1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 41 #include "llvm/Transforms/InstCombine/InstCombiner.h" 42 #include <cassert> 43 #include <utility> 44 45 using namespace llvm; 46 using namespace PatternMatch; 47 48 #define DEBUG_TYPE "instcombine" 49 50 /// FIXME: Enabled by default until the pattern is supported well. 51 static cl::opt<bool> EnableUnsafeSelectTransform( 52 "instcombine-unsafe-select-transform", cl::init(true), 53 cl::desc("Enable poison-unsafe select to and/or transform")); 54 55 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 56 SelectPatternFlavor SPF, Value *A, Value *B) { 57 CmpInst::Predicate Pred = getMinMaxPred(SPF); 58 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 59 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 60 } 61 62 /// Replace a select operand based on an equality comparison with the identity 63 /// constant of a binop. 64 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 65 const TargetLibraryInfo &TLI, 66 InstCombinerImpl &IC) { 67 // The select condition must be an equality compare with a constant operand. 68 Value *X; 69 Constant *C; 70 CmpInst::Predicate Pred; 71 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 72 return nullptr; 73 74 bool IsEq; 75 if (ICmpInst::isEquality(Pred)) 76 IsEq = Pred == ICmpInst::ICMP_EQ; 77 else if (Pred == FCmpInst::FCMP_OEQ) 78 IsEq = true; 79 else if (Pred == FCmpInst::FCMP_UNE) 80 IsEq = false; 81 else 82 return nullptr; 83 84 // A select operand must be a binop. 85 BinaryOperator *BO; 86 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 87 return nullptr; 88 89 // The compare constant must be the identity constant for that binop. 90 // If this a floating-point compare with 0.0, any zero constant will do. 91 Type *Ty = BO->getType(); 92 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 93 if (IdC != C) { 94 if (!IdC || !CmpInst::isFPPredicate(Pred)) 95 return nullptr; 96 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 97 return nullptr; 98 } 99 100 // Last, match the compare variable operand with a binop operand. 101 Value *Y; 102 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 103 return nullptr; 104 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 105 return nullptr; 106 107 // +0.0 compares equal to -0.0, and so it does not behave as required for this 108 // transform. Bail out if we can not exclude that possibility. 109 if (isa<FPMathOperator>(BO)) 110 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 111 return nullptr; 112 113 // BO = binop Y, X 114 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 115 // => 116 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 117 return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y); 118 } 119 120 /// This folds: 121 /// select (icmp eq (and X, C1)), TC, FC 122 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 123 /// To something like: 124 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 125 /// Or: 126 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 127 /// With some variations depending if FC is larger than TC, or the shift 128 /// isn't needed, or the bit widths don't match. 129 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 130 InstCombiner::BuilderTy &Builder) { 131 const APInt *SelTC, *SelFC; 132 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 133 !match(Sel.getFalseValue(), m_APInt(SelFC))) 134 return nullptr; 135 136 // If this is a vector select, we need a vector compare. 137 Type *SelType = Sel.getType(); 138 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 139 return nullptr; 140 141 Value *V; 142 APInt AndMask; 143 bool CreateAnd = false; 144 ICmpInst::Predicate Pred = Cmp->getPredicate(); 145 if (ICmpInst::isEquality(Pred)) { 146 if (!match(Cmp->getOperand(1), m_Zero())) 147 return nullptr; 148 149 V = Cmp->getOperand(0); 150 const APInt *AndRHS; 151 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 152 return nullptr; 153 154 AndMask = *AndRHS; 155 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 156 Pred, V, AndMask)) { 157 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 158 if (!AndMask.isPowerOf2()) 159 return nullptr; 160 161 CreateAnd = true; 162 } else { 163 return nullptr; 164 } 165 166 // In general, when both constants are non-zero, we would need an offset to 167 // replace the select. This would require more instructions than we started 168 // with. But there's one special-case that we handle here because it can 169 // simplify/reduce the instructions. 170 APInt TC = *SelTC; 171 APInt FC = *SelFC; 172 if (!TC.isNullValue() && !FC.isNullValue()) { 173 // If the select constants differ by exactly one bit and that's the same 174 // bit that is masked and checked by the select condition, the select can 175 // be replaced by bitwise logic to set/clear one bit of the constant result. 176 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 177 return nullptr; 178 if (CreateAnd) { 179 // If we have to create an 'and', then we must kill the cmp to not 180 // increase the instruction count. 181 if (!Cmp->hasOneUse()) 182 return nullptr; 183 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 184 } 185 bool ExtraBitInTC = TC.ugt(FC); 186 if (Pred == ICmpInst::ICMP_EQ) { 187 // If the masked bit in V is clear, clear or set the bit in the result: 188 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 189 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 190 Constant *C = ConstantInt::get(SelType, TC); 191 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 192 } 193 if (Pred == ICmpInst::ICMP_NE) { 194 // If the masked bit in V is set, set or clear the bit in the result: 195 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 196 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 197 Constant *C = ConstantInt::get(SelType, FC); 198 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 199 } 200 llvm_unreachable("Only expecting equality predicates"); 201 } 202 203 // Make sure one of the select arms is a power-of-2. 204 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 205 return nullptr; 206 207 // Determine which shift is needed to transform result of the 'and' into the 208 // desired result. 209 const APInt &ValC = !TC.isNullValue() ? TC : FC; 210 unsigned ValZeros = ValC.logBase2(); 211 unsigned AndZeros = AndMask.logBase2(); 212 213 // Insert the 'and' instruction on the input to the truncate. 214 if (CreateAnd) 215 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 216 217 // If types don't match, we can still convert the select by introducing a zext 218 // or a trunc of the 'and'. 219 if (ValZeros > AndZeros) { 220 V = Builder.CreateZExtOrTrunc(V, SelType); 221 V = Builder.CreateShl(V, ValZeros - AndZeros); 222 } else if (ValZeros < AndZeros) { 223 V = Builder.CreateLShr(V, AndZeros - ValZeros); 224 V = Builder.CreateZExtOrTrunc(V, SelType); 225 } else { 226 V = Builder.CreateZExtOrTrunc(V, SelType); 227 } 228 229 // Okay, now we know that everything is set up, we just don't know whether we 230 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 231 bool ShouldNotVal = !TC.isNullValue(); 232 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 233 if (ShouldNotVal) 234 V = Builder.CreateXor(V, ValC); 235 236 return V; 237 } 238 239 /// We want to turn code that looks like this: 240 /// %C = or %A, %B 241 /// %D = select %cond, %C, %A 242 /// into: 243 /// %C = select %cond, %B, 0 244 /// %D = or %A, %C 245 /// 246 /// Assuming that the specified instruction is an operand to the select, return 247 /// a bitmask indicating which operands of this instruction are foldable if they 248 /// equal the other incoming value of the select. 249 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 250 switch (I->getOpcode()) { 251 case Instruction::Add: 252 case Instruction::Mul: 253 case Instruction::And: 254 case Instruction::Or: 255 case Instruction::Xor: 256 return 3; // Can fold through either operand. 257 case Instruction::Sub: // Can only fold on the amount subtracted. 258 case Instruction::Shl: // Can only fold on the shift amount. 259 case Instruction::LShr: 260 case Instruction::AShr: 261 return 1; 262 default: 263 return 0; // Cannot fold 264 } 265 } 266 267 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 268 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI, 269 Instruction *FI) { 270 // Don't break up min/max patterns. The hasOneUse checks below prevent that 271 // for most cases, but vector min/max with bitcasts can be transformed. If the 272 // one-use restrictions are eased for other patterns, we still don't want to 273 // obfuscate min/max. 274 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 275 match(&SI, m_SMax(m_Value(), m_Value())) || 276 match(&SI, m_UMin(m_Value(), m_Value())) || 277 match(&SI, m_UMax(m_Value(), m_Value())))) 278 return nullptr; 279 280 // If this is a cast from the same type, merge. 281 Value *Cond = SI.getCondition(); 282 Type *CondTy = Cond->getType(); 283 if (TI->getNumOperands() == 1 && TI->isCast()) { 284 Type *FIOpndTy = FI->getOperand(0)->getType(); 285 if (TI->getOperand(0)->getType() != FIOpndTy) 286 return nullptr; 287 288 // The select condition may be a vector. We may only change the operand 289 // type if the vector width remains the same (and matches the condition). 290 if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) { 291 if (!FIOpndTy->isVectorTy() || 292 CondVTy->getElementCount() != 293 cast<VectorType>(FIOpndTy)->getElementCount()) 294 return nullptr; 295 296 // TODO: If the backend knew how to deal with casts better, we could 297 // remove this limitation. For now, there's too much potential to create 298 // worse codegen by promoting the select ahead of size-altering casts 299 // (PR28160). 300 // 301 // Note that ValueTracking's matchSelectPattern() looks through casts 302 // without checking 'hasOneUse' when it matches min/max patterns, so this 303 // transform may end up happening anyway. 304 if (TI->getOpcode() != Instruction::BitCast && 305 (!TI->hasOneUse() || !FI->hasOneUse())) 306 return nullptr; 307 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 308 // TODO: The one-use restrictions for a scalar select could be eased if 309 // the fold of a select in visitLoadInst() was enhanced to match a pattern 310 // that includes a cast. 311 return nullptr; 312 } 313 314 // Fold this by inserting a select from the input values. 315 Value *NewSI = 316 Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0), 317 SI.getName() + ".v", &SI); 318 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 319 TI->getType()); 320 } 321 322 // Cond ? -X : -Y --> -(Cond ? X : Y) 323 Value *X, *Y; 324 if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) && 325 (TI->hasOneUse() || FI->hasOneUse())) { 326 Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI); 327 return UnaryOperator::CreateFNegFMF(NewSel, TI); 328 } 329 330 // Min/max intrinsic with a common operand can have the common operand pulled 331 // after the select. This is the same transform as below for binops, but 332 // specialized for intrinsic matching and without the restrictive uses clause. 333 auto *TII = dyn_cast<IntrinsicInst>(TI); 334 auto *FII = dyn_cast<IntrinsicInst>(FI); 335 if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() && 336 (TII->hasOneUse() || FII->hasOneUse())) { 337 Value *T0, *T1, *F0, *F1; 338 if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) && 339 match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) { 340 if (T0 == F0) { 341 Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI); 342 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 343 } 344 if (T0 == F1) { 345 Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI); 346 return CallInst::Create(TII->getCalledFunction(), {NewSel, T0}); 347 } 348 if (T1 == F0) { 349 Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI); 350 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 351 } 352 if (T1 == F1) { 353 Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI); 354 return CallInst::Create(TII->getCalledFunction(), {NewSel, T1}); 355 } 356 } 357 } 358 359 // Only handle binary operators (including two-operand getelementptr) with 360 // one-use here. As with the cast case above, it may be possible to relax the 361 // one-use constraint, but that needs be examined carefully since it may not 362 // reduce the total number of instructions. 363 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 364 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 365 !TI->hasOneUse() || !FI->hasOneUse()) 366 return nullptr; 367 368 // Figure out if the operations have any operands in common. 369 Value *MatchOp, *OtherOpT, *OtherOpF; 370 bool MatchIsOpZero; 371 if (TI->getOperand(0) == FI->getOperand(0)) { 372 MatchOp = TI->getOperand(0); 373 OtherOpT = TI->getOperand(1); 374 OtherOpF = FI->getOperand(1); 375 MatchIsOpZero = true; 376 } else if (TI->getOperand(1) == FI->getOperand(1)) { 377 MatchOp = TI->getOperand(1); 378 OtherOpT = TI->getOperand(0); 379 OtherOpF = FI->getOperand(0); 380 MatchIsOpZero = false; 381 } else if (!TI->isCommutative()) { 382 return nullptr; 383 } else if (TI->getOperand(0) == FI->getOperand(1)) { 384 MatchOp = TI->getOperand(0); 385 OtherOpT = TI->getOperand(1); 386 OtherOpF = FI->getOperand(0); 387 MatchIsOpZero = true; 388 } else if (TI->getOperand(1) == FI->getOperand(0)) { 389 MatchOp = TI->getOperand(1); 390 OtherOpT = TI->getOperand(0); 391 OtherOpF = FI->getOperand(1); 392 MatchIsOpZero = true; 393 } else { 394 return nullptr; 395 } 396 397 // If the select condition is a vector, the operands of the original select's 398 // operands also must be vectors. This may not be the case for getelementptr 399 // for example. 400 if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() || 401 !OtherOpF->getType()->isVectorTy())) 402 return nullptr; 403 404 // If we reach here, they do have operations in common. 405 Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF, 406 SI.getName() + ".v", &SI); 407 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 408 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 409 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 410 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 411 NewBO->copyIRFlags(TI); 412 NewBO->andIRFlags(FI); 413 return NewBO; 414 } 415 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 416 auto *FGEP = cast<GetElementPtrInst>(FI); 417 Type *ElementType = TGEP->getResultElementType(); 418 return TGEP->isInBounds() && FGEP->isInBounds() 419 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 420 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 421 } 422 llvm_unreachable("Expected BinaryOperator or GEP"); 423 return nullptr; 424 } 425 426 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 427 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 428 return false; 429 return C1I.isOneValue() || C1I.isAllOnesValue() || 430 C2I.isOneValue() || C2I.isAllOnesValue(); 431 } 432 433 /// Try to fold the select into one of the operands to allow further 434 /// optimization. 