1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitSelect function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/PatternMatch.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 #define DEBUG_TYPE "instcombine" 23 24 static SelectPatternFlavor 25 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) { 26 switch (SPF) { 27 default: 28 llvm_unreachable("unhandled!"); 29 30 case SPF_SMIN: 31 return SPF_SMAX; 32 case SPF_UMIN: 33 return SPF_UMAX; 34 case SPF_SMAX: 35 return SPF_SMIN; 36 case SPF_UMAX: 37 return SPF_UMIN; 38 } 39 } 40 41 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF, 42 bool Ordered=false) { 43 switch (SPF) { 44 default: 45 llvm_unreachable("unhandled!"); 46 47 case SPF_SMIN: 48 return ICmpInst::ICMP_SLT; 49 case SPF_UMIN: 50 return ICmpInst::ICMP_ULT; 51 case SPF_SMAX: 52 return ICmpInst::ICMP_SGT; 53 case SPF_UMAX: 54 return ICmpInst::ICMP_UGT; 55 case SPF_FMINNUM: 56 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 57 case SPF_FMAXNUM: 58 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 59 } 60 } 61 62 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder, 63 SelectPatternFlavor SPF, Value *A, 64 Value *B) { 65 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF); 66 assert(CmpInst::isIntPredicate(Pred)); 67 return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B); 68 } 69 70 /// We want to turn code that looks like this: 71 /// %C = or %A, %B 72 /// %D = select %cond, %C, %A 73 /// into: 74 /// %C = select %cond, %B, 0 75 /// %D = or %A, %C 76 /// 77 /// Assuming that the specified instruction is an operand to the select, return 78 /// a bitmask indicating which operands of this instruction are foldable if they 79 /// equal the other incoming value of the select. 80 /// 81 static unsigned GetSelectFoldableOperands(Instruction *I) { 82 switch (I->getOpcode()) { 83 case Instruction::Add: 84 case Instruction::Mul: 85 case Instruction::And: 86 case Instruction::Or: 87 case Instruction::Xor: 88 return 3; // Can fold through either operand. 89 case Instruction::Sub: // Can only fold on the amount subtracted. 90 case Instruction::Shl: // Can only fold on the shift amount. 91 case Instruction::LShr: 92 case Instruction::AShr: 93 return 1; 94 default: 95 return 0; // Cannot fold 96 } 97 } 98 99 /// For the same transformation as the previous function, return the identity 100 /// constant that goes into the select. 101 static Constant *GetSelectFoldableConstant(Instruction *I) { 102 switch (I->getOpcode()) { 103 default: llvm_unreachable("This cannot happen!"); 104 case Instruction::Add: 105 case Instruction::Sub: 106 case Instruction::Or: 107 case Instruction::Xor: 108 case Instruction::Shl: 109 case Instruction::LShr: 110 case Instruction::AShr: 111 return Constant::getNullValue(I->getType()); 112 case Instruction::And: 113 return Constant::getAllOnesValue(I->getType()); 114 case Instruction::Mul: 115 return ConstantInt::get(I->getType(), 1); 116 } 117 } 118 119 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 120 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, 121 Instruction *FI) { 122 // If this is a cast from the same type, merge. 123 if (TI->getNumOperands() == 1 && TI->isCast()) { 124 Type *FIOpndTy = FI->getOperand(0)->getType(); 125 if (TI->getOperand(0)->getType() != FIOpndTy) 126 return nullptr; 127 128 // The select condition may be a vector. We may only change the operand 129 // type if the vector width remains the same (and matches the condition). 130 Type *CondTy = SI.getCondition()->getType(); 131 if (CondTy->isVectorTy()) { 132 if (!FIOpndTy->isVectorTy()) 133 return nullptr; 134 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 135 return nullptr; 136 137 // TODO: If the backend knew how to deal with casts better, we could 138 // remove this limitation. For now, there's too much potential to create 139 // worse codegen by promoting the select ahead of size-altering casts 140 // (PR28160). 141 // 142 // Note that ValueTracking's matchSelectPattern() looks through casts 143 // without checking 'hasOneUse' when it matches min/max patterns, so this 144 // transform may end up happening anyway. 145 if (TI->getOpcode() != Instruction::BitCast && 146 (!TI->hasOneUse() || !FI->hasOneUse())) 147 return nullptr; 148 149 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 150 // TODO: The one-use restrictions for a scalar select could be eased if 151 // the fold of a select in visitLoadInst() was enhanced to match a pattern 152 // that includes a cast. 153 return nullptr; 154 } 155 156 // Fold this by inserting a select from the input values. 157 Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0), 158 FI->getOperand(0), SI.getName()+".v"); 159 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 160 TI->getType()); 161 } 162 163 // TODO: This function ends awkwardly in unreachable - fix to be more normal. 164 165 // Only handle binary operators with one-use here. As with the cast case 166 // above, it may be possible to relax the one-use constraint, but that needs 167 // be examined carefully since it may not reduce the total number of 168 // instructions. 169 if (!isa<BinaryOperator>(TI) || !TI->hasOneUse() || !FI->hasOneUse()) 170 return nullptr; 171 172 // Figure out if the operations have any operands in common. 