1 //===- InstCombineSelect.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitSelect function.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/Optional.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/AssumptionCache.h"
19 #include "llvm/Analysis/CmpInstAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/OverflowInstAnalysis.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/Constant.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/IRBuilder.h"
28 #include "llvm/IR/InstrTypes.h"
29 #include "llvm/IR/Instruction.h"
30 #include "llvm/IR/Instructions.h"
31 #include "llvm/IR/IntrinsicInst.h"
32 #include "llvm/IR/Intrinsics.h"
33 #include "llvm/IR/Operator.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/User.h"
37 #include "llvm/IR/Value.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/ErrorHandling.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Transforms/InstCombine/InstCombiner.h"
42 #include <cassert>
43 #include <utility>
44 
45 #define DEBUG_TYPE "instcombine"
46 #include "llvm/Transforms/Utils/InstructionWorklist.h"
47 
48 using namespace llvm;
49 using namespace PatternMatch;
50 
51 
52 /// Replace a select operand based on an equality comparison with the identity
53 /// constant of a binop.
54 static Instruction *foldSelectBinOpIdentity(SelectInst &Sel,
55                                             const TargetLibraryInfo &TLI,
56                                             InstCombinerImpl &IC) {
57   // The select condition must be an equality compare with a constant operand.
58   Value *X;
59   Constant *C;
60   CmpInst::Predicate Pred;
61   if (!match(Sel.getCondition(), m_Cmp(Pred, m_Value(X), m_Constant(C))))
62     return nullptr;
63 
64   bool IsEq;
65   if (ICmpInst::isEquality(Pred))
66     IsEq = Pred == ICmpInst::ICMP_EQ;
67   else if (Pred == FCmpInst::FCMP_OEQ)
68     IsEq = true;
69   else if (Pred == FCmpInst::FCMP_UNE)
70     IsEq = false;
71   else
72     return nullptr;
73 
74   // A select operand must be a binop.
75   BinaryOperator *BO;
76   if (!match(Sel.getOperand(IsEq ? 1 : 2), m_BinOp(BO)))
77     return nullptr;
78 
79   // The compare constant must be the identity constant for that binop.
80   // If this a floating-point compare with 0.0, any zero constant will do.
81   Type *Ty = BO->getType();
82   Constant *IdC = ConstantExpr::getBinOpIdentity(BO->getOpcode(), Ty, true);
83   if (IdC != C) {
84     if (!IdC || !CmpInst::isFPPredicate(Pred))
85       return nullptr;
86     if (!match(IdC, m_AnyZeroFP()) || !match(C, m_AnyZeroFP()))
87       return nullptr;
88   }
89 
90   // Last, match the compare variable operand with a binop operand.
91   Value *Y;
92   if (!BO->isCommutative() && !match(BO, m_BinOp(m_Value(Y), m_Specific(X))))
93     return nullptr;
94   if (!match(BO, m_c_BinOp(m_Value(Y), m_Specific(X))))
95     return nullptr;
96 
97   // +0.0 compares equal to -0.0, and so it does not behave as required for this
98   // transform. Bail out if we can not exclude that possibility.
99   if (isa<FPMathOperator>(BO))
100     if (!BO->hasNoSignedZeros() && !CannotBeNegativeZero(Y, &TLI))
101       return nullptr;
102 
103   // BO = binop Y, X
104   // S = { select (cmp eq X, C), BO, ? } or { select (cmp ne X, C), ?, BO }
105   // =>
106   // S = { select (cmp eq X, C),  Y, ? } or { select (cmp ne X, C), ?,  Y }
107   return IC.replaceOperand(Sel, IsEq ? 1 : 2, Y);
108 }
109 
110 /// This folds:
111 ///  select (icmp eq (and X, C1)), TC, FC
112 ///    iff C1 is a power 2 and the difference between TC and FC is a power-of-2.
113 /// To something like:
114 ///  (shr (and (X, C1)), (log2(C1) - log2(TC-FC))) + FC
115 /// Or:
116 ///  (shl (and (X, C1)), (log2(TC-FC) - log2(C1))) + FC
117 /// With some variations depending if FC is larger than TC, or the shift
118 /// isn't needed, or the bit widths don't match.
119 static Value *foldSelectICmpAnd(SelectInst &Sel, ICmpInst *Cmp,
120                                 InstCombiner::BuilderTy &Builder) {
121   const APInt *SelTC, *SelFC;
122   if (!match(Sel.getTrueValue(), m_APInt(SelTC)) ||
123       !match(Sel.getFalseValue(), m_APInt(SelFC)))
124     return nullptr;
125 
126   // If this is a vector select, we need a vector compare.
127   Type *SelType = Sel.getType();
128   if (SelType->isVectorTy() != Cmp->getType()->isVectorTy())
129     return nullptr;
130 
131   Value *V;
132   APInt AndMask;
133   bool CreateAnd = false;
134   ICmpInst::Predicate Pred = Cmp->getPredicate();
135   if (ICmpInst::isEquality(Pred)) {
136     if (!match(Cmp->getOperand(1), m_Zero()))
137       return nullptr;
138 
139     V = Cmp->getOperand(0);
140     const APInt *AndRHS;
141     if (!match(V, m_And(m_Value(), m_Power2(AndRHS))))
142       return nullptr;
143 
144     AndMask = *AndRHS;
145   } else if (decomposeBitTestICmp(Cmp->getOperand(0), Cmp->getOperand(1),
146                                   Pred, V, AndMask)) {
147     assert(ICmpInst::isEquality(Pred) && "Not equality test?");
148     if (!AndMask.isPowerOf2())
149       return nullptr;
150 
151     CreateAnd = true;
152   } else {
153     return nullptr;
154   }
155 
156   // In general, when both constants are non-zero, we would need an offset to
157   // replace the select. This would require more instructions than we started
158   // with. But there's one special-case that we handle here because it can
159   // simplify/reduce the instructions.
160   APInt TC = *SelTC;
161   APInt FC = *SelFC;
162   if (!TC.isZero() && !FC.isZero()) {
163     // If the select constants differ by exactly one bit and that's the same
164     // bit that is masked and checked by the select condition, the select can
165     // be replaced by bitwise logic to set/clear one bit of the constant result.
166     if (TC.getBitWidth() != AndMask.getBitWidth() || (TC ^ FC) != AndMask)
167       return nullptr;
168     if (CreateAnd) {
169       // If we have to create an 'and', then we must kill the cmp to not
170       // increase the instruction count.
171       if (!Cmp->hasOneUse())
172         return nullptr;
173       V = Builder.CreateAnd(V, ConstantInt::get(SelType, AndMask));
174     }
175     bool ExtraBitInTC = TC.ugt(FC);
176     if (Pred == ICmpInst::ICMP_EQ) {
177       // If the masked bit in V is clear, clear or set the bit in the result:
178       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) ^ TC
179       // (V & AndMaskC) == 0 ? TC : FC --> (V & AndMaskC) | TC
180       Constant *C = ConstantInt::get(SelType, TC);
181       return ExtraBitInTC ? Builder.CreateXor(V, C) : Builder.CreateOr(V, C);
182     }
183     if (Pred == ICmpInst::ICMP_NE) {
184       // If the masked bit in V is set, set or clear the bit in the result:
185       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) | FC
186       // (V & AndMaskC) != 0 ? TC : FC --> (V & AndMaskC) ^ FC
187       Constant *C = ConstantInt::get(SelType, FC);
188       return ExtraBitInTC ? Builder.CreateOr(V, C) : Builder.CreateXor(V, C);
189     }
190     llvm_unreachable("Only expecting equality predicates");
191   }
192 
193   // Make sure one of the select arms is a power-of-2.
194   if (!TC.isPowerOf2() && !FC.isPowerOf2())
195     return nullptr;
196 
197   // Determine which shift is needed to transform result of the 'and' into the
198   // desired result.
199   const APInt &ValC = !TC.isZero() ? TC : FC;
200   unsigned ValZeros = ValC.logBase2();
201   unsigned AndZeros = AndMask.logBase2();
202 
203   // Insert the 'and' instruction on the input to the truncate.
204   if (CreateAnd)
205     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), AndMask));
206 
207   // If types don't match, we can still convert the select by introducing a zext
208   // or a trunc of the 'and'.
209   if (ValZeros > AndZeros) {
210     V = Builder.CreateZExtOrTrunc(V, SelType);
211     V = Builder.CreateShl(V, ValZeros - AndZeros);
212   } else if (ValZeros < AndZeros) {
213     V = Builder.CreateLShr(V, AndZeros - ValZeros);
214     V = Builder.CreateZExtOrTrunc(V, SelType);
215   } else {
216     V = Builder.CreateZExtOrTrunc(V, SelType);
217   }
218 
219   // Okay, now we know that everything is set up, we just don't know whether we
220   // have a icmp_ne or icmp_eq and whether the true or false val is the zero.
221   bool ShouldNotVal = !TC.isZero();
222   ShouldNotVal ^= Pred == ICmpInst::ICMP_NE;
223   if (ShouldNotVal)
224     V = Builder.CreateXor(V, ValC);
225 
226   return V;
227 }
228 
229 /// We want to turn code that looks like this:
230 ///   %C = or %A, %B
231 ///   %D = select %cond, %C, %A
232 /// into:
233 ///   %C = select %cond, %B, 0
234 ///   %D = or %A, %C
235 ///
236 /// Assuming that the specified instruction is an operand to the select, return
237 /// a bitmask indicating which operands of this instruction are foldable if they
238 /// equal the other incoming value of the select.
239 static unsigned getSelectFoldableOperands(BinaryOperator *I) {
240   switch (I->getOpcode()) {
241   case Instruction::Add:
242   case Instruction::FAdd:
243   case Instruction::Mul:
244   case Instruction::FMul:
245   case Instruction::And:
246   case Instruction::Or:
247   case Instruction::Xor:
248     return 3;              // Can fold through either operand.
249   case Instruction::Sub:   // Can only fold on the amount subtracted.
250   case Instruction::FSub:
251   case Instruction::FDiv:  // Can only fold on the divisor amount.
252   case Instruction::Shl:   // Can only fold on the shift amount.
253   case Instruction::LShr:
254   case Instruction::AShr:
255     return 1;
256   default:
257     return 0;              // Cannot fold
258   }
259 }
260 
261 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode.
262 Instruction *InstCombinerImpl::foldSelectOpOp(SelectInst &SI, Instruction *TI,
263                                               Instruction *FI) {
264   // Don't break up min/max patterns. The hasOneUse checks below prevent that
265   // for most cases, but vector min/max with bitcasts can be transformed. If the
266   // one-use restrictions are eased for other patterns, we still don't want to
267   // obfuscate min/max.
268   if ((match(&SI, m_SMin(m_Value(), m_Value())) ||
269        match(&SI, m_SMax(m_Value(), m_Value())) ||
270        match(&SI, m_UMin(m_Value(), m_Value())) ||
271        match(&SI, m_UMax(m_Value(), m_Value()))))
272     return nullptr;
273 
274   // If this is a cast from the same type, merge.
275   Value *Cond = SI.getCondition();
276   Type *CondTy = Cond->getType();
277   if (TI->getNumOperands() == 1 && TI->isCast()) {
278     Type *FIOpndTy = FI->getOperand(0)->getType();
279     if (TI->getOperand(0)->getType() != FIOpndTy)
280       return nullptr;
281 
282     // The select condition may be a vector. We may only change the operand
283     // type if the vector width remains the same (and matches the condition).
284     if (auto *CondVTy = dyn_cast<VectorType>(CondTy)) {
285       if (!FIOpndTy->isVectorTy() ||
286           CondVTy->getElementCount() !=
287               cast<VectorType>(FIOpndTy)->getElementCount())
288         return nullptr;
289 
290       // TODO: If the backend knew how to deal with casts better, we could
291       // remove this limitation. For now, there's too much potential to create
292       // worse codegen by promoting the select ahead of size-altering casts
293       // (PR28160).
294       //
295       // Note that ValueTracking's matchSelectPattern() looks through casts
296       // without checking 'hasOneUse' when it matches min/max patterns, so this
297       // transform may end up happening anyway.
298       if (TI->getOpcode() != Instruction::BitCast &&
299           (!TI->hasOneUse() || !FI->hasOneUse()))
300         return nullptr;
301     } else if (!TI->hasOneUse() || !FI->hasOneUse()) {
302       // TODO: The one-use restrictions for a scalar select could be eased if
303       // the fold of a select in visitLoadInst() was enhanced to match a pattern
304       // that includes a cast.
305       return nullptr;
306     }
307 
308     // Fold this by inserting a select from the input values.
309     Value *NewSI =
310         Builder.CreateSelect(Cond, TI->getOperand(0), FI->getOperand(0),
311                              SI.getName() + ".v", &SI);
312     return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
313                             TI->getType());
314   }
315 
316   // Cond ? -X : -Y --> -(Cond ? X : Y)
317   Value *X, *Y;
318   if (match(TI, m_FNeg(m_Value(X))) && match(FI, m_FNeg(m_Value(Y))) &&
319       (TI->hasOneUse() || FI->hasOneUse())) {
320     // Intersect FMF from the fneg instructions and union those with the select.
321     FastMathFlags FMF = TI->getFastMathFlags();
322     FMF &= FI->getFastMathFlags();
323     FMF |= SI.getFastMathFlags();
324     Value *NewSel = Builder.CreateSelect(Cond, X, Y, SI.getName() + ".v", &SI);
325     if (auto *NewSelI = dyn_cast<Instruction>(NewSel))
326       NewSelI->setFastMathFlags(FMF);
327     Instruction *NewFNeg = UnaryOperator::CreateFNeg(NewSel);
328     NewFNeg->setFastMathFlags(FMF);
329     return NewFNeg;
330   }
331 
332   // Min/max intrinsic with a common operand can have the common operand pulled
333   // after the select. This is the same transform as below for binops, but
334   // specialized for intrinsic matching and without the restrictive uses clause.
335   auto *TII = dyn_cast<IntrinsicInst>(TI);
336   auto *FII = dyn_cast<IntrinsicInst>(FI);
337   if (TII && FII && TII->getIntrinsicID() == FII->getIntrinsicID() &&
338       (TII->hasOneUse() || FII->hasOneUse())) {
339     Value *T0, *T1, *F0, *F1;
340     if (match(TII, m_MaxOrMin(m_Value(T0), m_Value(T1))) &&
341         match(FII, m_MaxOrMin(m_Value(F0), m_Value(F1)))) {
342       if (T0 == F0) {
343         Value *NewSel = Builder.CreateSelect(Cond, T1, F1, "minmaxop", &SI);
344         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
345       }
346       if (T0 == F1) {
347         Value *NewSel = Builder.CreateSelect(Cond, T1, F0, "minmaxop", &SI);
348         return CallInst::Create(TII->getCalledFunction(), {NewSel, T0});
349       }
350       if (T1 == F0) {
351         Value *NewSel = Builder.CreateSelect(Cond, T0, F1, "minmaxop", &SI);
352         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
353       }
354       if (T1 == F1) {
355         Value *NewSel = Builder.CreateSelect(Cond, T0, F0, "minmaxop", &SI);
356         return CallInst::Create(TII->getCalledFunction(), {NewSel, T1});
357       }
358     }
359   }
360 
361   // Only handle binary operators (including two-operand getelementptr) with
362   // one-use here. As with the cast case above, it may be possible to relax the
363   // one-use constraint, but that needs be examined carefully since it may not
364   // reduce the total number of instructions.
365   if (TI->getNumOperands() != 2 || FI->getNumOperands() != 2 ||
366       !TI->isSameOperationAs(FI) ||
367       (!isa<BinaryOperator>(TI) && !isa<GetElementPtrInst>(TI)) ||
368       !TI->hasOneUse() || !FI->hasOneUse())
369     return nullptr;
370 
371   // Figure out if the operations have any operands in common.
