1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visitSelect function. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/Optional.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallVector.h" 18 #include "llvm/Analysis/AssumptionCache.h" 19 #include "llvm/Analysis/CmpInstAnalysis.h" 20 #include "llvm/Analysis/InstructionSimplify.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/IR/BasicBlock.h" 23 #include "llvm/IR/Constant.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DerivedTypes.h" 26 #include "llvm/IR/IRBuilder.h" 27 #include "llvm/IR/InstrTypes.h" 28 #include "llvm/IR/Instruction.h" 29 #include "llvm/IR/Instructions.h" 30 #include "llvm/IR/IntrinsicInst.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Operator.h" 33 #include "llvm/IR/PatternMatch.h" 34 #include "llvm/IR/Type.h" 35 #include "llvm/IR/User.h" 36 #include "llvm/IR/Value.h" 37 #include "llvm/Support/Casting.h" 38 #include "llvm/Support/ErrorHandling.h" 39 #include "llvm/Support/KnownBits.h" 40 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h" 41 #include <cassert> 42 #include <utility> 43 44 using namespace llvm; 45 using namespace PatternMatch; 46 47 #define DEBUG_TYPE "instcombine" 48 49 static Value *createMinMax(InstCombiner::BuilderTy &Builder, 50 SelectPatternFlavor SPF, Value *A, Value *B) { 51 CmpInst::Predicate Pred = getMinMaxPred(SPF); 52 assert(CmpInst::isIntPredicate(Pred) && "Expected integer predicate"); 53 return Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 54 } 55 56 /// Replace a select operand based on an equality comparison with the identity 57 /// constant of a binop. 58 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel, 59 const TargetLibraryInfo &TLI) { 60 // The select condition must be an equality compare with a constant operand. 61 Value *X; 62 Constant *C; 63 CmpInst::Predicate Pred; 64 if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C)))) 65 return nullptr; 66 67 bool IsEq; 68 if (ICmpInst::isEquality(Pred)) 69 IsEq = Pred == ICmpInst::ICMP_EQ; 70 else if (Pred == FCmpInst::FCMP_OEQ) 71 IsEq = true; 72 else if (Pred == FCmpInst::FCMP_UNE) 73 IsEq = false; 74 else 75 return nullptr; 76 77 // A select operand must be a binop. 78 BinaryOperator *BO; 79 if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO))) 80 return nullptr; 81 82 // The compare constant must be the identity constant for that binop. 83 // If this a floating-point compare with 0.0, any zero constant will do. 84 Type *Ty = BO->getType(); 85 Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true); 86 if (IdC != C) { 87 if (!IdC || !CmpInst::isFPPredicate(Pred)) 88 return nullptr; 89 if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP())) 90 return nullptr; 91 } 92 93 // Last, match the compare variable operand with a binop operand. 94 Value *Y; 95 if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X)))) 96 return nullptr; 97 if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X)))) 98 return nullptr; 99 100 // +0.0 compares equal to -0.0, and so it does not behave as required for this 101 // transform. Bail out if we can not exclude that possibility. 102 if (isa<FPMathOperator>(BO)) 103 if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI)) 104 return nullptr; 105 106 // BO = binop Y, X 107 // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO } 108 // => 109 // S = { select (cmp eq X, C), Y, ? } or { select (cmp ne X, C), ?, Y } 110 Sel.setOperand(IsEq ? 1 : 2, Y); 111 return &Sel; 112 } 113 114 /// This folds: 115 /// select (icmp eq (and X, C1)), TC, FC 116 /// iff C1 is a power 2 and the difference between TC and FC is a power-of-2. 117 /// To something like: 118 /// (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC 119 /// Or: 120 /// (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC 121 /// With some variations depending if FC is larger than TC, or the shift 122 /// isn't needed, or the bit widths don't match. 123 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp, 124 InstCombiner::BuilderTy &Builder) { 125 const APInt *SelTC, *SelFC; 126 if (!match(Sel.getTrueValue(), m_APInt(SelTC)) || 127 !match(Sel.getFalseValue(), m_APInt(SelFC))) 128 return nullptr; 129 130 // If this is a vector select, we need a vector compare. 131 Type *SelType = Sel.getType(); 132 if (SelType->isVectorTy() != Cmp->getType()->isVectorTy()) 133 return nullptr; 134 135 Value *V; 136 APInt AndMask; 137 bool CreateAnd = false; 138 ICmpInst::Predicate Pred = Cmp->getPredicate(); 139 if (ICmpInst::isEquality(Pred)) { 140 if (!match(Cmp->getOperand(1), m_Zero())) 141 return nullptr; 142 143 V = Cmp->getOperand(0); 144 const APInt *AndRHS; 145 if (!match(V, m_And(m_Value(), m_Power2(AndRHS)))) 146 return nullptr; 147 148 AndMask = *AndRHS; 149 } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1), 150 Pred, V, AndMask)) { 151 assert(ICmpInst::isEquality(Pred) && "Not equality test?"); 152 if (!AndMask.isPowerOf2()) 153 return nullptr; 154 155 CreateAnd = true; 156 } else { 157 return nullptr; 158 } 159 160 // In general, when both constants are non-zero, we would need an offset to 161 // replace the select. This would require more instructions than we started 162 // with. But there's one special-case that we handle here because it can 163 // simplify/reduce the instructions. 164 APInt TC = *SelTC; 165 APInt FC = *SelFC; 166 if (!TC.isNullValue() && !FC.isNullValue()) { 167 // If the select constants differ by exactly one bit and that's the same 168 // bit that is masked and checked by the select condition, the select can 169 // be replaced by bitwise logic to set/clear one bit of the constant result. 170 if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask) 171 return nullptr; 172 if (CreateAnd) { 173 // If we have to create an 'and', then we must kill the cmp to not 174 // increase the instruction count. 175 if (!Cmp->hasOneUse()) 176 return nullptr; 177 V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask)); 178 } 179 bool ExtraBitInTC = TC.ugt(FC); 180 if (Pred == ICmpInst::ICMP_EQ) { 181 // If the masked bit in V is clear, clear or set the bit in the result: 182 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC 183 // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC 184 Constant *C = ConstantInt::get(SelType, TC); 185 return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C); 186 } 187 if (Pred == ICmpInst::ICMP_NE) { 188 // If the masked bit in V is set, set or clear the bit in the result: 189 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC 190 // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC 191 Constant *C = ConstantInt::get(SelType, FC); 192 return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C); 193 } 194 llvm_unreachable("Only expecting equality predicates"); 195 } 196 197 // Make sure one of the select arms is a power-of-2. 198 if (!TC.isPowerOf2() && !FC.isPowerOf2()) 199 return nullptr; 200 201 // Determine which shift is needed to transform result of the 'and' into the 202 // desired result. 203 const APInt &ValC = !TC.isNullValue() ? TC : FC; 204 unsigned ValZeros = ValC.logBase2(); 205 unsigned AndZeros = AndMask.logBase2(); 206 207 // Insert the 'and' instruction on the input to the truncate. 208 if (CreateAnd) 209 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask)); 210 211 // If types don't match, we can still convert the select by introducing a zext 212 // or a trunc of the 'and'. 213 if (ValZeros > AndZeros) { 214 V = Builder.CreateZExtOrTrunc(V, SelType); 215 V = Builder.CreateShl(V, ValZeros - AndZeros); 216 } else if (ValZeros < AndZeros) { 217 V = Builder.CreateLShr(V, AndZeros - ValZeros); 218 V = Builder.CreateZExtOrTrunc(V, SelType); 219 } else { 220 V = Builder.CreateZExtOrTrunc(V, SelType); 221 } 222 223 // Okay, now we know that everything is set up, we just don't know whether we 224 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 225 bool ShouldNotVal = !TC.isNullValue(); 226 ShouldNotVal ^= Pred == ICmpInst::ICMP_NE; 227 if (ShouldNotVal) 228 V = Builder.CreateXor(V, ValC); 229 230 return V; 231 } 232 233 /// We want to turn code that looks like this: 234 /// %C = or %A, %B 235 /// %D = select %cond, %C, %A 236 /// into: 237 /// %C = select %cond, %B, 0 238 /// %D = or %A, %C 239 /// 240 /// Assuming that the specified instruction is an operand to the select, return 241 /// a bitmask indicating which operands of this instruction are foldable if they 242 /// equal the other incoming value of the select. 243 static unsigned getSelectFoldableOperands(BinaryOperator *I) { 244 switch (I->getOpcode()) { 245 case Instruction::Add: 246 case Instruction::Mul: 247 case Instruction::And: 248 case Instruction::Or: 249 case Instruction::Xor: 250 return 3; // Can fold through either operand. 251 case Instruction::Sub: // Can only fold on the amount subtracted. 252 case Instruction::Shl: // Can only fold on the shift amount. 253 case Instruction::LShr: 254 case Instruction::AShr: 255 return 1; 256 default: 257 return 0; // Cannot fold 258 } 259 } 260 261 /// For the same transformation as the previous function, return the identity 262 /// constant that goes into the select. 