435 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 436 Value *FalseVal) { 437 // See the comment above GetSelectFoldableOperands for a description of the 438 // transformation we are doing here. 439 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 440 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 441 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 442 unsigned OpToFold = 0; 443 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 444 OpToFold = 1; 445 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 446 OpToFold = 2; 447 } 448 449 if (OpToFold) { 450 Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(), 451 TVI->getType(), true); 452 Value *OOp = TVI->getOperand(2-OpToFold); 453 // Avoid creating select between 2 constants unless it's selecting 454 // between 0, 1 and -1. 455 const APInt *OOpC; 456 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 457 if (!isa<Constant>(OOp) || 458 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 459 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 460 NewSel->takeName(TVI); 461 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 462 FalseVal, NewSel); 463 BO->copyIRFlags(TVI); 464 return BO; 465 } 466 } 467 } 468 } 469 } 470 471 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 472 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 473 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 474 unsigned OpToFold = 0; 475 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 476 OpToFold = 1; 477 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 478 OpToFold = 2; 479 } 480 481 if (OpToFold) { 482 Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(), 483 FVI->getType(), true); 484 Value *OOp = FVI->getOperand(2-OpToFold); 485 // Avoid creating select between 2 constants unless it's selecting 486 // between 0, 1 and -1. 487 const APInt *OOpC; 488 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 489 if (!isa<Constant>(OOp) || 490 (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) { 491 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 492 NewSel->takeName(FVI); 493 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 494 TrueVal, NewSel); 495 BO->copyIRFlags(FVI); 496 return BO; 497 } 498 } 499 } 500 } 501 } 502 503 return nullptr; 504 } 505 506 /// We want to turn: 507 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 508 /// into: 509 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 510 /// Note: 511 /// Z may be 0 if lshr is missing. 512 /// Worst-case scenario is that we will replace 5 instructions with 5 different 513 /// instructions, but we got rid of select. 514 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 515 Value *TVal, Value *FVal, 516 InstCombiner::BuilderTy &Builder) { 517 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 518 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 519 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 520 return nullptr; 521 522 // The TrueVal has general form of: and %B, 1 523 Value *B; 524 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 525 return nullptr; 526 527 // Where %B may be optionally shifted: lshr %X, %Z. 528 Value *X, *Z; 529 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 530 if (!HasShift) 531 X = B; 532 533 Value *Y; 534 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 535 return nullptr; 536 537 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 538 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 539 Constant *One = ConstantInt::get(SelType, 1); 540 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 541 Value *FullMask = Builder.CreateOr(Y, MaskB); 542 Value *MaskedX = Builder.CreateAnd(X, FullMask); 543 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 544 return new ZExtInst(ICmpNeZero, SelType); 545 } 546 547 /// We want to turn: 548 /// (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1 549 /// (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0 550 /// into: 551 /// ashr (X, Y) 552 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal, 553 Value *FalseVal, 554 InstCombiner::BuilderTy &Builder) { 555 ICmpInst::Predicate Pred = IC->getPredicate(); 556 Value *CmpLHS = IC->getOperand(0); 557 Value *CmpRHS = IC->getOperand(1); 558 if (!CmpRHS->getType()->isIntOrIntVectorTy()) 559 return nullptr; 560 561 Value *X, *Y; 562 unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits(); 563 if ((Pred != ICmpInst::ICMP_SGT || 564 !match(CmpRHS, 565 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) && 566 (Pred != ICmpInst::ICMP_SLT || 567 !match(CmpRHS, 568 m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0))))) 569 return nullptr; 570 571 // Canonicalize so that ashr is in FalseVal. 572 if (Pred == ICmpInst::ICMP_SLT) 573 std::swap(TrueVal, FalseVal); 574 575 if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) && 576 match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) && 577 match(CmpLHS, m_Specific(X))) { 578 const auto *Ashr = cast<Instruction>(FalseVal); 579 // if lshr is not exact and ashr is, this new ashr must not be exact. 580 bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact(); 581 return Builder.CreateAShr(X, Y, IC->getName(), IsExact); 582 } 583 584 return nullptr; 585 } 586 587 /// We want to turn: 588 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 589 /// into: 590 /// (or (shl (and X, C1), C3), Y) 591 /// iff: 592 /// C1 and C2 are both powers of 2 593 /// where: 594 /// C3 = Log(C2) - Log(C1) 595 /// 596 /// This transform handles cases where: 597 /// 1. The icmp predicate is inverted 598 /// 2. The select operands are reversed 599 /// 3. The magnitude of C2 and C1 are flipped 600 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 601 Value *FalseVal, 602 InstCombiner::BuilderTy &Builder) { 603 // Only handle integer compares. Also, if this is a vector select, we need a 604 // vector compare. 605 if (!TrueVal->getType()->isIntOrIntVectorTy() || 606 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 607 return nullptr; 608 609 Value *CmpLHS = IC->getOperand(0); 610 Value *CmpRHS = IC->getOperand(1); 611 612 Value *V; 613 unsigned C1Log; 614 bool IsEqualZero; 615 bool NeedAnd = false; 616 if (IC->isEquality()) { 617 if (!match(CmpRHS, m_Zero())) 618 return nullptr; 619 620 const APInt *C1; 621 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 622 return nullptr; 623 624 V = CmpLHS; 625 C1Log = C1->logBase2(); 626 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 627 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 628 IC->getPredicate() == ICmpInst::ICMP_SGT) { 629 // We also need to recognize (icmp slt (trunc (X)), 0) and 630 // (icmp sgt (trunc (X)), -1). 631 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 632 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 633 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 634 return nullptr; 635 636 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 637 return nullptr; 638 639 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 640 NeedAnd = true; 641 } else { 642 return nullptr; 643 } 644 645 const APInt *C2; 646 bool OrOnTrueVal = false; 647 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 648 if (!OrOnFalseVal) 649 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 650 651 if (!OrOnFalseVal && !OrOnTrueVal) 652 return nullptr; 653 654 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 655 656 unsigned C2Log = C2->logBase2(); 657 658 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 659 bool NeedShift = C1Log != C2Log; 660 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 661 V->getType()->getScalarSizeInBits(); 662 663 // Make sure we don't create more instructions than we save. 664 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 665 if ((NeedShift + NeedXor + NeedZExtTrunc) > 666 (IC->hasOneUse() + Or->hasOneUse())) 667 return nullptr; 668 669 if (NeedAnd) { 670 // Insert the AND instruction on the input to the truncate. 671 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 672 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 673 } 674 675 if (C2Log > C1Log) { 676 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 677 V = Builder.CreateShl(V, C2Log - C1Log); 678 } else if (C1Log > C2Log) { 679 V = Builder.CreateLShr(V, C1Log - C2Log); 680 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 681 } else 682 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 683 684 if (NeedXor) 685 V = Builder.CreateXor(V, *C2); 686 687 return Builder.CreateOr(V, Y); 688 } 689 690 /// Canonicalize a set or clear of a masked set of constant bits to 691 /// select-of-constants form. 692 static Instruction *foldSetClearBits(SelectInst &Sel, 693 InstCombiner::BuilderTy &Builder) { 694 Value *Cond = Sel.getCondition(); 695 Value *T = Sel.getTrueValue(); 696 Value *F = Sel.getFalseValue(); 697 Type *Ty = Sel.getType(); 698 Value *X; 699 const APInt *NotC, *C; 700 701 // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C) 702 if (match(T, m_And(m_Value(X), m_APInt(NotC))) && 703 match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 704 Constant *Zero = ConstantInt::getNullValue(Ty); 705 Constant *OrC = ConstantInt::get(Ty, *C); 706 Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel); 707 return BinaryOperator::CreateOr(T, NewSel); 708 } 709 710 // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0) 711 if (match(F, m_And(m_Value(X), m_APInt(NotC))) && 712 match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) { 713 Constant *Zero = ConstantInt::getNullValue(Ty); 714 Constant *OrC = ConstantInt::get(Ty, *C); 715 Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel); 716 return BinaryOperator::CreateOr(F, NewSel); 717 } 718 719 return nullptr; 720 } 721 722 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b). 723 /// There are 8 commuted/swapped variants of this pattern. 724 /// TODO: Also support a - UMIN(a,b) patterns. 725 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 726 const Value *TrueVal, 727 const Value *FalseVal, 728 InstCombiner::BuilderTy &Builder) { 729 ICmpInst::Predicate Pred = ICI->getPredicate(); 730 if (!ICmpInst::isUnsigned(Pred)) 731 return nullptr; 732 733 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 734 if (match(TrueVal, m_Zero())) { 735 Pred = ICmpInst::getInversePredicate(Pred); 736 std::swap(TrueVal, FalseVal); 737 } 738 if (!match(FalseVal, m_Zero())) 739 return nullptr; 740 741 Value *A = ICI->getOperand(0); 742 Value *B = ICI->getOperand(1); 743 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 744 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 745 std::swap(A, B); 746 Pred = ICmpInst::getSwappedPredicate(Pred); 747 } 748 749 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 750 "Unexpected isUnsigned predicate!"); 751 752 // Ensure the sub is of the form: 753 // (a > b) ? a - b : 0 -> usub.sat(a, b) 754 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 755 // Checking for both a-b and a+(-b) as a constant. 756 bool IsNegative = false; 757 const APInt *C; 758 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) || 759 (match(A, m_APInt(C)) && 760 match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C))))) 761 IsNegative = true; 762 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) && 763 !(match(B, m_APInt(C)) && 764 match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C))))) 765 return nullptr; 766 767 // If we are adding a negate and the sub and icmp are used anywhere else, we 768 // would end up with more instructions. 769 if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse()) 770 return nullptr; 771 772 // (a > b) ? a - b : 0 -> usub.sat(a, b) 773 // (a > b) ? b - a : 0 -> -usub.sat(a, b) 774 Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B); 775 if (IsNegative) 776 Result = Builder.CreateNeg(Result); 777 return Result; 778 } 779 780 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 781 InstCombiner::BuilderTy &Builder) { 782 if (!Cmp->hasOneUse()) 783 return nullptr; 784 785 // Match unsigned saturated add with constant. 786 Value *Cmp0 = Cmp->getOperand(0); 787 Value *Cmp1 = Cmp->getOperand(1); 788 ICmpInst::Predicate Pred = Cmp->getPredicate(); 789 Value *X; 790 const APInt *C, *CmpC; 791 if (Pred == ICmpInst::ICMP_ULT && 792 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 793 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 794 // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C) 795 return Builder.CreateBinaryIntrinsic( 796 Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C)); 797 } 798 799 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 800 // There are 8 commuted variants. 801 // Canonicalize -1 (saturated result) to true value of the select. 802 if (match(FVal, m_AllOnes())) { 803 std::swap(TVal, FVal); 804 Pred = CmpInst::getInversePredicate(Pred); 805 } 806 if (!match(TVal, m_AllOnes())) 807 return nullptr; 808 809 // Canonicalize predicate to less-than or less-or-equal-than. 810 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) { 811 std::swap(Cmp0, Cmp1); 812 Pred = CmpInst::getSwappedPredicate(Pred); 813 } 814 if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE) 815 return nullptr; 816 817 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 818 // Strictness of the comparison is irrelevant. 819 Value *Y; 820 if (match(Cmp0, m_Not(m_Value(X))) && 821 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 822 // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 823 // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y) 824 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y); 825 } 826 // The 'not' op may be included in the sum but not the compare. 827 // Strictness of the comparison is irrelevant. 828 X = Cmp0; 829 Y = Cmp1; 830 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 831 // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y) 832 // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X) 833 BinaryOperator *BO = cast<BinaryOperator>(FVal); 834 return Builder.CreateBinaryIntrinsic( 835 Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1)); 836 } 837 // The overflow may be detected via the add wrapping round. 838 // This is only valid for strict comparison! 