173 Value *MatchOp, *OtherOpT, *OtherOpF; 174 bool MatchIsOpZero; 175 if (TI->getOperand(0) == FI->getOperand(0)) { 176 MatchOp = TI->getOperand(0); 177 OtherOpT = TI->getOperand(1); 178 OtherOpF = FI->getOperand(1); 179 MatchIsOpZero = true; 180 } else if (TI->getOperand(1) == FI->getOperand(1)) { 181 MatchOp = TI->getOperand(1); 182 OtherOpT = TI->getOperand(0); 183 OtherOpF = FI->getOperand(0); 184 MatchIsOpZero = false; 185 } else if (!TI->isCommutative()) { 186 return nullptr; 187 } else if (TI->getOperand(0) == FI->getOperand(1)) { 188 MatchOp = TI->getOperand(0); 189 OtherOpT = TI->getOperand(1); 190 OtherOpF = FI->getOperand(0); 191 MatchIsOpZero = true; 192 } else if (TI->getOperand(1) == FI->getOperand(0)) { 193 MatchOp = TI->getOperand(1); 194 OtherOpT = TI->getOperand(0); 195 OtherOpF = FI->getOperand(1); 196 MatchIsOpZero = true; 197 } else { 198 return nullptr; 199 } 200 201 // If we reach here, they do have operations in common. 202 Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, 203 OtherOpF, SI.getName()+".v"); 204 205 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) { 206 if (MatchIsOpZero) 207 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI); 208 else 209 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp); 210 } 211 llvm_unreachable("Shouldn't get here"); 212 } 213 214 static bool isSelect01(Constant *C1, Constant *C2) { 215 ConstantInt *C1I = dyn_cast<ConstantInt>(C1); 216 if (!C1I) 217 return false; 218 ConstantInt *C2I = dyn_cast<ConstantInt>(C2); 219 if (!C2I) 220 return false; 221 if (!C1I->isZero() && !C2I->isZero()) // One side must be zero. 222 return false; 223 return C1I->isOne() || C1I->isAllOnesValue() || 224 C2I->isOne() || C2I->isAllOnesValue(); 225 } 226 227 /// Try to fold the select into one of the operands to allow further 228 /// optimization. 229 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal, 230 Value *FalseVal) { 231 // See the comment above GetSelectFoldableOperands for a description of the 232 // transformation we are doing here. 233 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) { 234 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && 235 !isa<Constant>(FalseVal)) { 236 if (unsigned SFO = GetSelectFoldableOperands(TVI)) { 237 unsigned OpToFold = 0; 238 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 239 OpToFold = 1; 240 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 241 OpToFold = 2; 242 } 243 244 if (OpToFold) { 245 Constant *C = GetSelectFoldableConstant(TVI); 246 Value *OOp = TVI->getOperand(2-OpToFold); 247 // Avoid creating select between 2 constants unless it's selecting 248 // between 0, 1 and -1. 249 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 250 Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C); 251 NewSel->takeName(TVI); 252 BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI); 253 BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(), 254 FalseVal, NewSel); 255 BO->copyIRFlags(TVI_BO); 256 return BO; 257 } 258 } 259 } 260 } 261 } 262 263 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) { 264 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && 265 !isa<Constant>(TrueVal)) { 266 if (unsigned SFO = GetSelectFoldableOperands(FVI)) { 267 unsigned OpToFold = 0; 268 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 269 OpToFold = 1; 270 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 271 OpToFold = 2; 272 } 273 274 if (OpToFold) { 275 Constant *C = GetSelectFoldableConstant(FVI); 276 Value *OOp = FVI->getOperand(2-OpToFold); 277 // Avoid creating select between 2 constants unless it's selecting 278 // between 0, 1 and -1. 279 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 280 Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp); 281 NewSel->takeName(FVI); 282 BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI); 283 BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(), 284 TrueVal, NewSel); 285 BO->copyIRFlags(FVI_BO); 286 return BO; 287 } 288 } 289 } 290 } 291 } 292 293 return nullptr; 294 } 295 296 /// We want to turn: 297 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 298 /// into: 299 /// (or (shl (and X, C1), C3), y) 300 /// iff: 301 /// C1 and C2 are both powers of 2 302 /// where: 303 /// C3 = Log(C2) - Log(C1) 304 /// 305 /// This transform handles cases where: 306 /// 1. The icmp predicate is inverted 307 /// 2. The select operands are reversed 308 /// 3. The magnitude of C2 and C1 are flipped 309 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal, 310 Value *FalseVal, 311 InstCombiner::BuilderTy *Builder) { 312 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 313 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 314 return nullptr; 315 316 Value *CmpLHS = IC->getOperand(0); 317 Value *CmpRHS = IC->getOperand(1); 318 319 if (!match(CmpRHS, m_Zero())) 320 return nullptr; 321 322 Value *X; 323 const APInt *C1; 324 if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1)))) 325 return nullptr; 326 327 const APInt *C2; 328 bool OrOnTrueVal = false; 329 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 330 if (!OrOnFalseVal) 331 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 332 333 if (!OrOnFalseVal && !OrOnTrueVal) 334 return nullptr; 335 336 Value *V = CmpLHS; 337 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 338 339 unsigned C1Log = C1->logBase2(); 340 unsigned C2Log = C2->logBase2(); 341 if (C2Log > C1Log) { 342 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 343 V = Builder->CreateShl(V, C2Log - C1Log); 344 } else if (C1Log > C2Log) { 345 V = Builder->CreateLShr(V, C1Log - C2Log); 346 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 347 } else 348 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 349 350 ICmpInst::Predicate Pred = IC->getPredicate(); 351 if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) || 352 (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal)) 