1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 41 #include <cassert> 42 #include <utility> 43 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 #define DEBUG_TYPE "instcombine" 48 49 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 50 SelectPatternFlavor SPF, Value *A, Value *B) { 51 CmpInst::Predicate Pred = getMinMaxPred(SPF); 52 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 53 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 54 } 55 56 /// Replace a select operand based on an equality comparison with the identity 57 /// constant of a binop. 58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 59 const TargetLibraryInfo &TLI) { 60 // The select condition must be an equality compare with a constant operand. 61 Value *X; 62 Constant *C; 63 CmpInst::Predicate Pred; 64 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 65 return nullptr; 66 67 bool IsEq; 68 if (ICmpInst::isEquality(Pred)) 69 IsEq = Pred == ICmpInst::ICMP_EQ; 70 else if (Pred == FCmpInst::FCMP_OEQ) 71 IsEq = true; 72 else if (Pred == FCmpInst::FCMP_UNE) 73 IsEq = false; 74 else 75 return nullptr; 76 77 // A select operand must be a binop. 78 BinaryOperator *BO; 79 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 80 return nullptr; 81 82 // The compare constant must be the identity constant for that binop. 83 // If this a floating-point compare with 0.0, any zero constant will do. 84 Type *Ty = BO->getType(); 85 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 86 if (IdC != C) { 87 if (!IdC || !CmpInst::isFPPredicate(Pred)) 88 return nullptr; 89 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 90 return nullptr; 91 } 92 93 // Last, match the compare variable operand with a binop operand. 94 Value *Y; 95 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 96 return nullptr; 97 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 98 return nullptr; 99 100 // +0.0 compares equal to -0.0, and so it does not behave as required for this 101 // transform. Bail out if we can not exclude that possibility. 102 if (isa<FPMathOperator>(BO)) 103 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 104 return nullptr; 105 106 // BO = binop Y, X 107 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 108 // => 109 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 110 Sel.setOperand(IsEq ? 1 : 2, Y); 111 return &Sel; 112 } 113 114 /// This folds: 115 /// select (icmp eq (and X, C1)), TC, FC 116 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 117 /// To something like: 118 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 119 /// Or: 120 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 121 /// With some variations depending if FC is larger than TC, or the shift 122 /// isn't needed, or the bit widths don't match. 123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 124 InstCombiner::BuilderTy &Builder) { 125 const APInt *SelTC, *SelFC; 126 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 127 !match(Sel.getFalseValue(), m_APInt(SelFC))) 128 return nullptr; 129 130 // If this is a vector select, we need a vector compare. 131 Type *SelType = Sel.getType(); 132 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 133 return nullptr; 134 135 Value *V; 136 APInt AndMask; 137 bool CreateAnd = false; 138 ICmpInst::Predicate Pred = Cmp->getPredicate(); 139 if (ICmpInst::isEquality(Pred)) { 140 if (!match(Cmp->getOperand(1), m_Zero())) 141 return nullptr; 142 143 V = Cmp->getOperand(0); 144 const APInt *AndRHS; 145 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 146 return nullptr; 147 148 AndMask = *AndRHS; 149 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 150 Pred, V, AndMask)) { 151 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 152 if (!AndMask.isPowerOf2()) 153 return nullptr; 154 155 CreateAnd = true; 156 } else { 157 return nullptr; 158 } 159 160 // In general, when both constants are non-zero, we would need an offset to 161 // replace the select. This would require more instructions than we started 162 // with. But there's one special-case that we handle here because it can 163 // simplify/reduce the instructions. 164 APInt TC = *SelTC; 165 APInt FC = *SelFC; 166 if (!TC.isNullValue() && !FC.isNullValue()) { 167 // If the select constants differ by exactly one bit and that's the same 168 // bit that is masked and checked by the select condition, the select can 169 // be replaced by bitwise logic to set/clear one bit of the constant result. 170 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 171 return nullptr; 172 if (CreateAnd) { 173 // If we have to create an 'and', then we must kill the cmp to not 174 // increase the instruction count. 175 if (!Cmp->hasOneUse()) 176 return nullptr; 177 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 178 } 179 bool ExtraBitInTC = TC.ugt(FC); 180 if (Pred == ICmpInst::ICMP_EQ) { 181 // If the masked bit in V is clear, clear or set the bit in the result: 182 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 184 Constant *C = ConstantInt::get(SelType, TC); 185 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 186 } 187 if (Pred == ICmpInst::ICMP_NE) { 188 // If the masked bit in V is set, set or clear the bit in the result: 189 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 191 Constant *C = ConstantInt::get(SelType, FC); 192 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 193 } 194 llvm_unreachable("Only expecting equality predicates"); 195 } 196 197 // Make sure one of the select arms is a power-of-2. 198 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 199 return nullptr; 200 201 // Determine which shift is needed to transform result of the 'and' into the 202 // desired result. 203 const APInt &ValC = !TC.isNullValue() ? TC : FC; 204 unsigned ValZeros = ValC.logBase2(); 205 unsigned AndZeros = AndMask.logBase2(); 206 207 // Insert the 'and' instruction on the input to the truncate. 208 if (CreateAnd) 209 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 210 211 // If types don't match, we can still convert the select by introducing a zext 212 // or a trunc of the 'and'. 213 if (ValZeros > AndZeros) { 214 V = Builder.CreateZExtOrTrunc(V, SelType); 215 V = Builder.CreateShl(V, ValZeros - AndZeros); 216 } else if (ValZeros < AndZeros) { 217 V = Builder.CreateLShr(V, AndZeros - ValZeros); 218 V = Builder.CreateZExtOrTrunc(V, SelType); 219 } else { 220 V = Builder.CreateZExtOrTrunc(V, SelType); 221 } 222 223 // Okay, now we know that everything is set up, we just don't know whether we 224 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 225 bool ShouldNotVal = !TC.isNullValue(); 226 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 227 if (ShouldNotVal) 228 V = Builder.CreateXor(V, ValC); 229 230 return V; 231 } 232 233 /// We want to turn code that looks like this: 234 /// %C = or %A, %B 235 /// %D = select %cond, %C, %A 236 /// into: 237 /// %C = select %cond, %B, 0 238 /// %D = or %A, %C 239 /// 240 /// Assuming that the specified instruction is an operand to the select, return 241 /// a bitmask indicating which operands of this instruction are foldable if they 242 /// equal the other incoming value of the select. 243 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 244 switch (I->getOpcode()) { 245 case Instruction::Add: 246 case Instruction::Mul: 247 case Instruction::And: 248 case Instruction::Or: 249 case Instruction::Xor: 250 return 3; // Can fold through either operand. 251 case Instruction::Sub: // Can only fold on the amount subtracted. 252 case Instruction::Shl: // Can only fold on the shift amount. 253 case Instruction::LShr: 254 case Instruction::AShr: 255 return 1; 256 default: 257 return 0; // Cannot fold 258 } 259 } 260 261 /// For the same transformation as the previous function, return the identity 262 /// constant that goes into the select. 263 static APInt getSelectFoldableConstant(BinaryOperator *I) { 264 switch (I->getOpcode()) { 265 default: llvm_unreachable("This cannot happen!"); 266 case Instruction::Add: 267 case Instruction::Sub: 268 case Instruction::Or: 269 case Instruction::Xor: 270 case Instruction::Shl: 271 case Instruction::LShr: 272 case Instruction::AShr: 273 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 274 case Instruction::And: 275 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 276 case Instruction::Mul: 277 return APInt(I->getType()->getScalarSizeInBits(), 1); 278 } 279 } 280 281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 283 Instruction *FI) { 284 // Don't break up min/max patterns. The hasOneUse checks below prevent that 285 // for most cases, but vector min/max with bitcasts can be transformed. If the 286 // one-use restrictions are eased for other patterns, we still don't want to 287 // obfuscate min/max. 288 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 289 match(&SI, m_SMax(m_Value(), m_Value())) || 290 match(&SI, m_UMin(m_Value(), m_Value())) || 291 match(&SI, m_UMax(m_Value(), m_Value())))) 292 return nullptr; 293 294 // If this is a cast from the same type, merge. 295 if (TI->getNumOperands() == 1 && TI->isCast()) { 296 Type *FIOpndTy = FI->getOperand(0)->getType(); 297 if (TI->getOperand(0)->getType() != FIOpndTy) 298 return nullptr; 299 300 // The select condition may be a vector. We may only change the operand 301 // type if the vector width remains the same (and matches the condition). 302 Type *CondTy = SI.getCondition()->getType(); 303 if (CondTy->isVectorTy()) { 304 if (!FIOpndTy->isVectorTy()) 305 return nullptr; 306 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 307 return nullptr; 308 309 // TODO: If the backend knew how to deal with casts better, we could 310 // remove this limitation. For now, there's too much potential to create 311 // worse codegen by promoting the select ahead of size-altering casts 312 // (PR28160). 