839 if (Pred == ICmpInst::ICMP_ULT && 840 match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) && 841 match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) { 842 // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y) 843 // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y) 844 return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y); 845 } 846 847 return nullptr; 848 } 849 850 /// Fold the following code sequence: 851 /// \code 852 /// int a = ctlz(x & -x); 853 // x ? 31 - a : a; 854 /// \code 855 /// 856 /// into: 857 /// cttz(x) 858 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal, 859 Value *FalseVal, 860 InstCombiner::BuilderTy &Builder) { 861 unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits(); 862 if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero())) 863 return nullptr; 864 865 if (ICI->getPredicate() == ICmpInst::ICMP_NE) 866 std::swap(TrueVal, FalseVal); 867 868 if (!match(FalseVal, 869 m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1)))) 870 return nullptr; 871 872 if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>())) 873 return nullptr; 874 875 Value *X = ICI->getOperand(0); 876 auto *II = cast<IntrinsicInst>(TrueVal); 877 if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X))))) 878 return nullptr; 879 880 Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz, 881 II->getType()); 882 return CallInst::Create(F, {X, II->getArgOperand(1)}); 883 } 884 885 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 886 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 887 /// 888 /// For example, we can fold the following code sequence: 889 /// \code 890 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 891 /// %1 = icmp ne i32 %x, 0 892 /// %2 = select i1 %1, i32 %0, i32 32 893 /// \code 894 /// 895 /// into: 896 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 897 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 898 InstCombiner::BuilderTy &Builder) { 899 ICmpInst::Predicate Pred = ICI->getPredicate(); 900 Value *CmpLHS = ICI->getOperand(0); 901 Value *CmpRHS = ICI->getOperand(1); 902 903 // Check if the condition value compares a value for equality against zero. 904 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 905 return nullptr; 906 907 Value *SelectArg = FalseVal; 908 Value *ValueOnZero = TrueVal; 909 if (Pred == ICmpInst::ICMP_NE) 910 std::swap(SelectArg, ValueOnZero); 911 912 // Skip zero extend/truncate. 913 Value *Count = nullptr; 914 if (!match(SelectArg, m_ZExt(m_Value(Count))) && 915 !match(SelectArg, m_Trunc(m_Value(Count)))) 916 Count = SelectArg; 917 918 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 919 // input to the cttz/ctlz is used as LHS for the compare instruction. 920 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 921 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 922 return nullptr; 923 924 IntrinsicInst *II = cast<IntrinsicInst>(Count); 925 926 // Check if the value propagated on zero is a constant number equal to the 927 // sizeof in bits of 'Count'. 928 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 929 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 930 // Explicitly clear the 'undef_on_zero' flag. It's always valid to go from 931 // true to false on this flag, so we can replace it for all users. 932 II->setArgOperand(1, ConstantInt::getFalse(II->getContext())); 933 return SelectArg; 934 } 935 936 // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional 937 // zext/trunc) have one use (ending at the select), the cttz/ctlz result will 938 // not be used if the input is zero. Relax to 'undef_on_zero' for that case. 939 if (II->hasOneUse() && SelectArg->hasOneUse() && 940 !match(II->getArgOperand(1), m_One())) 941 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 942 943 return nullptr; 944 } 945 946 /// Return true if we find and adjust an icmp+select pattern where the compare 947 /// is with a constant that can be incremented or decremented to match the 948 /// minimum or maximum idiom. 949 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 950 ICmpInst::Predicate Pred = Cmp.getPredicate(); 951 Value *CmpLHS = Cmp.getOperand(0); 952 Value *CmpRHS = Cmp.getOperand(1); 953 Value *TrueVal = Sel.getTrueValue(); 954 Value *FalseVal = Sel.getFalseValue(); 955 956 // We may move or edit the compare, so make sure the select is the only user. 957 const APInt *CmpC; 958 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 959 return false; 960 961 // These transforms only work for selects of integers or vector selects of 962 // integer vectors. 963 Type *SelTy = Sel.getType(); 964 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 965 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 966 return false; 967 968 Constant *AdjustedRHS; 969 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 970 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 971 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 972 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 973 else 974 return false; 975 976 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 977 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 978 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 979 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 980 ; // Nothing to do here. Values match without any sign/zero extension. 981 } 982 // Types do not match. Instead of calculating this with mixed types, promote 983 // all to the larger type. This enables scalar evolution to analyze this 984 // expression. 985 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 986 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 987 988 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 989 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 990 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 991 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 992 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 993 CmpLHS = TrueVal; 994 AdjustedRHS = SextRHS; 995 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 996 SextRHS == TrueVal) { 997 CmpLHS = FalseVal; 998 AdjustedRHS = SextRHS; 999 } else if (Cmp.isUnsigned()) { 1000 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 1001 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 1002 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 1003 // zext + signed compare cannot be changed: 1004 // 0xff <s 0x00, but 0x00ff >s 0x0000 1005 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 1006 CmpLHS = TrueVal; 1007 AdjustedRHS = ZextRHS; 1008 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 1009 ZextRHS == TrueVal) { 1010 CmpLHS = FalseVal; 1011 AdjustedRHS = ZextRHS; 1012 } else { 1013 return false; 1014 } 1015 } else { 1016 return false; 1017 } 1018 } else { 1019 return false; 1020 } 1021 1022 Pred = ICmpInst::getSwappedPredicate(Pred); 1023 CmpRHS = AdjustedRHS; 1024 std::swap(FalseVal, TrueVal); 1025 Cmp.setPredicate(Pred); 1026 Cmp.setOperand(0, CmpLHS); 1027 Cmp.setOperand(1, CmpRHS); 1028 Sel.setOperand(1, TrueVal); 1029 Sel.setOperand(2, FalseVal); 1030 Sel.swapProfMetadata(); 1031 1032 // Move the compare instruction right before the select instruction. Otherwise 1033 // the sext/zext value may be defined after the compare instruction uses it. 1034 Cmp.moveBefore(&Sel); 1035 1036 return true; 1037 } 1038 1039 /// If this is an integer min/max (icmp + select) with a constant operand, 1040 /// create the canonical icmp for the min/max operation and canonicalize the 1041 /// constant to the 'false' operand of the select: 1042 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 1043 /// Note: if C1 != C2, this will change the icmp constant to the existing 1044 /// constant operand of the select. 1045 static Instruction *canonicalizeMinMaxWithConstant(SelectInst &Sel, 1046 ICmpInst &Cmp, 1047 InstCombinerImpl &IC) { 1048 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1049 return nullptr; 1050 1051 // Canonicalize the compare predicate based on whether we have min or max. 1052 Value *LHS, *RHS; 1053 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 1054 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 1055 return nullptr; 1056 1057 // Is this already canonical? 1058 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 1059 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 1060 Cmp.getPredicate() == CanonicalPred) 1061 return nullptr; 1062 1063 // Bail out on unsimplified X-0 operand (due to some worklist management bug), 1064 // as this may cause an infinite combine loop. Let the sub be folded first. 1065 if (match(LHS, m_Sub(m_Value(), m_Zero())) || 1066 match(RHS, m_Sub(m_Value(), m_Zero()))) 1067 return nullptr; 1068 1069 // Create the canonical compare and plug it into the select. 1070 IC.replaceOperand(Sel, 0, IC.Builder.CreateICmp(CanonicalPred, LHS, RHS)); 1071 1072 // If the select operands did not change, we're done. 1073 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 1074 return &Sel; 1075 1076 // If we are swapping the select operands, swap the metadata too. 1077 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 1078 "Unexpected results from matchSelectPattern"); 1079 Sel.swapValues(); 1080 Sel.swapProfMetadata(); 1081 return &Sel; 1082 } 1083 1084 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 1085 InstCombinerImpl &IC) { 1086 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 1087 return nullptr; 1088 1089 Value *LHS, *RHS; 1090 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 1091 if (SPF != SelectPatternFlavor::SPF_ABS && 1092 SPF != SelectPatternFlavor::SPF_NABS) 1093 return nullptr; 1094 1095 // Note that NSW flag can only be propagated for normal, non-negated abs! 1096 bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS && 1097 match(RHS, m_NSWNeg(m_Specific(LHS))); 1098 Constant *IntMinIsPoisonC = 1099 ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison); 1100 Instruction *Abs = 1101 IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC); 1102 1103 if (SPF == SelectPatternFlavor::SPF_NABS) 1104 return BinaryOperator::CreateNeg(Abs); // Always without NSW flag! 1105 1106 return IC.replaceInstUsesWith(Sel, Abs); 1107 } 1108 1109 /// If we have a select with an equality comparison, then we know the value in 1110 /// one of the arms of the select. See if substituting this value into an arm 1111 /// and simplifying the result yields the same value as the other arm. 1112 /// 1113 /// To make this transform safe, we must drop poison-generating flags 1114 /// (nsw, etc) if we simplified to a binop because the select may be guarding 1115 /// that poison from propagating. If the existing binop already had no 1116 /// poison-generating flags, then this transform can be done by instsimplify. 1117 /// 1118 /// Consider: 1119 /// %cmp = icmp eq i32 %x, 2147483647 1120 /// %add = add nsw i32 %x, 1 1121 /// %sel = select i1 %cmp, i32 -2147483648, i32 %add 1122 /// 1123 /// We can't replace %sel with %add unless we strip away the flags. 1124 /// TODO: Wrapping flags could be preserved in some cases with better analysis. 1125 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel, 1126 ICmpInst &Cmp) { 1127 // Value equivalence substitution requires an all-or-nothing replacement. 1128 // It does not make sense for a vector compare where each lane is chosen 1129 // independently. 1130 if (!Cmp.isEquality() || Cmp.getType()->isVectorTy()) 1131 return nullptr; 1132 1133 // Canonicalize the pattern to ICMP_EQ by swapping the select operands. 1134 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 1135 bool Swapped = false; 1136 if (Cmp.getPredicate() == ICmpInst::ICMP_NE) { 1137 std::swap(TrueVal, FalseVal); 1138 Swapped = true; 1139 } 1140 1141 // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand. 1142 // Make sure Y cannot be undef though, as we might pick different values for 1143 // undef in the icmp and in f(Y). Additionally, take care to avoid replacing 1144 // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite 1145 // replacement cycle. 1146 Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1); 1147 if (TrueVal != CmpLHS && 1148 isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) { 1149 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ, 1150 /* AllowRefinement */ true)) 1151 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1152 1153 // Even if TrueVal does not simplify, we can directly replace a use of 1154 // CmpLHS with CmpRHS, as long as the instruction is not used anywhere 1155 // else and is safe to speculatively execute (we may end up executing it 1156 // with different operands, which should not cause side-effects or trigger 1157 // undefined behavior). Only do this if CmpRHS is a constant, as 1158 // profitability is not clear for other cases. 1159 // FIXME: The replacement could be performed recursively. 1160 if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant())) 1161 if (auto *I = dyn_cast<Instruction>(TrueVal)) 1162 if (I->hasOneUse() && isSafeToSpeculativelyExecute(I)) 1163 for (Use &U : I->operands()) 1164 if (U == CmpLHS) { 1165 replaceUse(U, CmpRHS); 1166 return &Sel; 1167 } 1168 } 1169 if (TrueVal != CmpRHS && 1170 isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT)) 1171 if (Value *V = SimplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ, 1172 /* AllowRefinement */ true)) 1173 return replaceOperand(Sel, Swapped ? 2 : 1, V); 1174 1175 auto *FalseInst = dyn_cast<Instruction>(FalseVal); 1176 if (!FalseInst) 1177 return nullptr; 1178 1179 // InstSimplify already performed this fold if it was possible subject to 1180 // current poison-generating flags. Try the transform again with 1181 // poison-generating flags temporarily dropped. 1182 bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false; 1183 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) { 1184 WasNUW = OBO->hasNoUnsignedWrap(); 1185 WasNSW = OBO->hasNoSignedWrap(); 1186 FalseInst->setHasNoUnsignedWrap(false); 1187 FalseInst->setHasNoSignedWrap(false); 1188 } 1189 if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) { 1190 WasExact = PEO->isExact(); 1191 FalseInst->setIsExact(false); 1192 } 1193 if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) { 1194 WasInBounds = GEP->isInBounds(); 1195 GEP->setIsInBounds(false); 1196 } 1197 1198 // Try each equivalence substitution possibility. 1199 // We have an 'EQ' comparison, so the select's false value will propagate. 1200 // Example: 1201 // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1 1202 if (SimplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ, 1203 /* AllowRefinement */ false) == TrueVal || 1204 SimplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ, 1205 /* AllowRefinement */ false) == TrueVal) { 1206 return replaceInstUsesWith(Sel, FalseVal); 1207 } 1208 1209 // Restore poison-generating flags if the transform did not apply. 