372   Value *MatchOp, *OtherOpT, *OtherOpF;
373   bool MatchIsOpZero;
374   if (TI->getOperand(0) == FI->getOperand(0)) {
375     MatchOp  = TI->getOperand(0);
376     OtherOpT = TI->getOperand(1);
377     OtherOpF = FI->getOperand(1);
378     MatchIsOpZero = true;
379   } else if (TI->getOperand(1) == FI->getOperand(1)) {
380     MatchOp  = TI->getOperand(1);
381     OtherOpT = TI->getOperand(0);
382     OtherOpF = FI->getOperand(0);
383     MatchIsOpZero = false;
384   } else if (!TI->isCommutative()) {
385     return nullptr;
386   } else if (TI->getOperand(0) == FI->getOperand(1)) {
387     MatchOp  = TI->getOperand(0);
388     OtherOpT = TI->getOperand(1);
389     OtherOpF = FI->getOperand(0);
390     MatchIsOpZero = true;
391   } else if (TI->getOperand(1) == FI->getOperand(0)) {
392     MatchOp  = TI->getOperand(1);
393     OtherOpT = TI->getOperand(0);
394     OtherOpF = FI->getOperand(1);
395     MatchIsOpZero = true;
396   } else {
397     return nullptr;
398   }
399 
400   // If the select condition is a vector, the operands of the original select's
401   // operands also must be vectors. This may not be the case for getelementptr
402   // for example.
403   if (CondTy->isVectorTy() && (!OtherOpT->getType()->isVectorTy() ||
404                                !OtherOpF->getType()->isVectorTy()))
405     return nullptr;
406 
407   // If we reach here, they do have operations in common.
408   Value *NewSI = Builder.CreateSelect(Cond, OtherOpT, OtherOpF,
409                                       SI.getName() + ".v", &SI);
410   Value *Op0 = MatchIsOpZero ? MatchOp : NewSI;
411   Value *Op1 = MatchIsOpZero ? NewSI : MatchOp;
412   if (auto *BO = dyn_cast<BinaryOperator>(TI)) {
413     BinaryOperator *NewBO = BinaryOperator::Create(BO->getOpcode(), Op0, Op1);
414     NewBO->copyIRFlags(TI);
415     NewBO->andIRFlags(FI);
416     return NewBO;
417   }
418   if (auto *TGEP = dyn_cast<GetElementPtrInst>(TI)) {
419     auto *FGEP = cast<GetElementPtrInst>(FI);
420     Type *ElementType = TGEP->getResultElementType();
421     return TGEP->isInBounds() && FGEP->isInBounds()
422                ? GetElementPtrInst::CreateInBounds(ElementType, Op0, {Op1})
423                : GetElementPtrInst::Create(ElementType, Op0, {Op1});
424   }
425   llvm_unreachable("Expected BinaryOperator or GEP");
426   return nullptr;
427 }
428 
429 static bool isSelect01(const APInt &C1I, const APInt &C2I) {
430   if (!C1I.isZero() && !C2I.isZero()) // One side must be zero.
431     return false;
432   return C1I.isOne() || C1I.isAllOnes() || C2I.isOne() || C2I.isAllOnes();
433 }
434 
435 /// Try to fold the select into one of the operands to allow further
436 /// optimization.
437 Instruction *InstCombinerImpl::foldSelectIntoOp(SelectInst &SI, Value *TrueVal,
438                                                 Value *FalseVal) {
439   // See the comment above GetSelectFoldableOperands for a description of the
440   // transformation we are doing here.
441   if (auto *TVI = dyn_cast<BinaryOperator>(TrueVal)) {
442     if (TVI->hasOneUse() && !isa<Constant>(FalseVal)) {
443       if (unsigned SFO = getSelectFoldableOperands(TVI)) {
444         unsigned OpToFold = 0;
445         if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
446           OpToFold = 1;
447         } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
448           OpToFold = 2;
449         }
450 
451         if (OpToFold) {
452           Constant *C = ConstantExpr::getBinOpIdentity(TVI->getOpcode(),
453                                                        TVI->getType(), true);
454           Value *OOp = TVI->getOperand(2-OpToFold);
455           // Avoid creating select between 2 constants unless it's selecting
456           // between 0, 1 and -1.
457           const APInt *OOpC;
458           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
459           if (!isa<Constant>(OOp) ||
460               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
461             Value *NewSel = Builder.CreateSelect(SI.getCondition(), OOp, C);
462             NewSel->takeName(TVI);
463             BinaryOperator *BO = BinaryOperator::Create(TVI->getOpcode(),
464                                                         FalseVal, NewSel);
465             BO->copyIRFlags(TVI);
466             return BO;
467           }
468         }
469       }
470     }
471   }
472 
473   if (auto *FVI = dyn_cast<BinaryOperator>(FalseVal)) {
474     if (FVI->hasOneUse() && !isa<Constant>(TrueVal)) {
475       if (unsigned SFO = getSelectFoldableOperands(FVI)) {
476         unsigned OpToFold = 0;
477         if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
478           OpToFold = 1;
479         } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
480           OpToFold = 2;
481         }
482 
483         if (OpToFold) {
484           Constant *C = ConstantExpr::getBinOpIdentity(FVI->getOpcode(),
485                                                        FVI->getType(), true);
486           Value *OOp = FVI->getOperand(2-OpToFold);
487           // Avoid creating select between 2 constants unless it's selecting
488           // between 0, 1 and -1.
489           const APInt *OOpC;
490           bool OOpIsAPInt = match(OOp, m_APInt(OOpC));
491           if (!isa<Constant>(OOp) ||
492               (OOpIsAPInt && isSelect01(C->getUniqueInteger(), *OOpC))) {
493             Value *NewSel = Builder.CreateSelect(SI.getCondition(), C, OOp);
494             NewSel->takeName(FVI);
495             BinaryOperator *BO = BinaryOperator::Create(FVI->getOpcode(),
496                                                         TrueVal, NewSel);
497             BO->copyIRFlags(FVI);
498             return BO;
499           }
500         }
501       }
502     }
503   }
504 
505   return nullptr;
506 }
507 
508 /// We want to turn:
509 ///   (select (icmp eq (and X, Y), 0), (and (lshr X, Z), 1), 1)
510 /// into:
511 ///   zext (icmp ne i32 (and X, (or Y, (shl 1, Z))), 0)
512 /// Note:
513 ///   Z may be 0 if lshr is missing.
514 /// Worst-case scenario is that we will replace 5 instructions with 5 different
515 /// instructions, but we got rid of select.
516 static Instruction *foldSelectICmpAndAnd(Type *SelType, const ICmpInst *Cmp,
517                                          Value *TVal, Value *FVal,
518                                          InstCombiner::BuilderTy &Builder) {
519   if (!(Cmp->hasOneUse() && Cmp->getOperand(0)->hasOneUse() &&
520         Cmp->getPredicate() == ICmpInst::ICMP_EQ &&
521         match(Cmp->getOperand(1), m_Zero()) && match(FVal, m_One())))
522     return nullptr;
523 
524   // The TrueVal has general form of:  and %B, 1
525   Value *B;
526   if (!match(TVal, m_OneUse(m_And(m_Value(B), m_One()))))
527     return nullptr;
528 
529   // Where %B may be optionally shifted:  lshr %X, %Z.
530   Value *X, *Z;
531   const bool HasShift = match(B, m_OneUse(m_LShr(m_Value(X), m_Value(Z))));
532   if (!HasShift)
533     X = B;
534 
535   Value *Y;
536   if (!match(Cmp->getOperand(0), m_c_And(m_Specific(X), m_Value(Y))))
537     return nullptr;
538 
539   // ((X & Y) == 0) ? ((X >> Z) & 1) : 1 --> (X & (Y | (1 << Z))) != 0
540   // ((X & Y) == 0) ? (X & 1) : 1 --> (X & (Y | 1)) != 0
541   Constant *One = ConstantInt::get(SelType, 1);
542   Value *MaskB = HasShift ? Builder.CreateShl(One, Z) : One;
543   Value *FullMask = Builder.CreateOr(Y, MaskB);
544   Value *MaskedX = Builder.CreateAnd(X, FullMask);
545   Value *ICmpNeZero = Builder.CreateIsNotNull(MaskedX);
546   return new ZExtInst(ICmpNeZero, SelType);
547 }
548 
549 /// We want to turn:
550 ///   (select (icmp sgt x, C), lshr (X, Y), ashr (X, Y)); iff C s>= -1
551 ///   (select (icmp slt x, C), ashr (X, Y), lshr (X, Y)); iff C s>= 0
552 /// into:
553 ///   ashr (X, Y)
554 static Value *foldSelectICmpLshrAshr(const ICmpInst *IC, Value *TrueVal,
555                                      Value *FalseVal,
556                                      InstCombiner::BuilderTy &Builder) {
557   ICmpInst::Predicate Pred = IC->getPredicate();
558   Value *CmpLHS = IC->getOperand(0);
559   Value *CmpRHS = IC->getOperand(1);
560   if (!CmpRHS->getType()->isIntOrIntVectorTy())
561     return nullptr;
562 
563   Value *X, *Y;
564   unsigned Bitwidth = CmpRHS->getType()->getScalarSizeInBits();
565   if ((Pred != ICmpInst::ICMP_SGT ||
566        !match(CmpRHS,
567               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, -1)))) &&
568       (Pred != ICmpInst::ICMP_SLT ||
569        !match(CmpRHS,
570               m_SpecificInt_ICMP(ICmpInst::ICMP_SGE, APInt(Bitwidth, 0)))))
571     return nullptr;
572 
573   // Canonicalize so that ashr is in FalseVal.
574   if (Pred == ICmpInst::ICMP_SLT)
575     std::swap(TrueVal, FalseVal);
576 
577   if (match(TrueVal, m_LShr(m_Value(X), m_Value(Y))) &&
578       match(FalseVal, m_AShr(m_Specific(X), m_Specific(Y))) &&
579       match(CmpLHS, m_Specific(X))) {
580     const auto *Ashr = cast<Instruction>(FalseVal);
581     // if lshr is not exact and ashr is, this new ashr must not be exact.
582     bool IsExact = Ashr->isExact() && cast<Instruction>(TrueVal)->isExact();
583     return Builder.CreateAShr(X, Y, IC->getName(), IsExact);
584   }
585 
586   return nullptr;
587 }
588 
589 /// We want to turn:
590 ///   (select (icmp eq (and X, C1), 0), Y, (or Y, C2))
591 /// into:
592 ///   (or (shl (and X, C1), C3), Y)
593 /// iff:
594 ///   C1 and C2 are both powers of 2
595 /// where:
596 ///   C3 = Log(C2) - Log(C1)
597 ///
598 /// This transform handles cases where:
599 /// 1. The icmp predicate is inverted
600 /// 2. The select operands are reversed
601 /// 3. The magnitude of C2 and C1 are flipped
602 static Value *foldSelectICmpAndOr(const ICmpInst *IC, Value *TrueVal,
603                                   Value *FalseVal,
604                                   InstCombiner::BuilderTy &Builder) {
605   // Only handle integer compares. Also, if this is a vector select, we need a
606   // vector compare.
607   if (!TrueVal->getType()->isIntOrIntVectorTy() ||
608       TrueVal->getType()->isVectorTy() != IC->getType()->isVectorTy())
609     return nullptr;
610 
611   Value *CmpLHS = IC->getOperand(0);
612   Value *CmpRHS = IC->getOperand(1);
613 
614   Value *V;
615   unsigned C1Log;
616   bool IsEqualZero;
617   bool NeedAnd = false;
618   if (IC->isEquality()) {
619     if (!match(CmpRHS, m_Zero()))
620       return nullptr;
621 
622     const APInt *C1;
623     if (!match(CmpLHS, m_And(m_Value(), m_Power2(C1))))
624       return nullptr;
625 
626     V = CmpLHS;
627     C1Log = C1->logBase2();
628     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_EQ;
629   } else if (IC->getPredicate() == ICmpInst::ICMP_SLT ||
630              IC->getPredicate() == ICmpInst::ICMP_SGT) {
631     // We also need to recognize (icmp slt (trunc (X)), 0) and
632     // (icmp sgt (trunc (X)), -1).
633     IsEqualZero = IC->getPredicate() == ICmpInst::ICMP_SGT;
634     if ((IsEqualZero && !match(CmpRHS, m_AllOnes())) ||
635         (!IsEqualZero && !match(CmpRHS, m_Zero())))
636       return nullptr;
637 
638     if (!match(CmpLHS, m_OneUse(m_Trunc(m_Value(V)))))
639       return nullptr;
640 
641     C1Log = CmpLHS->getType()->getScalarSizeInBits() - 1;
642     NeedAnd = true;
643   } else {
644     return nullptr;
645   }
646 
647   const APInt *C2;
648   bool OrOnTrueVal = false;
649   bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2)));
650   if (!OrOnFalseVal)
651     OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2)));
652 
653   if (!OrOnFalseVal && !OrOnTrueVal)
654     return nullptr;
655 
656   Value *Y = OrOnFalseVal ? TrueVal : FalseVal;
657 
658   unsigned C2Log = C2->logBase2();
659 
660   bool NeedXor = (!IsEqualZero && OrOnFalseVal) || (IsEqualZero && OrOnTrueVal);
661   bool NeedShift = C1Log != C2Log;
662   bool NeedZExtTrunc = Y->getType()->getScalarSizeInBits() !=
663                        V->getType()->getScalarSizeInBits();
664 
665   // Make sure we don't create more instructions than we save.
666   Value *Or = OrOnFalseVal ? FalseVal : TrueVal;
667   if ((NeedShift + NeedXor + NeedZExtTrunc) >
668       (IC->hasOneUse() + Or->hasOneUse()))
669     return nullptr;
670 
671   if (NeedAnd) {
672     // Insert the AND instruction on the input to the truncate.
673     APInt C1 = APInt::getOneBitSet(V->getType()->getScalarSizeInBits(), C1Log);
674     V = Builder.CreateAnd(V, ConstantInt::get(V->getType(), C1));
675   }
676 
677   if (C2Log > C1Log) {
678     V = Builder.CreateZExtOrTrunc(V, Y->getType());
679     V = Builder.CreateShl(V, C2Log - C1Log);
680   } else if (C1Log > C2Log) {
681     V = Builder.CreateLShr(V, C1Log - C2Log);
682     V = Builder.CreateZExtOrTrunc(V, Y->getType());
683   } else
684     V = Builder.CreateZExtOrTrunc(V, Y->getType());
685 
686   if (NeedXor)
687     V = Builder.CreateXor(V, *C2);
688 
689   return Builder.CreateOr(V, Y);
690 }
691 
692 /// Canonicalize a set or clear of a masked set of constant bits to
693 /// select-of-constants form.
694 static Instruction *foldSetClearBits(SelectInst &Sel,
695                                      InstCombiner::BuilderTy &Builder) {
696   Value *Cond = Sel.getCondition();
697   Value *T = Sel.getTrueValue();
698   Value *F = Sel.getFalseValue();
699   Type *Ty = Sel.getType();
700   Value *X;
701   const APInt *NotC, *C;
702 
703   // Cond ? (X & ~C) : (X | C) --> (X & ~C) | (Cond ? 0 : C)
704   if (match(T, m_And(m_Value(X), m_APInt(NotC))) &&
705       match(F, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
706     Constant *Zero = ConstantInt::getNullValue(Ty);
707     Constant *OrC = ConstantInt::get(Ty, *C);
708     Value *NewSel = Builder.CreateSelect(Cond, Zero, OrC, "masksel", &Sel);
709     return BinaryOperator::CreateOr(T, NewSel);
710   }
711 
712   // Cond ? (X | C) : (X & ~C) --> (X & ~C) | (Cond ? C : 0)
713   if (match(F, m_And(m_Value(X), m_APInt(NotC))) &&
714       match(T, m_OneUse(m_Or(m_Specific(X), m_APInt(C)))) && *NotC == ~(*C)) {
715     Constant *Zero = ConstantInt::getNullValue(Ty);
716     Constant *OrC = ConstantInt::get(Ty, *C);
717     Value *NewSel = Builder.CreateSelect(Cond, OrC, Zero, "masksel", &Sel);
718     return BinaryOperator::CreateOr(F, NewSel);
719   }
720 
721   return nullptr;
722 }
723 
724 //   select (x == 0), 0, x * y --> freeze(y) * x
725 //   select (y == 0), 0, x * y --> freeze(x) * y
726 //   select (x == 0), undef, x * y --> freeze(y) * x
727 //   select (x == undef), 0, x * y --> freeze(y) * x
728 // Usage of mul instead of 0 will make the result more poisonous,
729 // so the operand that was not checked in the condition should be frozen.
730 // The latter folding is applied only when a constant compared with x is
731 // is a vector consisting of 0 and undefs. If a constant compared with x
732 // is a scalar undefined value or undefined vector then an expression
733 // should be already folded into a constant.
734 static Instruction *foldSelectZeroOrMul(SelectInst &SI, InstCombinerImpl &IC) {
735   auto *CondVal = SI.getCondition();
736   auto *TrueVal = SI.getTrueValue();
737   auto *FalseVal = SI.getFalseValue();
738   Value *X, *Y;
739   ICmpInst::Predicate Predicate;
740 
741   // Assuming that constant compared with zero is not undef (but it may be
742   // a vector with some undef elements). Otherwise (when a constant is undef)
743   // the select expression should be already simplified.
