for selects of integers or vector selects of 475 // integer vectors. 476 Type *SelTy = Sel.getType(); 477 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 478 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 479 return false; 480 481 Constant *AdjustedRHS; 482 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 483 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 484 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 485 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 486 else 487 return false; 488 489 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 490 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 491 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 492 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 493 ; // Nothing to do here. Values match without any sign/zero extension. 494 } 495 // Types do not match. Instead of calculating this with mixed types, promote 496 // all to the larger type. This enables scalar evolution to analyze this 497 // expression. 498 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 499 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 500 501 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 502 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 503 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 504 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 505 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 506 CmpLHS = TrueVal; 507 AdjustedRHS = SextRHS; 508 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 509 SextRHS == TrueVal) { 510 CmpLHS = FalseVal; 511 AdjustedRHS = SextRHS; 512 } else if (Cmp.isUnsigned()) { 513 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 514 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 515 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 516 // zext + signed compare cannot be changed: 517 // 0xff <s 0x00, but 0x00ff >s 0x0000 518 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 519 CmpLHS = TrueVal; 520 AdjustedRHS = ZextRHS; 521 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 522 ZextRHS == TrueVal) { 523 CmpLHS = FalseVal; 524 AdjustedRHS = ZextRHS; 525 } else { 526 return false; 527 } 528 } else { 529 return false; 530 } 531 } else { 532 return false; 533 } 534 535 Pred = ICmpInst::getSwappedPredicate(Pred); 536 CmpRHS = AdjustedRHS; 537 std::swap(FalseVal, TrueVal); 538 Cmp.setPredicate(Pred); 539 Cmp.setOperand(0, CmpLHS); 540 Cmp.setOperand(1, CmpRHS); 541 Sel.setOperand(1, TrueVal); 542 Sel.setOperand(2, FalseVal); 543 Sel.swapProfMetadata(); 544 545 // Move the compare instruction right before the select instruction. Otherwise 546 // the sext/zext value may be defined after the compare instruction uses it. 547 Cmp.moveBefore(&Sel); 548 549 return true; 550 } 551 552 /// If this is an integer min/max (icmp + select) with a constant operand, 553 /// create the canonical icmp for the min/max operation and canonicalize the 554 /// constant to the 'false' operand of the select: 555 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 556 /// Note: if C1 != C2, this will change the icmp constant to the existing 557 /// constant operand of the select. 558 static Instruction * 559 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 560 InstCombiner::BuilderTy &Builder) { 561 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 562 return nullptr; 563 564 // Canonicalize the compare predicate based on whether we have min or max. 565 Value *LHS, *RHS; 566 ICmpInst::Predicate NewPred; 567 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 568 switch (SPR.Flavor) { 569 case SPF_SMIN: NewPred = ICmpInst::ICMP_SLT; break; 570 case SPF_UMIN: NewPred = ICmpInst::ICMP_ULT; break; 571 case SPF_SMAX: NewPred = ICmpInst::ICMP_SGT; break; 572 case SPF_UMAX: NewPred = ICmpInst::ICMP_UGT; break; 573 default: return nullptr; 574 } 575 576 // Is this already canonical? 577 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 578 Cmp.getPredicate() == NewPred) 579 return nullptr; 580 581 // Create the canonical compare and plug it into the select. 582 Sel.setCondition(Builder.CreateICmp(NewPred, LHS, RHS)); 583 584 // If the select operands did not change, we're done. 585 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 586 return &Sel; 587 588 // If we are swapping the select operands, swap the metadata too. 589 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 590 "Unexpected results from matchSelectPattern"); 591 Sel.setTrueValue(LHS); 592 Sel.setFalseValue(RHS); 593 Sel.swapProfMetadata(); 594 return &Sel; 595 } 596 597 /// Visit a SelectInst that has an ICmpInst as its first operand. 