1210 if (WasNUW) 1211 FalseInst->setHasNoUnsignedWrap(); 1212 if (WasNSW) 1213 FalseInst->setHasNoSignedWrap(); 1214 if (WasExact) 1215 FalseInst->setIsExact(); 1216 if (WasInBounds) 1217 cast<GetElementPtrInst>(FalseInst)->setIsInBounds(); 1218 1219 return nullptr; 1220 } 1221 1222 // See if this is a pattern like: 1223 // %old_cmp1 = icmp slt i32 %x, C2 1224 // %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high 1225 // %old_x_offseted = add i32 %x, C1 1226 // %old_cmp0 = icmp ult i32 %old_x_offseted, C0 1227 // %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement 1228 // This can be rewritten as more canonical pattern: 1229 // %new_cmp1 = icmp slt i32 %x, -C1 1230 // %new_cmp2 = icmp sge i32 %x, C0-C1 1231 // %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x 1232 // %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low 1233 // Iff -C1 s<= C2 s<= C0-C1 1234 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result) 1235 // SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.) 1236 static Instruction *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0, 1237 InstCombiner::BuilderTy &Builder) { 1238 Value *X = Sel0.getTrueValue(); 1239 Value *Sel1 = Sel0.getFalseValue(); 1240 1241 // First match the condition of the outermost select. 1242 // Said condition must be one-use. 1243 if (!Cmp0.hasOneUse()) 1244 return nullptr; 1245 Value *Cmp00 = Cmp0.getOperand(0); 1246 Constant *C0; 1247 if (!match(Cmp0.getOperand(1), 1248 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))) 1249 return nullptr; 1250 // Canonicalize Cmp0 into the form we expect. 1251 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1252 switch (Cmp0.getPredicate()) { 1253 case ICmpInst::Predicate::ICMP_ULT: 1254 break; // Great! 1255 case ICmpInst::Predicate::ICMP_ULE: 1256 // We'd have to increment C0 by one, and for that it must not have all-ones 1257 // element, but then it would have been canonicalized to 'ult' before 1258 // we get here. So we can't do anything useful with 'ule'. 1259 return nullptr; 1260 case ICmpInst::Predicate::ICMP_UGT: 1261 // We want to canonicalize it to 'ult', so we'll need to increment C0, 1262 // which again means it must not have any all-ones elements. 1263 if (!match(C0, 1264 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1265 APInt::getAllOnesValue( 1266 C0->getType()->getScalarSizeInBits())))) 1267 return nullptr; // Can't do, have all-ones element[s]. 1268 C0 = InstCombiner::AddOne(C0); 1269 std::swap(X, Sel1); 1270 break; 1271 case ICmpInst::Predicate::ICMP_UGE: 1272 // The only way we'd get this predicate if this `icmp` has extra uses, 1273 // but then we won't be able to do this fold. 1274 return nullptr; 1275 default: 1276 return nullptr; // Unknown predicate. 1277 } 1278 1279 // Now that we've canonicalized the ICmp, we know the X we expect; 1280 // the select in other hand should be one-use. 1281 if (!Sel1->hasOneUse()) 1282 return nullptr; 1283 1284 // We now can finish matching the condition of the outermost select: 1285 // it should either be the X itself, or an addition of some constant to X. 1286 Constant *C1; 1287 if (Cmp00 == X) 1288 C1 = ConstantInt::getNullValue(Sel0.getType()); 1289 else if (!match(Cmp00, 1290 m_Add(m_Specific(X), 1291 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1))))) 1292 return nullptr; 1293 1294 Value *Cmp1; 1295 ICmpInst::Predicate Pred1; 1296 Constant *C2; 1297 Value *ReplacementLow, *ReplacementHigh; 1298 if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow), 1299 m_Value(ReplacementHigh))) || 1300 !match(Cmp1, 1301 m_ICmp(Pred1, m_Specific(X), 1302 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2))))) 1303 return nullptr; 1304 1305 if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse())) 1306 return nullptr; // Not enough one-use instructions for the fold. 1307 // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of 1308 // two comparisons we'll need to build. 1309 1310 // Canonicalize Cmp1 into the form we expect. 1311 // FIXME: we shouldn't care about lanes that are 'undef' in the end? 1312 switch (Pred1) { 1313 case ICmpInst::Predicate::ICMP_SLT: 1314 break; 1315 case ICmpInst::Predicate::ICMP_SLE: 1316 // We'd have to increment C2 by one, and for that it must not have signed 1317 // max element, but then it would have been canonicalized to 'slt' before 1318 // we get here. So we can't do anything useful with 'sle'. 1319 return nullptr; 1320 case ICmpInst::Predicate::ICMP_SGT: 1321 // We want to canonicalize it to 'slt', so we'll need to increment C2, 1322 // which again means it must not have any signed max elements. 1323 if (!match(C2, 1324 m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE, 1325 APInt::getSignedMaxValue( 1326 C2->getType()->getScalarSizeInBits())))) 1327 return nullptr; // Can't do, have signed max element[s]. 1328 C2 = InstCombiner::AddOne(C2); 1329 LLVM_FALLTHROUGH; 1330 case ICmpInst::Predicate::ICMP_SGE: 1331 // Also non-canonical, but here we don't need to change C2, 1332 // so we don't have any restrictions on C2, so we can just handle it. 1333 std::swap(ReplacementLow, ReplacementHigh); 1334 break; 1335 default: 1336 return nullptr; // Unknown predicate. 1337 } 1338 1339 // The thresholds of this clamp-like pattern. 1340 auto *ThresholdLowIncl = ConstantExpr::getNeg(C1); 1341 auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1); 1342 1343 // The fold has a precondition 1: C2 s>= ThresholdLow 1344 auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2, 1345 ThresholdLowIncl); 1346 if (!match(Precond1, m_One())) 1347 return nullptr; 1348 // The fold has a precondition 2: C2 s<= ThresholdHigh 1349 auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2, 1350 ThresholdHighExcl); 1351 if (!match(Precond2, m_One())) 1352 return nullptr; 1353 1354 // All good, finally emit the new pattern. 1355 Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl); 1356 Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl); 1357 Value *MaybeReplacedLow = 1358 Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X); 1359 Instruction *MaybeReplacedHigh = 1360 SelectInst::Create(ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow); 1361 1362 return MaybeReplacedHigh; 1363 } 1364 1365 // If we have 1366 // %cmp = icmp [canonical predicate] i32 %x, C0 1367 // %r = select i1 %cmp, i32 %y, i32 C1 1368 // Where C0 != C1 and %x may be different from %y, see if the constant that we 1369 // will have if we flip the strictness of the predicate (i.e. without changing 1370 // the result) is identical to the C1 in select. If it matches we can change 1371 // original comparison to one with swapped predicate, reuse the constant, 1372 // and swap the hands of select. 1373 static Instruction * 1374 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp, 1375 InstCombinerImpl &IC) { 1376 ICmpInst::Predicate Pred; 1377 Value *X; 1378 Constant *C0; 1379 if (!match(&Cmp, m_OneUse(m_ICmp( 1380 Pred, m_Value(X), 1381 m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0)))))) 1382 return nullptr; 1383 1384 // If comparison predicate is non-relational, we won't be able to do anything. 1385 if (ICmpInst::isEquality(Pred)) 1386 return nullptr; 1387 1388 // If comparison predicate is non-canonical, then we certainly won't be able 1389 // to make it canonical; canonicalizeCmpWithConstant() already tried. 1390 if (!InstCombiner::isCanonicalPredicate(Pred)) 1391 return nullptr; 1392 1393 // If the [input] type of comparison and select type are different, lets abort 1394 // for now. We could try to compare constants with trunc/[zs]ext though. 1395 if (C0->getType() != Sel.getType()) 1396 return nullptr; 1397 1398 // FIXME: are there any magic icmp predicate+constant pairs we must not touch? 1399 1400 Value *SelVal0, *SelVal1; // We do not care which one is from where. 1401 match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1))); 1402 // At least one of these values we are selecting between must be a constant 1403 // else we'll never succeed. 1404 if (!match(SelVal0, m_AnyIntegralConstant()) && 1405 !match(SelVal1, m_AnyIntegralConstant())) 1406 return nullptr; 1407 1408 // Does this constant C match any of the `select` values? 1409 auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) { 1410 return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1); 1411 }; 1412 1413 // If C0 *already* matches true/false value of select, we are done. 1414 if (MatchesSelectValue(C0)) 1415 return nullptr; 1416 1417 // Check the constant we'd have with flipped-strictness predicate. 1418 auto FlippedStrictness = 1419 InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0); 1420 if (!FlippedStrictness) 1421 return nullptr; 1422 1423 // If said constant doesn't match either, then there is no hope, 1424 if (!MatchesSelectValue(FlippedStrictness->second)) 1425 return nullptr; 1426 1427 // It matched! Lets insert the new comparison just before select. 1428 InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder); 1429 IC.Builder.SetInsertPoint(&Sel); 1430 1431 Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped. 1432 Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second, 1433 Cmp.getName() + ".inv"); 1434 IC.replaceOperand(Sel, 0, NewCmp); 1435 Sel.swapValues(); 1436 Sel.swapProfMetadata(); 1437 1438 return &Sel; 1439 } 1440 1441 /// Visit a SelectInst that has an ICmpInst as its first operand. 1442 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI, 1443 ICmpInst *ICI) { 1444 if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI)) 1445 return NewSel; 1446 1447 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, *this)) 1448 return NewSel; 1449 1450 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, *this)) 1451 return NewAbs; 1452 1453 if (Instruction *NewAbs = canonicalizeClampLike(SI, *ICI, Builder)) 1454 return NewAbs; 1455 1456 if (Instruction *NewSel = 1457 tryToReuseConstantFromSelectInComparison(SI, *ICI, *this)) 1458 return NewSel; 1459 1460 bool Changed = adjustMinMax(SI, *ICI); 1461 1462 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1463 return replaceInstUsesWith(SI, V); 1464 1465 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1466 Value *TrueVal = SI.getTrueValue(); 1467 Value *FalseVal = SI.getFalseValue(); 1468 ICmpInst::Predicate Pred = ICI->getPredicate(); 1469 Value *CmpLHS = ICI->getOperand(0); 1470 Value *CmpRHS = ICI->getOperand(1); 1471 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1472 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1473 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1474 SI.setOperand(1, CmpRHS); 1475 Changed = true; 1476 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1477 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1478 SI.setOperand(2, CmpRHS); 1479 Changed = true; 1480 } 1481 } 1482 1483 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1484 // decomposeBitTestICmp() might help. 1485 { 1486 unsigned BitWidth = 1487 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1488 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1489 Value *X; 1490 const APInt *Y, *C; 1491 bool TrueWhenUnset; 1492 bool IsBitTest = false; 1493 if (ICmpInst::isEquality(Pred) && 1494 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1495 match(CmpRHS, m_Zero())) { 1496 IsBitTest = true; 1497 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1498 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1499 X = CmpLHS; 1500 Y = &MinSignedValue; 1501 IsBitTest = true; 1502 TrueWhenUnset = false; 1503 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1504 X = CmpLHS; 1505 Y = &MinSignedValue; 1506 IsBitTest = true; 1507 TrueWhenUnset = true; 1508 } 1509 if (IsBitTest) { 1510 Value *V = nullptr; 1511 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1512 if (TrueWhenUnset && TrueVal == X && 1513 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1514 V = Builder.CreateAnd(X, ~(*Y)); 1515 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1516 else if (!TrueWhenUnset && FalseVal == X && 1517 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1518 V = Builder.CreateAnd(X, ~(*Y)); 1519 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1520 else if (TrueWhenUnset && FalseVal == X && 1521 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1522 V = Builder.CreateOr(X, *Y); 1523 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1524 else if (!TrueWhenUnset && TrueVal == X && 1525 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1526 V = Builder.CreateOr(X, *Y); 1527 1528 if (V) 1529 return replaceInstUsesWith(SI, V); 1530 } 1531 } 1532 1533 if (Instruction *V = 1534 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1535 return V; 1536 1537 if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder)) 1538 return V; 1539 1540 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1541 return replaceInstUsesWith(SI, V); 1542 1543 if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder)) 1544 return replaceInstUsesWith(SI, V); 1545 1546 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1547 return replaceInstUsesWith(SI, V); 1548 1549 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1550 return replaceInstUsesWith(SI, V); 1551 1552 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1553 return replaceInstUsesWith(SI, V); 1554 1555 return Changed ? &SI : nullptr; 1556 } 1557 1558 /// SI is a select whose condition is a PHI node (but the two may be in 1559 /// different blocks). See if the true/false values (V) are live in all of the 1560 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1561 /// 1562 /// X = phi [ C1, BB1], [C2, BB2] 1563 /// Y = add 1564 /// Z = select X, Y, 0 1565 /// 1566 /// because Y is not live in BB1/BB2. 1567 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1568 const SelectInst &SI) { 1569 // If the value is a non-instruction value like a constant or argument, it 1570 // can always be mapped. 1571 const Instruction *I = dyn_cast<Instruction>(V); 1572 if (!I) return true; 1573 1574 // If V is a PHI node defined in the same block as the condition PHI, we can 1575 // map the arguments. 1576 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1577 1578 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1579 if (VP->getParent() == CondPHI->getParent()) 1580 return true; 1581 1582 // Otherwise, if the PHI and select are defined in the same block and if V is 1583 // defined in a different block, then we can transform it. 1584 if (SI.getParent() == CondPHI->getParent() && 1585 I->getParent() != CondPHI->getParent()) 1586 return true; 1587 1588 // Otherwise we have a 'hard' case and we can't tell without doing more 1589 // detailed dominator based analysis, punt. 1590 return false; 1591 } 1592 1593 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1594 /// SPF2(SPF1(A, B), C) 1595 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner, 1596 SelectPatternFlavor SPF1, Value *A, 1597 Value *B, Instruction &Outer, 1598 SelectPatternFlavor SPF2, 1599 Value *C) { 1600 if (Outer.getType() != Inner->getType()) 1601 return nullptr; 1602 1603 if (C == A || C == B) { 1604 // MAX(MAX(A, B), B) -> MAX(A, B) 1605 // MIN(MIN(a, b), a) -> MIN(a, b) 1606 // TODO: This could be done in instsimplify. 