313 // 314 // Note that ValueTracking's matchSelectPattern() looks through casts 315 // without checking 'hasOneUse' when it matches min/max patterns, so this 316 // transform may end up happening anyway. 317 if (TI->getOpcode() != Instruction::BitCast && 318 (!TI->hasOneUse() || !FI->hasOneUse())) 319 return nullptr; 320 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 321 // TODO: The one-use restrictions for a scalar select could be eased if 322 // the fold of a select in visitLoadInst() was enhanced to match a pattern 323 // that includes a cast. 324 return nullptr; 325 } 326 327 // Fold this by inserting a select from the input values. 328 Value *NewSI = 329 Builder.CreateSelect(SI.getCondition(), TI->getOperand(0), 330 FI->getOperand(0), SI.getName() + ".v", &SI); 331 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 332 TI->getType()); 333 } 334 335 // Only handle binary operators (including two-operand getelementptr) with 336 // one-use here. As with the cast case above, it may be possible to relax the 337 // one-use constraint, but that needs be examined carefully since it may not 338 // reduce the total number of instructions. 339 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 340 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 341 !TI->hasOneUse() || !FI->hasOneUse()) 342 return nullptr; 343 344 // Figure out if the operations have any operands in common. 345 Value *MatchOp, *OtherOpT, *OtherOpF; 346 bool MatchIsOpZero; 347 if (TI->getOperand(0) == FI->getOperand(0)) { 348 MatchOp = TI->getOperand(0); 349 OtherOpT = TI->getOperand(1); 350 OtherOpF = FI->getOperand(1); 351 MatchIsOpZero = true; 352 } else if (TI->getOperand(1) == FI->getOperand(1)) { 353 MatchOp = TI->getOperand(1); 354 OtherOpT = TI->getOperand(0); 355 OtherOpF = FI->getOperand(0); 356 MatchIsOpZero = false; 357 } else if (!TI->isCommutative()) { 358 return nullptr; 359 } else if (TI->getOperand(0) == FI->getOperand(1)) { 360 MatchOp = TI->getOperand(0); 361 OtherOpT = TI->getOperand(1); 362 OtherOpF = FI->getOperand(0); 363 MatchIsOpZero = true; 364 } else if (TI->getOperand(1) == FI->getOperand(0)) { 365 MatchOp = TI->getOperand(1); 366 OtherOpT = TI->getOperand(0); 367 OtherOpF = FI->getOperand(1); 368 MatchIsOpZero = true; 369 } else { 370 return nullptr; 371 } 372 373 // If the select condition is a vector, the operands of the original select's 374 // operands also must be vectors. This may not be the case for getelementptr 375 // for example. 376 if (SI.getCondition()->getType()->isVectorTy() && 377 (!OtherOpT->getType()->isVectorTy() || 378 !OtherOpF->getType()->isVectorTy())) 379 return nullptr; 380 381 // If we reach here, they do have operations in common. 382 Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, 383 SI.getName() + ".v", &SI); 384 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 385 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 386 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 387 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 388 NewBO->copyIRFlags(TI); 389 NewBO->andIRFlags(FI); 390 return NewBO; 391 } 392 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 393 auto *FGEP = cast<GetElementPtrInst>(FI); 394 Type *ElementType = TGEP->getResultElementType(); 395 return TGEP->isInBounds() && FGEP->isInBounds() 396 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 397 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 398 } 399 llvm_unreachable("Expected BinaryOperator or GEP"); 400 return nullptr; 401 } 402 403 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 404 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 405 return false; 406 return C1I.isOneValue() || C1I.isAllOnesValue() || 407 C2I.isOneValue() || C2I.isAllOnesValue(); 408 } 409 410 /// Try to fold the select into one of the operands to allow further 411 /// optimization. 412 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 413 Value *FalseVal) { 414 // See the comment above GetSelectFoldableOperands for a description of the 415 // transformation we are doing here. 416 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 417 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 418 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 419 unsigned OpToFold = 0; 420 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 421 OpToFold = 1; 422 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 423 OpToFold = 2; 424 } 425 426 if (OpToFold) { 427 APInt CI = getSelectFoldableConstant(TVI); 428 Value *OOp = TVI->getOperand(2-OpToFold); 429 // Avoid creating select between 2 constants unless it's selecting 430 // between 0, 1 and -1. 431 const APInt *OOpC; 432 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 433 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 434 Value *C = ConstantInt::get(OOp->getType(), CI); 435 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 436 NewSel->takeName(TVI); 437 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 438 FalseVal, NewSel); 439 BO->copyIRFlags(TVI); 440 return BO; 441 } 442 } 443 } 444 } 445 } 446 447 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 448 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 449 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 450 unsigned OpToFold = 0; 451 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 452 OpToFold = 1; 453 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 454 OpToFold = 2; 455 } 456 457 if (OpToFold) { 458 APInt CI = getSelectFoldableConstant(FVI); 459 Value *OOp = FVI->getOperand(2-OpToFold); 460 // Avoid creating select between 2 constants unless it's selecting 461 // between 0, 1 and -1. 462 const APInt *OOpC; 463 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 464 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 465 Value *C = ConstantInt::get(OOp->getType(), CI); 466 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 467 NewSel->takeName(FVI); 468 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 469 TrueVal, NewSel); 470 BO->copyIRFlags(FVI); 471 return BO; 472 } 473 } 474 } 475 } 476 } 477 478 return nullptr; 479 } 480 481 /// We want to turn: 482 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 483 /// into: 484 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 485 /// Note: 486 /// Z may be 0 if lshr is missing. 487 /// Worst-case scenario is that we will replace 5 instructions with 5 different 488 /// instructions, but we got rid of select. 489 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 490 Value *TVal, Value *FVal, 491 InstCombiner::BuilderTy &Builder) { 492 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 493 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 494 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 495 return nullptr; 496 497 // The TrueVal has general form of: and %B, 1 498 Value *B; 499 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 500 return nullptr; 501 502 // Where %B may be optionally shifted: lshr %X, %Z. 503 Value *X, *Z; 504 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 505 if (!HasShift) 506 X = B; 507 508 Value *Y; 509 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 510 return nullptr; 511 512 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 513 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 514 Constant *One = ConstantInt::get(SelType, 1); 515 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 516 Value *FullMask = Builder.CreateOr(Y, MaskB); 517 Value *MaskedX = Builder.CreateAnd(X, FullMask); 518 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 519 return new ZExtInst(ICmpNeZero, SelType); 520 } 521 522 /// We want to turn: 523 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 524 /// into: 525 /// (or (shl (and X, C1), C3), Y) 526 /// iff: 527 /// C1 and C2 are both powers of 2 528 /// where: 529 /// C3 = Log(C2) - Log(C1) 530 /// 531 /// This transform handles cases where: 532 /// 1. The icmp predicate is inverted 533 /// 2. The select operands are reversed 534 /// 3. The magnitude of C2 and C1 are flipped 535 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 536 Value *FalseVal, 537 InstCombiner::BuilderTy &Builder) { 538 // Only handle integer compares. Also, if this is a vector select, we need a 539 // vector compare. 540 if (!TrueVal->getType()->isIntOrIntVectorTy() || 541 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 542 return nullptr; 543 544 Value *CmpLHS = IC->getOperand(0); 545 Value *CmpRHS = IC->getOperand(1); 546 547 Value *V; 548 unsigned C1Log; 549 bool IsEqualZero; 550 bool NeedAnd = false; 551 if (IC->isEquality()) { 552 if (!match(CmpRHS, m_Zero())) 553 return nullptr; 554 555 const APInt *C1; 556 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 557 return nullptr; 558 559 V = CmpLHS; 560 C1Log = C1->logBase2(); 561 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 562 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 563 IC->getPredicate() == ICmpInst::ICMP_SGT) { 564 // We also need to recognize (icmp slt (trunc (X)), 0) and 565 // (icmp sgt (trunc (X)), -1). 566 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 567 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 568 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 569 return nullptr; 570 571 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 572 return nullptr; 573 574 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 575 NeedAnd = true; 576 } else { 577 return nullptr; 578 } 579 580 const APInt *C2; 581 bool OrOnTrueVal = false; 582 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 583 if (!OrOnFalseVal) 584 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 585 586 if (!OrOnFalseVal && !OrOnTrueVal) 587 return nullptr; 588 589 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 590 591 unsigned C2Log = C2->logBase2(); 592 593 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 594 bool NeedShift = C1Log != C2Log; 595 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 596 V->getType()->getScalarSizeInBits(); 597 598 // Make sure we don't create more instructions than we save. 599 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 600 if ((NeedShift + NeedXor + NeedZExtTrunc) > 601 (IC->hasOneUse() + Or->hasOneUse())) 602 return nullptr; 603 604 if (NeedAnd) { 605 // Insert the AND instruction on the input to the truncate. 