353 V = Builder->CreateXor(V, *C2); 354 355 return Builder->CreateOr(V, Y); 356 } 357 358 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 359 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 360 /// 361 /// For example, we can fold the following code sequence: 362 /// \code 363 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 364 /// %1 = icmp ne i32 %x, 0 365 /// %2 = select i1 %1, i32 %0, i32 32 366 /// \code 367 /// 368 /// into: 369 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 370 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 371 InstCombiner::BuilderTy *Builder) { 372 ICmpInst::Predicate Pred = ICI->getPredicate(); 373 Value *CmpLHS = ICI->getOperand(0); 374 Value *CmpRHS = ICI->getOperand(1); 375 376 // Check if the condition value compares a value for equality against zero. 377 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 378 return nullptr; 379 380 Value *Count = FalseVal; 381 Value *ValueOnZero = TrueVal; 382 if (Pred == ICmpInst::ICMP_NE) 383 std::swap(Count, ValueOnZero); 384 385 // Skip zero extend/truncate. 386 Value *V = nullptr; 387 if (match(Count, m_ZExt(m_Value(V))) || 388 match(Count, m_Trunc(m_Value(V)))) 389 Count = V; 390 391 // Check if the value propagated on zero is a constant number equal to the 392 // sizeof in bits of 'Count'. 393 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 394 if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) 395 return nullptr; 396 397 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 398 // input to the cttz/ctlz is used as LHS for the compare instruction. 399 if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) || 400 match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) { 401 IntrinsicInst *II = cast<IntrinsicInst>(Count); 402 IRBuilder<> Builder(II); 403 // Explicitly clear the 'undef_on_zero' flag. 404 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 405 Type *Ty = NewI->getArgOperand(1)->getType(); 406 NewI->setArgOperand(1, Constant::getNullValue(Ty)); 407 Builder.Insert(NewI); 408 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 409 } 410 411 return nullptr; 412 } 413 414 /// Visit a SelectInst that has an ICmpInst as its first operand. 415 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI, 416 ICmpInst *ICI) { 417 bool Changed = false; 418 ICmpInst::Predicate Pred = ICI->getPredicate(); 419 Value *CmpLHS = ICI->getOperand(0); 420 Value *CmpRHS = ICI->getOperand(1); 421 Value *TrueVal = SI.getTrueValue(); 422 Value *FalseVal = SI.getFalseValue(); 423 424 // Check cases where the comparison is with a constant that 425 // can be adjusted to fit the min/max idiom. We may move or edit ICI 426 // here, so make sure the select is the only user. 427 if (ICI->hasOneUse()) 428 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) { 429 switch (Pred) { 430 default: break; 431 case ICmpInst::ICMP_ULT: 432 case ICmpInst::ICMP_SLT: 433 case ICmpInst::ICMP_UGT: 434 case ICmpInst::ICMP_SGT: { 435 // These transformations only work for selects over integers. 436 IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType()); 437 if (!SelectTy) 438 break; 439 440 Constant *AdjustedRHS; 441 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 442 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1); 443 else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 444 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1); 445 446 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 447 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 448 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 449 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) 450 ; // Nothing to do here. Values match without any sign/zero extension. 451 452 // Types do not match. Instead of calculating this with mixed types 453 // promote all to the larger type. This enables scalar evolution to 454 // analyze this expression. 455 else if (CmpRHS->getType()->getScalarSizeInBits() 456 < SelectTy->getBitWidth()) { 457 Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy); 458 459 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 460 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 461 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 462 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 463 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && 464 sextRHS == FalseVal) { 465 CmpLHS = TrueVal; 466 AdjustedRHS = sextRHS; 467 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 468 sextRHS == TrueVal) { 469 CmpLHS = FalseVal; 470 AdjustedRHS = sextRHS; 471 } else if (ICI->isUnsigned()) { 472 Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy); 473 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 474 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 475 // zext + signed compare cannot be changed: 476 // 0xff <s 0x00, but 0x00ff >s 0x0000 477 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && 478 zextRHS == FalseVal) { 479 CmpLHS = TrueVal; 480 AdjustedRHS = zextRHS; 481 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 482 zextRHS == TrueVal) { 483 CmpLHS = FalseVal; 484 AdjustedRHS = zextRHS; 485 } else 486 break; 487 } else 488 break; 489 } else 490 break; 491 492 Pred = ICmpInst::getSwappedPredicate(Pred); 493 CmpRHS = AdjustedRHS; 494 std::swap(FalseVal, TrueVal); 495 ICI->setPredicate(Pred); 496 ICI->setOperand(0, CmpLHS); 497 ICI->setOperand(1, CmpRHS); 498 SI.setOperand(1, TrueVal); 499 SI.setOperand(2, FalseVal); 500 501 // Move ICI instruction right before the select instruction. Otherwise 502 // the sext/zext value may be defined after