1607 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1608 return replaceInstUsesWith(Outer, Inner); 1609 1610 // MAX(MIN(a, b), a) -> a 1611 // MIN(MAX(a, b), a) -> a 1612 // TODO: This could be done in instsimplify. 1613 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1614 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1615 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1616 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1617 return replaceInstUsesWith(Outer, C); 1618 } 1619 1620 if (SPF1 == SPF2) { 1621 const APInt *CB, *CC; 1622 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1623 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1624 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1625 // TODO: This could be done in instsimplify. 1626 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1627 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1628 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1629 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1630 return replaceInstUsesWith(Outer, Inner); 1631 1632 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1633 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1634 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1635 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1636 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1637 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1638 Outer.replaceUsesOfWith(Inner, A); 1639 return &Outer; 1640 } 1641 } 1642 } 1643 1644 // max(max(A, B), min(A, B)) --> max(A, B) 1645 // min(min(A, B), max(A, B)) --> min(A, B) 1646 // TODO: This could be done in instsimplify. 1647 if (SPF1 == SPF2 && 1648 ((SPF1 == SPF_UMIN && match(C, m_c_UMax(m_Specific(A), m_Specific(B)))) || 1649 (SPF1 == SPF_SMIN && match(C, m_c_SMax(m_Specific(A), m_Specific(B)))) || 1650 (SPF1 == SPF_UMAX && match(C, m_c_UMin(m_Specific(A), m_Specific(B)))) || 1651 (SPF1 == SPF_SMAX && match(C, m_c_SMin(m_Specific(A), m_Specific(B)))))) 1652 return replaceInstUsesWith(Outer, Inner); 1653 1654 // ABS(ABS(X)) -> ABS(X) 1655 // NABS(NABS(X)) -> NABS(X) 1656 // TODO: This could be done in instsimplify. 1657 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1658 return replaceInstUsesWith(Outer, Inner); 1659 } 1660 1661 // ABS(NABS(X)) -> ABS(X) 1662 // NABS(ABS(X)) -> NABS(X) 1663 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1664 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1665 SelectInst *SI = cast<SelectInst>(Inner); 1666 Value *NewSI = 1667 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1668 SI->getTrueValue(), SI->getName(), SI); 1669 return replaceInstUsesWith(Outer, NewSI); 1670 } 1671 1672 auto IsFreeOrProfitableToInvert = 1673 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1674 if (match(V, m_Not(m_Value(NotV)))) { 1675 // If V has at most 2 uses then we can get rid of the xor operation 1676 // entirely. 1677 ElidesXor |= !V->hasNUsesOrMore(3); 1678 return true; 1679 } 1680 1681 if (isFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1682 NotV = nullptr; 1683 return true; 1684 } 1685 1686 return false; 1687 }; 1688 1689 Value *NotA, *NotB, *NotC; 1690 bool ElidesXor = false; 1691 1692 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1693 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1694 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1695 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1696 // 1697 // This transform is performance neutral if we can elide at least one xor from 1698 // the set of three operands, since we'll be tacking on an xor at the very 1699 // end. 1700 if (SelectPatternResult::isMinOrMax(SPF1) && 1701 SelectPatternResult::isMinOrMax(SPF2) && 1702 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1703 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1704 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1705 if (!NotA) 1706 NotA = Builder.CreateNot(A); 1707 if (!NotB) 1708 NotB = Builder.CreateNot(B); 1709 if (!NotC) 1710 NotC = Builder.CreateNot(C); 1711 1712 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1713 NotB); 1714 Value *NewOuter = Builder.CreateNot( 1715 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1716 return replaceInstUsesWith(Outer, NewOuter); 1717 } 1718 1719 return nullptr; 1720 } 1721 1722 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1723 /// This is even legal for FP. 1724 static Instruction *foldAddSubSelect(SelectInst &SI, 1725 InstCombiner::BuilderTy &Builder) { 1726 Value *CondVal = SI.getCondition(); 1727 Value *TrueVal = SI.getTrueValue(); 1728 Value *FalseVal = SI.getFalseValue(); 1729 auto *TI = dyn_cast<Instruction>(TrueVal); 1730 auto *FI = dyn_cast<Instruction>(FalseVal); 1731 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1732 return nullptr; 1733 1734 Instruction *AddOp = nullptr, *SubOp = nullptr; 1735 if ((TI->getOpcode() == Instruction::Sub && 1736 FI->getOpcode() == Instruction::Add) || 1737 (TI->getOpcode() == Instruction::FSub && 1738 FI->getOpcode() == Instruction::FAdd)) { 1739 AddOp = FI; 1740 SubOp = TI; 1741 } else if ((FI->getOpcode() == Instruction::Sub && 1742 TI->getOpcode() == Instruction::Add) || 1743 (FI->getOpcode() == Instruction::FSub && 1744 TI->getOpcode() == Instruction::FAdd)) { 1745 AddOp = TI; 1746 SubOp = FI; 1747 } 1748 1749 if (AddOp) { 1750 Value *OtherAddOp = nullptr; 1751 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1752 OtherAddOp = AddOp->getOperand(1); 1753 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1754 OtherAddOp = AddOp->getOperand(0); 1755 } 1756 1757 if (OtherAddOp) { 1758 // So at this point we know we have (Y -> OtherAddOp): 1759 // select C, (add X, Y), (sub X, Z) 1760 Value *NegVal; // Compute -Z 1761 if (SI.getType()->isFPOrFPVectorTy()) { 1762 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1763 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1764 FastMathFlags Flags = AddOp->getFastMathFlags(); 1765 Flags &= SubOp->getFastMathFlags(); 1766 NegInst->setFastMathFlags(Flags); 1767 } 1768 } else { 1769 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1770 } 1771 1772 Value *NewTrueOp = OtherAddOp; 1773 Value *NewFalseOp = NegVal; 1774 if (AddOp != TI) 1775 std::swap(NewTrueOp, NewFalseOp); 1776 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1777 SI.getName() + ".p", &SI); 1778 1779 if (SI.getType()->isFPOrFPVectorTy()) { 1780 Instruction *RI = 1781 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1782 1783 FastMathFlags Flags = AddOp->getFastMathFlags(); 1784 Flags &= SubOp->getFastMathFlags(); 1785 RI->setFastMathFlags(Flags); 1786 return RI; 1787 } else 1788 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1789 } 1790 } 1791 return nullptr; 1792 } 1793 1794 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1795 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1796 /// Along with a number of patterns similar to: 1797 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1798 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1799 static Instruction * 1800 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) { 1801 Value *CondVal = SI.getCondition(); 1802 Value *TrueVal = SI.getTrueValue(); 1803 Value *FalseVal = SI.getFalseValue(); 1804 1805 WithOverflowInst *II; 1806 if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) || 1807 !match(FalseVal, m_ExtractValue<0>(m_Specific(II)))) 1808 return nullptr; 1809 1810 Value *X = II->getLHS(); 1811 Value *Y = II->getRHS(); 1812 1813 auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) { 1814 Type *Ty = Limit->getType(); 1815 1816 ICmpInst::Predicate Pred; 1817 Value *TrueVal, *FalseVal, *Op; 1818 const APInt *C; 1819 if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)), 1820 m_Value(TrueVal), m_Value(FalseVal)))) 1821 return false; 1822 1823 auto IsZeroOrOne = [](const APInt &C) { 1824 return C.isNullValue() || C.isOneValue(); 1825 }; 1826 auto IsMinMax = [&](Value *Min, Value *Max) { 1827 APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits()); 1828 APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits()); 1829 return match(Min, m_SpecificInt(MinVal)) && 1830 match(Max, m_SpecificInt(MaxVal)); 1831 }; 1832 1833 if (Op != X && Op != Y) 1834 return false; 1835 1836 if (IsAdd) { 1837 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1838 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1839 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1840 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1841 if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1842 IsMinMax(TrueVal, FalseVal)) 1843 return true; 1844 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1845 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1846 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1847 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1848 if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1849 IsMinMax(FalseVal, TrueVal)) 1850 return true; 1851 } else { 1852 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1853 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1854 if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) && 1855 IsMinMax(TrueVal, FalseVal)) 1856 return true; 1857 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1858 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1859 if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) && 1860 IsMinMax(FalseVal, TrueVal)) 1861 return true; 1862 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1863 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1864 if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) && 1865 IsMinMax(FalseVal, TrueVal)) 1866 return true; 1867 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1868 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1869 if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) && 1870 IsMinMax(TrueVal, FalseVal)) 1871 return true; 1872 } 1873 1874 return false; 1875 }; 1876 1877 Intrinsic::ID NewIntrinsicID; 1878 if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow && 1879 match(TrueVal, m_AllOnes())) 1880 // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y 1881 NewIntrinsicID = Intrinsic::uadd_sat; 1882 else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow && 1883 match(TrueVal, m_Zero())) 1884 // X - Y overflows ? 0 : X - Y -> usub_sat X, Y 1885 NewIntrinsicID = Intrinsic::usub_sat; 1886 else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow && 1887 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true)) 1888 // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1889 // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1890 // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1891 // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1892 // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1893 // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y 1894 // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1895 // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y 1896 NewIntrinsicID = Intrinsic::sadd_sat; 1897 else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow && 1898 IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false)) 1899 // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1900 // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1901 // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1902 // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1903 // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1904 // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y 1905 // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1906 // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y 1907 NewIntrinsicID = Intrinsic::ssub_sat; 1908 else 1909 return nullptr; 1910 1911 Function *F = 1912 Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType()); 1913 return CallInst::Create(F, {X, Y}); 1914 } 1915 1916 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) { 1917 Constant *C; 1918 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1919 !match(Sel.getFalseValue(), m_Constant(C))) 1920 return nullptr; 1921 1922 Instruction *ExtInst; 1923 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1924 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1925 return nullptr; 1926 1927 auto ExtOpcode = ExtInst->getOpcode(); 1928 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1929 return nullptr; 1930 1931 // If we are extending from a boolean type or if we can create a select that 1932 // has the same size operands as its condition, try to narrow the select. 1933 Value *X = ExtInst->getOperand(0); 1934 Type *SmallType = X->getType(); 1935 Value *Cond = Sel.getCondition(); 1936 auto *Cmp = dyn_cast<CmpInst>(Cond); 1937 if (!SmallType->isIntOrIntVectorTy(1) && 1938 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1939 return nullptr; 1940 1941 // If the constant is the same after truncation to the smaller type and 1942 // extension to the original type, we can narrow the select. 1943 Type *SelType = Sel.getType(); 1944 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1945 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1946 if (ExtC == C && ExtInst->hasOneUse()) { 1947 Value *TruncCVal = cast<Value>(TruncC); 1948 if (ExtInst == Sel.getFalseValue()) 1949 std::swap(X, TruncCVal); 1950 1951 // select Cond, (ext X), C --> ext(select Cond, X, C') 1952 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1953 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1954 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1955 } 1956 1957 // If one arm of the select is the extend of the condition, replace that arm 1958 // with the extension of the appropriate known bool value. 1959 if (Cond == X) { 1960 if (ExtInst == Sel.getTrueValue()) { 1961 // select X, (sext X), C --> select X, -1, C 1962 // select X, (zext X), C --> select X, 1, C 1963 Constant *One = ConstantInt::getTrue(SmallType); 1964 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1965 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1966 } else { 1967 // select X, C, (sext X) --> select X, C, 0 1968 // select X, C, (zext X) --> select X, C, 0 1969 Constant *Zero = ConstantInt::getNullValue(SelType); 1970 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1971 } 1972 } 1973 1974 return nullptr; 1975 } 1976 1977 /// Try to transform a vector select with a constant condition vector into a 1978 /// shuffle for easier combining with other shuffles and insert/extract. 