606 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 607 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 608 } 609 610 if (C2Log > C1Log) { 611 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 612 V = Builder.CreateShl(V, C2Log - C1Log); 613 } else if (C1Log > C2Log) { 614 V = Builder.CreateLShr(V, C1Log - C2Log); 615 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 616 } else 617 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 618 619 if (NeedXor) 620 V = Builder.CreateXor(V, *C2); 621 622 return Builder.CreateOr(V, Y); 623 } 624 625 /// Transform patterns such as: (a > b) ? a - b : 0 626 /// into: ((a > b) ? a : b) - b) 627 /// This produces a canonical max pattern that is more easily recognized by the 628 /// backend and converted into saturated subtraction instructions if those 629 /// exist. 630 /// There are 8 commuted/swapped variants of this pattern. 631 /// TODO: Also support a - UMIN(a,b) patterns. 632 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 633 const Value *TrueVal, 634 const Value *FalseVal, 635 InstCombiner::BuilderTy &Builder) { 636 ICmpInst::Predicate Pred = ICI->getPredicate(); 637 if (!ICmpInst::isUnsigned(Pred)) 638 return nullptr; 639 640 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 641 if (match(TrueVal, m_Zero())) { 642 Pred = ICmpInst::getInversePredicate(Pred); 643 std::swap(TrueVal, FalseVal); 644 } 645 if (!match(FalseVal, m_Zero())) 646 return nullptr; 647 648 Value *A = ICI->getOperand(0); 649 Value *B = ICI->getOperand(1); 650 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 651 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 652 std::swap(A, B); 653 Pred = ICmpInst::getSwappedPredicate(Pred); 654 } 655 656 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 657 "Unexpected isUnsigned predicate!"); 658 659 // Account for swapped form of subtraction: ((a > b) ? b - a : 0). 660 bool IsNegative = false; 661 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A)))) 662 IsNegative = true; 663 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B)))) 664 return nullptr; 665 666 // If sub is used anywhere else, we wouldn't be able to eliminate it 667 // afterwards. 668 if (!TrueVal->hasOneUse()) 669 return nullptr; 670 671 // All checks passed, convert to canonical unsigned saturated subtraction 672 // form: sub(max()). 673 // (a > b) ? a - b : 0 -> ((a > b) ? a : b) - b) 674 Value *Max = Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 675 return IsNegative ? Builder.CreateSub(B, Max) : Builder.CreateSub(Max, B); 676 } 677 678 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 679 InstCombiner::BuilderTy &Builder) { 680 if (!Cmp->hasOneUse()) 681 return nullptr; 682 683 // Match unsigned saturated add with constant. 684 Value *Cmp0 = Cmp->getOperand(0); 685 Value *Cmp1 = Cmp->getOperand(1); 686 ICmpInst::Predicate Pred = Cmp->getPredicate(); 687 Value *X; 688 const APInt *C, *CmpC; 689 if (Pred == ICmpInst::ICMP_ULT && 690 match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 && 691 match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) { 692 // Commute compare predicate and select operands: 693 // (X u< ~C) ? (X + C) : -1 --> (X u> ~C) ? -1 : (X + C) 694 Value *NewCmp = Builder.CreateICmp(ICmpInst::ICMP_UGT, X, Cmp1); 695 return Builder.CreateSelect(NewCmp, FVal, TVal); 696 } 697 698 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 699 // There are 8 commuted variants. 700 // Canonicalize -1 (saturated result) to true value of the select. 701 if (match(FVal, m_AllOnes())) { 702 std::swap(TVal, FVal); 703 std::swap(Cmp0, Cmp1); 704 } 705 if (!match(TVal, m_AllOnes())) 706 return nullptr; 707 708 // Canonicalize predicate to 'ULT'. 709 if (Pred == ICmpInst::ICMP_UGT) { 710 Pred = ICmpInst::ICMP_ULT; 711 std::swap(Cmp0, Cmp1); 712 } 713 if (Pred != ICmpInst::ICMP_ULT) 714 return nullptr; 715 716 // Match unsigned saturated add of 2 variables with an unnecessary 'not'. 717 Value *Y; 718 if (match(Cmp0, m_Not(m_Value(X))) && 719 match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) { 720 // Change the comparison to use the sum (false value of the select). That is 721 // a canonical pattern match form for uadd.with.overflow and eliminates a 722 // use of the 'not' op: 723 // (~X u< Y) ? -1 : (X + Y) --> ((X + Y) u< Y) ? -1 : (X + Y) 724 // (~X u< Y) ? -1 : (Y + X) --> ((Y + X) u< Y) ? -1 : (Y + X) 725 Value *NewCmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, FVal, Y); 726 return Builder.CreateSelect(NewCmp, TVal, FVal); 727 } 728 // The 'not' op may be included in the sum but not the compare. 729 X = Cmp0; 730 Y = Cmp1; 731 if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) { 732 // Change the comparison to use the sum (false value of the select). That is 733 // a canonical pattern match form for uadd.with.overflow: 734 // (X u< Y) ? -1 : (~X + Y) --> ((~X + Y) u< Y) ? -1 : (~X + Y) 735 // (X u< Y) ? -1 : (Y + ~X) --> ((Y + ~X) u< Y) ? -1 : (Y + ~X) 736 Value *NewCmp = Builder.CreateICmp(ICmpInst::ICMP_ULT, FVal, Y); 737 return Builder.CreateSelect(NewCmp, TVal, FVal); 738 } 739 740 return nullptr; 741 } 742 743 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 744 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 745 /// 746 /// For example, we can fold the following code sequence: 747 /// \code 748 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 749 /// %1 = icmp ne i32 %x, 0 750 /// %2 = select i1 %1, i32 %0, i32 32 751 /// \code 752 /// 753 /// into: 754 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 755 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 756 InstCombiner::BuilderTy &Builder) { 757 ICmpInst::Predicate Pred = ICI->getPredicate(); 758 Value *CmpLHS = ICI->getOperand(0); 759 Value *CmpRHS = ICI->getOperand(1); 760 761 // Check if the condition value compares a value for equality against zero. 762 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 763 return nullptr; 764 765 Value *Count = FalseVal; 766 Value *ValueOnZero = TrueVal; 767 if (Pred == ICmpInst::ICMP_NE) 768 std::swap(Count, ValueOnZero); 769 770 // Skip zero extend/truncate. 771 Value *V = nullptr; 772 if (match(Count, m_ZExt(m_Value(V))) || 773 match(Count, m_Trunc(m_Value(V)))) 774 Count = V; 775 776 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 777 // input to the cttz/ctlz is used as LHS for the compare instruction. 778 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 779 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 780 return nullptr; 781 782 IntrinsicInst *II = cast<IntrinsicInst>(Count); 783 784 // Check if the value propagated on zero is a constant number equal to the 785 // sizeof in bits of 'Count'. 786 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 787 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 788 // Explicitly clear the 'undef_on_zero' flag. 789 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 790 NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); 791 Builder.Insert(NewI); 792 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 793 } 794 795 // If the ValueOnZero is not the bitwidth, we can at least make use of the 796 // fact that the cttz/ctlz result will not be used if the input is zero, so 797 // it's okay to relax it to undef for that case. 798 if (II->hasOneUse() && !match(II->getArgOperand(1), m_One())) 799 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 800 801 return nullptr; 802 } 803 804 /// Return true if we find and adjust an icmp+select pattern where the compare 805 /// is with a constant that can be incremented or decremented to match the 806 /// minimum or maximum idiom. 807 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 808 ICmpInst::Predicate Pred = Cmp.getPredicate(); 809 Value *CmpLHS = Cmp.getOperand(0); 810 Value *CmpRHS = Cmp.getOperand(1); 811 Value *TrueVal = Sel.getTrueValue(); 812 Value *FalseVal = Sel.getFalseValue(); 813 814 // We may move or edit the compare, so make sure the select is the only user. 815 const APInt *CmpC; 816 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 817 return false; 818 819 // These transforms only work for selects of integers or vector selects of 820 // integer vectors. 821 Type *SelTy = Sel.getType(); 822 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 823 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 824 return false; 825 826 Constant *AdjustedRHS; 827 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 828 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 829 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 830 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 831 else 832 return false; 833 834 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 835 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 836 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 837 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 838 ; // Nothing to do here. Values match without any sign/zero extension. 839 } 840 // Types do not match. Instead of calculating this with mixed types, promote 841 // all to the larger type. This enables scalar evolution to analyze this 842 // expression. 