744   if (!match(CondVal, m_ICmp(Predicate, m_Value(X), m_Zero())) ||
745       !ICmpInst::isEquality(Predicate))
746     return nullptr;
747 
748   if (Predicate == ICmpInst::ICMP_NE)
749     std::swap(TrueVal, FalseVal);
750 
751   // Check that TrueVal is a constant instead of matching it with m_Zero()
752   // to handle the case when it is a scalar undef value or a vector containing
753   // non-zero elements that are masked by undef elements in the compare
754   // constant.
755   auto *TrueValC = dyn_cast<Constant>(TrueVal);
756   if (TrueValC == nullptr ||
757       !match(FalseVal, m_c_Mul(m_Specific(X), m_Value(Y))) ||
758       !isa<Instruction>(FalseVal))
759     return nullptr;
760 
761   auto *ZeroC = cast<Constant>(cast<Instruction>(CondVal)->getOperand(1));
762   auto *MergedC = Constant::mergeUndefsWith(TrueValC, ZeroC);
763   // If X is compared with 0 then TrueVal could be either zero or undef.
764   // m_Zero match vectors containing some undef elements, but for scalars
765   // m_Undef should be used explicitly.
766   if (!match(MergedC, m_Zero()) && !match(MergedC, m_Undef()))
767     return nullptr;
768 
769   auto *FalseValI = cast<Instruction>(FalseVal);
770   auto *FrY = IC.InsertNewInstBefore(new FreezeInst(Y, Y->getName() + ".fr"),
771                                      *FalseValI);
772   IC.replaceOperand(*FalseValI, FalseValI->getOperand(0) == Y ? 0 : 1, FrY);
773   return IC.replaceInstUsesWith(SI, FalseValI);
774 }
775 
776 /// Transform patterns such as (a > b) ? a - b : 0 into usub.sat(a, b).
777 /// There are 8 commuted/swapped variants of this pattern.
778 /// TODO: Also support a - UMIN(a,b) patterns.
779 static Value *canonicalizeSaturatedSubtract(const ICmpInst *ICI,
780                                             const Value *TrueVal,
781                                             const Value *FalseVal,
782                                             InstCombiner::BuilderTy &Builder) {
783   ICmpInst::Predicate Pred = ICI->getPredicate();
784   if (!ICmpInst::isUnsigned(Pred))
785     return nullptr;
786 
787   // (b > a) ? 0 : a - b -> (b <= a) ? a - b : 0
788   if (match(TrueVal, m_Zero())) {
789     Pred = ICmpInst::getInversePredicate(Pred);
790     std::swap(TrueVal, FalseVal);
791   }
792   if (!match(FalseVal, m_Zero()))
793     return nullptr;
794 
795   Value *A = ICI->getOperand(0);
796   Value *B = ICI->getOperand(1);
797   if (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_ULT) {
798     // (b < a) ? a - b : 0 -> (a > b) ? a - b : 0
799     std::swap(A, B);
800     Pred = ICmpInst::getSwappedPredicate(Pred);
801   }
802 
803   assert((Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_UGT) &&
804          "Unexpected isUnsigned predicate!");
805 
806   // Ensure the sub is of the form:
807   //  (a > b) ? a - b : 0 -> usub.sat(a, b)
808   //  (a > b) ? b - a : 0 -> -usub.sat(a, b)
809   // Checking for both a-b and a+(-b) as a constant.
810   bool IsNegative = false;
811   const APInt *C;
812   if (match(TrueVal, m_Sub(m_Specific(B), m_Specific(A))) ||
813       (match(A, m_APInt(C)) &&
814        match(TrueVal, m_Add(m_Specific(B), m_SpecificInt(-*C)))))
815     IsNegative = true;
816   else if (!match(TrueVal, m_Sub(m_Specific(A), m_Specific(B))) &&
817            !(match(B, m_APInt(C)) &&
818              match(TrueVal, m_Add(m_Specific(A), m_SpecificInt(-*C)))))
819     return nullptr;
820 
821   // If we are adding a negate and the sub and icmp are used anywhere else, we
822   // would end up with more instructions.
823   if (IsNegative && !TrueVal->hasOneUse() && !ICI->hasOneUse())
824     return nullptr;
825 
826   // (a > b) ? a - b : 0 -> usub.sat(a, b)
827   // (a > b) ? b - a : 0 -> -usub.sat(a, b)
828   Value *Result = Builder.CreateBinaryIntrinsic(Intrinsic::usub_sat, A, B);
829   if (IsNegative)
830     Result = Builder.CreateNeg(Result);
831   return Result;
832 }
833 
834 static Value *canonicalizeSaturatedAdd(ICmpInst *Cmp, Value *TVal, Value *FVal,
835                                        InstCombiner::BuilderTy &Builder) {
836   if (!Cmp->hasOneUse())
837     return nullptr;
838 
839   // Match unsigned saturated add with constant.
840   Value *Cmp0 = Cmp->getOperand(0);
841   Value *Cmp1 = Cmp->getOperand(1);
842   ICmpInst::Predicate Pred = Cmp->getPredicate();
843   Value *X;
844   const APInt *C, *CmpC;
845   if (Pred == ICmpInst::ICMP_ULT &&
846       match(TVal, m_Add(m_Value(X), m_APInt(C))) && X == Cmp0 &&
847       match(FVal, m_AllOnes()) && match(Cmp1, m_APInt(CmpC)) && *CmpC == ~*C) {
848     // (X u< ~C) ? (X + C) : -1 --> uadd.sat(X, C)
849     return Builder.CreateBinaryIntrinsic(
850         Intrinsic::uadd_sat, X, ConstantInt::get(X->getType(), *C));
851   }
852 
853   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
854   // There are 8 commuted variants.
855   // Canonicalize -1 (saturated result) to true value of the select.
856   if (match(FVal, m_AllOnes())) {
857     std::swap(TVal, FVal);
858     Pred = CmpInst::getInversePredicate(Pred);
859   }
860   if (!match(TVal, m_AllOnes()))
861     return nullptr;
862 
863   // Canonicalize predicate to less-than or less-or-equal-than.
864   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
865     std::swap(Cmp0, Cmp1);
866     Pred = CmpInst::getSwappedPredicate(Pred);
867   }
868   if (Pred != ICmpInst::ICMP_ULT && Pred != ICmpInst::ICMP_ULE)
869     return nullptr;
870 
871   // Match unsigned saturated add of 2 variables with an unnecessary 'not'.
872   // Strictness of the comparison is irrelevant.
873   Value *Y;
874   if (match(Cmp0, m_Not(m_Value(X))) &&
875       match(FVal, m_c_Add(m_Specific(X), m_Value(Y))) && Y == Cmp1) {
876     // (~X u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
877     // (~X u< Y) ? -1 : (Y + X) --> uadd.sat(X, Y)
878     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, X, Y);
879   }
880   // The 'not' op may be included in the sum but not the compare.
881   // Strictness of the comparison is irrelevant.
882   X = Cmp0;
883   Y = Cmp1;
884   if (match(FVal, m_c_Add(m_Not(m_Specific(X)), m_Specific(Y)))) {
885     // (X u< Y) ? -1 : (~X + Y) --> uadd.sat(~X, Y)
886     // (X u< Y) ? -1 : (Y + ~X) --> uadd.sat(Y, ~X)
887     BinaryOperator *BO = cast<BinaryOperator>(FVal);
888     return Builder.CreateBinaryIntrinsic(
889         Intrinsic::uadd_sat, BO->getOperand(0), BO->getOperand(1));
890   }
891   // The overflow may be detected via the add wrapping round.
892   // This is only valid for strict comparison!
893   if (Pred == ICmpInst::ICMP_ULT &&
894       match(Cmp0, m_c_Add(m_Specific(Cmp1), m_Value(Y))) &&
895       match(FVal, m_c_Add(m_Specific(Cmp1), m_Specific(Y)))) {
896     // ((X + Y) u< X) ? -1 : (X + Y) --> uadd.sat(X, Y)
897     // ((X + Y) u< Y) ? -1 : (X + Y) --> uadd.sat(X, Y)
898     return Builder.CreateBinaryIntrinsic(Intrinsic::uadd_sat, Cmp1, Y);
899   }
900 
901   return nullptr;
902 }
903 
904 /// Fold the following code sequence:
905 /// \code
906 ///   int a = ctlz(x & -x);
907 //    x ? 31 - a : a;
908 /// \code
909 ///
910 /// into:
911 ///   cttz(x)
912 static Instruction *foldSelectCtlzToCttz(ICmpInst *ICI, Value *TrueVal,
913                                          Value *FalseVal,
914                                          InstCombiner::BuilderTy &Builder) {
915   unsigned BitWidth = TrueVal->getType()->getScalarSizeInBits();
916   if (!ICI->isEquality() || !match(ICI->getOperand(1), m_Zero()))
917     return nullptr;
918 
919   if (ICI->getPredicate() == ICmpInst::ICMP_NE)
920     std::swap(TrueVal, FalseVal);
921 
922   if (!match(FalseVal,
923              m_Xor(m_Deferred(TrueVal), m_SpecificInt(BitWidth - 1))))
924     return nullptr;
925 
926   if (!match(TrueVal, m_Intrinsic<Intrinsic::ctlz>()))
927     return nullptr;
928 
929   Value *X = ICI->getOperand(0);
930   auto *II = cast<IntrinsicInst>(TrueVal);
931   if (!match(II->getOperand(0), m_c_And(m_Specific(X), m_Neg(m_Specific(X)))))
932     return nullptr;
933 
934   Function *F = Intrinsic::getDeclaration(II->getModule(), Intrinsic::cttz,
935                                           II->getType());
936   return CallInst::Create(F, {X, II->getArgOperand(1)});
937 }
938 
939 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single
940 /// call to cttz/ctlz with flag 'is_zero_poison' cleared.
941 ///
942 /// For example, we can fold the following code sequence:
943 /// \code
944 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true)
945 ///   %1 = icmp ne i32 %x, 0
946 ///   %2 = select i1 %1, i32 %0, i32 32
947 /// \code
948 ///
949 /// into:
950 ///   %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false)
951 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal,
952                                  InstCombiner::BuilderTy &Builder) {
953   ICmpInst::Predicate Pred = ICI->getPredicate();
954   Value *CmpLHS = ICI->getOperand(0);
955   Value *CmpRHS = ICI->getOperand(1);
956 
957   // Check if the condition value compares a value for equality against zero.
958   if (!ICI->isEquality() || !match(CmpRHS, m_Zero()))
959     return nullptr;
960 
961   Value *SelectArg = FalseVal;
962   Value *ValueOnZero = TrueVal;
963   if (Pred == ICmpInst::ICMP_NE)
964     std::swap(SelectArg, ValueOnZero);
965 
966   // Skip zero extend/truncate.
967   Value *Count = nullptr;
968   if (!match(SelectArg, m_ZExt(m_Value(Count))) &&
969       !match(SelectArg, m_Trunc(m_Value(Count))))
970     Count = SelectArg;
971 
972   // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the
973   // input to the cttz/ctlz is used as LHS for the compare instruction.
974   if (!match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) &&
975       !match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS))))
976     return nullptr;
977 
978   IntrinsicInst *II = cast<IntrinsicInst>(Count);
979 
980   // Check if the value propagated on zero is a constant number equal to the
981   // sizeof in bits of 'Count'.
982   unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits();
983   if (match(ValueOnZero, m_SpecificInt(SizeOfInBits))) {
984     // Explicitly clear the 'is_zero_poison' flag. It's always valid to go from
985     // true to false on this flag, so we can replace it for all users.
986     II->setArgOperand(1, ConstantInt::getFalse(II->getContext()));
987     return SelectArg;
988   }
989 
990   // The ValueOnZero is not the bitwidth. But if the cttz/ctlz (and optional
991   // zext/trunc) have one use (ending at the select), the cttz/ctlz result will
992   // not be used if the input is zero. Relax to 'zero is poison' for that case.
993   if (II->hasOneUse() && SelectArg->hasOneUse() &&
994       !match(II->getArgOperand(1), m_One()))
995     II->setArgOperand(1, ConstantInt::getTrue(II->getContext()));
996 
997   return nullptr;
998 }
999 
1000 /// Return true if we find and adjust an icmp+select pattern where the compare
1001 /// is with a constant that can be incremented or decremented to match the
1002 /// minimum or maximum idiom.
1003 static bool adjustMinMax(SelectInst &Sel, ICmpInst &Cmp) {
1004   ICmpInst::Predicate Pred = Cmp.getPredicate();
1005   Value *CmpLHS = Cmp.getOperand(0);
1006   Value *CmpRHS = Cmp.getOperand(1);
1007   Value *TrueVal = Sel.getTrueValue();
1008   Value *FalseVal = Sel.getFalseValue();
1009 
1010   // We may move or edit the compare, so make sure the select is the only user.
1011   const APInt *CmpC;
1012   if (!Cmp.hasOneUse() || !match(CmpRHS, m_APInt(CmpC)))
1013     return false;
1014 
1015   // These transforms only work for selects of integers or vector selects of
1016   // integer vectors.
1017   Type *SelTy = Sel.getType();
1018   auto *SelEltTy = dyn_cast<IntegerType>(SelTy->getScalarType());
1019   if (!SelEltTy || SelTy->isVectorTy() != Cmp.getType()->isVectorTy())
1020     return false;
1021 
1022   Constant *AdjustedRHS;
1023   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT)
1024     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC + 1);
1025   else if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT)
1026     AdjustedRHS = ConstantInt::get(CmpRHS->getType(), *CmpC - 1);
1027   else
1028     return false;
1029 
1030   // X > C ? X : C+1  -->  X < C+1 ? C+1 : X
1031   // X < C ? X : C-1  -->  X > C-1 ? C-1 : X
1032   if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
1033       (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
1034     ; // Nothing to do here. Values match without any sign/zero extension.
1035   }
1036   // Types do not match. Instead of calculating this with mixed types, promote
1037   // all to the larger type. This enables scalar evolution to analyze this
1038   // expression.
1039   else if (CmpRHS->getType()->getScalarSizeInBits() < SelEltTy->getBitWidth()) {
1040     Constant *SextRHS = ConstantExpr::getSExt(AdjustedRHS, SelTy);
1041 
1042     // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X
1043     // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X
1044     // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X
1045     // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X
1046     if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && SextRHS == FalseVal) {
1047       CmpLHS = TrueVal;
1048       AdjustedRHS = SextRHS;
1049     } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) &&
1050                SextRHS == TrueVal) {
1051       CmpLHS = FalseVal;
1052       AdjustedRHS = SextRHS;
1053     } else if (Cmp.isUnsigned()) {
1054       Constant *ZextRHS = ConstantExpr::getZExt(AdjustedRHS, SelTy);
1055       // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X
1056       // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X
1057       // zext + signed compare cannot be changed:
1058       //    0xff <s 0x00, but 0x00ff >s 0x0000
1059       if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && ZextRHS == FalseVal) {
1060         CmpLHS = TrueVal;
1061         AdjustedRHS = ZextRHS;
1062       } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) &&
1063                  ZextRHS == TrueVal) {
1064         CmpLHS = FalseVal;
1065         AdjustedRHS = ZextRHS;
1066       } else {
1067         return false;
1068       }
1069     } else {
1070       return false;
1071     }
1072   } else {
1073     return false;
1074   }
1075 
1076   Pred = ICmpInst::getSwappedPredicate(Pred);
1077   CmpRHS = AdjustedRHS;
1078   std::swap(FalseVal, TrueVal);
1079   Cmp.setPredicate(Pred);
1080   Cmp.setOperand(0, CmpLHS);
1081   Cmp.setOperand(1, CmpRHS);
1082   Sel.setOperand(1, TrueVal);
1083   Sel.setOperand(2, FalseVal);
1084   Sel.swapProfMetadata();
1085 
1086   // Move the compare instruction right before the select instruction. Otherwise
1087   // the sext/zext value may be defined after the compare instruction uses it.
1088   Cmp.moveBefore(&Sel);
1089 
1090   return true;
1091 }
1092 
1093 static Instruction *canonicalizeSPF(SelectInst &Sel, ICmpInst &Cmp,
1094                                     InstCombinerImpl &IC) {
1095   Value *LHS, *RHS;
1096   // TODO: What to do with pointer min/max patterns?