1979 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1980 Value *CondVal = SI.getCondition(); 1981 Constant *CondC; 1982 auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType()); 1983 if (!CondValTy || !match(CondVal, m_Constant(CondC))) 1984 return nullptr; 1985 1986 unsigned NumElts = CondValTy->getNumElements(); 1987 SmallVector<int, 16> Mask; 1988 Mask.reserve(NumElts); 1989 for (unsigned i = 0; i != NumElts; ++i) { 1990 Constant *Elt = CondC->getAggregateElement(i); 1991 if (!Elt) 1992 return nullptr; 1993 1994 if (Elt->isOneValue()) { 1995 // If the select condition element is true, choose from the 1st vector. 1996 Mask.push_back(i); 1997 } else if (Elt->isNullValue()) { 1998 // If the select condition element is false, choose from the 2nd vector. 1999 Mask.push_back(i + NumElts); 2000 } else if (isa<UndefValue>(Elt)) { 2001 // Undef in a select condition (choose one of the operands) does not mean 2002 // the same thing as undef in a shuffle mask (any value is acceptable), so 2003 // give up. 2004 return nullptr; 2005 } else { 2006 // Bail out on a constant expression. 2007 return nullptr; 2008 } 2009 } 2010 2011 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask); 2012 } 2013 2014 /// If we have a select of vectors with a scalar condition, try to convert that 2015 /// to a vector select by splatting the condition. A splat may get folded with 2016 /// other operations in IR and having all operands of a select be vector types 2017 /// is likely better for vector codegen. 2018 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel, 2019 InstCombinerImpl &IC) { 2020 auto *Ty = dyn_cast<VectorType>(Sel.getType()); 2021 if (!Ty) 2022 return nullptr; 2023 2024 // We can replace a single-use extract with constant index. 2025 Value *Cond = Sel.getCondition(); 2026 if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt())))) 2027 return nullptr; 2028 2029 // select (extelt V, Index), T, F --> select (splat V, Index), T, F 2030 // Splatting the extracted condition reduces code (we could directly create a 2031 // splat shuffle of the source vector to eliminate the intermediate step). 2032 return IC.replaceOperand( 2033 Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond)); 2034 } 2035 2036 /// Reuse bitcasted operands between a compare and select: 2037 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2038 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 2039 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 2040 InstCombiner::BuilderTy &Builder) { 2041 Value *Cond = Sel.getCondition(); 2042 Value *TVal = Sel.getTrueValue(); 2043 Value *FVal = Sel.getFalseValue(); 2044 2045 CmpInst::Predicate Pred; 2046 Value *A, *B; 2047 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 2048 return nullptr; 2049 2050 // The select condition is a compare instruction. If the select's true/false 2051 // values are already the same as the compare operands, there's nothing to do. 2052 if (TVal == A || TVal == B || FVal == A || FVal == B) 2053 return nullptr; 2054 2055 Value *C, *D; 2056 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 2057 return nullptr; 2058 2059 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 2060 Value *TSrc, *FSrc; 2061 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 2062 !match(FVal, m_BitCast(m_Value(FSrc)))) 2063 return nullptr; 2064 2065 // If the select true/false values are *different bitcasts* of the same source 2066 // operands, make the select operands the same as the compare operands and 2067 // cast the result. This is the canonical select form for min/max. 2068 Value *NewSel; 2069 if (TSrc == C && FSrc == D) { 2070 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 2071 // bitcast (select (cmp A, B), A, B) 2072 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 2073 } else if (TSrc == D && FSrc == C) { 2074 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 2075 // bitcast (select (cmp A, B), B, A) 2076 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 2077 } else { 2078 return nullptr; 2079 } 2080 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 2081 } 2082 2083 /// Try to eliminate select instructions that test the returned flag of cmpxchg 2084 /// instructions. 2085 /// 2086 /// If a select instruction tests the returned flag of a cmpxchg instruction and 2087 /// selects between the returned value of the cmpxchg instruction its compare 2088 /// operand, the result of the select will always be equal to its false value. 2089 /// For example: 2090 /// 2091 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2092 /// %1 = extractvalue { i64, i1 } %0, 1 2093 /// %2 = extractvalue { i64, i1 } %0, 0 2094 /// %3 = select i1 %1, i64 %compare, i64 %2 2095 /// ret i64 %3 2096 /// 2097 /// The returned value of the cmpxchg instruction (%2) is the original value 2098 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 2099 /// must have been equal to %compare. Thus, the result of the select is always 2100 /// equal to %2, and the code can be simplified to: 2101 /// 2102 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 2103 /// %1 = extractvalue { i64, i1 } %0, 0 2104 /// ret i64 %1 2105 /// 2106 static Value *foldSelectCmpXchg(SelectInst &SI) { 2107 // A helper that determines if V is an extractvalue instruction whose 2108 // aggregate operand is a cmpxchg instruction and whose single index is equal 2109 // to I. If such conditions are true, the helper returns the cmpxchg 2110 // instruction; otherwise, a nullptr is returned. 2111 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 2112 auto *Extract = dyn_cast<ExtractValueInst>(V); 2113 if (!Extract) 2114 return nullptr; 2115 if (Extract->getIndices()[0] != I) 2116 return nullptr; 2117 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 2118 }; 2119 2120 // If the select has a single user, and this user is a select instruction that 2121 // we can simplify, skip the cmpxchg simplification for now. 2122 if (SI.hasOneUse()) 2123 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 2124 if (Select->getCondition() == SI.getCondition()) 2125 if (Select->getFalseValue() == SI.getTrueValue() || 2126 Select->getTrueValue() == SI.getFalseValue()) 2127 return nullptr; 2128 2129 // Ensure the select condition is the returned flag of a cmpxchg instruction. 2130 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 2131 if (!CmpXchg) 2132 return nullptr; 2133 2134 // Check the true value case: The true value of the select is the returned 2135 // value of the same cmpxchg used by the condition, and the false value is the 2136 // cmpxchg instruction's compare operand. 2137 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 2138 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) 2139 return SI.getFalseValue(); 2140 2141 // Check the false value case: The false value of the select is the returned 2142 // value of the same cmpxchg used by the condition, and the true value is the 2143 // cmpxchg instruction's compare operand. 2144 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 2145 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) 2146 return SI.getFalseValue(); 2147 2148 return nullptr; 2149 } 2150 2151 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 2152 Value *Y, 2153 InstCombiner::BuilderTy &Builder) { 2154 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 2155 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 2156 SPF == SelectPatternFlavor::SPF_UMAX; 2157 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 2158 // the constant value check to an assert. 2159 Value *A; 2160 const APInt *C1, *C2; 2161 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 2162 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 2163 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 2164 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 2165 Value *NewMinMax = createMinMax(Builder, SPF, A, 2166 ConstantInt::get(X->getType(), *C2 - *C1)); 2167 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 2168 ConstantInt::get(X->getType(), *C1)); 2169 } 2170 2171 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 2172 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 2173 bool Overflow; 2174 APInt Diff = C2->ssub_ov(*C1, Overflow); 2175 if (!Overflow) { 2176 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 2177 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 2178 Value *NewMinMax = createMinMax(Builder, SPF, A, 2179 ConstantInt::get(X->getType(), Diff)); 2180 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 2181 ConstantInt::get(X->getType(), *C1)); 2182 } 2183 } 2184 2185 return nullptr; 2186 } 2187 2188 /// Match a sadd_sat or ssub_sat which is using min/max to clamp the value. 2189 Instruction *InstCombinerImpl::matchSAddSubSat(SelectInst &MinMax1) { 2190 Type *Ty = MinMax1.getType(); 2191 2192 // We are looking for a tree of: 2193 // max(INT_MIN, min(INT_MAX, add(sext(A), sext(B)))) 2194 // Where the min and max could be reversed 2195 Instruction *MinMax2; 2196 BinaryOperator *AddSub; 2197 const APInt *MinValue, *MaxValue; 2198 if (match(&MinMax1, m_SMin(m_Instruction(MinMax2), m_APInt(MaxValue)))) { 2199 if (!match(MinMax2, m_SMax(m_BinOp(AddSub), m_APInt(MinValue)))) 2200 return nullptr; 2201 } else if (match(&MinMax1, 2202 m_SMax(m_Instruction(MinMax2), m_APInt(MinValue)))) { 2203 if (!match(MinMax2, m_SMin(m_BinOp(AddSub), m_APInt(MaxValue)))) 2204 return nullptr; 2205 } else 2206 return nullptr; 2207 2208 // Check that the constants clamp a saturate, and that the new type would be 2209 // sensible to convert to. 2210 if (!(*MaxValue + 1).isPowerOf2() || -*MinValue != *MaxValue + 1) 2211 return nullptr; 2212 // In what bitwidth can this be treated as saturating arithmetics? 2213 unsigned NewBitWidth = (*MaxValue + 1).logBase2() + 1; 2214 // FIXME: This isn't quite right for vectors, but using the scalar type is a 2215 // good first approximation for what should be done there. 2216 if (!shouldChangeType(Ty->getScalarType()->getIntegerBitWidth(), NewBitWidth)) 2217 return nullptr; 2218 2219 // Also make sure that the number of uses is as expected. The "3"s are for the 2220 // the two items of min/max (the compare and the select). 2221 if (MinMax2->hasNUsesOrMore(3) || AddSub->hasNUsesOrMore(3)) 2222 return nullptr; 2223 2224 // Create the new type (which can be a vector type) 2225 Type *NewTy = Ty->getWithNewBitWidth(NewBitWidth); 2226 // Match the two extends from the add/sub 2227 Value *A, *B; 2228 if(!match(AddSub, m_BinOp(m_SExt(m_Value(A)), m_SExt(m_Value(B))))) 2229 return nullptr; 2230 // And check the incoming values are of a type smaller than or equal to the 2231 // size of the saturation. Otherwise the higher bits can cause different 2232 // results. 2233 if (A->getType()->getScalarSizeInBits() > NewBitWidth || 2234 B->getType()->getScalarSizeInBits() > NewBitWidth) 2235 return nullptr; 2236 2237 Intrinsic::ID IntrinsicID; 2238 if (AddSub->getOpcode() == Instruction::Add) 2239 IntrinsicID = Intrinsic::sadd_sat; 2240 else if (AddSub->getOpcode() == Instruction::Sub) 2241 IntrinsicID = Intrinsic::ssub_sat; 2242 else 2243 return nullptr; 2244 2245 // Finally create and return the sat intrinsic, truncated to the new type 2246 Function *F = Intrinsic::getDeclaration(MinMax1.getModule(), IntrinsicID, NewTy); 2247 Value *AT = Builder.CreateSExt(A, NewTy); 2248 Value *BT = Builder.CreateSExt(B, NewTy); 2249 Value *Sat = Builder.CreateCall(F, {AT, BT}); 2250 return CastInst::Create(Instruction::SExt, Sat, Ty); 2251 } 2252 2253 /// Reduce a sequence of min/max with a common operand. 2254 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 2255 Value *RHS, 2256 InstCombiner::BuilderTy &Builder) { 2257 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 2258 // TODO: Allow FP min/max with nnan/nsz. 2259 if (!LHS->getType()->isIntOrIntVectorTy()) 2260 return nullptr; 2261 2262 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 2263 Value *A, *B, *C, *D; 2264 SelectPatternResult L = matchSelectPattern(LHS, A, B); 2265 SelectPatternResult R = matchSelectPattern(RHS, C, D); 2266 if (SPF != L.Flavor || L.Flavor != R.Flavor) 2267 return nullptr; 2268 2269 // Look for a common operand. The use checks are different than usual because 2270 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 2271 // the select. 2272 Value *MinMaxOp = nullptr; 2273 Value *ThirdOp = nullptr; 2274 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 2275 // If the LHS is only used in this chain and the RHS is used outside of it, 2276 // reuse the RHS min/max because that will eliminate the LHS. 2277 if (D == A || C == A) { 2278 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 2279 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 2280 MinMaxOp = RHS; 2281 ThirdOp = B; 2282 } else if (D == B || C == B) { 2283 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 2284 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 2285 MinMaxOp = RHS; 2286 ThirdOp = A; 2287 } 2288 } else if (!RHS->hasNUsesOrMore(3)) { 2289 // Reuse the LHS. This will eliminate the RHS. 2290 if (D == A || D == B) { 2291 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 2292 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 2293 MinMaxOp = LHS; 2294 ThirdOp = C; 2295 } else if (C == A || C == B) { 2296 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 2297 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 2298 MinMaxOp = LHS; 2299 ThirdOp = D; 2300 } 2301 } 2302 if (!MinMaxOp || !ThirdOp) 2303 return nullptr; 2304 2305 CmpInst::Predicate P = getMinMaxPred(SPF); 2306 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 2307 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 2308 } 2309 2310 /// Try to reduce a funnel/rotate pattern that includes a compare and select 2311 /// into a funnel shift intrinsic. Example: 2312 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 2313 /// --> call llvm.fshl.i32(a, a, b) 2314 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c))) 2315 /// --> call llvm.fshl.i32(a, b, c) 2316 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c))) 2317 /// --> call llvm.fshr.i32(a, b, c) 2318 static Instruction *foldSelectFunnelShift(SelectInst &Sel, 2319 InstCombiner::BuilderTy &Builder) { 2320 // This must be a power-of-2 type for a bitmasking transform to be valid. 