843 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 844 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 845 846 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 847 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 848 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 849 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 850 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 851 CmpLHS = TrueVal; 852 AdjustedRHS = SextRHS; 853 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 854 SextRHS == TrueVal) { 855 CmpLHS = FalseVal; 856 AdjustedRHS = SextRHS; 857 } else if (Cmp.isUnsigned()) { 858 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 859 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 860 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 861 // zext + signed compare cannot be changed: 862 // 0xff <s 0x00, but 0x00ff >s 0x0000 863 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 864 CmpLHS = TrueVal; 865 AdjustedRHS = ZextRHS; 866 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 867 ZextRHS == TrueVal) { 868 CmpLHS = FalseVal; 869 AdjustedRHS = ZextRHS; 870 } else { 871 return false; 872 } 873 } else { 874 return false; 875 } 876 } else { 877 return false; 878 } 879 880 Pred = ICmpInst::getSwappedPredicate(Pred); 881 CmpRHS = AdjustedRHS; 882 std::swap(FalseVal, TrueVal); 883 Cmp.setPredicate(Pred); 884 Cmp.setOperand(0, CmpLHS); 885 Cmp.setOperand(1, CmpRHS); 886 Sel.setOperand(1, TrueVal); 887 Sel.setOperand(2, FalseVal); 888 Sel.swapProfMetadata(); 889 890 // Move the compare instruction right before the select instruction. Otherwise 891 // the sext/zext value may be defined after the compare instruction uses it. 892 Cmp.moveBefore(&Sel); 893 894 return true; 895 } 896 897 /// If this is an integer min/max (icmp + select) with a constant operand, 898 /// create the canonical icmp for the min/max operation and canonicalize the 899 /// constant to the 'false' operand of the select: 900 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 901 /// Note: if C1 != C2, this will change the icmp constant to the existing 902 /// constant operand of the select. 903 static Instruction * 904 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 905 InstCombiner::BuilderTy &Builder) { 906 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 907 return nullptr; 908 909 // Canonicalize the compare predicate based on whether we have min or max. 910 Value *LHS, *RHS; 911 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 912 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 913 return nullptr; 914 915 // Is this already canonical? 916 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 917 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 918 Cmp.getPredicate() == CanonicalPred) 919 return nullptr; 920 921 // Create the canonical compare and plug it into the select. 922 Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS)); 923 924 // If the select operands did not change, we're done. 925 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 926 return &Sel; 927 928 // If we are swapping the select operands, swap the metadata too. 929 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 930 "Unexpected results from matchSelectPattern"); 931 Sel.setTrueValue(LHS); 932 Sel.setFalseValue(RHS); 933 Sel.swapProfMetadata(); 934 return &Sel; 935 } 936 937 /// There are many select variants for each of ABS/NABS. 938 /// In matchSelectPattern(), there are different compare constants, compare 939 /// predicates/operands and select operands. 940 /// In isKnownNegation(), there are different formats of negated operands. 941 /// Canonicalize all these variants to 1 pattern. 942 /// This makes CSE more likely. 943 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 944 InstCombiner::BuilderTy &Builder) { 945 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 946 return nullptr; 947 948 // Choose a sign-bit check for the compare (likely simpler for codegen). 949 // ABS: (X <s 0) ? -X : X 950 // NABS: (X <s 0) ? X : -X 951 Value *LHS, *RHS; 952 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 953 if (SPF != SelectPatternFlavor::SPF_ABS && 954 SPF != SelectPatternFlavor::SPF_NABS) 955 return nullptr; 956 957 Value *TVal = Sel.getTrueValue(); 958 Value *FVal = Sel.getFalseValue(); 959 assert(isKnownNegation(TVal, FVal) && 960 "Unexpected result from matchSelectPattern"); 961 962 // The compare may use the negated abs()/nabs() operand, or it may use 963 // negation in non-canonical form such as: sub A, B. 964 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || 965 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); 966 967 bool CmpCanonicalized = !CmpUsesNegatedOp && 968 match(Cmp.getOperand(1), m_ZeroInt()) && 969 Cmp.getPredicate() == ICmpInst::ICMP_SLT; 970 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); 971 972 // Is this already canonical? 973 if (CmpCanonicalized && RHSCanonicalized) 974 return nullptr; 975 976 // If RHS is used by other instructions except compare and select, don't 977 // canonicalize it to not increase the instruction count. 978 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) 979 return nullptr; 980 981 // Create the canonical compare: icmp slt LHS 0. 982 if (!CmpCanonicalized) { 983 Cmp.setPredicate(ICmpInst::ICMP_SLT); 984 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); 985 if (CmpUsesNegatedOp) 986 Cmp.setOperand(0, LHS); 987 } 988 989 // Create the canonical RHS: RHS = sub (0, LHS). 990 if (!RHSCanonicalized) { 991 assert(RHS->hasOneUse() && "RHS use number is not right"); 992 RHS = Builder.CreateNeg(LHS); 993 if (TVal == LHS) { 994 Sel.setFalseValue(RHS); 995 FVal = RHS; 996 } else { 997 Sel.setTrueValue(RHS); 998 TVal = RHS; 999 } 1000 } 1001 1002 // If the select operands do not change, we're done. 1003 if (SPF == SelectPatternFlavor::SPF_NABS) { 1004 if (TVal == LHS) 1005 return &Sel; 1006 assert(FVal == LHS && "Unexpected results from matchSelectPattern"); 1007 } else { 1008 if (FVal == LHS) 1009 return &Sel; 1010 assert(TVal == LHS && "Unexpected results from matchSelectPattern"); 1011 } 1012 1013 // We are swapping the select operands, so swap the metadata too. 1014 Sel.setTrueValue(FVal); 1015 Sel.setFalseValue(TVal); 1016 Sel.swapProfMetadata(); 1017 return &Sel; 1018 } 1019 1020 /// Visit a SelectInst that has an ICmpInst as its first operand. 1021 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 1022 ICmpInst *ICI) { 1023 Value *TrueVal = SI.getTrueValue(); 1024 Value *FalseVal = SI.getFalseValue(); 1025 1026 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) 1027 return NewSel; 1028 1029 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder)) 1030 return NewAbs; 1031 1032 bool Changed = adjustMinMax(SI, *ICI); 1033 1034 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 1035 return replaceInstUsesWith(SI, V); 1036 1037 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 1038 ICmpInst::Predicate Pred = ICI->getPredicate(); 1039 Value *CmpLHS = ICI->getOperand(0); 1040 Value *CmpRHS = ICI->getOperand(1); 1041 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 1042 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 1043 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 1044 SI.setOperand(1, CmpRHS); 1045 Changed = true; 1046 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 1047 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1048 SI.setOperand(2, CmpRHS); 1049 Changed = true; 1050 } 1051 } 1052 1053 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1054 // decomposeBitTestICmp() might help. 1055 { 1056 unsigned BitWidth = 1057 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1058 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1059 Value *X; 1060 const APInt *Y, *C; 1061 bool TrueWhenUnset; 1062 bool IsBitTest = false; 1063 if (ICmpInst::isEquality(Pred) && 1064 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1065 match(CmpRHS, m_Zero())) { 1066 IsBitTest = true; 1067 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1068 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1069 X = CmpLHS; 1070 Y = &MinSignedValue; 1071 IsBitTest = true; 1072 TrueWhenUnset = false; 1073 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1074 X = CmpLHS; 1075 Y = &MinSignedValue; 1076 IsBitTest = true; 1077 TrueWhenUnset = true; 1078 } 1079 if (IsBitTest) { 1080 Value *V = nullptr; 1081 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1082 if (TrueWhenUnset && TrueVal == X && 1083 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1084 V = Builder.CreateAnd(X, ~(*Y)); 1085 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1086 else if (!TrueWhenUnset && FalseVal == X && 1087 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1088 V = Builder.CreateAnd(X, ~(*Y)); 1089 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1090 else if (TrueWhenUnset && FalseVal == X && 1091 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1092 V = Builder.CreateOr(X, *Y); 1093 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1094 else if (!TrueWhenUnset && TrueVal == X && 1095 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1096 V = Builder.CreateOr(X, *Y); 1097 1098 if (V) 1099 return replaceInstUsesWith(SI, V); 1100 } 1101 } 1102 1103 if (Instruction *V = 1104 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1105 return V; 1106 1107 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1108 return replaceInstUsesWith(SI, V); 1109 1110 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1111 return replaceInstUsesWith(SI, V); 1112 1113 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1114 return replaceInstUsesWith(SI, V); 1115 1116 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1117 return replaceInstUsesWith(SI, V); 1118 1119 return Changed ? &SI : nullptr; 1120 } 1121 1122 /// SI is a select whose condition is a PHI node (but the two may be in 1123 /// different blocks). See if the true/false values (V) are live in all of the 1124 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1125 /// 1126 /// X = phi [ C1, BB1], [C2, BB2] 1127 /// Y = add 1128 /// Z = select X, Y, 0 1129 /// 1130 /// because Y is not live in BB1/BB2. 