263 static APInt getSelectFoldableConstant(BinaryOperator *I) { 264 switch (I->getOpcode()) { 265 default: llvm_unreachable("This cannot happen!"); 266 case Instruction::Add: 267 case Instruction::Sub: 268 case Instruction::Or: 269 case Instruction::Xor: 270 case Instruction::Shl: 271 case Instruction::LShr: 272 case Instruction::AShr: 273 return APInt::getNullValue(I->getType()->getScalarSizeInBits()); 274 case Instruction::And: 275 return APInt::getAllOnesValue(I->getType()->getScalarSizeInBits()); 276 case Instruction::Mul: 277 return APInt(I->getType()->getScalarSizeInBits(), 1); 278 } 279 } 280 281 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 282 Instruction *InstCombiner::foldSelectOpOp(SelectInst &SI, Instruction *TI, 283 Instruction *FI) { 284 // Don't break up min/max patterns. The hasOneUse checks below prevent that 285 // for most cases, but vector min/max with bitcasts can be transformed. If the 286 // one-use restrictions are eased for other patterns, we still don't want to 287 // obfuscate min/max. 288 if ((match(&SI, m_SMin(m_Value(), m_Value())) || 289 match(&SI, m_SMax(m_Value(), m_Value())) || 290 match(&SI, m_UMin(m_Value(), m_Value())) || 291 match(&SI, m_UMax(m_Value(), m_Value())))) 292 return nullptr; 293 294 // If this is a cast from the same type, merge. 295 if (TI->getNumOperands() == 1 && TI->isCast()) { 296 Type *FIOpndTy = FI->getOperand(0)->getType(); 297 if (TI->getOperand(0)->getType() != FIOpndTy) 298 return nullptr; 299 300 // The select condition may be a vector. We may only change the operand 301 // type if the vector width remains the same (and matches the condition). 302 Type *CondTy = SI.getCondition()->getType(); 303 if (CondTy->isVectorTy()) { 304 if (!FIOpndTy->isVectorTy()) 305 return nullptr; 306 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 307 return nullptr; 308 309 // TODO: If the backend knew how to deal with casts better, we could 310 // remove this limitation. For now, there's too much potential to create 311 // worse codegen by promoting the select ahead of size-altering casts 312 // (PR28160). 313 // 314 // Note that ValueTracking's matchSelectPattern() looks through casts 315 // without checking 'hasOneUse' when it matches min/max patterns, so this 316 // transform may end up happening anyway. 317 if (TI->getOpcode() != Instruction::BitCast && 318 (!TI->hasOneUse() || !FI->hasOneUse())) 319 return nullptr; 320 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 321 // TODO: The one-use restrictions for a scalar select could be eased if 322 // the fold of a select in visitLoadInst() was enhanced to match a pattern 323 // that includes a cast. 324 return nullptr; 325 } 326 327 // Fold this by inserting a select from the input values. 328 Value *NewSI = 329 Builder.CreateSelect(SI.getCondition(), TI->getOperand(0), 330 FI->getOperand(0), SI.getName() + ".v", &SI); 331 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 332 TI->getType()); 333 } 334 335 // Only handle binary operators (including two-operand getelementptr) with 336 // one-use here. As with the cast case above, it may be possible to relax the 337 // one-use constraint, but that needs be examined carefully since it may not 338 // reduce the total number of instructions. 339 if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 || 340 (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) || 341 !TI->hasOneUse() || !FI->hasOneUse()) 342 return nullptr; 343 344 // Figure out if the operations have any operands in common. 345 Value *MatchOp, *OtherOpT, *OtherOpF; 346 bool MatchIsOpZero; 347 if (TI->getOperand(0) == FI->getOperand(0)) { 348 MatchOp = TI->getOperand(0); 349 OtherOpT = TI->getOperand(1); 350 OtherOpF = FI->getOperand(1); 351 MatchIsOpZero = true; 352 } else if (TI->getOperand(1) == FI->getOperand(1)) { 353 MatchOp = TI->getOperand(1); 354 OtherOpT = TI->getOperand(0); 355 OtherOpF = FI->getOperand(0); 356 MatchIsOpZero = false; 357 } else if (!TI->isCommutative()) { 358 return nullptr; 359 } else if (TI->getOperand(0) == FI->getOperand(1)) { 360 MatchOp = TI->getOperand(0); 361 OtherOpT = TI->getOperand(1); 362 OtherOpF = FI->getOperand(0); 363 MatchIsOpZero = true; 364 } else if (TI->getOperand(1) == FI->getOperand(0)) { 365 MatchOp = TI->getOperand(1); 366 OtherOpT = TI->getOperand(0); 367 OtherOpF = FI->getOperand(1); 368 MatchIsOpZero = true; 369 } else { 370 return nullptr; 371 } 372 373 // If the select condition is a vector, the operands of the original select's 374 // operands also must be vectors. This may not be the case for getelementptr 375 // for example. 376 if (SI.getCondition()->getType()->isVectorTy() && 377 (!OtherOpT->getType()->isVectorTy() || 378 !OtherOpF->getType()->isVectorTy())) 379 return nullptr; 380 381 // If we reach here, they do have operations in common. 382 Value *NewSI = Builder.CreateSelect(SI.getCondition(), OtherOpT, OtherOpF, 383 SI.getName() + ".v", &SI); 384 Value *Op0 = MatchIsOpZero ? MatchOp : NewSI; 385 Value *Op1 = MatchIsOpZero ? NewSI : MatchOp; 386 if (auto *BO = dyn_cast<BinaryOperator>(TI)) { 387 BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1); 388 NewBO->copyIRFlags(TI); 389 NewBO->andIRFlags(FI); 390 return NewBO; 391 } 392 if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) { 393 auto *FGEP = cast<GetElementPtrInst>(FI); 394 Type *ElementType = TGEP->getResultElementType(); 395 return TGEP->isInBounds() && FGEP->isInBounds() 396 ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1}) 397 : GetElementPtrInst::Create(ElementType, Op0, {Op1}); 398 } 399 llvm_unreachable("Expected BinaryOperator or GEP"); 400 return nullptr; 401 } 402 403 static bool isSelect01(const APInt &C1I, const APInt &C2I) { 404 if (!C1I.isNullValue() && !C2I.isNullValue()) // One side must be zero. 405 return false; 406 return C1I.isOneValue() || C1I.isAllOnesValue() || 407 C2I.isOneValue() || C2I.isAllOnesValue(); 408 } 409 410 /// Try to fold the select into one of the operands to allow further 411 /// optimization. 412 Instruction *InstCombiner::foldSelectIntoOp(SelectInst &SI, Value *TrueVal, 413 Value *FalseVal) { 414 // See the comment above GetSelectFoldableOperands for a description of the 415 // transformation we are doing here. 416 if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) { 417 if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) { 418 if (unsigned SFO = getSelectFoldableOperands(TVI)) { 419 unsigned OpToFold = 0; 420 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 421 OpToFold = 1; 422 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 423 OpToFold = 2; 424 } 425 426 if (OpToFold) { 427 APInt CI = getSelectFoldableConstant(TVI); 428 Value *OOp = TVI->getOperand(2-OpToFold); 429 // Avoid creating select between 2 constants unless it's selecting 430 // between 0, 1 and -1. 431 const APInt *OOpC; 432 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 433 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 434 Value *C = ConstantInt::get(OOp->getType(), CI); 435 Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C); 436 NewSel->takeName(TVI); 437 BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(), 438 FalseVal, NewSel); 439 BO->copyIRFlags(TVI); 440 return BO; 441 } 442 } 443 } 444 } 445 } 446 447 if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) { 448 if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) { 449 if (unsigned SFO = getSelectFoldableOperands(FVI)) { 450 unsigned OpToFold = 0; 451 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 452 OpToFold = 1; 453 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 454 OpToFold = 2; 455 } 456 457 if (OpToFold) { 458 APInt CI = getSelectFoldableConstant(FVI); 459 Value *OOp = FVI->getOperand(2-OpToFold); 460 // Avoid creating select between 2 constants unless it's selecting 461 // between 0, 1 and -1. 462 const APInt *OOpC; 463 bool OOpIsAPInt = match(OOp, m_APInt(OOpC)); 464 if (!isa<Constant>(OOp) || (OOpIsAPInt && isSelect01(CI, *OOpC))) { 465 Value *C = ConstantInt::get(OOp->getType(), CI); 466 Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp); 467 NewSel->takeName(FVI); 468 BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(), 469 TrueVal, NewSel); 470 BO->copyIRFlags(FVI); 471 return BO; 472 } 473 } 474 } 475 } 476 } 477 478 return nullptr; 479 } 480 481 /// We want to turn: 482 /// (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1) 483 /// into: 484 /// zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0) 485 /// Note: 486 /// Z may be 0 if lshr is missing. 487 /// Worst-case scenario is that we will replace 5 instructions with 5 different 488 /// instructions, but we got rid of select. 489 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp, 490 Value *TVal, Value *FVal, 491 InstCombiner::BuilderTy &Builder) { 492 if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() && 493 Cmp->getPredicate() == ICmpInst::ICMP_EQ && 494 match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One()))) 495 return nullptr; 496 497 // The TrueVal has general form of: and %B, 1 498 Value *B; 499 if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One())))) 500 return nullptr; 501 502 // Where %B may be optionally shifted: lshr %X, %Z. 503 Value *X, *Z; 504 const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z)))); 505 if (!HasShift) 506 X = B; 507 508 Value *Y; 509 if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y)))) 510 return nullptr; 511 512 // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0 513 // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0 514 Constant *One = ConstantInt::get(SelType, 1); 515 Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One; 516 Value *FullMask = Builder.CreateOr(Y, MaskB); 517 Value *MaskedX = Builder.CreateAnd(X, FullMask); 518 Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX); 519 return new ZExtInst(ICmpNeZero, SelType); 520 } 521 522 /// We want to turn: 523 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 524 /// into: 525 /// (or (shl (and X, C1), C3), Y) 526 /// iff: 527 /// C1 and C2 are both powers of 2 528 /// where: 529 /// C3 = Log(C2) - Log(C1) 530 /// 531 /// This transform handles cases where: 532 /// 1. The icmp predicate is inverted 533 /// 2. The select operands are reversed 534 /// 3. The magnitude of C2 and C1 are flipped 535 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal, 536 Value *FalseVal, 537 InstCombiner::BuilderTy &Builder) { 538 // Only handle integer compares. Also, if this is a vector select, we need a 539 // vector compare. 