1097   if (!Sel.getType()->isIntOrIntVectorTy())
1098     return nullptr;
1099 
1100   SelectPatternFlavor SPF = matchSelectPattern(&Sel, LHS, RHS).Flavor;
1101   if (SPF == SelectPatternFlavor::SPF_ABS ||
1102       SPF == SelectPatternFlavor::SPF_NABS) {
1103     if (!Cmp.hasOneUse() && !RHS->hasOneUse())
1104       return nullptr; // TODO: Relax this restriction.
1105 
1106     // Note that NSW flag can only be propagated for normal, non-negated abs!
1107     bool IntMinIsPoison = SPF == SelectPatternFlavor::SPF_ABS &&
1108                           match(RHS, m_NSWNeg(m_Specific(LHS)));
1109     Constant *IntMinIsPoisonC =
1110         ConstantInt::get(Type::getInt1Ty(Sel.getContext()), IntMinIsPoison);
1111     Instruction *Abs =
1112         IC.Builder.CreateBinaryIntrinsic(Intrinsic::abs, LHS, IntMinIsPoisonC);
1113 
1114     if (SPF == SelectPatternFlavor::SPF_NABS)
1115       return BinaryOperator::CreateNeg(Abs); // Always without NSW flag!
1116     return IC.replaceInstUsesWith(Sel, Abs);
1117   }
1118 
1119   if (SelectPatternResult::isMinOrMax(SPF)) {
1120     Intrinsic::ID IntrinsicID;
1121     switch (SPF) {
1122     case SelectPatternFlavor::SPF_UMIN:
1123       IntrinsicID = Intrinsic::umin;
1124       break;
1125     case SelectPatternFlavor::SPF_UMAX:
1126       IntrinsicID = Intrinsic::umax;
1127       break;
1128     case SelectPatternFlavor::SPF_SMIN:
1129       IntrinsicID = Intrinsic::smin;
1130       break;
1131     case SelectPatternFlavor::SPF_SMAX:
1132       IntrinsicID = Intrinsic::smax;
1133       break;
1134     default:
1135       llvm_unreachable("Unexpected SPF");
1136     }
1137     return IC.replaceInstUsesWith(
1138         Sel, IC.Builder.CreateBinaryIntrinsic(IntrinsicID, LHS, RHS));
1139   }
1140 
1141   return nullptr;
1142 }
1143 
1144 /// If we have a select with an equality comparison, then we know the value in
1145 /// one of the arms of the select. See if substituting this value into an arm
1146 /// and simplifying the result yields the same value as the other arm.
1147 ///
1148 /// To make this transform safe, we must drop poison-generating flags
1149 /// (nsw, etc) if we simplified to a binop because the select may be guarding
1150 /// that poison from propagating. If the existing binop already had no
1151 /// poison-generating flags, then this transform can be done by instsimplify.
1152 ///
1153 /// Consider:
1154 ///   %cmp = icmp eq i32 %x, 2147483647
1155 ///   %add = add nsw i32 %x, 1
1156 ///   %sel = select i1 %cmp, i32 -2147483648, i32 %add
1157 ///
1158 /// We can't replace %sel with %add unless we strip away the flags.
1159 /// TODO: Wrapping flags could be preserved in some cases with better analysis.
1160 Instruction *InstCombinerImpl::foldSelectValueEquivalence(SelectInst &Sel,
1161                                                           ICmpInst &Cmp) {
1162   // Value equivalence substitution requires an all-or-nothing replacement.
1163   // It does not make sense for a vector compare where each lane is chosen
1164   // independently.
1165   if (!Cmp.isEquality() || Cmp.getType()->isVectorTy())
1166     return nullptr;
1167 
1168   // Canonicalize the pattern to ICMP_EQ by swapping the select operands.
1169   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
1170   bool Swapped = false;
1171   if (Cmp.getPredicate() == ICmpInst::ICMP_NE) {
1172     std::swap(TrueVal, FalseVal);
1173     Swapped = true;
1174   }
1175 
1176   // In X == Y ? f(X) : Z, try to evaluate f(Y) and replace the operand.
1177   // Make sure Y cannot be undef though, as we might pick different values for
1178   // undef in the icmp and in f(Y). Additionally, take care to avoid replacing
1179   // X == Y ? X : Z with X == Y ? Y : Z, as that would lead to an infinite
1180   // replacement cycle.
1181   Value *CmpLHS = Cmp.getOperand(0), *CmpRHS = Cmp.getOperand(1);
1182   if (TrueVal != CmpLHS &&
1183       isGuaranteedNotToBeUndefOrPoison(CmpRHS, SQ.AC, &Sel, &DT)) {
1184     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpLHS, CmpRHS, SQ,
1185                                           /* AllowRefinement */ true))
1186       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1187 
1188     // Even if TrueVal does not simplify, we can directly replace a use of
1189     // CmpLHS with CmpRHS, as long as the instruction is not used anywhere
1190     // else and is safe to speculatively execute (we may end up executing it
1191     // with different operands, which should not cause side-effects or trigger
1192     // undefined behavior). Only do this if CmpRHS is a constant, as
1193     // profitability is not clear for other cases.
1194     // FIXME: The replacement could be performed recursively.
1195     if (match(CmpRHS, m_ImmConstant()) && !match(CmpLHS, m_ImmConstant()))
1196       if (auto *I = dyn_cast<Instruction>(TrueVal))
1197         if (I->hasOneUse() && isSafeToSpeculativelyExecute(I))
1198           for (Use &U : I->operands())
1199             if (U == CmpLHS) {
1200               replaceUse(U, CmpRHS);
1201               return &Sel;
1202             }
1203   }
1204   if (TrueVal != CmpRHS &&
1205       isGuaranteedNotToBeUndefOrPoison(CmpLHS, SQ.AC, &Sel, &DT))
1206     if (Value *V = simplifyWithOpReplaced(TrueVal, CmpRHS, CmpLHS, SQ,
1207                                           /* AllowRefinement */ true))
1208       return replaceOperand(Sel, Swapped ? 2 : 1, V);
1209 
1210   auto *FalseInst = dyn_cast<Instruction>(FalseVal);
1211   if (!FalseInst)
1212     return nullptr;
1213 
1214   // InstSimplify already performed this fold if it was possible subject to
1215   // current poison-generating flags. Try the transform again with
1216   // poison-generating flags temporarily dropped.
1217   bool WasNUW = false, WasNSW = false, WasExact = false, WasInBounds = false;
1218   if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(FalseVal)) {
1219     WasNUW = OBO->hasNoUnsignedWrap();
1220     WasNSW = OBO->hasNoSignedWrap();
1221     FalseInst->setHasNoUnsignedWrap(false);
1222     FalseInst->setHasNoSignedWrap(false);
1223   }
1224   if (auto *PEO = dyn_cast<PossiblyExactOperator>(FalseVal)) {
1225     WasExact = PEO->isExact();
1226     FalseInst->setIsExact(false);
1227   }
1228   if (auto *GEP = dyn_cast<GetElementPtrInst>(FalseVal)) {
1229     WasInBounds = GEP->isInBounds();
1230     GEP->setIsInBounds(false);
1231   }
1232 
1233   // Try each equivalence substitution possibility.
1234   // We have an 'EQ' comparison, so the select's false value will propagate.
1235   // Example:
1236   // (X == 42) ? 43 : (X + 1) --> (X == 42) ? (X + 1) : (X + 1) --> X + 1
1237   if (simplifyWithOpReplaced(FalseVal, CmpLHS, CmpRHS, SQ,
1238                              /* AllowRefinement */ false) == TrueVal ||
1239       simplifyWithOpReplaced(FalseVal, CmpRHS, CmpLHS, SQ,
1240                              /* AllowRefinement */ false) == TrueVal) {
1241     return replaceInstUsesWith(Sel, FalseVal);
1242   }
1243 
1244   // Restore poison-generating flags if the transform did not apply.
1245   if (WasNUW)
1246     FalseInst->setHasNoUnsignedWrap();
1247   if (WasNSW)
1248     FalseInst->setHasNoSignedWrap();
1249   if (WasExact)
1250     FalseInst->setIsExact();
1251   if (WasInBounds)
1252     cast<GetElementPtrInst>(FalseInst)->setIsInBounds();
1253 
1254   return nullptr;
1255 }
1256 
1257 // See if this is a pattern like:
1258 //   %old_cmp1 = icmp slt i32 %x, C2
1259 //   %old_replacement = select i1 %old_cmp1, i32 %target_low, i32 %target_high
1260 //   %old_x_offseted = add i32 %x, C1
1261 //   %old_cmp0 = icmp ult i32 %old_x_offseted, C0
1262 //   %r = select i1 %old_cmp0, i32 %x, i32 %old_replacement
1263 // This can be rewritten as more canonical pattern:
1264 //   %new_cmp1 = icmp slt i32 %x, -C1
1265 //   %new_cmp2 = icmp sge i32 %x, C0-C1
1266 //   %new_clamped_low = select i1 %new_cmp1, i32 %target_low, i32 %x
1267 //   %r = select i1 %new_cmp2, i32 %target_high, i32 %new_clamped_low
1268 // Iff -C1 s<= C2 s<= C0-C1
1269 // Also ULT predicate can also be UGT iff C0 != -1 (+invert result)
1270 //      SLT predicate can also be SGT iff C2 != INT_MAX (+invert res.)
1271 static Value *canonicalizeClampLike(SelectInst &Sel0, ICmpInst &Cmp0,
1272                                     InstCombiner::BuilderTy &Builder) {
1273   Value *X = Sel0.getTrueValue();
1274   Value *Sel1 = Sel0.getFalseValue();
1275 
1276   // First match the condition of the outermost select.
1277   // Said condition must be one-use.
1278   if (!Cmp0.hasOneUse())
1279     return nullptr;
1280   ICmpInst::Predicate Pred0 = Cmp0.getPredicate();
1281   Value *Cmp00 = Cmp0.getOperand(0);
1282   Constant *C0;
1283   if (!match(Cmp0.getOperand(1),
1284              m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))
1285     return nullptr;
1286 
1287   if (!isa<SelectInst>(Sel1)) {
1288     Pred0 = ICmpInst::getInversePredicate(Pred0);
1289     std::swap(X, Sel1);
1290   }
1291 
1292   // Canonicalize Cmp0 into ult or uge.
1293   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1294   switch (Pred0) {
1295   case ICmpInst::Predicate::ICMP_ULT:
1296   case ICmpInst::Predicate::ICMP_UGE:
1297     // Although icmp ult %x, 0 is an unusual thing to try and should generally
1298     // have been simplified, it does not verify with undef inputs so ensure we
1299     // are not in a strange state.
1300     if (!match(C0, m_SpecificInt_ICMP(
1301                        ICmpInst::Predicate::ICMP_NE,
1302                        APInt::getZero(C0->getType()->getScalarSizeInBits()))))
1303       return nullptr;
1304     break; // Great!
1305   case ICmpInst::Predicate::ICMP_ULE:
1306   case ICmpInst::Predicate::ICMP_UGT:
1307     // We want to canonicalize it to 'ult' or 'uge', so we'll need to increment
1308     // C0, which again means it must not have any all-ones elements.
1309     if (!match(C0,
1310                m_SpecificInt_ICMP(
1311                    ICmpInst::Predicate::ICMP_NE,
1312                    APInt::getAllOnes(C0->getType()->getScalarSizeInBits()))))
1313       return nullptr; // Can't do, have all-ones element[s].
1314     C0 = InstCombiner::AddOne(C0);
1315     break;
1316   default:
1317     return nullptr; // Unknown predicate.
1318   }
1319 
1320   // Now that we've canonicalized the ICmp, we know the X we expect;
1321   // the select in other hand should be one-use.
1322   if (!Sel1->hasOneUse())
1323     return nullptr;
1324 
1325   // If the types do not match, look through any truncs to the underlying
1326   // instruction.
1327   if (Cmp00->getType() != X->getType() && X->hasOneUse())
1328     match(X, m_TruncOrSelf(m_Value(X)));
1329 
1330   // We now can finish matching the condition of the outermost select:
1331   // it should either be the X itself, or an addition of some constant to X.
1332   Constant *C1;
1333   if (Cmp00 == X)
1334     C1 = ConstantInt::getNullValue(X->getType());
1335   else if (!match(Cmp00,
1336                   m_Add(m_Specific(X),
1337                         m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C1)))))
1338     return nullptr;
1339 
1340   Value *Cmp1;
1341   ICmpInst::Predicate Pred1;
1342   Constant *C2;
1343   Value *ReplacementLow, *ReplacementHigh;
1344   if (!match(Sel1, m_Select(m_Value(Cmp1), m_Value(ReplacementLow),
1345                             m_Value(ReplacementHigh))) ||
1346       !match(Cmp1,
1347              m_ICmp(Pred1, m_Specific(X),
1348                     m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C2)))))
1349     return nullptr;
1350 
1351   if (!Cmp1->hasOneUse() && (Cmp00 == X || !Cmp00->hasOneUse()))
1352     return nullptr; // Not enough one-use instructions for the fold.
1353   // FIXME: this restriction could be relaxed if Cmp1 can be reused as one of
1354   //        two comparisons we'll need to build.
1355 
1356   // Canonicalize Cmp1 into the form we expect.
1357   // FIXME: we shouldn't care about lanes that are 'undef' in the end?
1358   switch (Pred1) {
1359   case ICmpInst::Predicate::ICMP_SLT:
1360     break;
1361   case ICmpInst::Predicate::ICMP_SLE:
1362     // We'd have to increment C2 by one, and for that it must not have signed
1363     // max element, but then it would have been canonicalized to 'slt' before
1364     // we get here. So we can't do anything useful with 'sle'.
1365     return nullptr;
1366   case ICmpInst::Predicate::ICMP_SGT:
1367     // We want to canonicalize it to 'slt', so we'll need to increment C2,
1368     // which again means it must not have any signed max elements.
1369     if (!match(C2,
1370                m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_NE,
1371                                   APInt::getSignedMaxValue(
1372                                       C2->getType()->getScalarSizeInBits()))))
1373       return nullptr; // Can't do, have signed max element[s].
1374     C2 = InstCombiner::AddOne(C2);
1375     LLVM_FALLTHROUGH;
1376   case ICmpInst::Predicate::ICMP_SGE:
1377     // Also non-canonical, but here we don't need to change C2,
1378     // so we don't have any restrictions on C2, so we can just handle it.
1379     std::swap(ReplacementLow, ReplacementHigh);
1380     break;
1381   default:
1382     return nullptr; // Unknown predicate.
1383   }
1384 
1385   // The thresholds of this clamp-like pattern.
1386   auto *ThresholdLowIncl = ConstantExpr::getNeg(C1);
1387   auto *ThresholdHighExcl = ConstantExpr::getSub(C0, C1);
1388   if (Pred0 == ICmpInst::Predicate::ICMP_UGE)
1389     std::swap(ThresholdLowIncl, ThresholdHighExcl);
1390 
1391   // The fold has a precondition 1: C2 s>= ThresholdLow
1392   auto *Precond1 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SGE, C2,
1393                                          ThresholdLowIncl);
1394   if (!match(Precond1, m_One()))
1395     return nullptr;
1396   // The fold has a precondition 2: C2 s<= ThresholdHigh
1397   auto *Precond2 = ConstantExpr::getICmp(ICmpInst::Predicate::ICMP_SLE, C2,
1398                                          ThresholdHighExcl);
1399   if (!match(Precond2, m_One()))
1400     return nullptr;
1401 
1402   // If we are matching from a truncated input, we need to sext the
1403   // ReplacementLow and ReplacementHigh values. Only do the transform if they
1404   // are free to extend due to being constants.
1405   if (X->getType() != Sel0.getType()) {
1406     Constant *LowC, *HighC;
1407     if (!match(ReplacementLow, m_ImmConstant(LowC)) ||
1408         !match(ReplacementHigh, m_ImmConstant(HighC)))
1409       return nullptr;
1410     ReplacementLow = ConstantExpr::getSExt(LowC, X->getType());
1411     ReplacementHigh = ConstantExpr::getSExt(HighC, X->getType());
1412   }
1413 
1414   // All good, finally emit the new pattern.
1415   Value *ShouldReplaceLow = Builder.CreateICmpSLT(X, ThresholdLowIncl);
1416   Value *ShouldReplaceHigh = Builder.CreateICmpSGE(X, ThresholdHighExcl);
1417   Value *MaybeReplacedLow =
1418       Builder.CreateSelect(ShouldReplaceLow, ReplacementLow, X);
1419 
1420   // Create the final select. If we looked through a truncate above, we will
1421   // need to retruncate the result.