1131 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1132 const SelectInst &SI) { 1133 // If the value is a non-instruction value like a constant or argument, it 1134 // can always be mapped. 1135 const Instruction *I = dyn_cast<Instruction>(V); 1136 if (!I) return true; 1137 1138 // If V is a PHI node defined in the same block as the condition PHI, we can 1139 // map the arguments. 1140 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1141 1142 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1143 if (VP->getParent() == CondPHI->getParent()) 1144 return true; 1145 1146 // Otherwise, if the PHI and select are defined in the same block and if V is 1147 // defined in a different block, then we can transform it. 1148 if (SI.getParent() == CondPHI->getParent() && 1149 I->getParent() != CondPHI->getParent()) 1150 return true; 1151 1152 // Otherwise we have a 'hard' case and we can't tell without doing more 1153 // detailed dominator based analysis, punt. 1154 return false; 1155 } 1156 1157 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1158 /// SPF2(SPF1(A, B), C) 1159 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 1160 SelectPatternFlavor SPF1, 1161 Value *A, Value *B, 1162 Instruction &Outer, 1163 SelectPatternFlavor SPF2, Value *C) { 1164 if (Outer.getType() != Inner->getType()) 1165 return nullptr; 1166 1167 if (C == A || C == B) { 1168 // MAX(MAX(A, B), B) -> MAX(A, B) 1169 // MIN(MIN(a, b), a) -> MIN(a, b) 1170 // TODO: This could be done in instsimplify. 1171 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1172 return replaceInstUsesWith(Outer, Inner); 1173 1174 // MAX(MIN(a, b), a) -> a 1175 // MIN(MAX(a, b), a) -> a 1176 // TODO: This could be done in instsimplify. 1177 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1178 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1179 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1180 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1181 return replaceInstUsesWith(Outer, C); 1182 } 1183 1184 if (SPF1 == SPF2) { 1185 const APInt *CB, *CC; 1186 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1187 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1188 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1189 // TODO: This could be done in instsimplify. 1190 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1191 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1192 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1193 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1194 return replaceInstUsesWith(Outer, Inner); 1195 1196 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1197 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1198 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1199 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1200 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1201 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1202 Outer.replaceUsesOfWith(Inner, A); 1203 return &Outer; 1204 } 1205 } 1206 } 1207 1208 // ABS(ABS(X)) -> ABS(X) 1209 // NABS(NABS(X)) -> NABS(X) 1210 // TODO: This could be done in instsimplify. 1211 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1212 return replaceInstUsesWith(Outer, Inner); 1213 } 1214 1215 // ABS(NABS(X)) -> ABS(X) 1216 // NABS(ABS(X)) -> NABS(X) 1217 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1218 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1219 SelectInst *SI = cast<SelectInst>(Inner); 1220 Value *NewSI = 1221 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1222 SI->getTrueValue(), SI->getName(), SI); 1223 return replaceInstUsesWith(Outer, NewSI); 1224 } 1225 1226 auto IsFreeOrProfitableToInvert = 1227 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1228 if (match(V, m_Not(m_Value(NotV)))) { 1229 // If V has at most 2 uses then we can get rid of the xor operation 1230 // entirely. 1231 ElidesXor |= !V->hasNUsesOrMore(3); 1232 return true; 1233 } 1234 1235 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1236 NotV = nullptr; 1237 return true; 1238 } 1239 1240 return false; 1241 }; 1242 1243 Value *NotA, *NotB, *NotC; 1244 bool ElidesXor = false; 1245 1246 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1247 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1248 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1249 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1250 // 1251 // This transform is performance neutral if we can elide at least one xor from 1252 // the set of three operands, since we'll be tacking on an xor at the very 1253 // end. 1254 if (SelectPatternResult::isMinOrMax(SPF1) && 1255 SelectPatternResult::isMinOrMax(SPF2) && 1256 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1257 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1258 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1259 if (!NotA) 1260 NotA = Builder.CreateNot(A); 1261 if (!NotB) 1262 NotB = Builder.CreateNot(B); 1263 if (!NotC) 1264 NotC = Builder.CreateNot(C); 1265 1266 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1267 NotB); 1268 Value *NewOuter = Builder.CreateNot( 1269 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1270 return replaceInstUsesWith(Outer, NewOuter); 1271 } 1272 1273 return nullptr; 1274 } 1275 1276 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1277 /// This is even legal for FP. 1278 static Instruction *foldAddSubSelect(SelectInst &SI, 1279 InstCombiner::BuilderTy &Builder) { 1280 Value *CondVal = SI.getCondition(); 1281 Value *TrueVal = SI.getTrueValue(); 1282 Value *FalseVal = SI.getFalseValue(); 1283 auto *TI = dyn_cast<Instruction>(TrueVal); 1284 auto *FI = dyn_cast<Instruction>(FalseVal); 1285 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1286 return nullptr; 1287 1288 Instruction *AddOp = nullptr, *SubOp = nullptr; 1289 if ((TI->getOpcode() == Instruction::Sub && 1290 FI->getOpcode() == Instruction::Add) || 1291 (TI->getOpcode() == Instruction::FSub && 1292 FI->getOpcode() == Instruction::FAdd)) { 1293 AddOp = FI; 1294 SubOp = TI; 1295 } else if ((FI->getOpcode() == Instruction::Sub && 1296 TI->getOpcode() == Instruction::Add) || 1297 (FI->getOpcode() == Instruction::FSub && 1298 TI->getOpcode() == Instruction::FAdd)) { 1299 AddOp = TI; 1300 SubOp = FI; 1301 } 1302 1303 if (AddOp) { 1304 Value *OtherAddOp = nullptr; 1305 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1306 OtherAddOp = AddOp->getOperand(1); 1307 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1308 OtherAddOp = AddOp->getOperand(0); 1309 } 1310 1311 if (OtherAddOp) { 1312 // So at this point we know we have (Y -> OtherAddOp): 1313 // select C, (add X, Y), (sub X, Z) 1314 Value *NegVal; // Compute -Z 1315 if (SI.getType()->isFPOrFPVectorTy()) { 1316 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1317 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1318 FastMathFlags Flags = AddOp->getFastMathFlags(); 1319 Flags &= SubOp->getFastMathFlags(); 1320 NegInst->setFastMathFlags(Flags); 1321 } 1322 } else { 1323 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1324 } 1325 1326 Value *NewTrueOp = OtherAddOp; 1327 Value *NewFalseOp = NegVal; 1328 if (AddOp != TI) 1329 std::swap(NewTrueOp, NewFalseOp); 1330 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1331 SI.getName() + ".p", &SI); 1332 1333 if (SI.getType()->isFPOrFPVectorTy()) { 1334 Instruction *RI = 1335 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1336 1337 FastMathFlags Flags = AddOp->getFastMathFlags(); 1338 Flags &= SubOp->getFastMathFlags(); 1339 RI->setFastMathFlags(Flags); 1340 return RI; 1341 } else 1342 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1343 } 1344 } 1345 return nullptr; 1346 } 1347 1348 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1349 Constant *C; 1350 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1351 !match(Sel.getFalseValue(), m_Constant(C))) 1352 return nullptr; 1353 1354 Instruction *ExtInst; 1355 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1356 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1357 return nullptr; 1358 1359 auto ExtOpcode = ExtInst->getOpcode(); 1360 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1361 return nullptr; 1362 1363 // If we are extending from a boolean type or if we can create a select that 1364 // has the same size operands as its condition, try to narrow the select. 1365 Value *X = ExtInst->getOperand(0); 1366 Type *SmallType = X->getType(); 1367 Value *Cond = Sel.getCondition(); 1368 auto *Cmp = dyn_cast<CmpInst>(Cond); 1369 if (!SmallType->isIntOrIntVectorTy(1) && 1370 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1371 return nullptr; 1372 1373 // If the constant is the same after truncation to the smaller type and 1374 // extension to the original type, we can narrow the select. 1375 Type *SelType = Sel.getType(); 1376 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1377 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1378 if (ExtC == C) { 1379 Value *TruncCVal = cast<Value>(TruncC); 1380 if (ExtInst == Sel.getFalseValue()) 1381 std::swap(X, TruncCVal); 1382 1383 // select Cond, (ext X), C --> ext(select Cond, X, C') 1384 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1385 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1386 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1387 } 1388 1389 // If one arm of the select is the extend of the condition, replace that arm 1390 // with the extension of the appropriate known bool value. 