the ICI instruction uses it. 503 ICI->moveBefore(&SI); 504 505 Changed = true; 506 break; 507 } 508 } 509 } 510 511 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 512 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 513 // FIXME: Type and constness constraints could be lifted, but we have to 514 // watch code size carefully. We should consider xor instead of 515 // sub/add when we decide to do that. 516 if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) { 517 if (TrueVal->getType() == Ty) { 518 if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) { 519 ConstantInt *C1 = nullptr, *C2 = nullptr; 520 if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) { 521 C1 = dyn_cast<ConstantInt>(TrueVal); 522 C2 = dyn_cast<ConstantInt>(FalseVal); 523 } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) { 524 C1 = dyn_cast<ConstantInt>(FalseVal); 525 C2 = dyn_cast<ConstantInt>(TrueVal); 526 } 527 if (C1 && C2) { 528 // This shift results in either -1 or 0. 529 Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1); 530 531 // Check if we can express the operation with a single or. 532 if (C2->isAllOnesValue()) 533 return replaceInstUsesWith(SI, Builder->CreateOr(AShr, C1)); 534 535 Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue()); 536 return replaceInstUsesWith(SI, Builder->CreateAdd(And, C1)); 537 } 538 } 539 } 540 } 541 542 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 543 544 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 545 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 546 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 547 SI.setOperand(1, CmpRHS); 548 Changed = true; 549 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 550 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 551 SI.setOperand(2, CmpRHS); 552 Changed = true; 553 } 554 } 555 556 // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring 557 // decomposeBitTestICmp() might help. 558 { 559 unsigned BitWidth = 560 DL.getTypeSizeInBits(TrueVal->getType()->getScalarType()); 561 APInt MinSignedValue = APInt::getSignBit(BitWidth); 562 Value *X; 563 const APInt *Y, *C; 564 bool TrueWhenUnset; 565 bool IsBitTest = false; 566 if (ICmpInst::isEquality(Pred) && 567 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 568 match(CmpRHS, m_Zero())) { 569 IsBitTest = true; 570 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 571 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 572 X = CmpLHS; 573 Y = &MinSignedValue; 574 IsBitTest = true; 575 TrueWhenUnset = false; 576 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 577 X = CmpLHS; 578 Y = &MinSignedValue; 579 IsBitTest = true; 580 TrueWhenUnset = true; 581 } 582 if (IsBitTest) { 583 Value *V = nullptr; 584 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 585 if (TrueWhenUnset && TrueVal == X && 586 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 587 V = Builder->CreateAnd(X, ~(*Y)); 588 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 589 else if (!TrueWhenUnset && FalseVal == X && 590 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 591 V = Builder->CreateAnd(X, ~(*Y)); 592 // (X & Y) == 0 ? X ^ Y : X --> X | Y 593 else if (TrueWhenUnset && FalseVal == X && 594 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 595 V = Builder->CreateOr(X, *Y); 596 // (X & Y) != 0 ? X : X ^ Y --> X | Y 597 else if (!TrueWhenUnset && TrueVal == X && 598 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 599 V = Builder->CreateOr(X, *Y); 600 601 if (V) 602 return replaceInstUsesWith(SI, V); 603 } 604 } 605 606 if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder)) 607 return replaceInstUsesWith(SI, V); 608 609 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 610 return replaceInstUsesWith(SI, V); 611 612 return Changed ? &SI : nullptr; 613 } 614 615 616 /// SI is a select whose condition is a PHI node (but the two may be in 617 /// different blocks). See if the true/false values (V) are live in all of the 618 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 619 /// 620 /// X = phi [ C1, BB1], [C2, BB2] 621 /// Y = add 622 /// Z = select X, Y, 0 623 /// 624 /// because Y is not live in BB1/BB2. 625 /// 626 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V, 627 const SelectInst &SI) { 628 // If the value is a non-instruction value like a constant or argument, it 629 // can always be mapped. 630 const Instruction *I = dyn_cast<Instruction>(V); 631 if (!I) return true; 632 633 // If V is a PHI node defined in the same block as the condition PHI, we can 634 // map the arguments. 635 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 636 637 if (const PHINode *VP = dyn_cast<PHINode>(I)) 638 if (VP->getParent() == CondPHI->getParent()) 639 return true; 640 641 // Otherwise, if the PHI and select are defined in the same block and if V is 642 // defined in a different block, then we can transform it. 643 if (SI.getParent() == CondPHI->getParent() && 644 I->getParent() != CondPHI->getParent()) 645 return true; 646 647 // Otherwise we have a 'hard' case and we can't tell without doing more 648 // detailed dominator based analysis, punt. 649 return false; 650 } 651 652 /// We have an SPF (e.g. a min or max) of an SPF of the form: 653 /// SPF2(SPF1(A, B), C) 654 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner, 655 SelectPatternFlavor SPF1, 656 Value *A, Value *B, 657 Instruction &Outer, 658 SelectPatternFlavor SPF2, Value *C) { 659 if (Outer.getType() != Inner->getType()) 660 return nullptr; 661 662 if (C == A || C == B) { 663 // MAX(MAX(A, B), B) -> MAX(A, B) 664 // MIN(MIN(a, b), a) -> MIN(a, b) 