1422   Value *MaybeReplacedHigh = Builder.CreateSelect(
1423       ShouldReplaceHigh, ReplacementHigh, MaybeReplacedLow);
1424   return Builder.CreateTrunc(MaybeReplacedHigh, Sel0.getType());
1425 }
1426 
1427 // If we have
1428 //  %cmp = icmp [canonical predicate] i32 %x, C0
1429 //  %r = select i1 %cmp, i32 %y, i32 C1
1430 // Where C0 != C1 and %x may be different from %y, see if the constant that we
1431 // will have if we flip the strictness of the predicate (i.e. without changing
1432 // the result) is identical to the C1 in select. If it matches we can change
1433 // original comparison to one with swapped predicate, reuse the constant,
1434 // and swap the hands of select.
1435 static Instruction *
1436 tryToReuseConstantFromSelectInComparison(SelectInst &Sel, ICmpInst &Cmp,
1437                                          InstCombinerImpl &IC) {
1438   ICmpInst::Predicate Pred;
1439   Value *X;
1440   Constant *C0;
1441   if (!match(&Cmp, m_OneUse(m_ICmp(
1442                        Pred, m_Value(X),
1443                        m_CombineAnd(m_AnyIntegralConstant(), m_Constant(C0))))))
1444     return nullptr;
1445 
1446   // If comparison predicate is non-relational, we won't be able to do anything.
1447   if (ICmpInst::isEquality(Pred))
1448     return nullptr;
1449 
1450   // If comparison predicate is non-canonical, then we certainly won't be able
1451   // to make it canonical; canonicalizeCmpWithConstant() already tried.
1452   if (!InstCombiner::isCanonicalPredicate(Pred))
1453     return nullptr;
1454 
1455   // If the [input] type of comparison and select type are different, lets abort
1456   // for now. We could try to compare constants with trunc/[zs]ext though.
1457   if (C0->getType() != Sel.getType())
1458     return nullptr;
1459 
1460   // ULT with 'add' of a constant is canonical. See foldICmpAddConstant().
1461   // FIXME: Are there more magic icmp predicate+constant pairs we must avoid?
1462   //        Or should we just abandon this transform entirely?
1463   if (Pred == CmpInst::ICMP_ULT && match(X, m_Add(m_Value(), m_Constant())))
1464     return nullptr;
1465 
1466 
1467   Value *SelVal0, *SelVal1; // We do not care which one is from where.
1468   match(&Sel, m_Select(m_Value(), m_Value(SelVal0), m_Value(SelVal1)));
1469   // At least one of these values we are selecting between must be a constant
1470   // else we'll never succeed.
1471   if (!match(SelVal0, m_AnyIntegralConstant()) &&
1472       !match(SelVal1, m_AnyIntegralConstant()))
1473     return nullptr;
1474 
1475   // Does this constant C match any of the `select` values?
1476   auto MatchesSelectValue = [SelVal0, SelVal1](Constant *C) {
1477     return C->isElementWiseEqual(SelVal0) || C->isElementWiseEqual(SelVal1);
1478   };
1479 
1480   // If C0 *already* matches true/false value of select, we are done.
1481   if (MatchesSelectValue(C0))
1482     return nullptr;
1483 
1484   // Check the constant we'd have with flipped-strictness predicate.
1485   auto FlippedStrictness =
1486       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, C0);
1487   if (!FlippedStrictness)
1488     return nullptr;
1489 
1490   // If said constant doesn't match either, then there is no hope,
1491   if (!MatchesSelectValue(FlippedStrictness->second))
1492     return nullptr;
1493 
1494   // It matched! Lets insert the new comparison just before select.
1495   InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
1496   IC.Builder.SetInsertPoint(&Sel);
1497 
1498   Pred = ICmpInst::getSwappedPredicate(Pred); // Yes, swapped.
1499   Value *NewCmp = IC.Builder.CreateICmp(Pred, X, FlippedStrictness->second,
1500                                         Cmp.getName() + ".inv");
1501   IC.replaceOperand(Sel, 0, NewCmp);
1502   Sel.swapValues();
1503   Sel.swapProfMetadata();
1504 
1505   return &Sel;
1506 }
1507 
1508 static Instruction *foldSelectZeroOrOnes(ICmpInst *Cmp, Value *TVal,
1509                                          Value *FVal,
1510                                          InstCombiner::BuilderTy &Builder) {
1511   if (!Cmp->hasOneUse())
1512     return nullptr;
1513 
1514   const APInt *CmpC;
1515   if (!match(Cmp->getOperand(1), m_APIntAllowUndef(CmpC)))
1516     return nullptr;
1517 
1518   // (X u< 2) ? -X : -1 --> sext (X != 0)
1519   Value *X = Cmp->getOperand(0);
1520   if (Cmp->getPredicate() == ICmpInst::ICMP_ULT && *CmpC == 2 &&
1521       match(TVal, m_Neg(m_Specific(X))) && match(FVal, m_AllOnes()))
1522     return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1523 
1524   // (X u> 1) ? -1 : -X --> sext (X != 0)
1525   if (Cmp->getPredicate() == ICmpInst::ICMP_UGT && *CmpC == 1 &&
1526       match(FVal, m_Neg(m_Specific(X))) && match(TVal, m_AllOnes()))
1527     return new SExtInst(Builder.CreateIsNotNull(X), TVal->getType());
1528 
1529   return nullptr;
1530 }
1531 
1532 /// Visit a SelectInst that has an ICmpInst as its first operand.
1533 Instruction *InstCombinerImpl::foldSelectInstWithICmp(SelectInst &SI,
1534                                                       ICmpInst *ICI) {
1535   if (Instruction *NewSel = foldSelectValueEquivalence(SI, *ICI))
1536     return NewSel;
1537 
1538   if (Instruction *NewSPF = canonicalizeSPF(SI, *ICI, *this))
1539     return NewSPF;
1540 
1541   if (Value *V = canonicalizeClampLike(SI, *ICI, Builder))
1542     return replaceInstUsesWith(SI, V);
1543 
1544   if (Instruction *NewSel =
1545           tryToReuseConstantFromSelectInComparison(SI, *ICI, *this))
1546     return NewSel;
1547 
1548   bool Changed = adjustMinMax(SI, *ICI);
1549 
1550   if (Value *V = foldSelectICmpAnd(SI, ICI, Builder))
1551     return replaceInstUsesWith(SI, V);
1552 
1553   // NOTE: if we wanted to, this is where to detect integer MIN/MAX
1554   Value *TrueVal = SI.getTrueValue();
1555   Value *FalseVal = SI.getFalseValue();
1556   ICmpInst::Predicate Pred = ICI->getPredicate();
1557   Value *CmpLHS = ICI->getOperand(0);
1558   Value *CmpRHS = ICI->getOperand(1);
1559   if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) {
1560     if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) {
1561       // Transform (X == C) ? X : Y -> (X == C) ? C : Y
1562       SI.setOperand(1, CmpRHS);
1563       Changed = true;
1564     } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) {
1565       // Transform (X != C) ? Y : X -> (X != C) ? Y : C
1566       SI.setOperand(2, CmpRHS);
1567       Changed = true;
1568     }
1569   }
1570 
1571   // FIXME: This code is nearly duplicated in InstSimplify. Using/refactoring
1572   // decomposeBitTestICmp() might help.
1573   {
1574     unsigned BitWidth =
1575         DL.getTypeSizeInBits(TrueVal->getType()->getScalarType());
1576     APInt MinSignedValue = APInt::getSignedMinValue(BitWidth);
1577     Value *X;
1578     const APInt *Y, *C;
1579     bool TrueWhenUnset;
1580     bool IsBitTest = false;
1581     if (ICmpInst::isEquality(Pred) &&
1582         match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) &&
1583         match(CmpRHS, m_Zero())) {
1584       IsBitTest = true;
1585       TrueWhenUnset = Pred == ICmpInst::ICMP_EQ;
1586     } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) {
1587       X = CmpLHS;
1588       Y = &MinSignedValue;
1589       IsBitTest = true;
1590       TrueWhenUnset = false;
1591     } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) {
1592       X = CmpLHS;
1593       Y = &MinSignedValue;
1594       IsBitTest = true;
1595       TrueWhenUnset = true;
1596     }
1597     if (IsBitTest) {
1598       Value *V = nullptr;
1599       // (X & Y) == 0 ? X : X ^ Y  --> X & ~Y
1600       if (TrueWhenUnset && TrueVal == X &&
1601           match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1602         V = Builder.CreateAnd(X, ~(*Y));
1603       // (X & Y) != 0 ? X ^ Y : X  --> X & ~Y
1604       else if (!TrueWhenUnset && FalseVal == X &&
1605                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1606         V = Builder.CreateAnd(X, ~(*Y));
1607       // (X & Y) == 0 ? X ^ Y : X  --> X | Y
1608       else if (TrueWhenUnset && FalseVal == X &&
1609                match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1610         V = Builder.CreateOr(X, *Y);
1611       // (X & Y) != 0 ? X : X ^ Y  --> X | Y
1612       else if (!TrueWhenUnset && TrueVal == X &&
1613                match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C)
1614         V = Builder.CreateOr(X, *Y);
1615 
1616       if (V)
1617         return replaceInstUsesWith(SI, V);
1618     }
1619   }
1620 
1621   if (Instruction *V =
1622           foldSelectICmpAndAnd(SI.getType(), ICI, TrueVal, FalseVal, Builder))
1623     return V;
1624 
1625   if (Instruction *V = foldSelectCtlzToCttz(ICI, TrueVal, FalseVal, Builder))
1626     return V;
1627 
1628   if (Instruction *V = foldSelectZeroOrOnes(ICI, TrueVal, FalseVal, Builder))
1629     return V;
1630 
1631   if (Value *V = foldSelectICmpAndOr(ICI, TrueVal, FalseVal, Builder))
1632     return replaceInstUsesWith(SI, V);
1633 
1634   if (Value *V = foldSelectICmpLshrAshr(ICI, TrueVal, FalseVal, Builder))
1635     return replaceInstUsesWith(SI, V);
1636 
1637   if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder))
1638     return replaceInstUsesWith(SI, V);
1639 
1640   if (Value *V = canonicalizeSaturatedSubtract(ICI, TrueVal, FalseVal, Builder))
1641     return replaceInstUsesWith(SI, V);
1642 
1643   if (Value *V = canonicalizeSaturatedAdd(ICI, TrueVal, FalseVal, Builder))
1644     return replaceInstUsesWith(SI, V);
1645 
1646   return Changed ? &SI : nullptr;
1647 }
1648 
1649 /// SI is a select whose condition is a PHI node (but the two may be in
1650 /// different blocks). See if the true/false values (V) are live in all of the
1651 /// predecessor blocks of the PHI. For example, cases like this can't be mapped:
1652 ///
1653 ///   X = phi [ C1, BB1], [C2, BB2]
1654 ///   Y = add
1655 ///   Z = select X, Y, 0
1656 ///
1657 /// because Y is not live in BB1/BB2.
1658 static bool canSelectOperandBeMappingIntoPredBlock(const Value *V,
1659                                                    const SelectInst &SI) {
1660   // If the value is a non-instruction value like a constant or argument, it
1661   // can always be mapped.
1662   const Instruction *I = dyn_cast<Instruction>(V);
1663   if (!I) return true;
1664 
1665   // If V is a PHI node defined in the same block as the condition PHI, we can
1666   // map the arguments.
1667   const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
1668 
1669   if (const PHINode *VP = dyn_cast<PHINode>(I))
1670     if (VP->getParent() == CondPHI->getParent())
1671       return true;
1672 
1673   // Otherwise, if the PHI and select are defined in the same block and if V is
1674   // defined in a different block, then we can transform it.
1675   if (SI.getParent() == CondPHI->getParent() &&
1676       I->getParent() != CondPHI->getParent())
1677     return true;
1678 
1679   // Otherwise we have a 'hard' case and we can't tell without doing more
1680   // detailed dominator based analysis, punt.
1681   return false;
1682 }
1683 
1684 /// We have an SPF (e.g. a min or max) of an SPF of the form:
1685 ///   SPF2(SPF1(A, B), C)
1686 Instruction *InstCombinerImpl::foldSPFofSPF(Instruction *Inner,
1687                                             SelectPatternFlavor SPF1, Value *A,
1688                                             Value *B, Instruction &Outer,
1689                                             SelectPatternFlavor SPF2,
1690                                             Value *C) {
1691   if (Outer.getType() != Inner->getType())
1692     return nullptr;
1693 
1694   if (C == A || C == B) {
1695     // MAX(MAX(A, B), B) -> MAX(A, B)
1696     // MIN(MIN(a, b), a) -> MIN(a, b)
1697     // TODO: This could be done in instsimplify.
1698     if (SPF1 == SPF2 && SelectPatternResult::isMinOrMax(SPF1))
1699       return replaceInstUsesWith(Outer, Inner);
1700   }
1701 
1702   return nullptr;
1703 }
1704 
1705 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))).
1706 /// This is even legal for FP.