598 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 599 ICmpInst *ICI) { 600 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) 601 return NewSel; 602 603 bool Changed = adjustMinMax(SI, *ICI); 604 605 ICmpInst::Predicate Pred = ICI->getPredicate(); 606 Value *CmpLHS = ICI->getOperand(0); 607 Value *CmpRHS = ICI->getOperand(1); 608 Value *TrueVal = SI.getTrueValue(); 609 Value *FalseVal = SI.getFalseValue(); 610 611 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 612 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 613 // FIXME: Type and constness constraints could be lifted, but we have to 614 // watch code size carefully. We should consider xor instead of 615 // sub/add when we decide to do that. 616 if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) { 617 if (TrueVal->getType() == Ty) { 618 if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) { 619 ConstantInt *C1 = nullptr, *C2 = nullptr; 620 if (Pred == ICmpInst::ICMP_SGT && Cmp->isMinusOne()) { 621 C1 = dyn_cast<ConstantInt>(TrueVal); 622 C2 = dyn_cast<ConstantInt>(FalseVal); 623 } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isZero()) { 624 C1 = dyn_cast<ConstantInt>(FalseVal); 625 C2 = dyn_cast<ConstantInt>(TrueVal); 626 } 627 if (C1 && C2) { 628 // This shift results in either -1 or 0. 629 Value *AShr = Builder.CreateAShr(CmpLHS, Ty->getBitWidth() - 1); 630 631 // Check if we can express the operation with a single or. 632 if (C2->isMinusOne()) 633 return replaceInstUsesWith(SI, Builder.CreateOr(AShr, C1)); 634 635 Value *And = Builder.CreateAnd(AShr, C2->getValue() - C1->getValue()); 636 return replaceInstUsesWith(SI, Builder.CreateAdd(And, C1)); 637 } 638 } 639 } 640 } 641 642 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 643 644 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 645 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 646 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 647 SI.setOperand(1, CmpRHS); 648 Changed = true; 649 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 650 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 651 SI.setOperand(2, CmpRHS); 652 Changed = true; 653 } 654 } 655 656 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 657 // decomposeBitTestICmp() might help. 658 { 659 unsigned BitWidth = 660 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 661 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 662 Value *X; 663 const APInt *Y, *C; 664 bool TrueWhenUnset; 665 bool IsBitTest = false; 666 if (ICmpInst::isEquality(Pred) && 667 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 668 match(CmpRHS, m_Zero())) { 669 IsBitTest = true; 670 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 671 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 672 X = CmpLHS; 673 Y = &MinSignedValue; 674 IsBitTest = true; 675 TrueWhenUnset = false; 676 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 677 X = CmpLHS; 678 Y = &MinSignedValue; 679 IsBitTest = true; 680 TrueWhenUnset = true; 681 } 682 if (IsBitTest) { 683 Value *V = nullptr; 684 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 685 if (TrueWhenUnset && TrueVal == X && 686 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 687 V = Builder.CreateAnd(X, ~(*Y)); 688 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 689 else if (!TrueWhenUnset && FalseVal == X && 690 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 691 V = Builder.CreateAnd(X, ~(*Y)); 692 // (X & Y) == 0 ? X ^ Y : X --> X | Y 693 else if (TrueWhenUnset && FalseVal == X && 694 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 695 V = Builder.CreateOr(X, *Y); 696 // (X & Y) != 0 ? X : X ^ Y --> X | Y 697 else if (!TrueWhenUnset && TrueVal == X && 698 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 699 V = Builder.CreateOr(X, *Y); 700 701 if (V) 702 return replaceInstUsesWith(SI, V); 703 } 704 } 705 706 if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder)) 707 return replaceInstUsesWith(SI, V); 708 709 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 710 return replaceInstUsesWith(SI, V); 711 712 return Changed ? &SI : nullptr; 713 } 714 715 716 /// SI is a select whose condition is a PHI node (but the two may be in 717 /// different blocks). See if the true/false values (V) are live in all of the 718 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 719 /// 720 /// X = phi [ C1, BB1], [C2, BB2] 721 /// Y = add 722 /// Z = select X, Y, 0 723 /// 724 /// because Y is not live in BB1/BB2. 725 /// 726 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 727 const SelectInst &SI) { 728 // If the value is a non-instruction value like a constant or argument, it 729 // can always be mapped. 730 const Instruction *I = dyn_cast<Instruction>(V); 731 if (!I) return true; 732 733 // If V is a PHI node defined in the same block as the condition PHI, we can 734 // map the arguments. 