665 if (SPF1 == SPF2) 666 return replaceInstUsesWith(Outer, Inner); 667 668 // MAX(MIN(a, b), a) -> a 669 // MIN(MAX(a, b), a) -> a 670 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 671 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 672 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 673 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 674 return replaceInstUsesWith(Outer, C); 675 } 676 677 if (SPF1 == SPF2) { 678 if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) { 679 if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) { 680 const APInt &ACB = CB->getValue(); 681 const APInt &ACC = CC->getValue(); 682 683 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 684 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 685 if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) || 686 (SPF1 == SPF_SMIN && ACB.sle(ACC)) || 687 (SPF1 == SPF_UMAX && ACB.uge(ACC)) || 688 (SPF1 == SPF_SMAX && ACB.sge(ACC))) 689 return replaceInstUsesWith(Outer, Inner); 690 691 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 692 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 693 if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) || 694 (SPF1 == SPF_SMIN && ACB.sgt(ACC)) || 695 (SPF1 == SPF_UMAX && ACB.ult(ACC)) || 696 (SPF1 == SPF_SMAX && ACB.slt(ACC))) { 697 Outer.replaceUsesOfWith(Inner, A); 698 return &Outer; 699 } 700 } 701 } 702 } 703 704 // ABS(ABS(X)) -> ABS(X) 705 // NABS(NABS(X)) -> NABS(X) 706 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 707 return replaceInstUsesWith(Outer, Inner); 708 } 709 710 // ABS(NABS(X)) -> ABS(X) 711 // NABS(ABS(X)) -> NABS(X) 712 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 713 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 714 SelectInst *SI = cast<SelectInst>(Inner); 715 Value *NewSI = Builder->CreateSelect( 716 SI->getCondition(), SI->getFalseValue(), SI->getTrueValue()); 717 return replaceInstUsesWith(Outer, NewSI); 718 } 719 720 auto IsFreeOrProfitableToInvert = 721 [&](Value *V, Value *&NotV, bool &ElidesXor) { 722 if (match(V, m_Not(m_Value(NotV)))) { 723 // If V has at most 2 uses then we can get rid of the xor operation 724 // entirely. 725 ElidesXor |= !V->hasNUsesOrMore(3); 726 return true; 727 } 728 729 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 730 NotV = nullptr; 731 return true; 732 } 733 734 return false; 735 }; 736 737 Value *NotA, *NotB, *NotC; 738 bool ElidesXor = false; 739 740 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 741 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 742 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 743 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 744 // 745 // This transform is performance neutral if we can elide at least one xor from 746 // the set of three operands, since we'll be tacking on an xor at the very 747 // end. 748 if (IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 749 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 750 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 751 if (!NotA) 752 NotA = Builder->CreateNot(A); 753 if (!NotB) 754 NotB = Builder->CreateNot(B); 755 if (!NotC) 756 NotC = Builder->CreateNot(C); 757 758 Value *NewInner = generateMinMaxSelectPattern( 759 Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB); 760 Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern( 761 Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC)); 762 return replaceInstUsesWith(Outer, NewOuter); 763 } 764 765 return nullptr; 766 } 767 768 /// If one of the constants is zero (we know they can't both be) and we have an 769 /// icmp instruction with zero, and we have an 'and' with the non-constant value 770 /// and a power of two we can turn the select into a shift on the result of the 771 /// 'and'. 772 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal, 773 ConstantInt *FalseVal, 774 InstCombiner::BuilderTy *Builder) { 775 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 776 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 777 return nullptr; 778 779 if (!match(IC->getOperand(1), m_Zero())) 780 return nullptr; 781 782 ConstantInt *AndRHS; 783 Value *LHS = IC->getOperand(0); 784 if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS)))) 785 return nullptr; 786 787 // If both select arms are non-zero see if we have a select of the form 788 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic 789 // for 'x ? 2^n : 0' and fix the thing up at the end. 790 ConstantInt *Offset = nullptr; 791 if (!TrueVal->isZero() && !FalseVal->isZero()) { 792 if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2()) 793 Offset = FalseVal; 794 else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2()) 795 Offset = TrueVal; 796 else 797 return nullptr; 798 799 // Adjust TrueVal and FalseVal to the offset. 800 TrueVal = ConstantInt::get(Builder->getContext(), 801 TrueVal->getValue() - Offset->getValue()); 802 FalseVal = ConstantInt::get(Builder->getContext(), 803 FalseVal->getValue() - Offset->getValue()); 804 } 805 806 // Make sure the mask in the 'and' and one of the select arms is a power of 2. 807 if (!AndRHS->getValue().isPowerOf2() || 808 (!TrueVal->getValue().isPowerOf2() && 809 !FalseVal->getValue().isPowerOf2())) 810 return nullptr; 811 812 // Determine which shift is needed to transform result of the 'and' into the 813 // desired result. 