1707 static Instruction *foldAddSubSelect(SelectInst &SI,
1708                                      InstCombiner::BuilderTy &Builder) {
1709   Value *CondVal = SI.getCondition();
1710   Value *TrueVal = SI.getTrueValue();
1711   Value *FalseVal = SI.getFalseValue();
1712   auto *TI = dyn_cast<Instruction>(TrueVal);
1713   auto *FI = dyn_cast<Instruction>(FalseVal);
1714   if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse())
1715     return nullptr;
1716 
1717   Instruction *AddOp = nullptr, *SubOp = nullptr;
1718   if ((TI->getOpcode() == Instruction::Sub &&
1719        FI->getOpcode() == Instruction::Add) ||
1720       (TI->getOpcode() == Instruction::FSub &&
1721        FI->getOpcode() == Instruction::FAdd)) {
1722     AddOp = FI;
1723     SubOp = TI;
1724   } else if ((FI->getOpcode() == Instruction::Sub &&
1725               TI->getOpcode() == Instruction::Add) ||
1726              (FI->getOpcode() == Instruction::FSub &&
1727               TI->getOpcode() == Instruction::FAdd)) {
1728     AddOp = TI;
1729     SubOp = FI;
1730   }
1731 
1732   if (AddOp) {
1733     Value *OtherAddOp = nullptr;
1734     if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
1735       OtherAddOp = AddOp->getOperand(1);
1736     } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
1737       OtherAddOp = AddOp->getOperand(0);
1738     }
1739 
1740     if (OtherAddOp) {
1741       // So at this point we know we have (Y -> OtherAddOp):
1742       //        select C, (add X, Y), (sub X, Z)
1743       Value *NegVal; // Compute -Z
1744       if (SI.getType()->isFPOrFPVectorTy()) {
1745         NegVal = Builder.CreateFNeg(SubOp->getOperand(1));
1746         if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) {
1747           FastMathFlags Flags = AddOp->getFastMathFlags();
1748           Flags &= SubOp->getFastMathFlags();
1749           NegInst->setFastMathFlags(Flags);
1750         }
1751       } else {
1752         NegVal = Builder.CreateNeg(SubOp->getOperand(1));
1753       }
1754 
1755       Value *NewTrueOp = OtherAddOp;
1756       Value *NewFalseOp = NegVal;
1757       if (AddOp != TI)
1758         std::swap(NewTrueOp, NewFalseOp);
1759       Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp,
1760                                            SI.getName() + ".p", &SI);
1761 
1762       if (SI.getType()->isFPOrFPVectorTy()) {
1763         Instruction *RI =
1764             BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel);
1765 
1766         FastMathFlags Flags = AddOp->getFastMathFlags();
1767         Flags &= SubOp->getFastMathFlags();
1768         RI->setFastMathFlags(Flags);
1769         return RI;
1770       } else
1771         return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
1772     }
1773   }
1774   return nullptr;
1775 }
1776 
1777 /// Turn X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1778 /// And X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1779 /// Along with a number of patterns similar to:
1780 /// X + Y overflows ? (X < 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1781 /// X - Y overflows ? (X > 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1782 static Instruction *
1783 foldOverflowingAddSubSelect(SelectInst &SI, InstCombiner::BuilderTy &Builder) {
1784   Value *CondVal = SI.getCondition();
1785   Value *TrueVal = SI.getTrueValue();
1786   Value *FalseVal = SI.getFalseValue();
1787 
1788   WithOverflowInst *II;
1789   if (!match(CondVal, m_ExtractValue<1>(m_WithOverflowInst(II))) ||
1790       !match(FalseVal, m_ExtractValue<0>(m_Specific(II))))
1791     return nullptr;
1792 
1793   Value *X = II->getLHS();
1794   Value *Y = II->getRHS();
1795 
1796   auto IsSignedSaturateLimit = [&](Value *Limit, bool IsAdd) {
1797     Type *Ty = Limit->getType();
1798 
1799     ICmpInst::Predicate Pred;
1800     Value *TrueVal, *FalseVal, *Op;
1801     const APInt *C;
1802     if (!match(Limit, m_Select(m_ICmp(Pred, m_Value(Op), m_APInt(C)),
1803                                m_Value(TrueVal), m_Value(FalseVal))))
1804       return false;
1805 
1806     auto IsZeroOrOne = [](const APInt &C) { return C.isZero() || C.isOne(); };
1807     auto IsMinMax = [&](Value *Min, Value *Max) {
1808       APInt MinVal = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
1809       APInt MaxVal = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
1810       return match(Min, m_SpecificInt(MinVal)) &&
1811              match(Max, m_SpecificInt(MaxVal));
1812     };
1813 
1814     if (Op != X && Op != Y)
1815       return false;
1816 
1817     if (IsAdd) {
1818       // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1819       // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1820       // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1821       // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1822       if (Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1823           IsMinMax(TrueVal, FalseVal))
1824         return true;
1825       // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1826       // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1827       // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1828       // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1829       if (Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1830           IsMinMax(FalseVal, TrueVal))
1831         return true;
1832     } else {
1833       // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1834       // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1835       if (Op == X && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C + 1) &&
1836           IsMinMax(TrueVal, FalseVal))
1837         return true;
1838       // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1839       // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1840       if (Op == X && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 2) &&
1841           IsMinMax(FalseVal, TrueVal))
1842         return true;
1843       // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1844       // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1845       if (Op == Y && Pred == ICmpInst::ICMP_SLT && IsZeroOrOne(*C) &&
1846           IsMinMax(FalseVal, TrueVal))
1847         return true;
1848       // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1849       // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1850       if (Op == Y && Pred == ICmpInst::ICMP_SGT && IsZeroOrOne(*C + 1) &&
1851           IsMinMax(TrueVal, FalseVal))
1852         return true;
1853     }
1854 
1855     return false;
1856   };
1857 
1858   Intrinsic::ID NewIntrinsicID;
1859   if (II->getIntrinsicID() == Intrinsic::uadd_with_overflow &&
1860       match(TrueVal, m_AllOnes()))
1861     // X + Y overflows ? -1 : X + Y -> uadd_sat X, Y
1862     NewIntrinsicID = Intrinsic::uadd_sat;
1863   else if (II->getIntrinsicID() == Intrinsic::usub_with_overflow &&
1864            match(TrueVal, m_Zero()))
1865     // X - Y overflows ? 0 : X - Y -> usub_sat X, Y
1866     NewIntrinsicID = Intrinsic::usub_sat;
1867   else if (II->getIntrinsicID() == Intrinsic::sadd_with_overflow &&
1868            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/true))
1869     // X + Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1870     // X + Y overflows ? (X <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1871     // X + Y overflows ? (X >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1872     // X + Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1873     // X + Y overflows ? (Y <s 0 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1874     // X + Y overflows ? (Y <s 1 ? INTMIN : INTMAX) : X + Y --> sadd_sat X, Y
1875     // X + Y overflows ? (Y >s 0 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1876     // X + Y overflows ? (Y >s -1 ? INTMAX : INTMIN) : X + Y --> sadd_sat X, Y
1877     NewIntrinsicID = Intrinsic::sadd_sat;
1878   else if (II->getIntrinsicID() == Intrinsic::ssub_with_overflow &&
1879            IsSignedSaturateLimit(TrueVal, /*IsAdd=*/false))
1880     // X - Y overflows ? (X <s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1881     // X - Y overflows ? (X <s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1882     // X - Y overflows ? (X >s -1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1883     // X - Y overflows ? (X >s -2 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1884     // X - Y overflows ? (Y <s 0 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1885     // X - Y overflows ? (Y <s 1 ? INTMAX : INTMIN) : X - Y --> ssub_sat X, Y
1886     // X - Y overflows ? (Y >s 0 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1887     // X - Y overflows ? (Y >s -1 ? INTMIN : INTMAX) : X - Y --> ssub_sat X, Y
1888     NewIntrinsicID = Intrinsic::ssub_sat;
1889   else
1890     return nullptr;
1891 
1892   Function *F =
1893       Intrinsic::getDeclaration(SI.getModule(), NewIntrinsicID, SI.getType());
1894   return CallInst::Create(F, {X, Y});
1895 }
1896 
1897 Instruction *InstCombinerImpl::foldSelectExtConst(SelectInst &Sel) {
1898   Constant *C;
1899   if (!match(Sel.getTrueValue(), m_Constant(C)) &&
1900       !match(Sel.getFalseValue(), m_Constant(C)))
1901     return nullptr;
1902 
1903   Instruction *ExtInst;
1904   if (!match(Sel.getTrueValue(), m_Instruction(ExtInst)) &&
1905       !match(Sel.getFalseValue(), m_Instruction(ExtInst)))
1906     return nullptr;
1907 
1908   auto ExtOpcode = ExtInst->getOpcode();
1909   if (ExtOpcode != Instruction::ZExt && ExtOpcode != Instruction::SExt)
1910     return nullptr;
1911 
1912   // If we are extending from a boolean type or if we can create a select that
1913   // has the same size operands as its condition, try to narrow the select.
1914   Value *X = ExtInst->getOperand(0);
1915   Type *SmallType = X->getType();
1916   Value *Cond = Sel.getCondition();
1917   auto *Cmp = dyn_cast<CmpInst>(Cond);
1918   if (!SmallType->isIntOrIntVectorTy(1) &&
1919       (!Cmp || Cmp->getOperand(0)->getType() != SmallType))
1920     return nullptr;
1921 
1922   // If the constant is the same after truncation to the smaller type and
1923   // extension to the original type, we can narrow the select.
1924   Type *SelType = Sel.getType();
1925   Constant *TruncC = ConstantExpr::getTrunc(C, SmallType);
1926   Constant *ExtC = ConstantExpr::getCast(ExtOpcode, TruncC, SelType);
1927   if (ExtC == C && ExtInst->hasOneUse()) {
1928     Value *TruncCVal = cast<Value>(TruncC);
1929     if (ExtInst == Sel.getFalseValue())
1930       std::swap(X, TruncCVal);
1931 
1932     // select Cond, (ext X), C --> ext(select Cond, X, C')
1933     // select Cond, C, (ext X) --> ext(select Cond, C', X)
1934     Value *NewSel = Builder.CreateSelect(Cond, X, TruncCVal, "narrow", &Sel);
1935     return CastInst::Create(Instruction::CastOps(ExtOpcode), NewSel, SelType);
1936   }
1937 
1938   // If one arm of the select is the extend of the condition, replace that arm
1939   // with the extension of the appropriate known bool value.
1940   if (Cond == X) {
1941     if (ExtInst == Sel.getTrueValue()) {
1942       // select X, (sext X), C --> select X, -1, C
1943       // select X, (zext X), C --> select X,  1, C
1944       Constant *One = ConstantInt::getTrue(SmallType);
1945       Constant *AllOnesOrOne = ConstantExpr::getCast(ExtOpcode, One, SelType);
1946       return SelectInst::Create(Cond, AllOnesOrOne, C, "", nullptr, &Sel);
1947     } else {
1948       // select X, C, (sext X) --> select X, C, 0
1949       // select X, C, (zext X) --> select X, C, 0
1950       Constant *Zero = ConstantInt::getNullValue(SelType);
1951       return SelectInst::Create(Cond, C, Zero, "", nullptr, &Sel);
1952     }
1953   }
1954 
1955   return nullptr;
1956 }
1957 
1958 /// Try to transform a vector select with a constant condition vector into a
1959 /// shuffle for easier combining with other shuffles and insert/extract.
1960 static Instruction *canonicalizeSelectToShuffle(SelectInst &SI) {
1961   Value *CondVal = SI.getCondition();
1962   Constant *CondC;
1963   auto *CondValTy = dyn_cast<FixedVectorType>(CondVal->getType());
1964   if (!CondValTy || !match(CondVal, m_Constant(CondC)))
1965     return nullptr;
1966 
1967   unsigned NumElts = CondValTy->getNumElements();
1968   SmallVector<int, 16> Mask;
1969   Mask.reserve(NumElts);
1970   for (unsigned i = 0; i != NumElts; ++i) {
1971     Constant *Elt = CondC->getAggregateElement(i);
1972     if (!Elt)
1973       return nullptr;
1974 
1975     if (Elt->isOneValue()) {
1976       // If the select condition element is true, choose from the 1st vector.
1977       Mask.push_back(i);
1978     } else if (Elt->isNullValue()) {
1979       // If the select condition element is false, choose from the 2nd vector.
1980       Mask.push_back(i + NumElts);
1981     } else if (isa<UndefValue>(Elt)) {
1982       // Undef in a select condition (choose one of the operands) does not mean
1983       // the same thing as undef in a shuffle mask (any value is acceptable), so
1984       // give up.
1985       return nullptr;
1986     } else {
1987       // Bail out on a constant expression.
1988       return nullptr;
1989     }
1990   }
1991 
1992   return new ShuffleVectorInst(SI.getTrueValue(), SI.getFalseValue(), Mask);
1993 }
1994 
1995 /// If we have a select of vectors with a scalar condition, try to convert that
1996 /// to a vector select by splatting the condition. A splat may get folded with
1997 /// other operations in IR and having all operands of a select be vector types
1998 /// is likely better for vector codegen.
1999 static Instruction *canonicalizeScalarSelectOfVecs(SelectInst &Sel,
2000                                                    InstCombinerImpl &IC) {
2001   auto *Ty = dyn_cast<VectorType>(Sel.getType());
2002   if (!Ty)
2003     return nullptr;
2004 
2005   // We can replace a single-use extract with constant index.
2006   Value *Cond = Sel.getCondition();
2007   if (!match(Cond, m_OneUse(m_ExtractElt(m_Value(), m_ConstantInt()))))
2008     return nullptr;
2009 
2010   // select (extelt V, Index), T, F --> select (splat V, Index), T, F
2011   // Splatting the extracted condition reduces code (we could directly create a
2012   // splat shuffle of the source vector to eliminate the intermediate step).
2013   return IC.replaceOperand(
2014       Sel, 0, IC.Builder.CreateVectorSplat(Ty->getElementCount(), Cond));
2015 }
2016 
2017 /// Reuse bitcasted operands between a compare and select:
2018 /// select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2019 /// bitcast (select (cmp (bitcast C), (bitcast D)), (bitcast C), (bitcast D))
2020 static Instruction *foldSelectCmpBitcasts(SelectInst &Sel,
2021                                           InstCombiner::BuilderTy &Builder) {
2022   Value *Cond = Sel.getCondition();
2023   Value *TVal = Sel.getTrueValue();
2024   Value *FVal = Sel.getFalseValue();
2025 
2026   CmpInst::Predicate Pred;
2027   Value *A, *B;
2028   if (!match(Cond, m_Cmp(Pred, m_Value(A), m_Value(B))))
2029     return nullptr;
2030 
2031   // The select condition is a compare instruction. If the select's true/false
2032   // values are already the same as the compare operands, there's nothing to do.
2033   if (TVal == A || TVal == B || FVal == A || FVal == B)
2034     return nullptr;
2035 
2036   Value *C, *D;
2037   if (!match(A, m_BitCast(m_Value(C))) || !match(B, m_BitCast(m_Value(D))))
2038     return nullptr;
2039 
2040   // select (cmp (bitcast C), (bitcast D)), (bitcast TSrc), (bitcast FSrc)
2041   Value *TSrc, *FSrc;
2042   if (!match(TVal, m_BitCast(m_Value(TSrc))) ||
2043       !match(FVal, m_BitCast(m_Value(FSrc))))
2044     return nullptr;
2045 
2046   // If the select true/false values are *different bitcasts* of the same source
2047   // operands, make the select operands the same as the compare operands and
2048   // cast the result. This is the canonical select form for min/max.
2049   Value *NewSel;
2050   if (TSrc == C && FSrc == D) {
2051     // select (cmp (bitcast C), (bitcast D)), (bitcast' C), (bitcast' D) -->
2052     // bitcast (select (cmp A, B), A, B)
2053     NewSel = Builder.CreateSelect(Cond, A, B, "", &Sel);
2054   } else if (TSrc == D && FSrc == C) {
2055     // select (cmp (bitcast C), (bitcast D)), (bitcast' D), (bitcast' C) -->
2056     // bitcast (select (cmp A, B), B, A)
2057     NewSel = Builder.CreateSelect(Cond, B, A, "", &Sel);
2058   } else {
2059     return nullptr;
2060   }
2061   return CastInst::CreateBitOrPointerCast(NewSel, Sel.getType());
2062 }
2063 
2064 /// Try to eliminate select instructions that test the returned flag of cmpxchg
2065 /// instructions.
2066 ///
2067 /// If a select instruction tests the returned flag of a cmpxchg instruction and
2068 /// selects between the returned value of the cmpxchg instruction its compare
2069 /// operand, the result of the select will always be equal to its false value.
2070 /// For example:
2071 ///
2072 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2073 ///   %1 = extractvalue { i64, i1 } %0, 1
2074 ///   %2 = extractvalue { i64, i1 } %0, 0
2075 ///   %3 = select i1 %1, i64 %compare, i64 %2
2076 ///   ret i64 %3
2077 ///
2078 /// The returned value of the cmpxchg instruction (%2) is the original value
2079 /// located at %ptr prior to any update. If the cmpxchg operation succeeds, %2
2080 /// must have been equal to %compare. Thus, the result of the select is always
2081 /// equal to %2, and the code can be simplified to:
2082 ///
2083 ///   %0 = cmpxchg i64* %ptr, i64 %compare, i64 %new_value seq_cst seq_cst
2084 ///   %1 = extractvalue { i64, i1 } %0, 0
2085 ///   ret i64 %1
2086 ///
2087 static Value *foldSelectCmpXchg(SelectInst &SI) {
2088   // A helper that determines if V is an extractvalue instruction whose
2089   // aggregate operand is a cmpxchg instruction and whose single index is equal
2090   // to I. If such conditions are true, the helper returns the cmpxchg
2091   // instruction; otherwise, a nullptr is returned.
2092   auto isExtractFromCmpXchg = [](Value *V, unsigned I) -> AtomicCmpXchgInst * {
2093     auto *Extract = dyn_cast<ExtractValueInst>(V);
2094     if (!Extract)
2095       return nullptr;
2096     if (Extract->getIndices()[0] != I)
2097       return nullptr;
2098     return dyn_cast<AtomicCmpXchgInst>(Extract->getAggregateOperand());
2099   };
2100 
2101   // If the select has a single user, and this user is a select instruction that
2102   // we can simplify, skip the cmpxchg simplification for now.
2103   if (SI.hasOneUse())
2104     if (auto *Select = dyn_cast<SelectInst>(SI.user_back()))
2105       if (Select->getCondition() == SI.getCondition())
2106         if (Select->getFalseValue() == SI.getTrueValue() ||
2107             Select->getTrueValue() == SI.getFalseValue())
2108           return nullptr;
2109 
2110   // Ensure the select condition is the returned flag of a cmpxchg instruction.
2111   auto *CmpXchg = isExtractFromCmpXchg(SI.getCondition(), 1);
2112   if (!CmpXchg)
2113     return nullptr;
2114 
2115   // Check the true value case: The true value of the select is the returned
2116   // value of the same cmpxchg used by the condition, and the false value is the
2117   // cmpxchg instruction's compare operand.
2118   if (auto *X = isExtractFromCmpXchg(SI.getTrueValue(), 0))
2119     if (X == CmpXchg && X->getCompareOperand() == SI.getFalseValue())
2120       return SI.getFalseValue();
2121 
2122   // Check the false value case: The false value of the select is the returned
2123   // value of the same cmpxchg used by the condition, and the true value is the
2124   // cmpxchg instruction's compare operand.