540 if (!TrueVal->getType()->isIntOrIntVectorTy() || 541 TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy()) 542 return nullptr; 543 544 Value *CmpLHS = IC->getOperand(0); 545 Value *CmpRHS = IC->getOperand(1); 546 547 Value *V; 548 unsigned C1Log; 549 bool IsEqualZero; 550 bool NeedAnd = false; 551 if (IC->isEquality()) { 552 if (!match(CmpRHS, m_Zero())) 553 return nullptr; 554 555 const APInt *C1; 556 if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1)))) 557 return nullptr; 558 559 V = CmpLHS; 560 C1Log = C1->logBase2(); 561 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ; 562 } else if (IC->getPredicate() == ICmpInst::ICMP_SLT || 563 IC->getPredicate() == ICmpInst::ICMP_SGT) { 564 // We also need to recognize (icmp slt (trunc (X)), 0) and 565 // (icmp sgt (trunc (X)), -1). 566 IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT; 567 if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) || 568 (!IsEqualZero && !match(CmpRHS, m_Zero()))) 569 return nullptr; 570 571 if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V))))) 572 return nullptr; 573 574 C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1; 575 NeedAnd = true; 576 } else { 577 return nullptr; 578 } 579 580 const APInt *C2; 581 bool OrOnTrueVal = false; 582 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 583 if (!OrOnFalseVal) 584 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 585 586 if (!OrOnFalseVal && !OrOnTrueVal) 587 return nullptr; 588 589 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 590 591 unsigned C2Log = C2->logBase2(); 592 593 bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal); 594 bool NeedShift = C1Log != C2Log; 595 bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() != 596 V->getType()->getScalarSizeInBits(); 597 598 // Make sure we don't create more instructions than we save. 599 Value *Or = OrOnFalseVal ? FalseVal : TrueVal; 600 if ((NeedShift + NeedXor + NeedZExtTrunc) > 601 (IC->hasOneUse() + Or->hasOneUse())) 602 return nullptr; 603 604 if (NeedAnd) { 605 // Insert the AND instruction on the input to the truncate. 606 APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log); 607 V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1)); 608 } 609 610 if (C2Log > C1Log) { 611 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 612 V = Builder.CreateShl(V, C2Log - C1Log); 613 } else if (C1Log > C2Log) { 614 V = Builder.CreateLShr(V, C1Log - C2Log); 615 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 616 } else 617 V = Builder.CreateZExtOrTrunc(V, Y->getType()); 618 619 if (NeedXor) 620 V = Builder.CreateXor(V, *C2); 621 622 return Builder.CreateOr(V, Y); 623 } 624 625 /// Transform patterns such as: (a > b) ? a - b : 0 626 /// into: ((a > b) ? a : b) - b) 627 /// This produces a canonical max pattern that is more easily recognized by the 628 /// backend and converted into saturated subtraction instructions if those 629 /// exist. 630 /// There are 8 commuted/swapped variants of this pattern. 631 /// TODO: Also support a - UMIN(a,b) patterns. 632 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI, 633 const Value *TrueVal, 634 const Value *FalseVal, 635 InstCombiner::BuilderTy &Builder) { 636 ICmpInst::Predicate Pred = ICI->getPredicate(); 637 if (!ICmpInst::isUnsigned(Pred)) 638 return nullptr; 639 640 // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0 641 if (match(TrueVal, m_Zero())) { 642 Pred = ICmpInst::getInversePredicate(Pred); 643 std::swap(TrueVal, FalseVal); 644 } 645 if (!match(FalseVal, m_Zero())) 646 return nullptr; 647 648 Value *A = ICI->getOperand(0); 649 Value *B = ICI->getOperand(1); 650 if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) { 651 // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0 652 std::swap(A, B); 653 Pred = ICmpInst::getSwappedPredicate(Pred); 654 } 655 656 assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) && 657 "Unexpected isUnsigned predicate!"); 658 659 // Account for swapped form of subtraction: ((a > b) ? b - a : 0). 660 bool IsNegative = false; 661 if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A)))) 662 IsNegative = true; 663 else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B)))) 664 return nullptr; 665 666 // If sub is used anywhere else, we wouldn't be able to eliminate it 667 // afterwards. 668 if (!TrueVal->hasOneUse()) 669 return nullptr; 670 671 // All checks passed, convert to canonical unsigned saturated subtraction 672 // form: sub(max()). 673 // (a > b) ? a - b : 0 -> ((a > b) ? a : b) - b) 674 Value *Max = Builder.CreateSelect(Builder.CreateICmp(Pred, A, B), A, B); 675 return IsNegative ? Builder.CreateSub(B, Max) : Builder.CreateSub(Max, B); 676 } 677 678 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal, 679 InstCombiner::BuilderTy &Builder) { 680 // Match an unsigned saturated add with constant. 681 Value *X = Cmp->getOperand(0); 682 const APInt *CmpC, *AddC; 683 if (!Cmp->hasOneUse() || Cmp->getPredicate() != ICmpInst::ICMP_ULT || 684 !match(Cmp->getOperand(1), m_APInt(CmpC)) || !match(FVal, m_AllOnes()) || 685 !match(TVal, m_Add(m_Specific(X), m_APInt(AddC))) || ~(*AddC) != *CmpC) 686 return nullptr; 687 688 // Commute compare and select operands: 689 // select (icmp ult X, C), (add X, ~C), -1 --> 690 // select (icmp ugt X, C), -1, (add X, ~C) 691 Value *NewCmp = Builder.CreateICmp(ICmpInst::ICMP_UGT, X, Cmp->getOperand(1)); 692 return Builder.CreateSelect(NewCmp, FVal, TVal); 693 } 694 695 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 696 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 697 /// 698 /// For example, we can fold the following code sequence: 699 /// \code 700 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 701 /// %1 = icmp ne i32 %x, 0 702 /// %2 = select i1 %1, i32 %0, i32 32 703 /// \code 704 /// 705 /// into: 706 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 707 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 708 InstCombiner::BuilderTy &Builder) { 709 ICmpInst::Predicate Pred = ICI->getPredicate(); 710 Value *CmpLHS = ICI->getOperand(0); 711 Value *CmpRHS = ICI->getOperand(1); 712 713 // Check if the condition value compares a value for equality against zero. 714 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 715 return nullptr; 716 717 Value *Count = FalseVal; 718 Value *ValueOnZero = TrueVal; 719 if (Pred == ICmpInst::ICMP_NE) 720 std::swap(Count, ValueOnZero); 721 722 // Skip zero extend/truncate. 723 Value *V = nullptr; 724 if (match(Count, m_ZExt(m_Value(V))) || 725 match(Count, m_Trunc(m_Value(V)))) 726 Count = V; 727 728 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 729 // input to the cttz/ctlz is used as LHS for the compare instruction. 730 if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) && 731 !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) 732 return nullptr; 733 734 IntrinsicInst *II = cast<IntrinsicInst>(Count); 735 736 // Check if the value propagated on zero is a constant number equal to the 737 // sizeof in bits of 'Count'. 738 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 739 if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) { 740 // Explicitly clear the 'undef_on_zero' flag. 741 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 742 NewI->setArgOperand(1, ConstantInt::getFalse(NewI->getContext())); 743 Builder.Insert(NewI); 744 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 745 } 746 747 // If the ValueOnZero is not the bitwidth, we can at least make use of the 748 // fact that the cttz/ctlz result will not be used if the input is zero, so 749 // it's okay to relax it to undef for that case. 750 if (II->hasOneUse() && !match(II->getArgOperand(1), m_One())) 751 II->setArgOperand(1, ConstantInt::getTrue(II->getContext())); 752 753 return nullptr; 754 } 755 756 /// Return true if we find and adjust an icmp+select pattern where the compare 757 /// is with a constant that can be incremented or decremented to match the 758 /// minimum or maximum idiom. 759 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) { 760 ICmpInst::Predicate Pred = Cmp.getPredicate(); 761 Value *CmpLHS = Cmp.getOperand(0); 762 Value *CmpRHS = Cmp.getOperand(1); 763 Value *TrueVal = Sel.getTrueValue(); 764 Value *FalseVal = Sel.getFalseValue(); 765 766 // We may move or edit the compare, so make sure the select is the only user. 767 const APInt *CmpC; 768 if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC))) 769 return false; 770 771 // These transforms only work for selects of integers or vector selects of 772 // integer vectors. 773 Type *SelTy = Sel.getType(); 774 auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType()); 775 if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy()) 776 return false; 777 778 Constant *AdjustedRHS; 779 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 780 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1); 781 else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 782 AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1); 783 else 784 return false; 785 786 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 787 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 788 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 789 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) { 790 ; // Nothing to do here. Values match without any sign/zero extension. 