1391 if (Cond == X) { 1392 if (ExtInst == Sel.getTrueValue()) { 1393 // select X, (sext X), C --> select X, -1, C 1394 // select X, (zext X), C --> select X, 1, C 1395 Constant *One = ConstantInt::getTrue(SmallType); 1396 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1397 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1398 } else { 1399 // select X, C, (sext X) --> select X, C, 0 1400 // select X, C, (zext X) --> select X, C, 0 1401 Constant *Zero = ConstantInt::getNullValue(SelType); 1402 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1403 } 1404 } 1405 1406 return nullptr; 1407 } 1408 1409 /// Try to transform a vector select with a constant condition vector into a 1410 /// shuffle for easier combining with other shuffles and insert/extract. 1411 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1412 Value *CondVal = SI.getCondition(); 1413 Constant *CondC; 1414 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1415 return nullptr; 1416 1417 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1418 SmallVector<Constant *, 16> Mask; 1419 Mask.reserve(NumElts); 1420 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1421 for (unsigned i = 0; i != NumElts; ++i) { 1422 Constant *Elt = CondC->getAggregateElement(i); 1423 if (!Elt) 1424 return nullptr; 1425 1426 if (Elt->isOneValue()) { 1427 // If the select condition element is true, choose from the 1st vector. 1428 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1429 } else if (Elt->isNullValue()) { 1430 // If the select condition element is false, choose from the 2nd vector. 1431 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1432 } else if (isa<UndefValue>(Elt)) { 1433 // Undef in a select condition (choose one of the operands) does not mean 1434 // the same thing as undef in a shuffle mask (any value is acceptable), so 1435 // give up. 1436 return nullptr; 1437 } else { 1438 // Bail out on a constant expression. 1439 return nullptr; 1440 } 1441 } 1442 1443 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1444 ConstantVector::get(Mask)); 1445 } 1446 1447 /// Reuse bitcasted operands between a compare and select: 1448 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1449 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1450 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1451 InstCombiner::BuilderTy &Builder) { 1452 Value *Cond = Sel.getCondition(); 1453 Value *TVal = Sel.getTrueValue(); 1454 Value *FVal = Sel.getFalseValue(); 1455 1456 CmpInst::Predicate Pred; 1457 Value *A, *B; 1458 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1459 return nullptr; 1460 1461 // The select condition is a compare instruction. If the select's true/false 1462 // values are already the same as the compare operands, there's nothing to do. 1463 if (TVal == A || TVal == B || FVal == A || FVal == B) 1464 return nullptr; 1465 1466 Value *C, *D; 1467 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1468 return nullptr; 1469 1470 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1471 Value *TSrc, *FSrc; 1472 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1473 !match(FVal, m_BitCast(m_Value(FSrc)))) 1474 return nullptr; 1475 1476 // If the select true/false values are *different bitcasts* of the same source 1477 // operands, make the select operands the same as the compare operands and 1478 // cast the result. This is the canonical select form for min/max. 1479 Value *NewSel; 1480 if (TSrc == C && FSrc == D) { 1481 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1482 // bitcast (select (cmp A, B), A, B) 1483 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1484 } else if (TSrc == D && FSrc == C) { 1485 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1486 // bitcast (select (cmp A, B), B, A) 1487 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1488 } else { 1489 return nullptr; 1490 } 1491 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1492 } 1493 1494 /// Try to eliminate select instructions that test the returned flag of cmpxchg 1495 /// instructions. 1496 /// 1497 /// If a select instruction tests the returned flag of a cmpxchg instruction and 1498 /// selects between the returned value of the cmpxchg instruction its compare 1499 /// operand, the result of the select will always be equal to its false value. 1500 /// For example: 1501 /// 1502 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1503 /// %1 = extractvalue { i64, i1 } %0, 1 1504 /// %2 = extractvalue { i64, i1 } %0, 0 1505 /// %3 = select i1 %1, i64 %compare, i64 %2 1506 /// ret i64 %3 1507 /// 1508 /// The returned value of the cmpxchg instruction (%2) is the original value 1509 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 1510 /// must have been equal to %compare. Thus, the result of the select is always 1511 /// equal to %2, and the code can be simplified to: 1512 /// 1513 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1514 /// %1 = extractvalue { i64, i1 } %0, 0 1515 /// ret i64 %1 1516 /// 1517 static Instruction *foldSelectCmpXchg(SelectInst &SI) { 1518 // A helper that determines if V is an extractvalue instruction whose 1519 // aggregate operand is a cmpxchg instruction and whose single index is equal 1520 // to I. If such conditions are true, the helper returns the cmpxchg 1521 // instruction; otherwise, a nullptr is returned. 1522 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 1523 auto *Extract = dyn_cast<ExtractValueInst>(V); 1524 if (!Extract) 1525 return nullptr; 1526 if (Extract->getIndices()[0] != I) 1527 return nullptr; 1528 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 1529 }; 1530 1531 // If the select has a single user, and this user is a select instruction that 1532 // we can simplify, skip the cmpxchg simplification for now. 1533 if (SI.hasOneUse()) 1534 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 1535 if (Select->getCondition() == SI.getCondition()) 1536 if (Select->getFalseValue() == SI.getTrueValue() || 1537 Select->getTrueValue() == SI.getFalseValue()) 1538 return nullptr; 1539 1540 // Ensure the select condition is the returned flag of a cmpxchg instruction. 1541 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 1542 if (!CmpXchg) 1543 return nullptr; 1544 1545 // Check the true value case: The true value of the select is the returned 1546 // value of the same cmpxchg used by the condition, and the false value is the 1547 // cmpxchg instruction's compare operand. 1548 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 1549 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) { 1550 SI.setTrueValue(SI.getFalseValue()); 1551 return &SI; 1552 } 1553 1554 // Check the false value case: The false value of the select is the returned 1555 // value of the same cmpxchg used by the condition, and the true value is the 1556 // cmpxchg instruction's compare operand. 1557 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 1558 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) { 1559 SI.setTrueValue(SI.getFalseValue()); 1560 return &SI; 1561 } 1562 1563 return nullptr; 1564 } 1565 1566 static Instruction *moveAddAfterMinMax(SelectPatternFlavor SPF, Value *X, 1567 Value *Y, 1568 InstCombiner::BuilderTy &Builder) { 1569 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected min/max pattern"); 1570 bool IsUnsigned = SPF == SelectPatternFlavor::SPF_UMIN || 1571 SPF == SelectPatternFlavor::SPF_UMAX; 1572 // TODO: If InstSimplify could fold all cases where C2 <= C1, we could change 1573 // the constant value check to an assert. 1574 Value *A; 1575 const APInt *C1, *C2; 1576 if (IsUnsigned && match(X, m_NUWAdd(m_Value(A), m_APInt(C1))) && 1577 match(Y, m_APInt(C2)) && C2->uge(*C1) && X->hasNUses(2)) { 1578 // umin (add nuw A, C1), C2 --> add nuw (umin A, C2 - C1), C1 1579 // umax (add nuw A, C1), C2 --> add nuw (umax A, C2 - C1), C1 1580 Value *NewMinMax = createMinMax(Builder, SPF, A, 1581 ConstantInt::get(X->getType(), *C2 - *C1)); 1582 return BinaryOperator::CreateNUW(BinaryOperator::Add, NewMinMax, 1583 ConstantInt::get(X->getType(), *C1)); 1584 } 1585 1586 if (!IsUnsigned && match(X, m_NSWAdd(m_Value(A), m_APInt(C1))) && 1587 match(Y, m_APInt(C2)) && X->hasNUses(2)) { 1588 bool Overflow; 1589 APInt Diff = C2->ssub_ov(*C1, Overflow); 1590 if (!Overflow) { 1591 // smin (add nsw A, C1), C2 --> add nsw (smin A, C2 - C1), C1 1592 // smax (add nsw A, C1), C2 --> add nsw (smax A, C2 - C1), C1 1593 Value *NewMinMax = createMinMax(Builder, SPF, A, 1594 ConstantInt::get(X->getType(), Diff)); 1595 return BinaryOperator::CreateNSW(BinaryOperator::Add, NewMinMax, 1596 ConstantInt::get(X->getType(), *C1)); 1597 } 1598 } 1599 1600 return nullptr; 1601 } 1602 1603 /// Reduce a sequence of min/max with a common operand. 1604 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 1605 Value *RHS, 1606 InstCombiner::BuilderTy &Builder) { 1607 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 1608 // TODO: Allow FP min/max with nnan/nsz. 1609 if (!LHS->getType()->isIntOrIntVectorTy()) 1610 return nullptr; 1611 1612 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 1613 Value *A, *B, *C, *D; 1614 SelectPatternResult L = matchSelectPattern(LHS, A, B); 1615 SelectPatternResult R = matchSelectPattern(RHS, C, D); 1616 if (SPF != L.Flavor || L.Flavor != R.Flavor) 1617 return nullptr; 1618 1619 // Look for a common operand. The use checks are different than usual because 1620 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 1621 // the select. 