735 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 736 737 if (const PHINode *VP = dyn_cast<PHINode>(I)) 738 if (VP->getParent() == CondPHI->getParent()) 739 return true; 740 741 // Otherwise, if the PHI and select are defined in the same block and if V is 742 // defined in a different block, then we can transform it. 743 if (SI.getParent() == CondPHI->getParent() && 744 I->getParent() != CondPHI->getParent()) 745 return true; 746 747 // Otherwise we have a 'hard' case and we can't tell without doing more 748 // detailed dominator based analysis, punt. 749 return false; 750 } 751 752 /// We have an SPF (e.g. a min or max) of an SPF of the form: 753 /// SPF2(SPF1(A, B), C) 754 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 755 SelectPatternFlavor SPF1, 756 Value *A, Value *B, 757 Instruction &Outer, 758 SelectPatternFlavor SPF2, Value *C) { 759 if (Outer.getType() != Inner->getType()) 760 return nullptr; 761 762 if (C == A || C == B) { 763 // MAX(MAX(A, B), B) -> MAX(A, B) 764 // MIN(MIN(a, b), a) -> MIN(a, b) 765 if (SPF1 == SPF2) 766 return replaceInstUsesWith(Outer, Inner); 767 768 // MAX(MIN(a, b), a) -> a 769 // MIN(MAX(a, b), a) -> a 770 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 771 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 772 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 773 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 774 return replaceInstUsesWith(Outer, C); 775 } 776 777 if (SPF1 == SPF2) { 778 const APInt *CB, *CC; 779 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 780 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 781 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 782 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 783 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 784 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 785 (SPF1 == SPF_SMAX && CB->sge(*CC))) 786 return replaceInstUsesWith(Outer, Inner); 787 788 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 789 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 790 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 791 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 792 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 793 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 794 Outer.replaceUsesOfWith(Inner, A); 795 return &Outer; 796 } 797 } 798 } 799 800 // ABS(ABS(X)) -> ABS(X) 801 // NABS(NABS(X)) -> NABS(X) 802 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 803 return replaceInstUsesWith(Outer, Inner); 804 } 805 806 // ABS(NABS(X)) -> ABS(X) 807 // NABS(ABS(X)) -> NABS(X) 808 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 809 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 810 SelectInst *SI = cast<SelectInst>(Inner); 811 Value *NewSI = 812 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 813 SI->getTrueValue(), SI->getName(), SI); 814 return replaceInstUsesWith(Outer, NewSI); 815 } 816 817 auto IsFreeOrProfitableToInvert = 818 [&](Value *V, Value *&NotV, bool &ElidesXor) { 819 if (match(V, m_Not(m_Value(NotV)))) { 820 // If V has at most 2 uses then we can get rid of the xor operation 821 // entirely. 822 ElidesXor |= !V->hasNUsesOrMore(3); 823 return true; 824 } 825 826 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 827 NotV = nullptr; 828 return true; 829 } 830 831 return false; 832 }; 833 834 Value *NotA, *NotB, *NotC; 835 bool ElidesXor = false; 836 837 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 838 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 839 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 840 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 841 // 842 // This transform is performance neutral if we can elide at least one xor from 843 // the set of three operands, since we'll be tacking on an xor at the very 844 // end. 845 if (SelectPatternResult::isMinOrMax(SPF1) && 846 SelectPatternResult::isMinOrMax(SPF2) && 847 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 848 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 849 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 850 if (!NotA) 851 NotA = Builder.CreateNot(A); 852 if (!NotB) 853 NotB = Builder.CreateNot(B); 854 if (!NotC) 855 NotC = Builder.CreateNot(C); 856 857 Value *NewInner = generateMinMaxSelectPattern( 858 Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB); 859 Value *NewOuter = Builder.CreateNot(generateMinMaxSelectPattern( 860 Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC)); 861 return replaceInstUsesWith(Outer, NewOuter); 862 } 863 864 return nullptr; 865 } 866 867 /// If one of the constants is zero (we know they can't both be) and we have an 868 /// icmp instruction with zero, and we have an 'and' with the non-constant value 869 /// and a power of two we can turn the select into a shift on the result of the 870 /// 'and'. 871 static Value *foldSelectICmpAnd(const SelectInst &SI, APInt TrueVal, 872 APInt FalseVal, 873 InstCombiner::BuilderTy &Builder) { 874 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 875 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 876 return nullptr; 877 878 if (!match(IC->getOperand(1), m_Zero())) 879 return nullptr; 880 881 ConstantInt *AndRHS; 882 Value *LHS = IC->getOperand(0); 883 if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS)))) 884 return nullptr; 885 886 // If both select arms are non-zero see if we have a select of the form 887 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic 888 // for 'x ? 2^n : 0' and fix the thing up at the end. 889 APInt Offset(TrueVal.getBitWidth(), 0); 890 if (!TrueVal.isNullValue() && !FalseVal.isNullValue()) { 891 if ((TrueVal - FalseVal).isPowerOf2()) 892 Offset = FalseVal; 893 else if ((FalseVal - TrueVal).isPowerOf2()) 894 Offset = TrueVal; 895 else 896 return nullptr; 897 898 // Adjust TrueVal and FalseVal to the offset. 