791 } 792 // Types do not match. Instead of calculating this with mixed types, promote 793 // all to the larger type. This enables scalar evolution to analyze this 794 // expression. 795 else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) { 796 Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy); 797 798 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 799 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 800 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 801 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 802 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) { 803 CmpLHS = TrueVal; 804 AdjustedRHS = SextRHS; 805 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 806 SextRHS == TrueVal) { 807 CmpLHS = FalseVal; 808 AdjustedRHS = SextRHS; 809 } else if (Cmp.isUnsigned()) { 810 Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy); 811 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 812 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 813 // zext + signed compare cannot be changed: 814 // 0xff <s 0x00, but 0x00ff >s 0x0000 815 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) { 816 CmpLHS = TrueVal; 817 AdjustedRHS = ZextRHS; 818 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 819 ZextRHS == TrueVal) { 820 CmpLHS = FalseVal; 821 AdjustedRHS = ZextRHS; 822 } else { 823 return false; 824 } 825 } else { 826 return false; 827 } 828 } else { 829 return false; 830 } 831 832 Pred = ICmpInst::getSwappedPredicate(Pred); 833 CmpRHS = AdjustedRHS; 834 std::swap(FalseVal, TrueVal); 835 Cmp.setPredicate(Pred); 836 Cmp.setOperand(0, CmpLHS); 837 Cmp.setOperand(1, CmpRHS); 838 Sel.setOperand(1, TrueVal); 839 Sel.setOperand(2, FalseVal); 840 Sel.swapProfMetadata(); 841 842 // Move the compare instruction right before the select instruction. Otherwise 843 // the sext/zext value may be defined after the compare instruction uses it. 844 Cmp.moveBefore(&Sel); 845 846 return true; 847 } 848 849 /// If this is an integer min/max (icmp + select) with a constant operand, 850 /// create the canonical icmp for the min/max operation and canonicalize the 851 /// constant to the 'false' operand of the select: 852 /// select (icmp Pred X, C1), C2, X --> select (icmp Pred' X, C2), X, C2 853 /// Note: if C1 != C2, this will change the icmp constant to the existing 854 /// constant operand of the select. 855 static Instruction * 856 canonicalizeMinMaxWithConstant(SelectInst &Sel, ICmpInst &Cmp, 857 InstCombiner::BuilderTy &Builder) { 858 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 859 return nullptr; 860 861 // Canonicalize the compare predicate based on whether we have min or max. 862 Value *LHS, *RHS; 863 SelectPatternResult SPR = matchSelectPattern(&Sel, LHS, RHS); 864 if (!SelectPatternResult::isMinOrMax(SPR.Flavor)) 865 return nullptr; 866 867 // Is this already canonical? 868 ICmpInst::Predicate CanonicalPred = getMinMaxPred(SPR.Flavor); 869 if (Cmp.getOperand(0) == LHS && Cmp.getOperand(1) == RHS && 870 Cmp.getPredicate() == CanonicalPred) 871 return nullptr; 872 873 // Create the canonical compare and plug it into the select. 874 Sel.setCondition(Builder.CreateICmp(CanonicalPred, LHS, RHS)); 875 876 // If the select operands did not change, we're done. 877 if (Sel.getTrueValue() == LHS && Sel.getFalseValue() == RHS) 878 return &Sel; 879 880 // If we are swapping the select operands, swap the metadata too. 881 assert(Sel.getTrueValue() == RHS && Sel.getFalseValue() == LHS && 882 "Unexpected results from matchSelectPattern"); 883 Sel.setTrueValue(LHS); 884 Sel.setFalseValue(RHS); 885 Sel.swapProfMetadata(); 886 return &Sel; 887 } 888 889 /// There are many select variants for each of ABS/NABS. 890 /// In matchSelectPattern(), there are different compare constants, compare 891 /// predicates/operands and select operands. 892 /// In isKnownNegation(), there are different formats of negated operands. 893 /// Canonicalize all these variants to 1 pattern. 894 /// This makes CSE more likely. 895 static Instruction *canonicalizeAbsNabs(SelectInst &Sel, ICmpInst &Cmp, 896 InstCombiner::BuilderTy &Builder) { 897 if (!Cmp.hasOneUse() || !isa<Constant>(Cmp.getOperand(1))) 898 return nullptr; 899 900 // Choose a sign-bit check for the compare (likely simpler for codegen). 901 // ABS: (X <s 0) ? -X : X 902 // NABS: (X <s 0) ? X : -X 903 Value *LHS, *RHS; 904 SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor; 905 if (SPF != SelectPatternFlavor::SPF_ABS && 906 SPF != SelectPatternFlavor::SPF_NABS) 907 return nullptr; 908 909 Value *TVal = Sel.getTrueValue(); 910 Value *FVal = Sel.getFalseValue(); 911 assert(isKnownNegation(TVal, FVal) && 912 "Unexpected result from matchSelectPattern"); 913 914 // The compare may use the negated abs()/nabs() operand, or it may use 915 // negation in non-canonical form such as: sub A, B. 916 bool CmpUsesNegatedOp = match(Cmp.getOperand(0), m_Neg(m_Specific(TVal))) || 917 match(Cmp.getOperand(0), m_Neg(m_Specific(FVal))); 918 919 bool CmpCanonicalized = !CmpUsesNegatedOp && 920 match(Cmp.getOperand(1), m_ZeroInt()) && 921 Cmp.getPredicate() == ICmpInst::ICMP_SLT; 922 bool RHSCanonicalized = match(RHS, m_Neg(m_Specific(LHS))); 923 924 // Is this already canonical? 925 if (CmpCanonicalized && RHSCanonicalized) 926 return nullptr; 927 928 // If RHS is used by other instructions except compare and select, don't 929 // canonicalize it to not increase the instruction count. 930 if (!(RHS->hasOneUse() || (RHS->hasNUses(2) && CmpUsesNegatedOp))) 931 return nullptr; 932 933 // Create the canonical compare: icmp slt LHS 0. 934 if (!CmpCanonicalized) { 935 Cmp.setPredicate(ICmpInst::ICMP_SLT); 936 Cmp.setOperand(1, ConstantInt::getNullValue(Cmp.getOperand(0)->getType())); 937 if (CmpUsesNegatedOp) 938 Cmp.setOperand(0, LHS); 939 } 940 941 // Create the canonical RHS: RHS = sub (0, LHS). 942 if (!RHSCanonicalized) { 943 assert(RHS->hasOneUse() && "RHS use number is not right"); 944 RHS = Builder.CreateNeg(LHS); 945 if (TVal == LHS) { 946 Sel.setFalseValue(RHS); 947 FVal = RHS; 948 } else { 949 Sel.setTrueValue(RHS); 950 TVal = RHS; 951 } 952 } 953 954 // If the select operands do not change, we're done. 955 if (SPF == SelectPatternFlavor::SPF_NABS) { 956 if (TVal == LHS) 957 return &Sel; 958 assert(FVal == LHS && "Unexpected results from matchSelectPattern"); 959 } else { 960 if (FVal == LHS) 961 return &Sel; 962 assert(TVal == LHS && "Unexpected results from matchSelectPattern"); 963 } 964 965 // We are swapping the select operands, so swap the metadata too. 966 Sel.setTrueValue(FVal); 967 Sel.setFalseValue(TVal); 968 Sel.swapProfMetadata(); 969 return &Sel; 970 } 971 972 /// Visit a SelectInst that has an ICmpInst as its first operand. 973 Instruction *InstCombiner::foldSelectInstWithICmp(SelectInst &SI, 974 ICmpInst *ICI) { 975 Value *TrueVal = SI.getTrueValue(); 976 Value *FalseVal = SI.getFalseValue(); 977 978 if (Instruction *NewSel = canonicalizeMinMaxWithConstant(SI, *ICI, Builder)) 979 return NewSel; 980 981 if (Instruction *NewAbs = canonicalizeAbsNabs(SI, *ICI, Builder)) 982 return NewAbs; 983 984 bool Changed = adjustMinMax(SI, *ICI); 985 986 if (Value *V = foldSelectICmpAnd(SI, ICI, Builder)) 987 return replaceInstUsesWith(SI, V); 988 989 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 990 ICmpInst::Predicate Pred = ICI->getPredicate(); 991 Value *CmpLHS = ICI->getOperand(0); 992 Value *CmpRHS = ICI->getOperand(1); 993 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 994 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 995 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 996 SI.setOperand(1, CmpRHS); 997 Changed = true; 998 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 999 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 1000 SI.setOperand(2, CmpRHS); 1001 Changed = true; 1002 } 1003 } 1004 1005 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 1006 // decomposeBitTestICmp() might help. 1007 { 1008 unsigned BitWidth = 1009 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 1010 APInt MinSignedValue = APInt::getSignedMinValue(BitWidth); 1011 Value *X; 1012 const APInt *Y, *C; 1013 bool TrueWhenUnset; 1014 bool IsBitTest = false; 1015 if (ICmpInst::isEquality(Pred) && 1016 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 1017 match(CmpRHS, m_Zero())) { 1018 IsBitTest = true; 1019 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 1020 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 1021 X = CmpLHS; 1022 Y = &MinSignedValue; 1023 IsBitTest = true; 1024 TrueWhenUnset = false; 1025 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 1026 X = CmpLHS; 1027 Y = &MinSignedValue; 1028 IsBitTest = true; 1029 TrueWhenUnset = true; 1030 } 1031 if (IsBitTest) { 1032 Value *V = nullptr; 1033 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 1034 if (TrueWhenUnset && TrueVal == X && 1035 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1036 V = Builder.CreateAnd(X, ~(*Y)); 1037 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 1038 else if (!TrueWhenUnset && FalseVal == X && 1039 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1040 V = Builder.CreateAnd(X, ~(*Y)); 1041 // (X & Y) == 0 ? X ^ Y : X --> X | Y 1042 else if (TrueWhenUnset && FalseVal == X && 1043 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1044 V = Builder.CreateOr(X, *Y); 1045 // (X & Y) != 0 ? X : X ^ Y --> X | Y 1046 else if (!TrueWhenUnset && TrueVal == X && 1047 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 1048 V = Builder.CreateOr(X, *Y); 1049 1050 if (V) 1051 return replaceInstUsesWith(SI, V); 1052 } 1053 } 1054 1055 if (Instruction *V = 1056 foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder)) 1057 return V; 1058 1059 if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder)) 1060 return replaceInstUsesWith(SI, V); 1061 1062 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 1063 return replaceInstUsesWith(SI, V); 1064 1065 if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder)) 1066 return replaceInstUsesWith(SI, V); 1067 1068 if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder)) 1069 return replaceInstUsesWith(SI, V); 1070 1071 return Changed ? &SI : nullptr; 1072 } 1073 1074 /// SI is a select whose condition is a PHI node (but the two may be in 1075 /// different blocks). See if the true/false values (V) are live in all of the 1076 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 1077 /// 1078 /// X = phi [ C1, BB1], [C2, BB2] 1079 /// Y = add 1080 /// Z = select X, Y, 0 1081 /// 1082 /// because Y is not live in BB1/BB2. 