2125   if (auto *X = isExtractFromCmpXchg(SI.getFalseValue(), 0))
2126     if (X == CmpXchg && X->getCompareOperand() == SI.getTrueValue())
2127       return SI.getFalseValue();
2128 
2129   return nullptr;
2130 }
2131 
2132 /// Try to reduce a funnel/rotate pattern that includes a compare and select
2133 /// into a funnel shift intrinsic. Example:
2134 /// rotl32(a, b) --> (b == 0 ? a : ((a >> (32 - b)) | (a << b)))
2135 ///              --> call llvm.fshl.i32(a, a, b)
2136 /// fshl32(a, b, c) --> (c == 0 ? a : ((b >> (32 - c)) | (a << c)))
2137 ///                 --> call llvm.fshl.i32(a, b, c)
2138 /// fshr32(a, b, c) --> (c == 0 ? b : ((a >> (32 - c)) | (b << c)))
2139 ///                 --> call llvm.fshr.i32(a, b, c)
2140 static Instruction *foldSelectFunnelShift(SelectInst &Sel,
2141                                           InstCombiner::BuilderTy &Builder) {
2142   // This must be a power-of-2 type for a bitmasking transform to be valid.
2143   unsigned Width = Sel.getType()->getScalarSizeInBits();
2144   if (!isPowerOf2_32(Width))
2145     return nullptr;
2146 
2147   BinaryOperator *Or0, *Or1;
2148   if (!match(Sel.getFalseValue(), m_OneUse(m_Or(m_BinOp(Or0), m_BinOp(Or1)))))
2149     return nullptr;
2150 
2151   Value *SV0, *SV1, *SA0, *SA1;
2152   if (!match(Or0, m_OneUse(m_LogicalShift(m_Value(SV0),
2153                                           m_ZExtOrSelf(m_Value(SA0))))) ||
2154       !match(Or1, m_OneUse(m_LogicalShift(m_Value(SV1),
2155                                           m_ZExtOrSelf(m_Value(SA1))))) ||
2156       Or0->getOpcode() == Or1->getOpcode())
2157     return nullptr;
2158 
2159   // Canonicalize to or(shl(SV0, SA0), lshr(SV1, SA1)).
2160   if (Or0->getOpcode() == BinaryOperator::LShr) {
2161     std::swap(Or0, Or1);
2162     std::swap(SV0, SV1);
2163     std::swap(SA0, SA1);
2164   }
2165   assert(Or0->getOpcode() == BinaryOperator::Shl &&
2166          Or1->getOpcode() == BinaryOperator::LShr &&
2167          "Illegal or(shift,shift) pair");
2168 
2169   // Check the shift amounts to see if they are an opposite pair.
2170   Value *ShAmt;
2171   if (match(SA1, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA0)))))
2172     ShAmt = SA0;
2173   else if (match(SA0, m_OneUse(m_Sub(m_SpecificInt(Width), m_Specific(SA1)))))
2174     ShAmt = SA1;
2175   else
2176     return nullptr;
2177 
2178   // We should now have this pattern:
2179   // select ?, TVal, (or (shl SV0, SA0), (lshr SV1, SA1))
2180   // The false value of the select must be a funnel-shift of the true value:
2181   // IsFShl -> TVal must be SV0 else TVal must be SV1.
2182   bool IsFshl = (ShAmt == SA0);
2183   Value *TVal = Sel.getTrueValue();
2184   if ((IsFshl && TVal != SV0) || (!IsFshl && TVal != SV1))
2185     return nullptr;
2186 
2187   // Finally, see if the select is filtering out a shift-by-zero.
2188   Value *Cond = Sel.getCondition();
2189   ICmpInst::Predicate Pred;
2190   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_Specific(ShAmt), m_ZeroInt()))) ||
2191       Pred != ICmpInst::ICMP_EQ)
2192     return nullptr;
2193 
2194   // If this is not a rotate then the select was blocking poison from the
2195   // 'shift-by-zero' non-TVal, but a funnel shift won't - so freeze it.
2196   if (SV0 != SV1) {
2197     if (IsFshl && !llvm::isGuaranteedNotToBePoison(SV1))
2198       SV1 = Builder.CreateFreeze(SV1);
2199     else if (!IsFshl && !llvm::isGuaranteedNotToBePoison(SV0))
2200       SV0 = Builder.CreateFreeze(SV0);
2201   }
2202 
2203   // This is a funnel/rotate that avoids shift-by-bitwidth UB in a suboptimal way.
2204   // Convert to funnel shift intrinsic.
2205   Intrinsic::ID IID = IsFshl ? Intrinsic::fshl : Intrinsic::fshr;
2206   Function *F = Intrinsic::getDeclaration(Sel.getModule(), IID, Sel.getType());
2207   ShAmt = Builder.CreateZExt(ShAmt, Sel.getType());
2208   return CallInst::Create(F, { SV0, SV1, ShAmt });
2209 }
2210 
2211 static Instruction *foldSelectToCopysign(SelectInst &Sel,
2212                                          InstCombiner::BuilderTy &Builder) {
2213   Value *Cond = Sel.getCondition();
2214   Value *TVal = Sel.getTrueValue();
2215   Value *FVal = Sel.getFalseValue();
2216   Type *SelType = Sel.getType();
2217 
2218   // Match select ?, TC, FC where the constants are equal but negated.
2219   // TODO: Generalize to handle a negated variable operand?
2220   const APFloat *TC, *FC;
2221   if (!match(TVal, m_APFloat(TC)) || !match(FVal, m_APFloat(FC)) ||
2222       !abs(*TC).bitwiseIsEqual(abs(*FC)))
2223     return nullptr;
2224 
2225   assert(TC != FC && "Expected equal select arms to simplify");
2226 
2227   Value *X;
2228   const APInt *C;
2229   bool IsTrueIfSignSet;
2230   ICmpInst::Predicate Pred;
2231   if (!match(Cond, m_OneUse(m_ICmp(Pred, m_BitCast(m_Value(X)), m_APInt(C)))) ||
2232       !InstCombiner::isSignBitCheck(Pred, *C, IsTrueIfSignSet) ||
2233       X->getType() != SelType)
2234     return nullptr;
2235 
2236   // If needed, negate the value that will be the sign argument of the copysign:
2237   // (bitcast X) <  0 ? -TC :  TC --> copysign(TC,  X)
2238   // (bitcast X) <  0 ?  TC : -TC --> copysign(TC, -X)
2239   // (bitcast X) >= 0 ? -TC :  TC --> copysign(TC, -X)
2240   // (bitcast X) >= 0 ?  TC : -TC --> copysign(TC,  X)
2241   // Note: FMF from the select can not be propagated to the new instructions.
2242   if (IsTrueIfSignSet ^ TC->isNegative())
2243     X = Builder.CreateFNeg(X);
2244 
2245   // Canonicalize the magnitude argument as the positive constant since we do
2246   // not care about its sign.
2247   Value *MagArg = TC->isNegative() ? FVal : TVal;
2248   Function *F = Intrinsic::getDeclaration(Sel.getModule(), Intrinsic::copysign,
2249                                           Sel.getType());
2250   return CallInst::Create(F, { MagArg, X });
2251 }
2252 
2253 Instruction *InstCombinerImpl::foldVectorSelect(SelectInst &Sel) {
2254   auto *VecTy = dyn_cast<FixedVectorType>(Sel.getType());
2255   if (!VecTy)
2256     return nullptr;
2257 
2258   unsigned NumElts = VecTy->getNumElements();
2259   APInt UndefElts(NumElts, 0);
2260   APInt AllOnesEltMask(APInt::getAllOnes(NumElts));
2261   if (Value *V = SimplifyDemandedVectorElts(&Sel, AllOnesEltMask, UndefElts)) {
2262     if (V != &Sel)
2263       return replaceInstUsesWith(Sel, V);
2264     return &Sel;
2265   }
2266 
2267   // A select of a "select shuffle" with a common operand can be rearranged
2268   // to select followed by "select shuffle". Because of poison, this only works
2269   // in the case of a shuffle with no undefined mask elements.
2270   Value *Cond = Sel.getCondition();
2271   Value *TVal = Sel.getTrueValue();
2272   Value *FVal = Sel.getFalseValue();
2273   Value *X, *Y;
2274   ArrayRef<int> Mask;
2275   if (match(TVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2276       !is_contained(Mask, UndefMaskElem) &&
2277       cast<ShuffleVectorInst>(TVal)->isSelect()) {
2278     if (X == FVal) {
2279       // select Cond, (shuf_sel X, Y), X --> shuf_sel X, (select Cond, Y, X)
2280       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2281       return new ShuffleVectorInst(X, NewSel, Mask);
2282     }
2283     if (Y == FVal) {
2284       // select Cond, (shuf_sel X, Y), Y --> shuf_sel (select Cond, X, Y), Y
2285       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2286       return new ShuffleVectorInst(NewSel, Y, Mask);
2287     }
2288   }
2289   if (match(FVal, m_OneUse(m_Shuffle(m_Value(X), m_Value(Y), m_Mask(Mask)))) &&
2290       !is_contained(Mask, UndefMaskElem) &&
2291       cast<ShuffleVectorInst>(FVal)->isSelect()) {
2292     if (X == TVal) {
2293       // select Cond, X, (shuf_sel X, Y) --> shuf_sel X, (select Cond, X, Y)
2294       Value *NewSel = Builder.CreateSelect(Cond, X, Y, "sel", &Sel);
2295       return new ShuffleVectorInst(X, NewSel, Mask);
2296     }
2297     if (Y == TVal) {
2298       // select Cond, Y, (shuf_sel X, Y) --> shuf_sel (select Cond, Y, X), Y
2299       Value *NewSel = Builder.CreateSelect(Cond, Y, X, "sel", &Sel);
2300       return new ShuffleVectorInst(NewSel, Y, Mask);
2301     }
2302   }
2303 
2304   return nullptr;
2305 }
2306 
2307 static Instruction *foldSelectToPhiImpl(SelectInst &Sel, BasicBlock *BB,
2308                                         const DominatorTree &DT,
2309                                         InstCombiner::BuilderTy &Builder) {
2310   // Find the block's immediate dominator that ends with a conditional branch
2311   // that matches select's condition (maybe inverted).
2312   auto *IDomNode = DT[BB]->getIDom();
2313   if (!IDomNode)
2314     return nullptr;
2315   BasicBlock *IDom = IDomNode->getBlock();
2316 
2317   Value *Cond = Sel.getCondition();
2318   Value *IfTrue, *IfFalse;
2319   BasicBlock *TrueSucc, *FalseSucc;
2320   if (match(IDom->getTerminator(),
2321             m_Br(m_Specific(Cond), m_BasicBlock(TrueSucc),
2322                  m_BasicBlock(FalseSucc)))) {
2323     IfTrue = Sel.getTrueValue();
2324     IfFalse = Sel.getFalseValue();
2325   } else if (match(IDom->getTerminator(),
2326                    m_Br(m_Not(m_Specific(Cond)), m_BasicBlock(TrueSucc),
2327                         m_BasicBlock(FalseSucc)))) {
2328     IfTrue = Sel.getFalseValue();
2329     IfFalse = Sel.getTrueValue();
2330   } else
2331     return nullptr;
2332 
2333   // Make sure the branches are actually different.
2334   if (TrueSucc == FalseSucc)
2335     return nullptr;
2336 
2337   // We want to replace select %cond, %a, %b with a phi that takes value %a
2338   // for all incoming edges that are dominated by condition `%cond == true`,
2339   // and value %b for edges dominated by condition `%cond == false`. If %a
2340   // or %b are also phis from the same basic block, we can go further and take
2341   // their incoming values from the corresponding blocks.
2342   BasicBlockEdge TrueEdge(IDom, TrueSucc);
2343   BasicBlockEdge FalseEdge(IDom, FalseSucc);
2344   DenseMap<BasicBlock *, Value *> Inputs;
2345   for (auto *Pred : predecessors(BB)) {
2346     // Check implication.
2347     BasicBlockEdge Incoming(Pred, BB);
2348     if (DT.dominates(TrueEdge, Incoming))
2349       Inputs[Pred] = IfTrue->DoPHITranslation(BB, Pred);
2350     else if (DT.dominates(FalseEdge, Incoming))
2351       Inputs[Pred] = IfFalse->DoPHITranslation(BB, Pred);
2352     else
2353       return nullptr;
2354     // Check availability.
2355     if (auto *Insn = dyn_cast<Instruction>(Inputs[Pred]))
2356       if (!DT.dominates(Insn, Pred->getTerminator()))
2357         return nullptr;
2358   }
2359 
2360   Builder.SetInsertPoint(&*BB->begin());
2361   auto *PN = Builder.CreatePHI(Sel.getType(), Inputs.size());
2362   for (auto *Pred : predecessors(BB))
2363     PN->addIncoming(Inputs[Pred], Pred);
2364   PN->takeName(&Sel);
2365   return PN;
2366 }
2367 
2368 static Instruction *foldSelectToPhi(SelectInst &Sel, const DominatorTree &DT,
2369                                     InstCombiner::BuilderTy &Builder) {
2370   // Try to replace this select with Phi in one of these blocks.
2371   SmallSetVector<BasicBlock *, 4> CandidateBlocks;
2372   CandidateBlocks.insert(Sel.getParent());
2373   for (Value *V : Sel.operands())
2374     if (auto *I = dyn_cast<Instruction>(V))
2375       CandidateBlocks.insert(I->getParent());
2376 
2377   for (BasicBlock *BB : CandidateBlocks)
2378     if (auto *PN = foldSelectToPhiImpl(Sel, BB, DT, Builder))
2379       return PN;
2380   return nullptr;
2381 }
2382 
2383 static Value *foldSelectWithFrozenICmp(SelectInst &Sel, InstCombiner::BuilderTy &Builder) {
2384   FreezeInst *FI = dyn_cast<FreezeInst>(Sel.getCondition());
2385   if (!FI)
2386     return nullptr;
2387 
2388   Value *Cond = FI->getOperand(0);
2389   Value *TrueVal = Sel.getTrueValue(), *FalseVal = Sel.getFalseValue();
2390 
2391   //   select (freeze(x == y)), x, y --> y
2392   //   select (freeze(x != y)), x, y --> x
2393   // The freeze should be only used by this select. Otherwise, remaining uses of
2394   // the freeze can observe a contradictory value.
2395   //   c = freeze(x == y)   ; Let's assume that y = poison & x = 42; c is 0 or 1
2396   //   a = select c, x, y   ;
2397   //   f(a, c)              ; f(poison, 1) cannot happen, but if a is folded
2398   //                        ; to y, this can happen.
2399   CmpInst::Predicate Pred;
2400   if (FI->hasOneUse() &&
2401       match(Cond, m_c_ICmp(Pred, m_Specific(TrueVal), m_Specific(FalseVal))) &&
2402       (Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE)) {
2403     return Pred == ICmpInst::ICMP_EQ ? FalseVal : TrueVal;
2404   }
2405 
2406   return nullptr;
2407 }
2408 
2409 Instruction *InstCombinerImpl::foldAndOrOfSelectUsingImpliedCond(Value *Op,
2410                                                                  SelectInst &SI,
2411                                                                  bool IsAnd) {
2412   Value *CondVal = SI.getCondition();
2413   Value *A = SI.getTrueValue();
2414   Value *B = SI.getFalseValue();
2415 
2416   assert(Op->getType()->isIntOrIntVectorTy(1) &&
2417          "Op must be either i1 or vector of i1.");
2418 
2419   Optional<bool> Res = isImpliedCondition(Op, CondVal, DL, IsAnd);
2420   if (!Res)
2421     return nullptr;
2422 
2423   Value *Zero = Constant::getNullValue(A->getType());
2424   Value *One = Constant::getAllOnesValue(A->getType());
2425 
2426   if (*Res == true) {
2427     if (IsAnd)
2428       // select op, (select cond, A, B), false => select op, A, false
2429       // and    op, (select cond, A, B)        => select op, A, false
2430       //   if op = true implies condval = true.
2431       return SelectInst::Create(Op, A, Zero);
2432     else
2433       // select op, true, (select cond, A, B) => select op, true, A
2434       // or     op, (select cond, A, B)       => select op, true, A
2435       //   if op = false implies condval = true.
2436       return SelectInst::Create(Op, One, A);
2437   } else {
2438     if (IsAnd)
2439       // select op, (select cond, A, B), false => select op, B, false
2440       // and    op, (select cond, A, B)        => select op, B, false
2441       //   if op = true implies condval = false.
2442       return SelectInst::Create(Op, B, Zero);
2443     else
2444       // select op, true, (select cond, A, B) => select op, true, B
2445       // or     op, (select cond, A, B)       => select op, true, B
2446       //   if op = false implies condval = false.