899 TrueVal -= Offset; 900 FalseVal -= Offset; 901 } 902 903 // Make sure the mask in the 'and' and one of the select arms is a power of 2. 904 if (!AndRHS->getValue().isPowerOf2() || 905 (!TrueVal.isPowerOf2() && !FalseVal.isPowerOf2())) 906 return nullptr; 907 908 // Determine which shift is needed to transform result of the 'and' into the 909 // desired result. 910 const APInt &ValC = !TrueVal.isNullValue() ? TrueVal : FalseVal; 911 unsigned ValZeros = ValC.logBase2(); 912 unsigned AndZeros = AndRHS->getValue().logBase2(); 913 914 // If types don't match we can still convert the select by introducing a zext 915 // or a trunc of the 'and'. The trunc case requires that all of the truncated 916 // bits are zero, we can figure that out by looking at the 'and' mask. 917 if (AndZeros >= ValC.getBitWidth()) 918 return nullptr; 919 920 Value *V = Builder.CreateZExtOrTrunc(LHS, SI.getType()); 921 if (ValZeros > AndZeros) 922 V = Builder.CreateShl(V, ValZeros - AndZeros); 923 else if (ValZeros < AndZeros) 924 V = Builder.CreateLShr(V, AndZeros - ValZeros); 925 926 // Okay, now we know that everything is set up, we just don't know whether we 927 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 928 bool ShouldNotVal = !TrueVal.isNullValue(); 929 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; 930 if (ShouldNotVal) 931 V = Builder.CreateXor(V, ValC); 932 933 // Apply an offset if needed. 934 if (!Offset.isNullValue()) 935 V = Builder.CreateAdd(V, ConstantInt::get(V->getType(), Offset)); 936 return V; 937 } 938 939 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 940 /// This is even legal for FP. 941 static Instruction *foldAddSubSelect(SelectInst &SI, 942 InstCombiner::BuilderTy &Builder) { 943 Value *CondVal = SI.getCondition(); 944 Value *TrueVal = SI.getTrueValue(); 945 Value *FalseVal = SI.getFalseValue(); 946 auto *TI = dyn_cast<Instruction>(TrueVal); 947 auto *FI = dyn_cast<Instruction>(FalseVal); 948 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 949 return nullptr; 950 951 Instruction *AddOp = nullptr, *SubOp = nullptr; 952 if ((TI->getOpcode() == Instruction::Sub && 953 FI->getOpcode() == Instruction::Add) || 954 (TI->getOpcode() == Instruction::FSub && 955 FI->getOpcode() == Instruction::FAdd)) { 956 AddOp = FI; 957 SubOp = TI; 958 } else if ((FI->getOpcode() == Instruction::Sub && 959 TI->getOpcode() == Instruction::Add) || 960 (FI->getOpcode() == Instruction::FSub && 961 TI->getOpcode() == Instruction::FAdd)) { 962 AddOp = TI; 963 SubOp = FI; 964 } 965 966 if (AddOp) { 967 Value *OtherAddOp = nullptr; 968 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 969 OtherAddOp = AddOp->getOperand(1); 970 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 971 OtherAddOp = AddOp->getOperand(0); 972 } 973 974 if (OtherAddOp) { 975 // So at this point we know we have (Y -> OtherAddOp): 976 // select C, (add X, Y), (sub X, Z) 977 Value *NegVal; // Compute -Z 978 if (SI.getType()->isFPOrFPVectorTy()) { 979 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 980 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 981 FastMathFlags Flags = AddOp->getFastMathFlags(); 982 Flags &= SubOp->getFastMathFlags(); 983 NegInst->setFastMathFlags(Flags); 984 } 985 } else { 986 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 987 } 988 989 Value *NewTrueOp = OtherAddOp; 990 Value *NewFalseOp = NegVal; 991 if (AddOp != TI) 992 std::swap(NewTrueOp, NewFalseOp); 993 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 994 SI.getName() + ".p", &SI); 995 996 if (SI.getType()->isFPOrFPVectorTy()) { 997 Instruction *RI = 998 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 999 1000 FastMathFlags Flags = AddOp->getFastMathFlags(); 1001 Flags &= SubOp->getFastMathFlags(); 1002 RI->setFastMathFlags(Flags); 1003 return RI; 1004 } else 1005 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1006 } 1007 } 1008 return nullptr; 1009 } 1010 1011 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1012 Instruction *ExtInst; 1013 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1014 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1015 return nullptr; 1016 1017 auto ExtOpcode = ExtInst->getOpcode(); 1018 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1019 return nullptr; 1020 1021 // TODO: Handle larger types? That requires adjusting FoldOpIntoSelect too. 1022 Value *X = ExtInst->getOperand(0); 1023 Type *SmallType = X->getType(); 1024 if (!SmallType->isIntOrIntVectorTy(1)) 1025 return nullptr; 1026 1027 Constant *C; 1028 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1029 !match(Sel.getFalseValue(), m_Constant(C))) 1030 return nullptr; 1031 1032 // If the constant is the same after truncation to the smaller type and 1033 // extension to the original type, we can narrow the select. 