1083 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V, 1084 const SelectInst &SI) { 1085 // If the value is a non-instruction value like a constant or argument, it 1086 // can always be mapped. 1087 const Instruction *I = dyn_cast<Instruction>(V); 1088 if (!I) return true; 1089 1090 // If V is a PHI node defined in the same block as the condition PHI, we can 1091 // map the arguments. 1092 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 1093 1094 if (const PHINode *VP = dyn_cast<PHINode>(I)) 1095 if (VP->getParent() == CondPHI->getParent()) 1096 return true; 1097 1098 // Otherwise, if the PHI and select are defined in the same block and if V is 1099 // defined in a different block, then we can transform it. 1100 if (SI.getParent() == CondPHI->getParent() && 1101 I->getParent() != CondPHI->getParent()) 1102 return true; 1103 1104 // Otherwise we have a 'hard' case and we can't tell without doing more 1105 // detailed dominator based analysis, punt. 1106 return false; 1107 } 1108 1109 /// We have an SPF (e.g. a min or max) of an SPF of the form: 1110 /// SPF2(SPF1(A, B), C) 1111 Instruction *InstCombiner::foldSPFofSPF(Instruction *Inner, 1112 SelectPatternFlavor SPF1, 1113 Value *A, Value *B, 1114 Instruction &Outer, 1115 SelectPatternFlavor SPF2, Value *C) { 1116 if (Outer.getType() != Inner->getType()) 1117 return nullptr; 1118 1119 if (C == A || C == B) { 1120 // MAX(MAX(A, B), B) -> MAX(A, B) 1121 // MIN(MIN(a, b), a) -> MIN(a, b) 1122 // TODO: This could be done in instsimplify. 1123 if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1)) 1124 return replaceInstUsesWith(Outer, Inner); 1125 1126 // MAX(MIN(a, b), a) -> a 1127 // MIN(MAX(a, b), a) -> a 1128 // TODO: This could be done in instsimplify. 1129 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 1130 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 1131 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 1132 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 1133 return replaceInstUsesWith(Outer, C); 1134 } 1135 1136 if (SPF1 == SPF2) { 1137 const APInt *CB, *CC; 1138 if (match(B, m_APInt(CB)) && match(C, m_APInt(CC))) { 1139 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 1140 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 1141 // TODO: This could be done in instsimplify. 1142 if ((SPF1 == SPF_UMIN && CB->ule(*CC)) || 1143 (SPF1 == SPF_SMIN && CB->sle(*CC)) || 1144 (SPF1 == SPF_UMAX && CB->uge(*CC)) || 1145 (SPF1 == SPF_SMAX && CB->sge(*CC))) 1146 return replaceInstUsesWith(Outer, Inner); 1147 1148 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 1149 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 1150 if ((SPF1 == SPF_UMIN && CB->ugt(*CC)) || 1151 (SPF1 == SPF_SMIN && CB->sgt(*CC)) || 1152 (SPF1 == SPF_UMAX && CB->ult(*CC)) || 1153 (SPF1 == SPF_SMAX && CB->slt(*CC))) { 1154 Outer.replaceUsesOfWith(Inner, A); 1155 return &Outer; 1156 } 1157 } 1158 } 1159 1160 // ABS(ABS(X)) -> ABS(X) 1161 // NABS(NABS(X)) -> NABS(X) 1162 // TODO: This could be done in instsimplify. 1163 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 1164 return replaceInstUsesWith(Outer, Inner); 1165 } 1166 1167 // ABS(NABS(X)) -> ABS(X) 1168 // NABS(ABS(X)) -> NABS(X) 1169 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 1170 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 1171 SelectInst *SI = cast<SelectInst>(Inner); 1172 Value *NewSI = 1173 Builder.CreateSelect(SI->getCondition(), SI->getFalseValue(), 1174 SI->getTrueValue(), SI->getName(), SI); 1175 return replaceInstUsesWith(Outer, NewSI); 1176 } 1177 1178 auto IsFreeOrProfitableToInvert = 1179 [&](Value *V, Value *&NotV, bool &ElidesXor) { 1180 if (match(V, m_Not(m_Value(NotV)))) { 1181 // If V has at most 2 uses then we can get rid of the xor operation 1182 // entirely. 1183 ElidesXor |= !V->hasNUsesOrMore(3); 1184 return true; 1185 } 1186 1187 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 1188 NotV = nullptr; 1189 return true; 1190 } 1191 1192 return false; 1193 }; 1194 1195 Value *NotA, *NotB, *NotC; 1196 bool ElidesXor = false; 1197 1198 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 1199 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 1200 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 1201 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 1202 // 1203 // This transform is performance neutral if we can elide at least one xor from 1204 // the set of three operands, since we'll be tacking on an xor at the very 1205 // end. 1206 if (SelectPatternResult::isMinOrMax(SPF1) && 1207 SelectPatternResult::isMinOrMax(SPF2) && 1208 IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 1209 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 1210 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 1211 if (!NotA) 1212 NotA = Builder.CreateNot(A); 1213 if (!NotB) 1214 NotB = Builder.CreateNot(B); 1215 if (!NotC) 1216 NotC = Builder.CreateNot(C); 1217 1218 Value *NewInner = createMinMax(Builder, getInverseMinMaxFlavor(SPF1), NotA, 1219 NotB); 1220 Value *NewOuter = Builder.CreateNot( 1221 createMinMax(Builder, getInverseMinMaxFlavor(SPF2), NewInner, NotC)); 1222 return replaceInstUsesWith(Outer, NewOuter); 1223 } 1224 1225 return nullptr; 1226 } 1227 1228 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 1229 /// This is even legal for FP. 1230 static Instruction *foldAddSubSelect(SelectInst &SI, 1231 InstCombiner::BuilderTy &Builder) { 1232 Value *CondVal = SI.getCondition(); 1233 Value *TrueVal = SI.getTrueValue(); 1234 Value *FalseVal = SI.getFalseValue(); 1235 auto *TI = dyn_cast<Instruction>(TrueVal); 1236 auto *FI = dyn_cast<Instruction>(FalseVal); 1237 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 1238 return nullptr; 1239 1240 Instruction *AddOp = nullptr, *SubOp = nullptr; 1241 if ((TI->getOpcode() == Instruction::Sub && 1242 FI->getOpcode() == Instruction::Add) || 1243 (TI->getOpcode() == Instruction::FSub && 1244 FI->getOpcode() == Instruction::FAdd)) { 1245 AddOp = FI; 1246 SubOp = TI; 1247 } else if ((FI->getOpcode() == Instruction::Sub && 1248 TI->getOpcode() == Instruction::Add) || 1249 (FI->getOpcode() == Instruction::FSub && 1250 TI->getOpcode() == Instruction::FAdd)) { 1251 AddOp = TI; 1252 SubOp = FI; 1253 } 1254 1255 if (AddOp) { 1256 Value *OtherAddOp = nullptr; 1257 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 1258 OtherAddOp = AddOp->getOperand(1); 1259 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 1260 OtherAddOp = AddOp->getOperand(0); 1261 } 1262 1263 if (OtherAddOp) { 1264 // So at this point we know we have (Y -> OtherAddOp): 1265 // select C, (add X, Y), (sub X, Z) 1266 Value *NegVal; // Compute -Z 1267 if (SI.getType()->isFPOrFPVectorTy()) { 1268 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 1269 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 1270 FastMathFlags Flags = AddOp->getFastMathFlags(); 1271 Flags &= SubOp->getFastMathFlags(); 1272 NegInst->setFastMathFlags(Flags); 1273 } 1274 } else { 1275 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 1276 } 1277 1278 Value *NewTrueOp = OtherAddOp; 1279 Value *NewFalseOp = NegVal; 1280 if (AddOp != TI) 1281 std::swap(NewTrueOp, NewFalseOp); 1282 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 1283 SI.getName() + ".p", &SI); 1284 1285 if (SI.getType()->isFPOrFPVectorTy()) { 1286 Instruction *RI = 1287 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 1288 1289 FastMathFlags Flags = AddOp->getFastMathFlags(); 1290 Flags &= SubOp->getFastMathFlags(); 1291 RI->setFastMathFlags(Flags); 1292 return RI; 1293 } else 1294 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 1295 } 1296 } 1297 return nullptr; 1298 } 1299 1300 Instruction *InstCombiner::foldSelectExtConst(SelectInst &Sel) { 1301 Constant *C; 1302 if (!match(Sel.getTrueValue(), m_Constant(C)) && 1303 !match(Sel.getFalseValue(), m_Constant(C))) 1304 return nullptr; 1305 1306 Instruction *ExtInst; 1307 if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) && 1308 !match(Sel.getFalseValue(), m_Instruction(ExtInst))) 1309 return nullptr; 1310 1311 auto ExtOpcode = ExtInst->getOpcode(); 1312 if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt) 1313 return nullptr; 1314 1315 // If we are extending from a boolean type or if we can create a select that 1316 // has the same size operands as its condition, try to narrow the select. 1317 Value *X = ExtInst->getOperand(0); 1318 Type *SmallType = X->getType(); 1319 Value *Cond = Sel.getCondition(); 1320 auto *Cmp = dyn_cast<CmpInst>(Cond); 1321 if (!SmallType->isIntOrIntVectorTy(1) && 1322 (!Cmp || Cmp->getOperand(0)->getType() != SmallType)) 1323 return nullptr; 1324 1325 // If the constant is the same after truncation to the smaller type and 1326 // extension to the original type, we can narrow the select. 