2321 unsigned Width = Sel.getType()->getScalarSizeInBits(); 2322 if (!isPowerOf2_32(Width)) 2323 return nullptr; 2324 2325 BinaryOperator *Or0, *Or1; 2326 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1))))) 2327 return nullptr; 2328 2329 Value *SV0, *SV1, *SA0, *SA1; 2330 if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0), 2331 m_ZExtOrSelf(m_Value(SA0))))) || 2332 !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1), 2333 m_ZExtOrSelf(m_Value(SA1))))) || 2334 Or0->getOpcode() == Or1->getOpcode()) 2335 return nullptr; 2336 2337 // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)). 2338 if (Or0->getOpcode() == BinaryOperator::LShr) { 2339 std::swap(Or0, Or1); 2340 std::swap(SV0, SV1); 2341 std::swap(SA0, SA1); 2342 } 2343 assert(Or0->getOpcode() == BinaryOperator::Shl && 2344 Or1->getOpcode() == BinaryOperator::LShr && 2345 "Illegal or(shift,shift) pair"); 2346 2347 // Check the shift amounts to see if they are an opposite pair. 2348 Value *ShAmt; 2349 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 2350 ShAmt = SA0; 2351 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 2352 ShAmt = SA1; 2353 else 2354 return nullptr; 2355 2356 // We should now have this pattern: 2357 // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1)) 2358 // The false value of the select must be a funnel-shift of the true value: 2359 // IsFShl -> TVal must be SV0 else TVal must be SV1. 2360 bool IsFshl = (ShAmt == SA0); 2361 Value *TVal = Sel.getTrueValue(); 2362 if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1)) 2363 return nullptr; 2364 2365 // Finally, see if the select is filtering out a shift-by-zero. 2366 Value *Cond = Sel.getCondition(); 2367 ICmpInst::Predicate Pred; 2368 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 2369 Pred != ICmpInst::ICMP_EQ) 2370 return nullptr; 2371 2372 // If this is not a rotate then the select was blocking poison from the 2373 // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it. 2374 if (SV0 != SV1) { 2375 if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1)) 2376 SV1 = Builder.CreateFreeze(SV1); 2377 else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0)) 2378 SV0 = Builder.CreateFreeze(SV0); 2379 } 2380 2381 // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way. 2382 // Convert to funnel shift intrinsic. 2383 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 2384 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 2385 ShAmt = Builder.CreateZExt(ShAmt, Sel.getType()); 2386 return CallInst::Create(F, { SV0, SV1, ShAmt }); 2387 } 2388 2389 static Instruction *foldSelectToCopysign(SelectInst &Sel, 2390 InstCombiner::BuilderTy &Builder) { 2391 Value *Cond = Sel.getCondition(); 2392 Value *TVal = Sel.getTrueValue(); 2393 Value *FVal = Sel.getFalseValue(); 2394 Type *SelType = Sel.getType(); 2395 2396 // Match select ?, TC, FC where the constants are equal but negated. 2397 // TODO: Generalize to handle a negated variable operand? 2398 const APFloat *TC, *FC; 2399 if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) || 2400 !abs(*TC).bitwiseIsEqual(abs(*FC))) 2401 return nullptr; 2402 2403 assert(TC != FC && "Expected equal select arms to simplify"); 2404 2405 Value *X; 2406 const APInt *C; 2407 bool IsTrueIfSignSet; 2408 ICmpInst::Predicate Pred; 2409 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) || 2410 !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) || 2411 X->getType() != SelType) 2412 return nullptr; 2413 2414 // If needed, negate the value that will be the sign argument of the copysign: 2415 // (bitcast X) < 0 ? -TC : TC --> copysign(TC, X) 2416 // (bitcast X) < 0 ? TC : -TC --> copysign(TC, -X) 2417 // (bitcast X) >= 0 ? -TC : TC --> copysign(TC, -X) 2418 // (bitcast X) >= 0 ? TC : -TC --> copysign(TC, X) 2419 if (IsTrueIfSignSet ^ TC->isNegative()) 2420 X = Builder.CreateFNegFMF(X, &Sel); 2421 2422 // Canonicalize the magnitude argument as the positive constant since we do 2423 // not care about its sign. 2424 Value *MagArg = TC->isNegative() ? FVal : TVal; 2425 Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign, 2426 Sel.getType()); 2427 Instruction *CopySign = CallInst::Create(F, { MagArg, X }); 2428 CopySign->setFastMathFlags(Sel.getFastMathFlags()); 2429 return CopySign; 2430 } 2431 2432 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) { 2433 auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType()); 2434 if (!VecTy) 2435 return nullptr; 2436 2437 unsigned NumElts = VecTy->getNumElements(); 2438 APInt UndefElts(NumElts, 0); 2439 APInt AllOnesEltMask(APInt::getAllOnesValue(NumElts)); 2440 if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) { 2441 if (V != &Sel) 2442 return replaceInstUsesWith(Sel, V); 2443 return &Sel; 2444 } 2445 2446 // A select of a "select shuffle" with a common operand can be rearranged 2447 // to select followed by "select shuffle". Because of poison, this only works 2448 // in the case of a shuffle with no undefined mask elements. 2449 Value *Cond = Sel.getCondition(); 2450 Value *TVal = Sel.getTrueValue(); 2451 Value *FVal = Sel.getFalseValue(); 2452 Value *X, *Y; 2453 ArrayRef<int> Mask; 2454 if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2455 !is_contained(Mask, UndefMaskElem) && 2456 cast<ShuffleVectorInst>(TVal)->isSelect()) { 2457 if (X == FVal) { 2458 // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X) 2459 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2460 return new ShuffleVectorInst(X, NewSel, Mask); 2461 } 2462 if (Y == FVal) { 2463 // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y 2464 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2465 return new ShuffleVectorInst(NewSel, Y, Mask); 2466 } 2467 } 2468 if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) && 2469 !is_contained(Mask, UndefMaskElem) && 2470 cast<ShuffleVectorInst>(FVal)->isSelect()) { 2471 if (X == TVal) { 2472 // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y) 2473 Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel); 2474 return new ShuffleVectorInst(X, NewSel, Mask); 2475 } 2476 if (Y == TVal) { 2477 // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y 2478 Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel); 2479 return new ShuffleVectorInst(NewSel, Y, Mask); 2480 } 2481 } 2482 2483 return nullptr; 2484 } 2485 2486 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB, 2487 const DominatorTree &DT, 2488 InstCombiner::BuilderTy &Builder) { 2489 // Find the block's immediate dominator that ends with a conditional branch 2490 // that matches select's condition (maybe inverted). 2491 auto *IDomNode = DT[BB]->getIDom(); 2492 if (!IDomNode) 2493 return nullptr; 2494 BasicBlock *IDom = IDomNode->getBlock(); 2495 2496 Value *Cond = Sel.getCondition(); 2497 Value *IfTrue, *IfFalse; 2498 BasicBlock *TrueSucc, *FalseSucc; 2499 if (match(IDom->getTerminator(), 2500 m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc), 2501 m_BasicBlock(FalseSucc)))) { 2502 IfTrue = Sel.getTrueValue(); 2503 IfFalse = Sel.getFalseValue(); 2504 } else if (match(IDom->getTerminator(), 2505 m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc), 2506 m_BasicBlock(FalseSucc)))) { 2507 IfTrue = Sel.getFalseValue(); 2508 IfFalse = Sel.getTrueValue(); 2509 } else 2510 return nullptr; 2511 2512 // Make sure the branches are actually different. 2513 if (TrueSucc == FalseSucc) 2514 return nullptr; 2515 2516 // We want to replace select %cond, %a, %b with a phi that takes value %a 2517 // for all incoming edges that are dominated by condition `%cond == true`, 2518 // and value %b for edges dominated by condition `%cond == false`. If %a 2519 // or %b are also phis from the same basic block, we can go further and take 2520 // their incoming values from the corresponding blocks. 2521 BasicBlockEdge TrueEdge(IDom, TrueSucc); 2522 BasicBlockEdge FalseEdge(IDom, FalseSucc); 2523 DenseMap<BasicBlock *, Value *> Inputs; 2524 for (auto *Pred : predecessors(BB)) { 2525 // Check implication. 2526 BasicBlockEdge Incoming(Pred, BB); 2527 if (DT.dominates(TrueEdge, Incoming)) 2528 Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred); 2529 else if (DT.dominates(FalseEdge, Incoming)) 2530 Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred); 2531 else 2532 return nullptr; 2533 // Check availability. 2534 if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred])) 2535 if (!DT.dominates(Insn, Pred->getTerminator())) 2536 return nullptr; 2537 } 2538 2539 Builder.SetInsertPoint(&*BB->begin()); 2540 auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size()); 2541 for (auto *Pred : predecessors(BB)) 2542 PN->addIncoming(Inputs[Pred], Pred); 2543 PN->takeName(&Sel); 2544 return PN; 2545 } 2546 2547 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT, 2548 InstCombiner::BuilderTy &Builder) { 2549 // Try to replace this select with Phi in one of these blocks. 2550 SmallSetVector<BasicBlock *, 4> CandidateBlocks; 2551 CandidateBlocks.insert(Sel.getParent()); 2552 for (Value *V : Sel.operands()) 2553 if (auto *I = dyn_cast<Instruction>(V)) 2554 CandidateBlocks.insert(I->getParent()); 2555 2556 for (BasicBlock *BB : CandidateBlocks) 2557 if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder)) 2558 return PN; 2559 return nullptr; 2560 } 2561 2562 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) { 2563 FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition()); 2564 if (!FI) 2565 return nullptr; 2566 2567 Value *Cond = FI->getOperand(0); 2568 Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue(); 2569 2570 // select (freeze(x == y)), x, y --> y 2571 // select (freeze(x != y)), x, y --> x 2572 // The freeze should be only used by this select. Otherwise, remaining uses of 2573 // the freeze can observe a contradictory value. 2574 // c = freeze(x == y) ; Let's assume that y = poison & x = 42; c is 0 or 1 2575 // a = select c, x, y ; 2576 // f(a, c) ; f(poison, 1) cannot happen, but if a is folded 2577 // ; to y, this can happen. 2578 CmpInst::Predicate Pred; 2579 if (FI->hasOneUse() && 2580 match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) && 2581 (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) { 2582 return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal; 2583 } 2584 2585 return nullptr; 2586 } 2587 2588 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) { 2589 Value *CondVal = SI.getCondition(); 2590 Value *TrueVal = SI.getTrueValue(); 2591 Value *FalseVal = SI.getFalseValue(); 2592 Type *SelType = SI.getType(); 2593 2594 // FIXME: Remove this workaround when freeze related patches are done. 2595 // For select with undef operand which feeds into an equality comparison, 2596 // don't simplify it so loop unswitch can know the equality comparison 2597 // may have an undef operand. This is a workaround for PR31652 caused by 2598 // descrepancy about branch on undef between LoopUnswitch and GVN. 2599 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 2600 if (llvm::any_of(SI.users(), [&](User *U) { 2601 ICmpInst *CI = dyn_cast<ICmpInst>(U); 2602 if (CI && CI->isEquality()) 2603 return true; 2604 return false; 2605 })) { 2606 return nullptr; 2607 } 2608 } 2609 2610 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 2611 SQ.getWithInstruction(&SI))) 2612 return replaceInstUsesWith(SI, V); 2613 2614 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 2615 return I; 2616 2617 if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this)) 2618 return I; 2619 2620 CmpInst::Predicate Pred; 2621 2622 if (SelType->isIntOrIntVectorTy(1) && 2623 TrueVal->getType() == CondVal->getType()) { 2624 auto IsSafeToConvert = [&](Value *OtherVal) { 2625 if (impliesPoison(OtherVal, CondVal)) 2626 return true; 2627 2628 if (!EnableUnsafeSelectTransform) 2629 return false; 2630 2631 // We block this transformation if OtherVal or its operand can create 2632 // poison. See PR49688 2633 if (auto *Op = dyn_cast<Operator>(OtherVal)) { 2634 if (canCreatePoison(Op)) 2635 return false; 2636 if (propagatesPoison(Op) && 2637 llvm::any_of(Op->operand_values(), [](Value *V) { 2638 return isa<Operator>(V) ? canCreatePoison(cast<Operator>(V)) 2639 : false; 2640 })) 2641 return false; 2642 } 2643 return true; 2644 }; 2645 if (match(TrueVal, m_One()) && IsSafeToConvert(FalseVal)) { 2646 // Change: A = select B, true, C --> A = or B, C 2647 return BinaryOperator::CreateOr(CondVal, FalseVal); 2648 } 2649 if (match(FalseVal, m_Zero()) && IsSafeToConvert(TrueVal)) { 2650 // Change: A = select B, C, false --> A = and B, C 2651 return BinaryOperator::CreateAnd(CondVal, TrueVal); 2652 } 2653 2654 auto *One = ConstantInt::getTrue(SelType); 2655 auto *Zero = ConstantInt::getFalse(SelType); 2656 2657 // We match the "full" 0 or 1 constant here to avoid a potential infinite 2658 // loop with vectors that may have undefined/poison elements. 2659 // select a, false, b -> select !a, b, false 2660 if (match(TrueVal, m_Specific(Zero))) { 2661 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2662 return SelectInst::Create(NotCond, FalseVal, Zero); 2663 } 2664 // select a, b, true -> select !a, true, b 2665 if (match(FalseVal, m_Specific(One))) { 2666 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2667 return SelectInst::Create(NotCond, One, TrueVal); 2668 } 2669 2670 // select a, a, b -> select a, true, b 2671 if (CondVal == TrueVal) 2672 return replaceOperand(SI, 1, One); 2673 // select a, b, a -> select a, b, false 2674 if (CondVal == FalseVal) 2675 return replaceOperand(SI, 2, Zero); 2676 2677 // select a, !a, b -> select !a, b, false 2678 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 2679 return SelectInst::Create(TrueVal, FalseVal, Zero); 2680 // select a, b, !a -> select !a, true, b 2681 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 2682 return SelectInst::Create(FalseVal, One, TrueVal); 2683 2684 Value *A, *B; 2685 // select (select a, true, b), true, b -> select a, true, b 2686 if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) && 2687 match(TrueVal, m_One()) && match(FalseVal, m_Specific(B))) 2688 return replaceOperand(SI, 0, A); 2689 // select (select a, b, false), b, false -> select a, b, false 2690 if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) && 2691 match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero())) 2692 return replaceOperand(SI, 0, A); 2693 2694 if (Value *S = SimplifyWithOpReplaced(TrueVal, CondVal, One, SQ, 2695 /* AllowRefinement */ true)) 2696 return replaceOperand(SI, 1, S); 2697 if (Value *S = SimplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ, 2698 /* AllowRefinement */ true)) 2699 return replaceOperand(SI, 2, S); 2700 } 2701 2702 // Selecting between two integer or vector splat integer constants? 