1034 Value *Cond = Sel.getCondition(); 1035 Type *SelType = Sel.getType(); 1036 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1037 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1038 if (ExtC == C) { 1039 Value *TruncCVal = cast<Value>(TruncC); 1040 if (ExtInst == Sel.getFalseValue()) 1041 std::swap(X, TruncCVal); 1042 1043 // select Cond, (ext X), C --> ext(select Cond, X, C') 1044 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1045 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1046 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1047 } 1048 1049 // If one arm of the select is the extend of the condition, replace that arm 1050 // with the extension of the appropriate known bool value. 1051 if (Cond == X) { 1052 if (ExtInst == Sel.getTrueValue()) { 1053 // select X, (sext X), C --> select X, -1, C 1054 // select X, (zext X), C --> select X, 1, C 1055 Constant *One = ConstantInt::getTrue(SmallType); 1056 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1057 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1058 } else { 1059 // select X, C, (sext X) --> select X, C, 0 1060 // select X, C, (zext X) --> select X, C, 0 1061 Constant *Zero = ConstantInt::getNullValue(SelType); 1062 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1063 } 1064 } 1065 1066 return nullptr; 1067 } 1068 1069 /// Try to transform a vector select with a constant condition vector into a 1070 /// shuffle for easier combining with other shuffles and insert/extract. 1071 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1072 Value *CondVal = SI.getCondition(); 1073 Constant *CondC; 1074 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1075 return nullptr; 1076 1077 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1078 SmallVector<Constant *, 16> Mask; 1079 Mask.reserve(NumElts); 1080 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1081 for (unsigned i = 0; i != NumElts; ++i) { 1082 Constant *Elt = CondC->getAggregateElement(i); 1083 if (!Elt) 1084 return nullptr; 1085 1086 if (Elt->isOneValue()) { 1087 // If the select condition element is true, choose from the 1st vector. 1088 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1089 } else if (Elt->isNullValue()) { 1090 // If the select condition element is false, choose from the 2nd vector. 1091 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1092 } else if (isa<UndefValue>(Elt)) { 1093 // Undef in a select condition (choose one of the operands) does not mean 1094 // the same thing as undef in a shuffle mask (any value is acceptable), so 1095 // give up. 1096 return nullptr; 1097 } else { 1098 // Bail out on a constant expression. 1099 return nullptr; 1100 } 1101 } 1102 1103 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1104 ConstantVector::get(Mask)); 1105 } 1106 1107 /// Reuse bitcasted operands between a compare and select: 1108 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1109 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1110 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1111 InstCombiner::BuilderTy &Builder) { 1112 Value *Cond = Sel.getCondition(); 1113 Value *TVal = Sel.getTrueValue(); 1114 Value *FVal = Sel.getFalseValue(); 1115 1116 CmpInst::Predicate Pred; 1117 Value *A, *B; 1118 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1119 return nullptr; 1120 1121 // The select condition is a compare instruction. If the select's true/false 1122 // values are already the same as the compare operands, there's nothing to do. 1123 if (TVal == A || TVal == B || FVal == A || FVal == B) 1124 return nullptr; 1125 1126 Value *C, *D; 1127 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1128 return nullptr; 1129 1130 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1131 Value *TSrc, *FSrc; 1132 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1133 !match(FVal, m_BitCast(m_Value(FSrc)))) 1134 return nullptr; 1135 1136 // If the select true/false values are *different bitcasts* of the same source 1137 // operands, make the select operands the same as the compare operands and 1138 // cast the result. This is the canonical select form for min/max. 1139 Value *NewSel; 1140 if (TSrc == C && FSrc == D) { 1141 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1142 // bitcast (select (cmp A, B), A, B) 1143 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1144 } else if (TSrc == D && FSrc == C) { 1145 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1146 // bitcast (select (cmp A, B), B, A) 1147 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1148 } else { 1149 return nullptr; 1150 } 1151 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1152 } 1153 1154 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1155 Value *CondVal = SI.getCondition(); 1156 Value *TrueVal = SI.getTrueValue(); 1157 Value *FalseVal = SI.getFalseValue(); 1158 Type *SelType = SI.getType(); 1159 1160 // FIXME: Remove this workaround when freeze related patches are done. 1161 // For select with undef operand which feeds into an equality comparison, 1162 // don't simplify it so loop unswitch can know the equality comparison 1163 // may have an undef operand. This is a workaround for PR31652 caused by 1164 // descrepancy about branch on undef between LoopUnswitch and GVN. 1165 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 1166 if (any_of(SI.users(), [&](User *U) { 1167 ICmpInst *CI = dyn_cast<ICmpInst>(U); 1168 if (CI && CI->isEquality()) 1169 return true; 1170 return false; 1171 })) { 1172 return nullptr; 1173 } 1174 } 1175 1176 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 1177 SQ.getWithInstruction(&SI))) 1178 return replaceInstUsesWith(SI, V); 1179 1180 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1181 return I; 1182 1183 // Canonicalize a one-use integer compare with a non-canonical predicate by 1184 // inverting the predicate and swapping the select operands. This matches a 1185 // compare canonicalization for conditional branches. 