1327 Type *SelType = Sel.getType(); 1328 Constant *TruncC = ConstantExpr::getTrunc(C, SmallType); 1329 Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType); 1330 if (ExtC == C) { 1331 Value *TruncCVal = cast<Value>(TruncC); 1332 if (ExtInst == Sel.getFalseValue()) 1333 std::swap(X, TruncCVal); 1334 1335 // select Cond, (ext X), C --> ext(select Cond, X, C') 1336 // select Cond, C, (ext X) --> ext(select Cond, C', X) 1337 Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel); 1338 return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType); 1339 } 1340 1341 // If one arm of the select is the extend of the condition, replace that arm 1342 // with the extension of the appropriate known bool value. 1343 if (Cond == X) { 1344 if (ExtInst == Sel.getTrueValue()) { 1345 // select X, (sext X), C --> select X, -1, C 1346 // select X, (zext X), C --> select X, 1, C 1347 Constant *One = ConstantInt::getTrue(SmallType); 1348 Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType); 1349 return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel); 1350 } else { 1351 // select X, C, (sext X) --> select X, C, 0 1352 // select X, C, (zext X) --> select X, C, 0 1353 Constant *Zero = ConstantInt::getNullValue(SelType); 1354 return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel); 1355 } 1356 } 1357 1358 return nullptr; 1359 } 1360 1361 /// Try to transform a vector select with a constant condition vector into a 1362 /// shuffle for easier combining with other shuffles and insert/extract. 1363 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) { 1364 Value *CondVal = SI.getCondition(); 1365 Constant *CondC; 1366 if (!CondVal->getType()->isVectorTy() || !match(CondVal, m_Constant(CondC))) 1367 return nullptr; 1368 1369 unsigned NumElts = CondVal->getType()->getVectorNumElements(); 1370 SmallVector<Constant *, 16> Mask; 1371 Mask.reserve(NumElts); 1372 Type *Int32Ty = Type::getInt32Ty(CondVal->getContext()); 1373 for (unsigned i = 0; i != NumElts; ++i) { 1374 Constant *Elt = CondC->getAggregateElement(i); 1375 if (!Elt) 1376 return nullptr; 1377 1378 if (Elt->isOneValue()) { 1379 // If the select condition element is true, choose from the 1st vector. 1380 Mask.push_back(ConstantInt::get(Int32Ty, i)); 1381 } else if (Elt->isNullValue()) { 1382 // If the select condition element is false, choose from the 2nd vector. 1383 Mask.push_back(ConstantInt::get(Int32Ty, i + NumElts)); 1384 } else if (isa<UndefValue>(Elt)) { 1385 // Undef in a select condition (choose one of the operands) does not mean 1386 // the same thing as undef in a shuffle mask (any value is acceptable), so 1387 // give up. 1388 return nullptr; 1389 } else { 1390 // Bail out on a constant expression. 1391 return nullptr; 1392 } 1393 } 1394 1395 return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), 1396 ConstantVector::get(Mask)); 1397 } 1398 1399 /// Reuse bitcasted operands between a compare and select: 1400 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1401 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D)) 1402 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel, 1403 InstCombiner::BuilderTy &Builder) { 1404 Value *Cond = Sel.getCondition(); 1405 Value *TVal = Sel.getTrueValue(); 1406 Value *FVal = Sel.getFalseValue(); 1407 1408 CmpInst::Predicate Pred; 1409 Value *A, *B; 1410 if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B)))) 1411 return nullptr; 1412 1413 // The select condition is a compare instruction. If the select's true/false 1414 // values are already the same as the compare operands, there's nothing to do. 1415 if (TVal == A || TVal == B || FVal == A || FVal == B) 1416 return nullptr; 1417 1418 Value *C, *D; 1419 if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D)))) 1420 return nullptr; 1421 1422 // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc) 1423 Value *TSrc, *FSrc; 1424 if (!match(TVal, m_BitCast(m_Value(TSrc))) || 1425 !match(FVal, m_BitCast(m_Value(FSrc)))) 1426 return nullptr; 1427 1428 // If the select true/false values are *different bitcasts* of the same source 1429 // operands, make the select operands the same as the compare operands and 1430 // cast the result. This is the canonical select form for min/max. 1431 Value *NewSel; 1432 if (TSrc == C && FSrc == D) { 1433 // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) --> 1434 // bitcast (select (cmp A, B), A, B) 1435 NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel); 1436 } else if (TSrc == D && FSrc == C) { 1437 // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) --> 1438 // bitcast (select (cmp A, B), B, A) 1439 NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel); 1440 } else { 1441 return nullptr; 1442 } 1443 return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType()); 1444 } 1445 1446 /// Try to eliminate select instructions that test the returned flag of cmpxchg 1447 /// instructions. 1448 /// 1449 /// If a select instruction tests the returned flag of a cmpxchg instruction and 1450 /// selects between the returned value of the cmpxchg instruction its compare 1451 /// operand, the result of the select will always be equal to its false value. 1452 /// For example: 1453 /// 1454 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1455 /// %1 = extractvalue { i64, i1 } %0, 1 1456 /// %2 = extractvalue { i64, i1 } %0, 0 1457 /// %3 = select i1 %1, i64 %compare, i64 %2 1458 /// ret i64 %3 1459 /// 1460 /// The returned value of the cmpxchg instruction (%2) is the original value 1461 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2 1462 /// must have been equal to %compare. Thus, the result of the select is always 1463 /// equal to %2, and the code can be simplified to: 1464 /// 1465 /// %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst 1466 /// %1 = extractvalue { i64, i1 } %0, 0 1467 /// ret i64 %1 1468 /// 1469 static Instruction *foldSelectCmpXchg(SelectInst &SI) { 1470 // A helper that determines if V is an extractvalue instruction whose 1471 // aggregate operand is a cmpxchg instruction and whose single index is equal 1472 // to I. If such conditions are true, the helper returns the cmpxchg 1473 // instruction; otherwise, a nullptr is returned. 1474 auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * { 1475 auto *Extract = dyn_cast<ExtractValueInst>(V); 1476 if (!Extract) 1477 return nullptr; 1478 if (Extract->getIndices()[0] != I) 1479 return nullptr; 1480 return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand()); 1481 }; 1482 1483 // If the select has a single user, and this user is a select instruction that 1484 // we can simplify, skip the cmpxchg simplification for now. 1485 if (SI.hasOneUse()) 1486 if (auto *Select = dyn_cast<SelectInst>(SI.user_back())) 1487 if (Select->getCondition() == SI.getCondition()) 1488 if (Select->getFalseValue() == SI.getTrueValue() || 1489 Select->getTrueValue() == SI.getFalseValue()) 1490 return nullptr; 1491 1492 // Ensure the select condition is the returned flag of a cmpxchg instruction. 1493 auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1); 1494 if (!CmpXchg) 1495 return nullptr; 1496 1497 // Check the true value case: The true value of the select is the returned 1498 // value of the same cmpxchg used by the condition, and the false value is the 1499 // cmpxchg instruction's compare operand. 1500 if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0)) 1501 if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue()) { 1502 SI.setTrueValue(SI.getFalseValue()); 1503 return &SI; 1504 } 1505 1506 // Check the false value case: The false value of the select is the returned 1507 // value of the same cmpxchg used by the condition, and the true value is the 1508 // cmpxchg instruction's compare operand. 1509 if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0)) 1510 if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue()) { 1511 SI.setTrueValue(SI.getFalseValue()); 1512 return &SI; 1513 } 1514 1515 return nullptr; 1516 } 1517 1518 /// Reduce a sequence of min/max with a common operand. 1519 static Instruction *factorizeMinMaxTree(SelectPatternFlavor SPF, Value *LHS, 1520 Value *RHS, 1521 InstCombiner::BuilderTy &Builder) { 1522 assert(SelectPatternResult::isMinOrMax(SPF) && "Expected a min/max"); 1523 // TODO: Allow FP min/max with nnan/nsz. 1524 if (!LHS->getType()->isIntOrIntVectorTy()) 1525 return nullptr; 1526 1527 // Match 3 of the same min/max ops. Example: umin(umin(), umin()). 1528 Value *A, *B, *C, *D; 1529 SelectPatternResult L = matchSelectPattern(LHS, A, B); 1530 SelectPatternResult R = matchSelectPattern(RHS, C, D); 1531 if (SPF != L.Flavor || L.Flavor != R.Flavor) 1532 return nullptr; 1533 1534 // Look for a common operand. The use checks are different than usual because 1535 // a min/max pattern typically has 2 uses of each op: 1 by the cmp and 1 by 1536 // the select. 1537 Value *MinMaxOp = nullptr; 1538 Value *ThirdOp = nullptr; 1539 if (!LHS->hasNUsesOrMore(3) && RHS->hasNUsesOrMore(3)) { 1540 // If the LHS is only used in this chain and the RHS is used outside of it, 1541 // reuse the RHS min/max because that will eliminate the LHS. 1542 if (D == A || C == A) { 1543 // min(min(a, b), min(c, a)) --> min(min(c, a), b) 1544 // min(min(a, b), min(a, d)) --> min(min(a, d), b) 1545 MinMaxOp = RHS; 1546 ThirdOp = B; 1547 } else if (D == B || C == B) { 1548 // min(min(a, b), min(c, b)) --> min(min(c, b), a) 1549 // min(min(a, b), min(b, d)) --> min(min(b, d), a) 1550 MinMaxOp = RHS; 1551 ThirdOp = A; 1552 } 1553 } else if (!RHS->hasNUsesOrMore(3)) { 1554 // Reuse the LHS. This will eliminate the RHS. 1555 if (D == A || D == B) { 1556 // min(min(a, b), min(c, a)) --> min(min(a, b), c) 1557 // min(min(a, b), min(c, b)) --> min(min(a, b), c) 1558 MinMaxOp = LHS; 1559 ThirdOp = C; 1560 } else if (C == A || C == B) { 1561 // min(min(a, b), min(b, d)) --> min(min(a, b), d) 1562 // min(min(a, b), min(c, b)) --> min(min(a, b), d) 1563 MinMaxOp = LHS; 1564 ThirdOp = D; 1565 } 1566 } 1567 if (!MinMaxOp || !ThirdOp) 1568 return nullptr; 1569 1570 CmpInst::Predicate P = getMinMaxPred(SPF); 1571 Value *CmpABC = Builder.CreateICmp(P, MinMaxOp, ThirdOp); 1572 return SelectInst::Create(CmpABC, MinMaxOp, ThirdOp); 1573 } 1574 1575 /// Try to reduce a rotate pattern that includes a compare and select into a 1576 /// funnel shift intrinsic. Example: 1577 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b))) 1578 /// --> call llvm.fshl.i32(a, a, b) 1579 static Instruction *foldSelectRotate(SelectInst &Sel) { 1580 // The false value of the select must be a rotate of the true value. 