1622 Value *MinMaxOp = nullptr; 1623 Value *ThirdOp = nullptr; 1624 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 1625 // If the LHS is only used in this chain and the RHS is used outside of it, 1626 // reuse the RHS min/max because that will eliminate the LHS. 1627 if (D == A || C == A) { 1628 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 1629 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 1630 MinMaxOp = RHS; 1631 ThirdOp = B; 1632 } else if (D == B || C == B) { 1633 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 1634 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 1635 MinMaxOp = RHS; 1636 ThirdOp = A; 1637 } 1638 } else if (!RHS->hasNUsesOrMore(3)) { 1639 // Reuse the LHS. This will eliminate the RHS. 1640 if (D == A || D == B) { 1641 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 1642 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 1643 MinMaxOp = LHS; 1644 ThirdOp = C; 1645 } else if (C == A || C == B) { 1646 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 1647 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 1648 MinMaxOp = LHS; 1649 ThirdOp = D; 1650 } 1651 } 1652 if (!MinMaxOp || !ThirdOp) 1653 return nullptr; 1654 1655 CmpInst::Predicate P = getMinMaxPred(SPF); 1656 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 1657 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 1658 } 1659 1660 /// Try to reduce a rotate pattern that includes a compare and select into a 1661 /// funnel shift intrinsic. Example: 1662 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 1663 /// --> call llvm.fshl.i32(a, a, b) 1664 static Instruction *foldSelectRotate(SelectInst &Sel) { 1665 // The false value of the select must be a rotate of the true value. 1666 Value *Or0, *Or1; 1667 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 1668 return nullptr; 1669 1670 Value *TVal = Sel.getTrueValue(); 1671 Value *SA0, *SA1; 1672 if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) || 1673 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1))))) 1674 return nullptr; 1675 1676 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 1677 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 1678 if (ShiftOpcode0 == ShiftOpcode1) 1679 return nullptr; 1680 1681 // We have one of these patterns so far: 1682 // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1)) 1683 // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1)) 1684 // This must be a power-of-2 rotate for a bitmasking transform to be valid. 1685 unsigned Width = Sel.getType()->getScalarSizeInBits(); 1686 if (!isPowerOf2_32(Width)) 1687 return nullptr; 1688 1689 // Check the shift amounts to see if they are an opposite pair. 1690 Value *ShAmt; 1691 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 1692 ShAmt = SA0; 1693 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 1694 ShAmt = SA1; 1695 else 1696 return nullptr; 1697 1698 // Finally, see if the select is filtering out a shift-by-zero. 1699 Value *Cond = Sel.getCondition(); 1700 ICmpInst::Predicate Pred; 1701 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 1702 Pred != ICmpInst::ICMP_EQ) 1703 return nullptr; 1704 1705 // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way. 1706 // Convert to funnel shift intrinsic. 1707 bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) || 1708 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl); 1709 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 1710 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 1711 return IntrinsicInst::Create(F, { TVal, TVal, ShAmt }); 1712 } 1713 1714 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1715 Value *CondVal = SI.getCondition(); 1716 Value *TrueVal = SI.getTrueValue(); 1717 Value *FalseVal = SI.getFalseValue(); 1718 Type *SelType = SI.getType(); 1719 1720 // FIXME: Remove this workaround when freeze related patches are done. 1721 // For select with undef operand which feeds into an equality comparison, 1722 // don't simplify it so loop unswitch can know the equality comparison 1723 // may have an undef operand. This is a workaround for PR31652 caused by 1724 // descrepancy about branch on undef between LoopUnswitch and GVN. 1725 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 1726 if (llvm::any_of(SI.users(), [&](User *U) { 1727 ICmpInst *CI = dyn_cast<ICmpInst>(U); 1728 if (CI && CI->isEquality()) 1729 return true; 1730 return false; 1731 })) { 1732 return nullptr; 1733 } 1734 } 1735 1736 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 1737 SQ.getWithInstruction(&SI))) 1738 return replaceInstUsesWith(SI, V); 1739 1740 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1741 return I; 1742 1743 // Canonicalize a one-use integer compare with a non-canonical predicate by 1744 // inverting the predicate and swapping the select operands. This matches a 1745 // compare canonicalization for conditional branches. 1746 // TODO: Should we do the same for FP compares? 1747 CmpInst::Predicate Pred; 1748 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && 1749 !isCanonicalPredicate(Pred)) { 1750 // Swap true/false values and condition. 1751 CmpInst *Cond = cast<CmpInst>(CondVal); 1752 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 1753 SI.setOperand(1, FalseVal); 1754 SI.setOperand(2, TrueVal); 1755 SI.swapProfMetadata(); 1756 Worklist.Add(Cond); 1757 return &SI; 1758 } 1759 1760 if (SelType->isIntOrIntVectorTy(1) && 1761 TrueVal->getType() == CondVal->getType()) { 1762 if (match(TrueVal, m_One())) { 1763 // Change: A = select B, true, C --> A = or B, C 1764 return BinaryOperator::CreateOr(CondVal, FalseVal); 1765 } 1766 if (match(TrueVal, m_Zero())) { 1767 // Change: A = select B, false, C --> A = and !B, C 1768 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1769 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1770 } 1771 if (match(FalseVal, m_Zero())) { 1772 // Change: A = select B, C, false --> A = and B, C 1773 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1774 } 1775 if (match(FalseVal, m_One())) { 1776 // Change: A = select B, C, true --> A = or !B, C 1777 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1778 return BinaryOperator::CreateOr(NotCond, TrueVal); 1779 } 1780 1781 // select a, a, b -> a | b 1782 // select a, b, a -> a & b 1783 if (CondVal == TrueVal) 1784 return BinaryOperator::CreateOr(CondVal, FalseVal); 1785 if (CondVal == FalseVal) 1786 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1787 1788 // select a, ~a, b -> (~a) & b 1789 // select a, b, ~a -> (~a) | b 1790 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1791 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1792 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1793 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1794 } 1795 1796 // Selecting between two integer or vector splat integer constants? 1797 // 1798 // Note that we don't handle a scalar select of vectors: 1799 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1800 // because that may need 3 instructions to splat the condition value: 1801 // extend, insertelement, shufflevector. 1802 if (SelType->isIntOrIntVectorTy() && 1803 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1804 // select C, 1, 0 -> zext C to int 1805 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1806 return new ZExtInst(CondVal, SelType); 1807 1808 // select C, -1, 0 -> sext C to int 1809 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1810 return new SExtInst(CondVal, SelType); 1811 1812 // select C, 0, 1 -> zext !C to int 1813 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1814 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1815 return new ZExtInst(NotCond, SelType); 1816 } 1817 1818 // select C, 0, -1 -> sext !C to int 1819 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1820 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1821 return new SExtInst(NotCond, SelType); 1822 } 1823 } 1824 1825 // See if we are selecting two values based on a comparison of the two values. 1826 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1827 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1828 // Canonicalize to use ordered comparisons by swapping the select 1829 // operands. 1830 // 1831 // e.g. 1832 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1833 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1834 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1835 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1836 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1837 Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, 1838 FCI->getName() + ".inv"); 1839 1840 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1841 SI.getName() + ".p"); 1842 } 1843 1844 // NOTE: if we wanted to, this is where to detect MIN/MAX 1845 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1846 // Canonicalize to use ordered comparisons by swapping the select 1847 // operands. 1848 // 1849 // e.g. 1850 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1851 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1852 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1853 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1854 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1855 Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, 1856 FCI->getName() + ".inv"); 1857 1858 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1859 SI.getName() + ".p"); 1860 } 1861 1862 // NOTE: if we wanted to, this is where to detect MIN/MAX 1863 } 1864 1865 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 1866 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 1867 // also require nnan because we do not want to unintentionally change the 1868 // sign of a NaN value. 