1186 // TODO: Should we do the same for FP compares? 1187 CmpInst::Predicate Pred; 1188 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && 1189 !isCanonicalPredicate(Pred)) { 1190 // Swap true/false values and condition. 1191 CmpInst *Cond = cast<CmpInst>(CondVal); 1192 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 1193 SI.setOperand(1, FalseVal); 1194 SI.setOperand(2, TrueVal); 1195 SI.swapProfMetadata(); 1196 Worklist.Add(Cond); 1197 return &SI; 1198 } 1199 1200 if (SelType->isIntOrIntVectorTy(1) && 1201 TrueVal->getType() == CondVal->getType()) { 1202 if (match(TrueVal, m_One())) { 1203 // Change: A = select B, true, C --> A = or B, C 1204 return BinaryOperator::CreateOr(CondVal, FalseVal); 1205 } 1206 if (match(TrueVal, m_Zero())) { 1207 // Change: A = select B, false, C --> A = and !B, C 1208 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1209 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1210 } 1211 if (match(FalseVal, m_Zero())) { 1212 // Change: A = select B, C, false --> A = and B, C 1213 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1214 } 1215 if (match(FalseVal, m_One())) { 1216 // Change: A = select B, C, true --> A = or !B, C 1217 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1218 return BinaryOperator::CreateOr(NotCond, TrueVal); 1219 } 1220 1221 // select a, a, b -> a | b 1222 // select a, b, a -> a & b 1223 if (CondVal == TrueVal) 1224 return BinaryOperator::CreateOr(CondVal, FalseVal); 1225 if (CondVal == FalseVal) 1226 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1227 1228 // select a, ~a, b -> (~a) & b 1229 // select a, b, ~a -> (~a) | b 1230 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1231 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1232 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1233 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1234 } 1235 1236 // Selecting between two integer or vector splat integer constants? 1237 // 1238 // Note that we don't handle a scalar select of vectors: 1239 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1240 // because that may need 3 instructions to splat the condition value: 1241 // extend, insertelement, shufflevector. 1242 if (SelType->isIntOrIntVectorTy() && 1243 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1244 // select C, 1, 0 -> zext C to int 1245 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1246 return new ZExtInst(CondVal, SelType); 1247 1248 // select C, -1, 0 -> sext C to int 1249 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1250 return new SExtInst(CondVal, SelType); 1251 1252 // select C, 0, 1 -> zext !C to int 1253 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1254 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1255 return new ZExtInst(NotCond, SelType); 1256 } 1257 1258 // select C, 0, -1 -> sext !C to int 1259 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1260 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1261 return new SExtInst(NotCond, SelType); 1262 } 1263 } 1264 1265 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) 1266 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) 1267 if (Value *V = foldSelectICmpAnd(SI, TrueValC->getValue(), 1268 FalseValC->getValue(), Builder)) 1269 return replaceInstUsesWith(SI, V); 1270 1271 // See if we are selecting two values based on a comparison of the two values. 1272 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1273 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1274 // Transform (X == Y) ? X : Y -> Y 1275 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1276 // This is not safe in general for floating point: 1277 // consider X== -0, Y== +0. 1278 // It becomes safe if either operand is a nonzero constant. 1279 ConstantFP *CFPt, *CFPf; 1280 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1281 !CFPt->getValueAPF().isZero()) || 1282 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1283 !CFPf->getValueAPF().isZero())) 1284 return replaceInstUsesWith(SI, FalseVal); 1285 } 1286 // Transform (X une Y) ? X : Y -> X 1287 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1288 // This is not safe in general for floating point: 1289 // consider X== -0, Y== +0. 1290 // It becomes safe if either operand is a nonzero constant. 