814 ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal; 815 unsigned ValZeros = ValC->getValue().logBase2(); 816 unsigned AndZeros = AndRHS->getValue().logBase2(); 817 818 // If types don't match we can still convert the select by introducing a zext 819 // or a trunc of the 'and'. The trunc case requires that all of the truncated 820 // bits are zero, we can figure that out by looking at the 'and' mask. 821 if (AndZeros >= ValC->getBitWidth()) 822 return nullptr; 823 824 Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType()); 825 if (ValZeros > AndZeros) 826 V = Builder->CreateShl(V, ValZeros - AndZeros); 827 else if (ValZeros < AndZeros) 828 V = Builder->CreateLShr(V, AndZeros - ValZeros); 829 830 // Okay, now we know that everything is set up, we just don't know whether we 831 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 832 bool ShouldNotVal = !TrueVal->isZero(); 833 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; 834 if (ShouldNotVal) 835 V = Builder->CreateXor(V, ValC); 836 837 // Apply an offset if needed. 838 if (Offset) 839 V = Builder->CreateAdd(V, Offset); 840 return V; 841 } 842 843 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 844 /// This is even legal for FP. 845 static Instruction *foldAddSubSelect(SelectInst &SI, 846 InstCombiner::BuilderTy &Builder) { 847 Value *CondVal = SI.getCondition(); 848 Value *TrueVal = SI.getTrueValue(); 849 Value *FalseVal = SI.getFalseValue(); 850 auto *TI = dyn_cast<Instruction>(TrueVal); 851 auto *FI = dyn_cast<Instruction>(FalseVal); 852 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 853 return nullptr; 854 855 Instruction *AddOp = nullptr, *SubOp = nullptr; 856 if ((TI->getOpcode() == Instruction::Sub && 857 FI->getOpcode() == Instruction::Add) || 858 (TI->getOpcode() == Instruction::FSub && 859 FI->getOpcode() == Instruction::FAdd)) { 860 AddOp = FI; 861 SubOp = TI; 862 } else if ((FI->getOpcode() == Instruction::Sub && 863 TI->getOpcode() == Instruction::Add) || 864 (FI->getOpcode() == Instruction::FSub && 865 TI->getOpcode() == Instruction::FAdd)) { 866 AddOp = TI; 867 SubOp = FI; 868 } 869 870 if (AddOp) { 871 Value *OtherAddOp = nullptr; 872 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 873 OtherAddOp = AddOp->getOperand(1); 874 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 875 OtherAddOp = AddOp->getOperand(0); 876 } 877 878 if (OtherAddOp) { 879 // So at this point we know we have (Y -> OtherAddOp): 880 // select C, (add X, Y), (sub X, Z) 881 Value *NegVal; // Compute -Z 882 if (SI.getType()->isFPOrFPVectorTy()) { 883 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 884 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 885 FastMathFlags Flags = AddOp->getFastMathFlags(); 886 Flags &= SubOp->getFastMathFlags(); 887 NegInst->setFastMathFlags(Flags); 888 } 889 } else { 890 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 891 } 892 893 Value *NewTrueOp = OtherAddOp; 894 Value *NewFalseOp = NegVal; 895 if (AddOp != TI) 896 std::swap(NewTrueOp, NewFalseOp); 897 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 898 SI.getName() + ".p"); 899 900 if (SI.getType()->isFPOrFPVectorTy()) { 901 Instruction *RI = 902 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 903 904 FastMathFlags Flags = AddOp->getFastMathFlags(); 905 Flags &= SubOp->getFastMathFlags(); 906 RI->setFastMathFlags(Flags); 907 return RI; 908 } else 909 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 910 } 911 } 912 return nullptr; 913 } 914 915 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 916 Value *CondVal = SI.getCondition(); 917 Value *TrueVal = SI.getTrueValue(); 918 Value *FalseVal = SI.getFalseValue(); 919 Type *SelType = SI.getType(); 920 921 if (Value *V = 922 SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, TLI, DT, AC)) 923 return replaceInstUsesWith(SI, V); 924 925 if (SelType->getScalarType()->isIntegerTy(1) && 926 TrueVal->getType() == CondVal->getType()) { 927 if (match(TrueVal, m_One())) { 928 // Change: A = select B, true, C --> A = or B, C 929 return BinaryOperator::CreateOr(CondVal, FalseVal); 930 } 931 if (match(TrueVal, m_Zero())) { 932 // Change: A = select B, false, C --> A = and !B, C 933 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 934 return BinaryOperator::CreateAnd(NotCond, FalseVal); 935 } 936 if (match(FalseVal, m_Zero())) { 937 // Change: A = select B, C, false --> A = and B, C 938 return BinaryOperator::CreateAnd(CondVal, TrueVal); 939 } 940 if (match(FalseVal, m_One())) { 941 // Change: A = select B, C, true --> A = or !B, C 942 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 943 return BinaryOperator::CreateOr(NotCond, TrueVal); 944 } 945 946 // select a, a, b -> a | b 947 // select a, b, a -> a & b 948 if (CondVal == TrueVal) 949 return BinaryOperator::CreateOr(CondVal, FalseVal); 950 if (CondVal == FalseVal) 951 return BinaryOperator::CreateAnd(CondVal, TrueVal); 952 953 // select a, ~a, b -> (~a) & b 954 // select a, b, ~a -> (~a) | b 955 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 956 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 957 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 958 return BinaryOperator::CreateOr(TrueVal, FalseVal); 959 } 960 961 // Selecting between two integer or vector splat integer constants? 962 // 963 // Note that we don't handle a scalar select of vectors: 964 // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0> 965 // because that may need 3 instructions to splat the condition value: 966 // extend, insertelement, shufflevector. 