1869 Value *X = FCI->getOperand(0); 1870 FCmpInst::Predicate Pred = FCI->getPredicate(); 1871 if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) { 1872 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 1873 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 1874 if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE && 1875 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) || 1876 (X == TrueVal && Pred == FCmpInst::FCMP_OGT && 1877 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) { 1878 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); 1879 return replaceInstUsesWith(SI, Fabs); 1880 } 1881 // With nsz: 1882 // (X < +/-0.0) ? -X : X --> fabs(X) 1883 // (X <= +/-0.0) ? -X : X --> fabs(X) 1884 // (X > +/-0.0) ? X : -X --> fabs(X) 1885 // (X >= +/-0.0) ? X : -X --> fabs(X) 1886 if (FCI->hasNoSignedZeros() && 1887 ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) && 1888 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) || 1889 (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) && 1890 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) { 1891 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); 1892 return replaceInstUsesWith(SI, Fabs); 1893 } 1894 } 1895 } 1896 1897 // See if we are selecting two values based on a comparison of the two values. 1898 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1899 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1900 return Result; 1901 1902 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 1903 return Add; 1904 1905 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1906 auto *TI = dyn_cast<Instruction>(TrueVal); 1907 auto *FI = dyn_cast<Instruction>(FalseVal); 1908 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1909 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1910 return IV; 1911 1912 if (Instruction *I = foldSelectExtConst(SI)) 1913 return I; 1914 1915 // See if we can fold the select into one of our operands. 1916 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1917 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1918 return FoldI; 1919 1920 Value *LHS, *RHS; 1921 Instruction::CastOps CastOp; 1922 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1923 auto SPF = SPR.Flavor; 1924 if (SPF) { 1925 Value *LHS2, *RHS2; 1926 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1927 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 1928 RHS2, SI, SPF, RHS)) 1929 return R; 1930 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1931 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 1932 RHS2, SI, SPF, LHS)) 1933 return R; 1934 // TODO. 1935 // ABS(-X) -> ABS(X) 1936 } 1937 1938 if (SelectPatternResult::isMinOrMax(SPF)) { 1939 // Canonicalize so that 1940 // - type casts are outside select patterns. 1941 // - float clamp is transformed to min/max pattern 1942 1943 bool IsCastNeeded = LHS->getType() != SelType; 1944 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 1945 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 1946 if (IsCastNeeded || 1947 (LHS->getType()->isFPOrFPVectorTy() && 1948 ((CmpLHS != LHS && CmpLHS != RHS) || 1949 (CmpRHS != LHS && CmpRHS != RHS)))) { 1950 CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered); 1951 1952 Value *Cmp; 1953 if (CmpInst::isIntPredicate(Pred)) { 1954 Cmp = Builder.CreateICmp(Pred, LHS, RHS); 1955 } else { 1956 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1957 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1958 Builder.setFastMathFlags(FMF); 1959 Cmp = Builder.CreateFCmp(Pred, LHS, RHS); 1960 } 1961 1962 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 1963 if (!IsCastNeeded) 1964 return replaceInstUsesWith(SI, NewSI); 1965 1966 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 1967 return replaceInstUsesWith(SI, NewCast); 1968 } 1969 1970 // MAX(~a, ~b) -> ~MIN(a, b) 1971 // MAX(~a, C) -> ~MIN(a, ~C) 1972 // MIN(~a, ~b) -> ~MAX(a, b) 1973 // MIN(~a, C) -> ~MAX(a, ~C) 1974 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 1975 Value *A; 1976 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 1977 !IsFreeToInvert(A, A->hasOneUse()) && 1978 // Passing false to only consider m_Not and constants. 1979 IsFreeToInvert(Y, false)) { 1980 Value *B = Builder.CreateNot(Y); 1981 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 1982 A, B); 1983 // Copy the profile metadata. 1984 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 1985 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 1986 // Swap the metadata if the operands are swapped. 1987 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 1988 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 1989 } 1990 1991 return BinaryOperator::CreateNot(NewMinMax); 1992 } 1993 1994 return nullptr; 1995 }; 1996 1997 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 1998 return I; 1999 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 2000 return I; 2001 2002 if (Instruction *I = moveAddAfterMinMax(SPF, LHS, RHS, Builder)) 2003 return I; 2004 2005 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 2006 return I; 2007 } 2008 } 2009 2010 // See if we can fold the select into a phi node if the condition is a select. 2011 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 2012 // The true/false values have to be live in the PHI predecessor's blocks. 2013 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 2014 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 2015 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 2016 return NV; 2017 2018 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 2019 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 2020 // select(C, select(C, a, b), c) -> select(C, a, c) 2021 if (TrueSI->getCondition() == CondVal) { 2022 if (SI.getTrueValue() == TrueSI->getTrueValue()) 2023 return nullptr; 2024 SI.setOperand(1, TrueSI->getTrueValue()); 2025 return &SI; 2026 } 2027 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 2028 // We choose this as normal form to enable folding on the And and shortening 2029 // paths for the values (this helps GetUnderlyingObjects() for example). 2030 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 2031 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 2032 SI.setOperand(0, And); 2033 SI.setOperand(1, TrueSI->getTrueValue()); 2034 return &SI; 2035 } 2036 } 2037 } 2038 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 2039 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 2040 // select(C, a, select(C, b, c)) -> select(C, a, c) 2041 if (FalseSI->getCondition() == CondVal) { 2042 if (SI.getFalseValue() == FalseSI->getFalseValue()) 2043 return nullptr; 2044 SI.setOperand(2, FalseSI->getFalseValue()); 2045 return &SI; 2046 } 2047 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 2048 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 2049 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 2050 SI.setOperand(0, Or); 2051 SI.setOperand(2, FalseSI->getFalseValue()); 2052 return &SI; 2053 } 2054 } 2055 } 2056 2057 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 2058 // The select might be preventing a division by 0. 2059 switch (BO->getOpcode()) { 2060 default: 2061 return true; 2062 case Instruction::SRem: 2063 case Instruction::URem: 2064 case Instruction::SDiv: 2065 case Instruction::UDiv: 2066 return false; 2067 } 2068 }; 2069 2070 // Try to simplify a binop sandwiched between 2 selects with the same 2071 // condition. 2072 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 2073 BinaryOperator *TrueBO; 2074 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 2075 canMergeSelectThroughBinop(TrueBO)) { 2076 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 2077 if (TrueBOSI->getCondition() == CondVal) { 2078 TrueBO->setOperand(0, TrueBOSI->getTrueValue()); 2079 Worklist.Add(TrueBO); 2080 return &SI; 2081 } 2082 } 2083 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 2084 if (TrueBOSI->getCondition() == CondVal) { 2085 TrueBO->setOperand(1, TrueBOSI->getTrueValue()); 2086 Worklist.Add(TrueBO); 2087 return &SI; 2088 } 2089 } 2090 } 2091 2092 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 2093 BinaryOperator *FalseBO; 2094 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 2095 canMergeSelectThroughBinop(FalseBO)) { 2096 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 2097 if (FalseBOSI->getCondition() == CondVal) { 2098 FalseBO->setOperand(0, FalseBOSI->getFalseValue()); 2099 Worklist.Add(FalseBO); 2100 return &SI; 2101 } 2102 } 2103 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 2104 if (FalseBOSI->getCondition() == CondVal) { 2105 FalseBO->setOperand(1, FalseBOSI->getFalseValue()); 2106 Worklist.Add(FalseBO); 2107 return &SI; 2108 } 2109 } 2110 } 2111 2112 Value *NotCond; 2113 if (match(CondVal, m_Not(m_Value(NotCond)))) { 2114 SI.setOperand(0, NotCond); 2115 SI.setOperand(1, FalseVal); 2116 SI.setOperand(2, TrueVal); 2117 SI.swapProfMetadata(); 2118 return &SI; 2119 } 2120 2121 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 2122 unsigned VWidth = VecTy->getNumElements(); 2123 APInt UndefElts(VWidth, 0); 2124 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2125 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 2126 if (V != &SI) 2127 return replaceInstUsesWith(SI, V); 2128 return &SI; 2129 } 2130 } 2131 2132 // If we can compute the condition, there's no need for a select. 2133 // Like the above fold, we are attempting to reduce compile-time cost by 2134 // putting this fold here with limitations rather than in InstSimplify. 2135 // The motivation for this call into value tracking is to take advantage of 2136 // the assumption cache, so make sure that is populated. 2137 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 2138 KnownBits Known(1); 2139 computeKnownBits(CondVal, Known, 0, &SI); 2140 if (Known.One.isOneValue()) 2141 return replaceInstUsesWith(SI, TrueVal); 2142 if (Known.Zero.isOneValue()) 2143 return replaceInstUsesWith(SI, FalseVal); 2144 } 2145 2146 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 2147 return BitCastSel; 2148 2149 // Simplify selects that test the returned flag of cmpxchg instructions. 2150 if (Instruction *Select = foldSelectCmpXchg(SI)) 2151 return Select; 2152 2153 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI)) 2154 return Select; 2155 2156 if (Instruction *Rot = foldSelectRotate(SI)) 2157 return Rot; 2158 2159 return nullptr; 2160 } 2161