2703 // 2704 // Note that we don't handle a scalar select of vectors: 2705 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 2706 // because that may need 3 instructions to splat the condition value: 2707 // extend, insertelement, shufflevector. 2708 // 2709 // Do not handle i1 TrueVal and FalseVal otherwise would result in 2710 // zext/sext i1 to i1. 2711 if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) && 2712 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 2713 // select C, 1, 0 -> zext C to int 2714 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 2715 return new ZExtInst(CondVal, SelType); 2716 2717 // select C, -1, 0 -> sext C to int 2718 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 2719 return new SExtInst(CondVal, SelType); 2720 2721 // select C, 0, 1 -> zext !C to int 2722 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 2723 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2724 return new ZExtInst(NotCond, SelType); 2725 } 2726 2727 // select C, 0, -1 -> sext !C to int 2728 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 2729 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 2730 return new SExtInst(NotCond, SelType); 2731 } 2732 } 2733 2734 // See if we are selecting two values based on a comparison of the two values. 2735 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 2736 Value *Cmp0 = FCI->getOperand(0), *Cmp1 = FCI->getOperand(1); 2737 if ((Cmp0 == TrueVal && Cmp1 == FalseVal) || 2738 (Cmp0 == FalseVal && Cmp1 == TrueVal)) { 2739 // Canonicalize to use ordered comparisons by swapping the select 2740 // operands. 2741 // 2742 // e.g. 2743 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 2744 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 2745 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 2746 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2747 // FIXME: The FMF should propagate from the select, not the fcmp. 2748 Builder.setFastMathFlags(FCI->getFastMathFlags()); 2749 Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1, 2750 FCI->getName() + ".inv"); 2751 Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal); 2752 return replaceInstUsesWith(SI, NewSel); 2753 } 2754 2755 // NOTE: if we wanted to, this is where to detect MIN/MAX 2756 } 2757 } 2758 2759 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 2760 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 2761 // also require nnan because we do not want to unintentionally change the 2762 // sign of a NaN value. 2763 // FIXME: These folds should test/propagate FMF from the select, not the 2764 // fsub or fneg. 2765 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 2766 Instruction *FSub; 2767 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2768 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) && 2769 match(TrueVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2770 (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) { 2771 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FSub); 2772 return replaceInstUsesWith(SI, Fabs); 2773 } 2774 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 2775 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2776 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) && 2777 match(FalseVal, m_Instruction(FSub)) && FSub->hasNoNaNs() && 2778 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) { 2779 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FSub); 2780 return replaceInstUsesWith(SI, Fabs); 2781 } 2782 // With nnan and nsz: 2783 // (X < +/-0.0) ? -X : X --> fabs(X) 2784 // (X <= +/-0.0) ? -X : X --> fabs(X) 2785 Instruction *FNeg; 2786 if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) && 2787 match(TrueVal, m_FNeg(m_Specific(FalseVal))) && 2788 match(TrueVal, m_Instruction(FNeg)) && 2789 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2790 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE || 2791 Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) { 2792 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, FNeg); 2793 return replaceInstUsesWith(SI, Fabs); 2794 } 2795 // With nnan and nsz: 2796 // (X > +/-0.0) ? X : -X --> fabs(X) 2797 // (X >= +/-0.0) ? X : -X --> fabs(X) 2798 if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) && 2799 match(FalseVal, m_FNeg(m_Specific(TrueVal))) && 2800 match(FalseVal, m_Instruction(FNeg)) && 2801 FNeg->hasNoNaNs() && FNeg->hasNoSignedZeros() && 2802 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE || 2803 Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) { 2804 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, FNeg); 2805 return replaceInstUsesWith(SI, Fabs); 2806 } 2807 2808 // See if we are selecting two values based on a comparison of the two values. 2809 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 2810 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 2811 return Result; 2812 2813 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 2814 return Add; 2815 if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder)) 2816 return Add; 2817 if (Instruction *Or = foldSetClearBits(SI, Builder)) 2818 return Or; 2819 2820 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 2821 auto *TI = dyn_cast<Instruction>(TrueVal); 2822 auto *FI = dyn_cast<Instruction>(FalseVal); 2823 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 2824 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 2825 return IV; 2826 2827 if (Instruction *I = foldSelectExtConst(SI)) 2828 return I; 2829 2830 // See if we can fold the select into one of our operands. 2831 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 2832 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 2833 return FoldI; 2834 2835 Value *LHS, *RHS; 2836 Instruction::CastOps CastOp; 2837 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 2838 auto SPF = SPR.Flavor; 2839 if (SPF) { 2840 Value *LHS2, *RHS2; 2841 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 2842 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 2843 RHS2, SI, SPF, RHS)) 2844 return R; 2845 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 2846 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 2847 RHS2, SI, SPF, LHS)) 2848 return R; 2849 // TODO. 2850 // ABS(-X) -> ABS(X) 2851 } 2852 2853 if (SelectPatternResult::isMinOrMax(SPF)) { 2854 // Canonicalize so that 2855 // - type casts are outside select patterns. 2856 // - float clamp is transformed to min/max pattern 2857 2858 bool IsCastNeeded = LHS->getType() != SelType; 2859 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 2860 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 2861 if (IsCastNeeded || 2862 (LHS->getType()->isFPOrFPVectorTy() && 2863 ((CmpLHS != LHS && CmpLHS != RHS) || 2864 (CmpRHS != LHS && CmpRHS != RHS)))) { 2865 CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered); 2866 2867 Value *Cmp; 2868 if (CmpInst::isIntPredicate(MinMaxPred)) { 2869 Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS); 2870 } else { 2871 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 2872 auto FMF = 2873 cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 2874 Builder.setFastMathFlags(FMF); 2875 Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS); 2876 } 2877 2878 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 2879 if (!IsCastNeeded) 2880 return replaceInstUsesWith(SI, NewSI); 2881 2882 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 2883 return replaceInstUsesWith(SI, NewCast); 2884 } 2885 2886 // MAX(~a, ~b) -> ~MIN(a, b) 2887 // MAX(~a, C) -> ~MIN(a, ~C) 2888 // MIN(~a, ~b) -> ~MAX(a, b) 2889 // MIN(~a, C) -> ~MAX(a, ~C) 2890 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 2891 Value *A; 2892 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 2893 !isFreeToInvert(A, A->hasOneUse()) && 2894 // Passing false to only consider m_Not and constants. 2895 isFreeToInvert(Y, false)) { 2896 Value *B = Builder.CreateNot(Y); 2897 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 2898 A, B); 2899 // Copy the profile metadata. 2900 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 2901 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 2902 // Swap the metadata if the operands are swapped. 2903 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 2904 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 2905 } 2906 2907 return BinaryOperator::CreateNot(NewMinMax); 2908 } 2909 2910 return nullptr; 2911 }; 2912 2913 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 2914 return I; 2915 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 2916 return I; 2917 2918 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 2919 return I; 2920 2921 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 2922 return I; 2923 if (Instruction *I = matchSAddSubSat(SI)) 2924 return I; 2925 } 2926 } 2927 2928 // Canonicalize select of FP values where NaN and -0.0 are not valid as 2929 // minnum/maxnum intrinsics. 2930 if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) { 2931 Value *X, *Y; 2932 if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y)))) 2933 return replaceInstUsesWith( 2934 SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI)); 2935 2936 if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y)))) 2937 return replaceInstUsesWith( 2938 SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI)); 2939 } 2940 2941 // See if we can fold the select into a phi node if the condition is a select. 2942 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2943 // The true/false values have to be live in the PHI predecessor's blocks. 2944 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2945 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2946 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2947 return NV; 2948 2949 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2950 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2951 // select(C, select(C, a, b), c) -> select(C, a, c) 2952 if (TrueSI->getCondition() == CondVal) { 2953 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2954 return nullptr; 2955 return replaceOperand(SI, 1, TrueSI->getTrueValue()); 2956 } 2957 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2958 // We choose this as normal form to enable folding on the And and 2959 // shortening paths for the values (this helps getUnderlyingObjects() for 2960 // example). 2961 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 2962 Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition()); 2963 replaceOperand(SI, 0, And); 2964 replaceOperand(SI, 1, TrueSI->getTrueValue()); 2965 return &SI; 2966 } 2967 } 2968 } 2969 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 2970 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 2971 // select(C, a, select(C, b, c)) -> select(C, a, c) 2972 if (FalseSI->getCondition() == CondVal) { 2973 if (SI.getFalseValue() == FalseSI->getFalseValue()) 2974 return nullptr; 2975 return replaceOperand(SI, 2, FalseSI->getFalseValue()); 2976 } 2977 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 2978 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 2979 Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition()); 2980 replaceOperand(SI, 0, Or); 2981 replaceOperand(SI, 2, FalseSI->getFalseValue()); 2982 return &SI; 2983 } 2984 } 2985 } 2986 2987 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 2988 // The select might be preventing a division by 0. 2989 switch (BO->getOpcode()) { 2990 default: 2991 return true; 2992 case Instruction::SRem: 2993 case Instruction::URem: 2994 case Instruction::SDiv: 2995 case Instruction::UDiv: 2996 return false; 2997 } 2998 }; 2999 3000 // Try to simplify a binop sandwiched between 2 selects with the same 3001 // condition. 3002 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 3003 BinaryOperator *TrueBO; 3004 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 3005 canMergeSelectThroughBinop(TrueBO)) { 3006 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 3007 if (TrueBOSI->getCondition() == CondVal) { 3008 replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue()); 3009 Worklist.push(TrueBO); 3010 return &SI; 3011 } 3012 } 3013 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 3014 if (TrueBOSI->getCondition() == CondVal) { 3015 replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue()); 3016 Worklist.push(TrueBO); 3017 return &SI; 3018 } 3019 } 3020 } 3021 3022 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 3023 BinaryOperator *FalseBO; 3024 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 3025 canMergeSelectThroughBinop(FalseBO)) { 3026 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 3027 if (FalseBOSI->getCondition() == CondVal) { 3028 replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue()); 3029 Worklist.push(FalseBO); 3030 return &SI; 3031 } 3032 } 3033 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 3034 if (FalseBOSI->getCondition() == CondVal) { 3035 replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue()); 3036 Worklist.push(FalseBO); 3037 return &SI; 3038 } 3039 } 3040 } 3041 3042 Value *NotCond; 3043 if (match(CondVal, m_Not(m_Value(NotCond))) && 3044 !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) { 3045 replaceOperand(SI, 0, NotCond); 3046 SI.swapValues(); 3047 SI.swapProfMetadata(); 3048 return &SI; 3049 } 3050 3051 if (Instruction *I = foldVectorSelect(SI)) 3052 return I; 3053 3054 // If we can compute the condition, there's no need for a select. 3055 // Like the above fold, we are attempting to reduce compile-time cost by 3056 // putting this fold here with limitations rather than in InstSimplify. 3057 // The motivation for this call into value tracking is to take advantage of 3058 // the assumption cache, so make sure that is populated. 3059 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 3060 KnownBits Known(1); 3061 computeKnownBits(CondVal, Known, 0, &SI); 3062 if (Known.One.isOneValue()) 3063 return replaceInstUsesWith(SI, TrueVal); 3064 if (Known.Zero.isOneValue()) 3065 return replaceInstUsesWith(SI, FalseVal); 3066 } 3067 3068 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 3069 return BitCastSel; 3070 3071 // Simplify selects that test the returned flag of cmpxchg instructions. 3072 if (Value *V = foldSelectCmpXchg(SI)) 3073 return replaceInstUsesWith(SI, V); 3074 3075 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this)) 3076 return Select; 3077 3078 if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder)) 3079 return Funnel; 3080 3081 if (Instruction *Copysign = foldSelectToCopysign(SI, Builder)) 3082 return Copysign; 3083 3084 if (Instruction *PN = foldSelectToPhi(SI, DT, Builder)) 3085 return replaceInstUsesWith(SI, PN); 3086 3087 if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder)) 3088 return replaceInstUsesWith(SI, Fr); 3089 3090 return nullptr; 3091 } 3092