1581 Value *Or0, *Or1; 1582 if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_Value(Or0), m_Value(Or1))))) 1583 return nullptr; 1584 1585 Value *TVal = Sel.getTrueValue(); 1586 Value *SA0, *SA1; 1587 if (!match(Or0, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA0)))) || 1588 !match(Or1, m_OneUse(m_LogicalShift(m_Specific(TVal), m_Value(SA1))))) 1589 return nullptr; 1590 1591 auto ShiftOpcode0 = cast<BinaryOperator>(Or0)->getOpcode(); 1592 auto ShiftOpcode1 = cast<BinaryOperator>(Or1)->getOpcode(); 1593 if (ShiftOpcode0 == ShiftOpcode1) 1594 return nullptr; 1595 1596 // We have one of these patterns so far: 1597 // select ?, TVal, (or (lshr TVal, SA0), (shl TVal, SA1)) 1598 // select ?, TVal, (or (shl TVal, SA0), (lshr TVal, SA1)) 1599 // This must be a power-of-2 rotate for a bitmasking transform to be valid. 1600 unsigned Width = Sel.getType()->getScalarSizeInBits(); 1601 if (!isPowerOf2_32(Width)) 1602 return nullptr; 1603 1604 // Check the shift amounts to see if they are an opposite pair. 1605 Value *ShAmt; 1606 if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0))))) 1607 ShAmt = SA0; 1608 else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1))))) 1609 ShAmt = SA1; 1610 else 1611 return nullptr; 1612 1613 // Finally, see if the select is filtering out a shift-by-zero. 1614 Value *Cond = Sel.getCondition(); 1615 ICmpInst::Predicate Pred; 1616 if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) || 1617 Pred != ICmpInst::ICMP_EQ) 1618 return nullptr; 1619 1620 // This is a rotate that avoids shift-by-bitwidth UB in a suboptimal way. 1621 // Convert to funnel shift intrinsic. 1622 bool IsFshl = (ShAmt == SA0 && ShiftOpcode0 == BinaryOperator::Shl) || 1623 (ShAmt == SA1 && ShiftOpcode1 == BinaryOperator::Shl); 1624 Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr; 1625 Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType()); 1626 return IntrinsicInst::Create(F, { TVal, TVal, ShAmt }); 1627 } 1628 1629 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 1630 Value *CondVal = SI.getCondition(); 1631 Value *TrueVal = SI.getTrueValue(); 1632 Value *FalseVal = SI.getFalseValue(); 1633 Type *SelType = SI.getType(); 1634 1635 // FIXME: Remove this workaround when freeze related patches are done. 1636 // For select with undef operand which feeds into an equality comparison, 1637 // don't simplify it so loop unswitch can know the equality comparison 1638 // may have an undef operand. This is a workaround for PR31652 caused by 1639 // descrepancy about branch on undef between LoopUnswitch and GVN. 1640 if (isa<UndefValue>(TrueVal) || isa<UndefValue>(FalseVal)) { 1641 if (llvm::any_of(SI.users(), [&](User *U) { 1642 ICmpInst *CI = dyn_cast<ICmpInst>(U); 1643 if (CI && CI->isEquality()) 1644 return true; 1645 return false; 1646 })) { 1647 return nullptr; 1648 } 1649 } 1650 1651 if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal, 1652 SQ.getWithInstruction(&SI))) 1653 return replaceInstUsesWith(SI, V); 1654 1655 if (Instruction *I = canonicalizeSelectToShuffle(SI)) 1656 return I; 1657 1658 // Canonicalize a one-use integer compare with a non-canonical predicate by 1659 // inverting the predicate and swapping the select operands. This matches a 1660 // compare canonicalization for conditional branches. 1661 // TODO: Should we do the same for FP compares? 1662 CmpInst::Predicate Pred; 1663 if (match(CondVal, m_OneUse(m_ICmp(Pred, m_Value(), m_Value()))) && 1664 !isCanonicalPredicate(Pred)) { 1665 // Swap true/false values and condition. 1666 CmpInst *Cond = cast<CmpInst>(CondVal); 1667 Cond->setPredicate(CmpInst::getInversePredicate(Pred)); 1668 SI.setOperand(1, FalseVal); 1669 SI.setOperand(2, TrueVal); 1670 SI.swapProfMetadata(); 1671 Worklist.Add(Cond); 1672 return &SI; 1673 } 1674 1675 if (SelType->isIntOrIntVectorTy(1) && 1676 TrueVal->getType() == CondVal->getType()) { 1677 if (match(TrueVal, m_One())) { 1678 // Change: A = select B, true, C --> A = or B, C 1679 return BinaryOperator::CreateOr(CondVal, FalseVal); 1680 } 1681 if (match(TrueVal, m_Zero())) { 1682 // Change: A = select B, false, C --> A = and !B, C 1683 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1684 return BinaryOperator::CreateAnd(NotCond, FalseVal); 1685 } 1686 if (match(FalseVal, m_Zero())) { 1687 // Change: A = select B, C, false --> A = and B, C 1688 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1689 } 1690 if (match(FalseVal, m_One())) { 1691 // Change: A = select B, C, true --> A = or !B, C 1692 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1693 return BinaryOperator::CreateOr(NotCond, TrueVal); 1694 } 1695 1696 // select a, a, b -> a | b 1697 // select a, b, a -> a & b 1698 if (CondVal == TrueVal) 1699 return BinaryOperator::CreateOr(CondVal, FalseVal); 1700 if (CondVal == FalseVal) 1701 return BinaryOperator::CreateAnd(CondVal, TrueVal); 1702 1703 // select a, ~a, b -> (~a) & b 1704 // select a, b, ~a -> (~a) | b 1705 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 1706 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 1707 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 1708 return BinaryOperator::CreateOr(TrueVal, FalseVal); 1709 } 1710 1711 // Selecting between two integer or vector splat integer constants? 1712 // 1713 // Note that we don't handle a scalar select of vectors: 1714 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 1715 // because that may need 3 instructions to splat the condition value: 1716 // extend, insertelement, shufflevector. 1717 if (SelType->isIntOrIntVectorTy() && 1718 CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 1719 // select C, 1, 0 -> zext C to int 1720 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 1721 return new ZExtInst(CondVal, SelType); 1722 1723 // select C, -1, 0 -> sext C to int 1724 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 1725 return new SExtInst(CondVal, SelType); 1726 1727 // select C, 0, 1 -> zext !C to int 1728 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 1729 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1730 return new ZExtInst(NotCond, SelType); 1731 } 1732 1733 // select C, 0, -1 -> sext !C to int 1734 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 1735 Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName()); 1736 return new SExtInst(NotCond, SelType); 1737 } 1738 } 1739 1740 // See if we are selecting two values based on a comparison of the two values. 1741 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 1742 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 1743 // Canonicalize to use ordered comparisons by swapping the select 1744 // operands. 1745 // 1746 // e.g. 1747 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1748 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1749 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1750 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1751 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1752 Value *NewCond = Builder.CreateFCmp(InvPred, TrueVal, FalseVal, 1753 FCI->getName() + ".inv"); 1754 1755 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1756 SI.getName() + ".p"); 1757 } 1758 1759 // NOTE: if we wanted to, this is where to detect MIN/MAX 1760 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1761 // Canonicalize to use ordered comparisons by swapping the select 1762 // operands. 1763 // 1764 // e.g. 1765 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1766 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1767 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1768 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1769 Builder.setFastMathFlags(FCI->getFastMathFlags()); 1770 Value *NewCond = Builder.CreateFCmp(InvPred, FalseVal, TrueVal, 1771 FCI->getName() + ".inv"); 1772 1773 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1774 SI.getName() + ".p"); 1775 } 1776 1777 // NOTE: if we wanted to, this is where to detect MIN/MAX 1778 } 1779 1780 // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need 1781 // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work. We 1782 // also require nnan because we do not want to unintentionally change the 1783 // sign of a NaN value. 1784 Value *X = FCI->getOperand(0); 1785 FCmpInst::Predicate Pred = FCI->getPredicate(); 1786 if (match(FCI->getOperand(1), m_AnyZeroFP()) && FCI->hasNoNaNs()) { 1787 // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X) 1788 // (X > +/-0.0) ? X : (0.0 - X) --> fabs(X) 1789 if ((X == FalseVal && Pred == FCmpInst::FCMP_OLE && 1790 match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(X)))) || 1791 (X == TrueVal && Pred == FCmpInst::FCMP_OGT && 1792 match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(X))))) { 1793 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); 1794 return replaceInstUsesWith(SI, Fabs); 1795 } 1796 // With nsz: 1797 // (X < +/-0.0) ? -X : X --> fabs(X) 1798 // (X <= +/-0.0) ? -X : X --> fabs(X) 1799 // (X > +/-0.0) ? X : -X --> fabs(X) 1800 // (X >= +/-0.0) ? X : -X --> fabs(X) 1801 if (FCI->hasNoSignedZeros() && 1802 ((X == FalseVal && match(TrueVal, m_FNeg(m_Specific(X))) && 1803 (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE)) || 1804 (X == TrueVal && match(FalseVal, m_FNeg(m_Specific(X))) && 1805 (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE)))) { 1806 Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, X, FCI); 1807 return replaceInstUsesWith(SI, Fabs); 1808 } 1809 } 1810 } 1811 1812 // See if we are selecting two values based on a comparison of the two values. 