967 if (CondVal->getType()->isVectorTy() == SelType->isVectorTy()) { 968 // select C, 1, 0 -> zext C to int 969 if (match(TrueVal, m_One()) && match(FalseVal, m_Zero())) 970 return new ZExtInst(CondVal, SelType); 971 972 // select C, -1, 0 -> sext C to int 973 if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero())) 974 return new SExtInst(CondVal, SelType); 975 976 // select C, 0, 1 -> zext !C to int 977 if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) { 978 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 979 return new ZExtInst(NotCond, SelType); 980 } 981 982 // select C, 0, -1 -> sext !C to int 983 if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) { 984 Value *NotCond = Builder->CreateNot(CondVal, "not." + CondVal->getName()); 985 return new SExtInst(NotCond, SelType); 986 } 987 } 988 989 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) 990 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) 991 if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder)) 992 return replaceInstUsesWith(SI, V); 993 994 // See if we are selecting two values based on a comparison of the two values. 995 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 996 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 997 // Transform (X == Y) ? X : Y -> Y 998 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 999 // This is not safe in general for floating point: 1000 // consider X== -0, Y== +0. 1001 // It becomes safe if either operand is a nonzero constant. 1002 ConstantFP *CFPt, *CFPf; 1003 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1004 !CFPt->getValueAPF().isZero()) || 1005 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1006 !CFPf->getValueAPF().isZero())) 1007 return replaceInstUsesWith(SI, FalseVal); 1008 } 1009 // Transform (X une Y) ? X : Y -> X 1010 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1011 // This is not safe in general for floating point: 1012 // consider X== -0, Y== +0. 1013 // It becomes safe if either operand is a nonzero constant. 1014 ConstantFP *CFPt, *CFPf; 1015 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1016 !CFPt->getValueAPF().isZero()) || 1017 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1018 !CFPf->getValueAPF().isZero())) 1019 return replaceInstUsesWith(SI, TrueVal); 1020 } 1021 1022 // Canonicalize to use ordered comparisons by swapping the select 1023 // operands. 1024 // 1025 // e.g. 1026 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1027 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1028 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1029 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1030 Builder->setFastMathFlags(FCI->getFastMathFlags()); 1031 Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal, 1032 FCI->getName() + ".inv"); 1033 1034 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1035 SI.getName() + ".p"); 1036 } 1037 1038 // NOTE: if we wanted to, this is where to detect MIN/MAX 1039 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1040 // Transform (X == Y) ? Y : X -> X 1041 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1042 // This is not safe in general for floating point: 1043 // consider X== -0, Y== +0. 1044 // It becomes safe if either operand is a nonzero constant. 1045 ConstantFP *CFPt, *CFPf; 1046 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1047 !CFPt->getValueAPF().isZero()) || 1048 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1049 !CFPf->getValueAPF().isZero())) 1050 return replaceInstUsesWith(SI, FalseVal); 1051 } 1052 // Transform (X une Y) ? Y : X -> Y 1053 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1054 // This is not safe in general for floating point: 1055 // consider X== -0, Y== +0. 1056 // It becomes safe if either operand is a nonzero constant. 1057 ConstantFP *CFPt, *CFPf; 1058 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1059 !CFPt->getValueAPF().isZero()) || 1060 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1061 !CFPf->getValueAPF().isZero())) 1062 return replaceInstUsesWith(SI, TrueVal); 1063 } 1064 1065 // Canonicalize to use ordered comparisons by swapping the select 1066 // operands. 1067 // 1068 // e.g. 1069 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1070 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1071 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1072 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1073 Builder->setFastMathFlags(FCI->getFastMathFlags()); 1074 Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal, 1075 FCI->getName() + ".inv"); 1076 1077 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1078 SI.getName() + ".p"); 1079 } 1080 1081 // NOTE: if we wanted to, this is where to detect MIN/MAX 1082 } 1083 // NOTE: if we wanted to, this is where to detect ABS 1084 } 1085 1086 // See if we are selecting two values based on a comparison of the two values. 1087 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1088 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI)) 1089 return Result; 1090 1091 if (Instruction *Add = foldAddSubSelect(SI, *Builder)) 1092 return Add; 1093 1094 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1095 auto *TI = dyn_cast<Instruction>(TrueVal); 1096 auto *FI = dyn_cast<Instruction>(FalseVal); 1097 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1098 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) 1099 return IV; 1100 1101 // See if we can fold the select into one of our operands. 1102 if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) { 1103 if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal)) 1104 return FoldI; 1105 1106 Value *LHS, *RHS, *LHS2, *RHS2; 1107 Instruction::CastOps CastOp; 1108 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1109 auto SPF = SPR.Flavor; 1110 1111 if (SelectPatternResult::isMinOrMax(SPF)) { 1112 // Canonicalize so that type casts are outside select patterns. 