1291 ConstantFP *CFPt, *CFPf; 1292 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1293 !CFPt->getValueAPF().isZero()) || 1294 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1295 !CFPf->getValueAPF().isZero())) 1296 return replaceInstUsesWith(SI, TrueVal); 1297 } 1298 1299 // Canonicalize to use ordered comparisons by swapping the select 1300 // operands. 1301 // 1302 // e.g. 1303 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1304 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1305 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1306 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1307 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1308 Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, 1309 FCI->getName() + ".inv"); 1310 1311 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1312 SI.getName() + ".p"); 1313 } 1314 1315 // NOTE: if we wanted to, this is where to detect MIN/MAX 1316 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1317 // Transform (X == Y) ? Y : X -> X 1318 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1319 // This is not safe in general for floating point: 1320 // consider X== -0, Y== +0. 1321 // It becomes safe if either operand is a nonzero constant. 1322 ConstantFP *CFPt, *CFPf; 1323 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1324 !CFPt->getValueAPF().isZero()) || 1325 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1326 !CFPf->getValueAPF().isZero())) 1327 return replaceInstUsesWith(SI, FalseVal); 1328 } 1329 // Transform (X une Y) ? Y : X -> Y 1330 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1331 // This is not safe in general for floating point: 1332 // consider X== -0, Y== +0. 1333 // It becomes safe if either operand is a nonzero constant. 1334 ConstantFP *CFPt, *CFPf; 1335 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1336 !CFPt->getValueAPF().isZero()) || 1337 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1338 !CFPf->getValueAPF().isZero())) 1339 return replaceInstUsesWith(SI, TrueVal); 1340 } 1341 1342 // Canonicalize to use ordered comparisons by swapping the select 1343 // operands. 1344 // 1345 // e.g. 1346 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1347 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1348 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1349 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1350 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1351 Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, 1352 FCI->getName() + ".inv"); 1353 1354 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1355 SI.getName() + ".p"); 1356 } 1357 1358 // NOTE: if we wanted to, this is where to detect MIN/MAX 1359 } 1360 // NOTE: if we wanted to, this is where to detect ABS 1361 } 1362 1363 // See if we are selecting two values based on a comparison of the two values. 1364 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1365 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1366 return Result; 1367 1368 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 1369 return Add; 1370 1371 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1372 auto *TI = dyn_cast<Instruction>(TrueVal); 1373 auto *FI = dyn_cast<Instruction>(FalseVal); 1374 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1375 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1376 return IV; 1377 1378 if (Instruction *I = foldSelectExtConst(SI)) 1379 return I; 1380 1381 // See if we can fold the select into one of our operands. 1382 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1383 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1384 return FoldI; 1385 1386 Value *LHS, *RHS, *LHS2, *RHS2; 1387 Instruction::CastOps CastOp; 1388 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1389 auto SPF = SPR.Flavor; 1390 1391 if (SelectPatternResult::isMinOrMax(SPF)) { 1392 // Canonicalize so that type casts are outside select patterns. 1393 if (LHS->getType()->getPrimitiveSizeInBits() != 1394 SelType->getPrimitiveSizeInBits()) { 1395 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered); 1396 1397 Value *Cmp; 1398 if (CmpInst::isIntPredicate(Pred)) { 1399 Cmp = Builder.CreateICmp(Pred, LHS, RHS); 1400 } else { 1401 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1402 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1403 Builder.setFastMathFlags(FMF); 1404 Cmp = Builder.CreateFCmp(Pred, LHS, RHS); 1405 } 1406 1407 Value *NewSI = Builder.CreateCast( 1408 CastOp, Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI), 1409 SelType); 1410 return replaceInstUsesWith(SI, NewSI); 1411 } 1412 } 1413 1414 if (SPF) { 1415 // MAX(MAX(a, b), a) -> MAX(a, b) 1416 // MIN(MIN(a, b), a) -> MIN(a, b) 1417 // MAX(MIN(a, b), a) -> a 1418 // MIN(MAX(a, b), a) -> a 1419 // ABS(ABS(a)) -> ABS(a) 1420 // NABS(NABS(a)) -> NABS(a) 1421 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1422 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 1423 SI, SPF, RHS)) 1424 return R; 1425 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1426 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, 1427 SI, SPF, LHS)) 1428 return R; 1429 } 1430 1431 // MAX(~a, ~b) -> ~MIN(a, b) 1432 if ((SPF == SPF_SMAX || SPF == SPF_UMAX) && 1433 IsFreeToInvert(LHS, LHS->hasNUses(2)) && 1434 IsFreeToInvert(RHS, RHS->hasNUses(2))) { 1435 // For this transform to be profitable, we need to eliminate at least two 1436 // 'not' instructions if we're going to add one 'not' instruction. 