1813 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1814 if (Instruction *Result = foldSelectInstWithICmp(SI, ICI)) 1815 return Result; 1816 1817 if (Instruction *Add = foldAddSubSelect(SI, Builder)) 1818 return Add; 1819 1820 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1821 auto *TI = dyn_cast<Instruction>(TrueVal); 1822 auto *FI = dyn_cast<Instruction>(FalseVal); 1823 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1824 if (Instruction *IV = foldSelectOpOp(SI, TI, FI)) 1825 return IV; 1826 1827 if (Instruction *I = foldSelectExtConst(SI)) 1828 return I; 1829 1830 // See if we can fold the select into one of our operands. 1831 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1832 if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal)) 1833 return FoldI; 1834 1835 Value *LHS, *RHS; 1836 Instruction::CastOps CastOp; 1837 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1838 auto SPF = SPR.Flavor; 1839 if (SPF) { 1840 Value *LHS2, *RHS2; 1841 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1842 if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2, 1843 RHS2, SI, SPF, RHS)) 1844 return R; 1845 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1846 if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2, 1847 RHS2, SI, SPF, LHS)) 1848 return R; 1849 // TODO. 1850 // ABS(-X) -> ABS(X) 1851 } 1852 1853 if (SelectPatternResult::isMinOrMax(SPF)) { 1854 // Canonicalize so that 1855 // - type casts are outside select patterns. 1856 // - float clamp is transformed to min/max pattern 1857 1858 bool IsCastNeeded = LHS->getType() != SelType; 1859 Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0); 1860 Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1); 1861 if (IsCastNeeded || 1862 (LHS->getType()->isFPOrFPVectorTy() && 1863 ((CmpLHS != LHS && CmpLHS != RHS) || 1864 (CmpRHS != LHS && CmpRHS != RHS)))) { 1865 CmpInst::Predicate Pred = getMinMaxPred(SPF, SPR.Ordered); 1866 1867 Value *Cmp; 1868 if (CmpInst::isIntPredicate(Pred)) { 1869 Cmp = Builder.CreateICmp(Pred, LHS, RHS); 1870 } else { 1871 IRBuilder<>::FastMathFlagGuard FMFG(Builder); 1872 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1873 Builder.setFastMathFlags(FMF); 1874 Cmp = Builder.CreateFCmp(Pred, LHS, RHS); 1875 } 1876 1877 Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI); 1878 if (!IsCastNeeded) 1879 return replaceInstUsesWith(SI, NewSI); 1880 1881 Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType); 1882 return replaceInstUsesWith(SI, NewCast); 1883 } 1884 1885 // MAX(~a, ~b) -> ~MIN(a, b) 1886 // MAX(~a, C) -> ~MIN(a, ~C) 1887 // MIN(~a, ~b) -> ~MAX(a, b) 1888 // MIN(~a, C) -> ~MAX(a, ~C) 1889 auto moveNotAfterMinMax = [&](Value *X, Value *Y) -> Instruction * { 1890 Value *A; 1891 if (match(X, m_Not(m_Value(A))) && !X->hasNUsesOrMore(3) && 1892 !IsFreeToInvert(A, A->hasOneUse()) && 1893 // Passing false to only consider m_Not and constants. 1894 IsFreeToInvert(Y, false)) { 1895 Value *B = Builder.CreateNot(Y); 1896 Value *NewMinMax = createMinMax(Builder, getInverseMinMaxFlavor(SPF), 1897 A, B); 1898 // Copy the profile metadata. 1899 if (MDNode *MD = SI.getMetadata(LLVMContext::MD_prof)) { 1900 cast<SelectInst>(NewMinMax)->setMetadata(LLVMContext::MD_prof, MD); 1901 // Swap the metadata if the operands are swapped. 1902 if (X == SI.getFalseValue() && Y == SI.getTrueValue()) 1903 cast<SelectInst>(NewMinMax)->swapProfMetadata(); 1904 } 1905 1906 return BinaryOperator::CreateNot(NewMinMax); 1907 } 1908 1909 return nullptr; 1910 }; 1911 1912 if (Instruction *I = moveNotAfterMinMax(LHS, RHS)) 1913 return I; 1914 if (Instruction *I = moveNotAfterMinMax(RHS, LHS)) 1915 return I; 1916 1917 if (Instruction *I = factorizeMinMaxTree(SPF, LHS, RHS, Builder)) 1918 return I; 1919 } 1920 } 1921 1922 // See if we can fold the select into a phi node if the condition is a select. 1923 if (auto *PN = dyn_cast<PHINode>(SI.getCondition())) 1924 // The true/false values have to be live in the PHI predecessor's blocks. 1925 if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1926 canSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1927 if (Instruction *NV = foldOpIntoPhi(SI, PN)) 1928 return NV; 1929 1930 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1931 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 1932 // select(C, select(C, a, b), c) -> select(C, a, c) 1933 if (TrueSI->getCondition() == CondVal) { 1934 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1935 return nullptr; 1936 SI.setOperand(1, TrueSI->getTrueValue()); 1937 return &SI; 1938 } 1939 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1940 // We choose this as normal form to enable folding on the And and shortening 1941 // paths for the values (this helps GetUnderlyingObjects() for example). 1942 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1943 Value *And = Builder.CreateAnd(CondVal, TrueSI->getCondition()); 1944 SI.setOperand(0, And); 1945 SI.setOperand(1, TrueSI->getTrueValue()); 1946 return &SI; 1947 } 1948 } 1949 } 1950 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1951 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 1952 // select(C, a, select(C, b, c)) -> select(C, a, c) 1953 if (FalseSI->getCondition() == CondVal) { 1954 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1955 return nullptr; 1956 SI.setOperand(2, FalseSI->getFalseValue()); 1957 return &SI; 1958 } 1959 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1960 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1961 Value *Or = Builder.CreateOr(CondVal, FalseSI->getCondition()); 1962 SI.setOperand(0, Or); 1963 SI.setOperand(2, FalseSI->getFalseValue()); 1964 return &SI; 1965 } 1966 } 1967 } 1968 1969 auto canMergeSelectThroughBinop = [](BinaryOperator *BO) { 1970 // The select might be preventing a division by 0. 1971 switch (BO->getOpcode()) { 1972 default: 1973 return true; 1974 case Instruction::SRem: 1975 case Instruction::URem: 1976 case Instruction::SDiv: 1977 case Instruction::UDiv: 1978 return false; 1979 } 1980 }; 1981 1982 // Try to simplify a binop sandwiched between 2 selects with the same 1983 // condition. 1984 // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z) 1985 BinaryOperator *TrueBO; 1986 if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) && 1987 canMergeSelectThroughBinop(TrueBO)) { 1988 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) { 1989 if (TrueBOSI->getCondition() == CondVal) { 1990 TrueBO->setOperand(0, TrueBOSI->getTrueValue()); 1991 Worklist.Add(TrueBO); 1992 return &SI; 1993 } 1994 } 1995 if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) { 1996 if (TrueBOSI->getCondition() == CondVal) { 1997 TrueBO->setOperand(1, TrueBOSI->getTrueValue()); 1998 Worklist.Add(TrueBO); 1999 return &SI; 2000 } 2001 } 2002 } 2003 2004 // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W)) 2005 BinaryOperator *FalseBO; 2006 if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) && 2007 canMergeSelectThroughBinop(FalseBO)) { 2008 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) { 2009 if (FalseBOSI->getCondition() == CondVal) { 2010 FalseBO->setOperand(0, FalseBOSI->getFalseValue()); 2011 Worklist.Add(FalseBO); 2012 return &SI; 2013 } 2014 } 2015 if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) { 2016 if (FalseBOSI->getCondition() == CondVal) { 2017 FalseBO->setOperand(1, FalseBOSI->getFalseValue()); 2018 Worklist.Add(FalseBO); 2019 return &SI; 2020 } 2021 } 2022 } 2023 2024 Value *NotCond; 2025 if (match(CondVal, m_Not(m_Value(NotCond)))) { 2026 SI.setOperand(0, NotCond); 2027 SI.setOperand(1, FalseVal); 2028 SI.setOperand(2, TrueVal); 2029 SI.swapProfMetadata(); 2030 return &SI; 2031 } 2032 2033 if (VectorType *VecTy = dyn_cast<VectorType>(SelType)) { 2034 unsigned VWidth = VecTy->getNumElements(); 2035 APInt UndefElts(VWidth, 0); 2036 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 2037 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 2038 if (V != &SI) 2039 return replaceInstUsesWith(SI, V); 2040 return &SI; 2041 } 2042 } 2043 2044 // If we can compute the condition, there's no need for a select. 2045 // Like the above fold, we are attempting to reduce compile-time cost by 2046 // putting this fold here with limitations rather than in InstSimplify. 2047 // The motivation for this call into value tracking is to take advantage of 2048 // the assumption cache, so make sure that is populated. 2049 if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) { 2050 KnownBits Known(1); 2051 computeKnownBits(CondVal, Known, 0, &SI); 2052 if (Known.One.isOneValue()) 2053 return replaceInstUsesWith(SI, TrueVal); 2054 if (Known.Zero.isOneValue()) 2055 return replaceInstUsesWith(SI, FalseVal); 2056 } 2057 2058 if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder)) 2059 return BitCastSel; 2060 2061 // Simplify selects that test the returned flag of cmpxchg instructions. 2062 if (Instruction *Select = foldSelectCmpXchg(SI)) 2063 return Select; 2064 2065 if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI)) 2066 return Select; 2067 2068 if (Instruction *Rot = foldSelectRotate(SI)) 2069 return Rot; 2070 2071 return nullptr; 2072 } 2073