1113 if (LHS->getType()->getPrimitiveSizeInBits() != 1114 SelType->getPrimitiveSizeInBits()) { 1115 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered); 1116 1117 Value *Cmp; 1118 if (CmpInst::isIntPredicate(Pred)) { 1119 Cmp = Builder->CreateICmp(Pred, LHS, RHS); 1120 } else { 1121 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1122 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1123 Builder->setFastMathFlags(FMF); 1124 Cmp = Builder->CreateFCmp(Pred, LHS, RHS); 1125 } 1126 1127 Value *NewSI = Builder->CreateCast(CastOp, 1128 Builder->CreateSelect(Cmp, LHS, RHS), 1129 SelType); 1130 return replaceInstUsesWith(SI, NewSI); 1131 } 1132 } 1133 1134 if (SPF) { 1135 // MAX(MAX(a, b), a) -> MAX(a, b) 1136 // MIN(MIN(a, b), a) -> MIN(a, b) 1137 // MAX(MIN(a, b), a) -> a 1138 // MIN(MAX(a, b), a) -> a 1139 // ABS(ABS(a)) -> ABS(a) 1140 // NABS(NABS(a)) -> NABS(a) 1141 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1142 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 1143 SI, SPF, RHS)) 1144 return R; 1145 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1146 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, 1147 SI, SPF, LHS)) 1148 return R; 1149 } 1150 1151 // MAX(~a, ~b) -> ~MIN(a, b) 1152 if (SPF == SPF_SMAX || SPF == SPF_UMAX) { 1153 if (IsFreeToInvert(LHS, LHS->hasNUses(2)) && 1154 IsFreeToInvert(RHS, RHS->hasNUses(2))) { 1155 1156 // This transform adds a xor operation and that extra cost needs to be 1157 // justified. We look for simplifications that will result from 1158 // applying this rule: 1159 1160 bool Profitable = 1161 (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) || 1162 (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) || 1163 (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value()))); 1164 1165 if (Profitable) { 1166 Value *NewLHS = Builder->CreateNot(LHS); 1167 Value *NewRHS = Builder->CreateNot(RHS); 1168 Value *NewCmp = SPF == SPF_SMAX 1169 ? Builder->CreateICmpSLT(NewLHS, NewRHS) 1170 : Builder->CreateICmpULT(NewLHS, NewRHS); 1171 Value *NewSI = 1172 Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS)); 1173 return replaceInstUsesWith(SI, NewSI); 1174 } 1175 } 1176 } 1177 1178 // TODO. 1179 // ABS(-X) -> ABS(X) 1180 } 1181 1182 // See if we can fold the select into a phi node if the condition is a select. 1183 if (isa<PHINode>(SI.getCondition())) 1184 // The true/false values have to be live in the PHI predecessor's blocks. 1185 if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1186 CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1187 if (Instruction *NV = FoldOpIntoPhi(SI)) 1188 return NV; 1189 1190 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1191 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 1192 // select(C, select(C, a, b), c) -> select(C, a, c) 1193 if (TrueSI->getCondition() == CondVal) { 1194 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1195 return nullptr; 1196 SI.setOperand(1, TrueSI->getTrueValue()); 1197 return &SI; 1198 } 1199 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1200 // We choose this as normal form to enable folding on the And and shortening 1201 // paths for the values (this helps GetUnderlyingObjects() for example). 1202 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1203 Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition()); 1204 SI.setOperand(0, And); 1205 SI.setOperand(1, TrueSI->getTrueValue()); 1206 return &SI; 1207 } 1208 } 1209 } 1210 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1211 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 1212 // select(C, a, select(C, b, c)) -> select(C, a, c) 1213 if (FalseSI->getCondition() == CondVal) { 1214 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1215 return nullptr; 1216 SI.setOperand(2, FalseSI->getFalseValue()); 1217 return &SI; 1218 } 1219 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1220 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1221 Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition()); 1222 SI.setOperand(0, Or); 1223 SI.setOperand(2, FalseSI->getFalseValue()); 1224 return &SI; 1225 } 1226 } 1227 } 1228 1229 if (BinaryOperator::isNot(CondVal)) { 1230 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); 1231 SI.setOperand(1, FalseVal); 1232 SI.setOperand(2, TrueVal); 1233 return &SI; 1234 } 1235 1236 if (VectorType* VecTy = dyn_cast<VectorType>(SelType)) { 1237 unsigned VWidth = VecTy->getNumElements(); 1238 APInt UndefElts(VWidth, 0); 1239 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1240 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 1241 if (V != &SI) 1242 return replaceInstUsesWith(SI, V); 1243 return &SI; 1244 } 1245 1246 if (isa<ConstantAggregateZero>(CondVal)) { 1247 return replaceInstUsesWith(SI, FalseVal); 1248 } 1249 } 1250 1251 // See if we can determine the result of this select based on a dominating 1252 // condition. 1253 BasicBlock *Parent = SI.getParent(); 1254 if (BasicBlock *Dom = Parent->getSinglePredecessor()) { 1255 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 1256 if (PBI && PBI->isConditional() && 1257 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 1258 (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) { 1259 bool CondIsFalse = PBI->getSuccessor(1) == Parent; 1260 Optional<bool> Implication = isImpliedCondition( 1261 PBI->getCondition(), SI.getCondition(), DL, CondIsFalse); 1262 if (Implication) { 1263 Value *V = *Implication ? TrueVal : FalseVal; 1264 return replaceInstUsesWith(SI, V); 1265 } 1266 } 1267 } 1268 1269 return nullptr; 1270 } 1271