1437 int NumberOfNots = 1438 (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) + 1439 (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) + 1440 (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value()))); 1441 1442 if (NumberOfNots >= 2) { 1443 Value *NewLHS = Builder.CreateNot(LHS); 1444 Value *NewRHS = Builder.CreateNot(RHS); 1445 Value *NewCmp = SPF == SPF_SMAX ? Builder.CreateICmpSLT(NewLHS, NewRHS) 1446 : Builder.CreateICmpULT(NewLHS, NewRHS); 1447 Value *NewSI = 1448 Builder.CreateNot(Builder.CreateSelect(NewCmp, NewLHS, NewRHS)); 1449 return replaceInstUsesWith(SI, NewSI); 1450 } 1451 } 1452 1453 // TODO. 1454 // ABS(-X) -> ABS(X) 1455 } 1456 1457 // See if we can fold the select into a phi node if the condition is a select. 1458 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 1459 // The true/false values have to be live in the PHI predecessor's blocks. 1460 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1461 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1462 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 1463 return NV; 1464 1465 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1466 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 1467 // select(C, select(C, a, b), c) -> select(C, a, c) 1468 if (TrueSI->getCondition() == CondVal) { 1469 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1470 return nullptr; 1471 SI.setOperand(1, TrueSI->getTrueValue()); 1472 return &SI; 1473 } 1474 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1475 // We choose this as normal form to enable folding on the And and shortening 1476 // paths for the values (this helps GetUnderlyingObjects() for example). 1477 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1478 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 1479 SI.setOperand(0, And); 1480 SI.setOperand(1, TrueSI->getTrueValue()); 1481 return &SI; 1482 } 1483 } 1484 } 1485 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1486 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 1487 // select(C, a, select(C, b, c)) -> select(C, a, c) 1488 if (FalseSI->getCondition() == CondVal) { 1489 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1490 return nullptr; 1491 SI.setOperand(2, FalseSI->getFalseValue()); 1492 return &SI; 1493 } 1494 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1495 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1496 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 1497 SI.setOperand(0, Or); 1498 SI.setOperand(2, FalseSI->getFalseValue()); 1499 return &SI; 1500 } 1501 } 1502 } 1503 1504 if (BinaryOperator::isNot(CondVal)) { 1505 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); 1506 SI.setOperand(1, FalseVal); 1507 SI.setOperand(2, TrueVal); 1508 return &SI; 1509 } 1510 1511 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 1512 unsigned VWidth = VecTy->getNumElements(); 1513 APInt UndefElts(VWidth, 0); 1514 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1515 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 1516 if (V != &SI) 1517 return replaceInstUsesWith(SI, V); 1518 return &SI; 1519 } 1520 1521 if (isa<ConstantAggregateZero>(CondVal)) { 1522 return replaceInstUsesWith(SI, FalseVal); 1523 } 1524 } 1525 1526 // See if we can determine the result of this select based on a dominating 1527 // condition. 1528 BasicBlock *Parent = SI.getParent(); 1529 if (BasicBlock *Dom = Parent->getSinglePredecessor()) { 1530 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 1531 if (PBI && PBI->isConditional() && 1532 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 1533 (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) { 1534 bool CondIsFalse = PBI->getSuccessor(1) == Parent; 1535 Optional<bool> Implication = isImpliedCondition( 1536 PBI->getCondition(), SI.getCondition(), DL, CondIsFalse); 1537 if (Implication) { 1538 Value *V = *Implication ? TrueVal : FalseVal; 1539 return replaceInstUsesWith(SI, V); 1540 } 1541 } 1542 } 1543 1544 // If we can compute the condition, there's no need for a select. 1545 // Like the above fold, we are attempting to reduce compile-time cost by 1546 // putting this fold here with limitations rather than in InstSimplify. 1547 // The motivation for this call into value tracking is to take advantage of 1548 // the assumption cache, so make sure that is populated. 1549 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 1550 KnownBits Known(1); 1551 computeKnownBits(CondVal, Known, 0, &SI); 1552 if (Known.One.isOneValue()) 1553 return replaceInstUsesWith(SI, TrueVal); 1554 if (Known.Zero.isOneValue()) 1555 return replaceInstUsesWith(SI, FalseVal); 1556 } 1557 1558 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 1559 return BitCastSel; 1560 1561 return nullptr; 1562 } 1563