2447       return SelectInst::Create(Op, One, B);
2448   }
2449 }
2450 
2451 Instruction *InstCombinerImpl::visitSelectInst(SelectInst &SI) {
2452   Value *CondVal = SI.getCondition();
2453   Value *TrueVal = SI.getTrueValue();
2454   Value *FalseVal = SI.getFalseValue();
2455   Type *SelType = SI.getType();
2456 
2457   // FIXME: Remove this workaround when freeze related patches are done.
2458   // For select with undef operand which feeds into an equality comparison,
2459   // don't simplify it so loop unswitch can know the equality comparison
2460   // may have an undef operand. This is a workaround for PR31652 caused by
2461   // descrepancy about branch on undef between LoopUnswitch and GVN.
2462   if (match(TrueVal, m_Undef()) || match(FalseVal, m_Undef())) {
2463     if (llvm::any_of(SI.users(), [&](User *U) {
2464           ICmpInst *CI = dyn_cast<ICmpInst>(U);
2465           if (CI && CI->isEquality())
2466             return true;
2467           return false;
2468         })) {
2469       return nullptr;
2470     }
2471   }
2472 
2473   if (Value *V = SimplifySelectInst(CondVal, TrueVal, FalseVal,
2474                                     SQ.getWithInstruction(&SI)))
2475     return replaceInstUsesWith(SI, V);
2476 
2477   if (Instruction *I = canonicalizeSelectToShuffle(SI))
2478     return I;
2479 
2480   if (Instruction *I = canonicalizeScalarSelectOfVecs(SI, *this))
2481     return I;
2482 
2483   CmpInst::Predicate Pred;
2484 
2485   // Avoid potential infinite loops by checking for non-constant condition.
2486   // TODO: Can we assert instead by improving canonicalizeSelectToShuffle()?
2487   //       Scalar select must have simplified?
2488   if (SelType->isIntOrIntVectorTy(1) && !isa<Constant>(CondVal) &&
2489       TrueVal->getType() == CondVal->getType()) {
2490     // Folding select to and/or i1 isn't poison safe in general. impliesPoison
2491     // checks whether folding it does not convert a well-defined value into
2492     // poison.
2493     if (match(TrueVal, m_One())) {
2494       if (impliesPoison(FalseVal, CondVal)) {
2495         // Change: A = select B, true, C --> A = or B, C
2496         return BinaryOperator::CreateOr(CondVal, FalseVal);
2497       }
2498 
2499       if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
2500         if (auto *RHS = dyn_cast<FCmpInst>(FalseVal))
2501           if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ false,
2502                                           /*IsSelectLogical*/ true))
2503             return replaceInstUsesWith(SI, V);
2504     }
2505     if (match(FalseVal, m_Zero())) {
2506       if (impliesPoison(TrueVal, CondVal)) {
2507         // Change: A = select B, C, false --> A = and B, C
2508         return BinaryOperator::CreateAnd(CondVal, TrueVal);
2509       }
2510 
2511       if (auto *LHS = dyn_cast<FCmpInst>(CondVal))
2512         if (auto *RHS = dyn_cast<FCmpInst>(TrueVal))
2513           if (Value *V = foldLogicOfFCmps(LHS, RHS, /*IsAnd*/ true,
2514                                           /*IsSelectLogical*/ true))
2515             return replaceInstUsesWith(SI, V);
2516     }
2517 
2518     auto *One = ConstantInt::getTrue(SelType);
2519     auto *Zero = ConstantInt::getFalse(SelType);
2520 
2521     // We match the "full" 0 or 1 constant here to avoid a potential infinite
2522     // loop with vectors that may have undefined/poison elements.
2523     // select a, false, b -> select !a, b, false
2524     if (match(TrueVal, m_Specific(Zero))) {
2525       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2526       return SelectInst::Create(NotCond, FalseVal, Zero);
2527     }
2528     // select a, b, true -> select !a, true, b
2529     if (match(FalseVal, m_Specific(One))) {
2530       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2531       return SelectInst::Create(NotCond, One, TrueVal);
2532     }
2533 
2534     // select a, a, b -> select a, true, b
2535     if (CondVal == TrueVal)
2536       return replaceOperand(SI, 1, One);
2537     // select a, b, a -> select a, b, false
2538     if (CondVal == FalseVal)
2539       return replaceOperand(SI, 2, Zero);
2540 
2541     // select a, !a, b -> select !a, b, false
2542     if (match(TrueVal, m_Not(m_Specific(CondVal))))
2543       return SelectInst::Create(TrueVal, FalseVal, Zero);
2544     // select a, b, !a -> select !a, true, b
2545     if (match(FalseVal, m_Not(m_Specific(CondVal))))
2546       return SelectInst::Create(FalseVal, One, TrueVal);
2547 
2548     Value *A, *B;
2549 
2550     // DeMorgan in select form: !a && !b --> !(a || b)
2551     // select !a, !b, false --> not (select a, true, b)
2552     if (match(&SI, m_LogicalAnd(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2553         (CondVal->hasOneUse() || TrueVal->hasOneUse()) &&
2554         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2555       return BinaryOperator::CreateNot(Builder.CreateSelect(A, One, B));
2556 
2557     // DeMorgan in select form: !a || !b --> !(a && b)
2558     // select !a, true, !b --> not (select a, b, false)
2559     if (match(&SI, m_LogicalOr(m_Not(m_Value(A)), m_Not(m_Value(B)))) &&
2560         (CondVal->hasOneUse() || FalseVal->hasOneUse()) &&
2561         !match(A, m_ConstantExpr()) && !match(B, m_ConstantExpr()))
2562       return BinaryOperator::CreateNot(Builder.CreateSelect(A, B, Zero));
2563 
2564     // select (select a, true, b), true, b -> select a, true, b
2565     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2566         match(TrueVal, m_One()) && match(FalseVal, m_Specific(B)))
2567       return replaceOperand(SI, 0, A);
2568     // select (select a, b, false), b, false -> select a, b, false
2569     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2570         match(TrueVal, m_Specific(B)) && match(FalseVal, m_Zero()))
2571       return replaceOperand(SI, 0, A);
2572 
2573     Value *C;
2574     // select (~a | c), a, b -> and a, (or c, freeze(b))
2575     if (match(CondVal, m_c_Or(m_Not(m_Specific(TrueVal)), m_Value(C))) &&
2576         CondVal->hasOneUse()) {
2577       FalseVal = Builder.CreateFreeze(FalseVal);
2578       return BinaryOperator::CreateAnd(TrueVal, Builder.CreateOr(C, FalseVal));
2579     }
2580     // select (~c & b), a, b -> and b, (or freeze(a), c)
2581     if (match(CondVal, m_c_And(m_Not(m_Value(C)), m_Specific(FalseVal))) &&
2582         CondVal->hasOneUse()) {
2583       TrueVal = Builder.CreateFreeze(TrueVal);
2584       return BinaryOperator::CreateAnd(FalseVal, Builder.CreateOr(C, TrueVal));
2585     }
2586 
2587     if (!SelType->isVectorTy()) {
2588       if (Value *S = simplifyWithOpReplaced(TrueVal, CondVal, One, SQ,
2589                                             /* AllowRefinement */ true))
2590         return replaceOperand(SI, 1, S);
2591       if (Value *S = simplifyWithOpReplaced(FalseVal, CondVal, Zero, SQ,
2592                                             /* AllowRefinement */ true))
2593         return replaceOperand(SI, 2, S);
2594     }
2595 
2596     if (match(FalseVal, m_Zero()) || match(TrueVal, m_One())) {
2597       Use *Y = nullptr;
2598       bool IsAnd = match(FalseVal, m_Zero()) ? true : false;
2599       Value *Op1 = IsAnd ? TrueVal : FalseVal;
2600       if (isCheckForZeroAndMulWithOverflow(CondVal, Op1, IsAnd, Y)) {
2601         auto *FI = new FreezeInst(*Y, (*Y)->getName() + ".fr");
2602         InsertNewInstBefore(FI, *cast<Instruction>(Y->getUser()));
2603         replaceUse(*Y, FI);
2604         return replaceInstUsesWith(SI, Op1);
2605       }
2606 
2607       if (auto *Op1SI = dyn_cast<SelectInst>(Op1))
2608         if (auto *I = foldAndOrOfSelectUsingImpliedCond(CondVal, *Op1SI,
2609                                                         /* IsAnd */ IsAnd))
2610           return I;
2611 
2612       if (auto *ICmp0 = dyn_cast<ICmpInst>(CondVal)) {
2613         if (auto *ICmp1 = dyn_cast<ICmpInst>(Op1)) {
2614           if (auto *V = foldAndOrOfICmpsOfAndWithPow2(ICmp0, ICmp1, &SI, IsAnd,
2615                                                       /* IsLogical */ true))
2616             return replaceInstUsesWith(SI, V);
2617 
2618           if (auto *V = foldEqOfParts(ICmp0, ICmp1, IsAnd))
2619             return replaceInstUsesWith(SI, V);
2620         }
2621       }
2622     }
2623 
2624     // select (select a, true, b), c, false -> select a, c, false
2625     // select c, (select a, true, b), false -> select c, a, false
2626     //   if c implies that b is false.
2627     if (match(CondVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2628         match(FalseVal, m_Zero())) {
2629       Optional<bool> Res = isImpliedCondition(TrueVal, B, DL);
2630       if (Res && *Res == false)
2631         return replaceOperand(SI, 0, A);
2632     }
2633     if (match(TrueVal, m_Select(m_Value(A), m_One(), m_Value(B))) &&
2634         match(FalseVal, m_Zero())) {
2635       Optional<bool> Res = isImpliedCondition(CondVal, B, DL);
2636       if (Res && *Res == false)
2637         return replaceOperand(SI, 1, A);
2638     }
2639     // select c, true, (select a, b, false)  -> select c, true, a
2640     // select (select a, b, false), true, c  -> select a, true, c
2641     //   if c = false implies that b = true
2642     if (match(TrueVal, m_One()) &&
2643         match(FalseVal, m_Select(m_Value(A), m_Value(B), m_Zero()))) {
2644       Optional<bool> Res = isImpliedCondition(CondVal, B, DL, false);
2645       if (Res && *Res == true)
2646         return replaceOperand(SI, 2, A);
2647     }
2648     if (match(CondVal, m_Select(m_Value(A), m_Value(B), m_Zero())) &&
2649         match(TrueVal, m_One())) {
2650       Optional<bool> Res = isImpliedCondition(FalseVal, B, DL, false);
2651       if (Res && *Res == true)
2652         return replaceOperand(SI, 0, A);
2653     }
2654 
2655     // sel (sel c, a, false), true, (sel !c, b, false) -> sel c, a, b
2656     // sel (sel !c, a, false), true, (sel c, b, false) -> sel c, b, a
2657     Value *C1, *C2;
2658     if (match(CondVal, m_Select(m_Value(C1), m_Value(A), m_Zero())) &&
2659         match(TrueVal, m_One()) &&
2660         match(FalseVal, m_Select(m_Value(C2), m_Value(B), m_Zero()))) {
2661       if (match(C2, m_Not(m_Specific(C1)))) // first case
2662         return SelectInst::Create(C1, A, B);
2663       else if (match(C1, m_Not(m_Specific(C2)))) // second case
2664         return SelectInst::Create(C2, B, A);
2665     }
2666   }
2667 
2668   // Selecting between two integer or vector splat integer constants?
2669   //
2670   // Note that we don't handle a scalar select of vectors:
2671   // select i1 %c, <2 x i8> <1, 1>, <2 x i8> <0, 0>
2672   // because that may need 3 instructions to splat the condition value:
2673   // extend, insertelement, shufflevector.
2674   //
2675   // Do not handle i1 TrueVal and FalseVal otherwise would result in
2676   // zext/sext i1 to i1.
2677   if (SelType->isIntOrIntVectorTy() && !SelType->isIntOrIntVectorTy(1) &&
2678       CondVal->getType()->isVectorTy() == SelType->isVectorTy()) {
2679     // select C, 1, 0 -> zext C to int
2680     if (match(TrueVal, m_One()) && match(FalseVal, m_Zero()))
2681       return new ZExtInst(CondVal, SelType);
2682 
2683     // select C, -1, 0 -> sext C to int
2684     if (match(TrueVal, m_AllOnes()) && match(FalseVal, m_Zero()))
2685       return new SExtInst(CondVal, SelType);
2686 
2687     // select C, 0, 1 -> zext !C to int
2688     if (match(TrueVal, m_Zero()) && match(FalseVal, m_One())) {
2689       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2690       return new ZExtInst(NotCond, SelType);
2691     }
2692 
2693     // select C, 0, -1 -> sext !C to int
2694     if (match(TrueVal, m_Zero()) && match(FalseVal, m_AllOnes())) {
2695       Value *NotCond = Builder.CreateNot(CondVal, "not." + CondVal->getName());
2696       return new SExtInst(NotCond, SelType);
2697     }
2698   }
2699 
2700   if (auto *FCmp = dyn_cast<FCmpInst>(CondVal)) {
2701     Value *Cmp0 = FCmp->getOperand(0), *Cmp1 = FCmp->getOperand(1);
2702     // Are we selecting a value based on a comparison of the two values?
2703     if ((Cmp0 == TrueVal && Cmp1 == FalseVal) ||
2704         (Cmp0 == FalseVal && Cmp1 == TrueVal)) {
2705       // Canonicalize to use ordered comparisons by swapping the select
2706       // operands.
2707       //
2708       // e.g.
2709       // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X
2710       if (FCmp->hasOneUse() && FCmpInst::isUnordered(FCmp->getPredicate())) {
2711         FCmpInst::Predicate InvPred = FCmp->getInversePredicate();
2712         IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2713         // FIXME: The FMF should propagate from the select, not the fcmp.
2714         Builder.setFastMathFlags(FCmp->getFastMathFlags());
2715         Value *NewCond = Builder.CreateFCmp(InvPred, Cmp0, Cmp1,
2716                                             FCmp->getName() + ".inv");
2717         Value *NewSel = Builder.CreateSelect(NewCond, FalseVal, TrueVal);
2718         return replaceInstUsesWith(SI, NewSel);
2719       }
2720 
2721       // NOTE: if we wanted to, this is where to detect MIN/MAX
2722     }
2723   }
2724 
2725   // Canonicalize select with fcmp to fabs(). -0.0 makes this tricky. We need
2726   // fast-math-flags (nsz) or fsub with +0.0 (not fneg) for this to work.
2727   // (X <= +/-0.0) ? (0.0 - X) : X --> fabs(X)
2728   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2729       match(TrueVal, m_FSub(m_PosZeroFP(), m_Specific(FalseVal))) &&
2730       (Pred == FCmpInst::FCMP_OLE || Pred == FCmpInst::FCMP_ULE)) {
2731     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2732     return replaceInstUsesWith(SI, Fabs);
2733   }
2734   // (X >  +/-0.0) ? X : (0.0 - X) --> fabs(X)
2735   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2736       match(FalseVal, m_FSub(m_PosZeroFP(), m_Specific(TrueVal))) &&
2737       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_UGT)) {
2738     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2739     return replaceInstUsesWith(SI, Fabs);
2740   }
2741   // With nnan and nsz:
2742   // (X <  +/-0.0) ? -X : X --> fabs(X)
2743   // (X <= +/-0.0) ? -X : X --> fabs(X)
2744   if (match(CondVal, m_FCmp(Pred, m_Specific(FalseVal), m_AnyZeroFP())) &&
2745       match(TrueVal, m_FNeg(m_Specific(FalseVal))) && SI.hasNoSignedZeros() &&
2746       (Pred == FCmpInst::FCMP_OLT || Pred == FCmpInst::FCMP_OLE ||
2747        Pred == FCmpInst::FCMP_ULT || Pred == FCmpInst::FCMP_ULE)) {
2748     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, FalseVal, &SI);
2749     return replaceInstUsesWith(SI, Fabs);
2750   }
2751   // With nnan and nsz:
2752   // (X >  +/-0.0) ? X : -X --> fabs(X)
2753   // (X >= +/-0.0) ? X : -X --> fabs(X)
2754   if (match(CondVal, m_FCmp(Pred, m_Specific(TrueVal), m_AnyZeroFP())) &&
2755       match(FalseVal, m_FNeg(m_Specific(TrueVal))) && SI.hasNoSignedZeros() &&
2756       (Pred == FCmpInst::FCMP_OGT || Pred == FCmpInst::FCMP_OGE ||
2757        Pred == FCmpInst::FCMP_UGT || Pred == FCmpInst::FCMP_UGE)) {
2758     Value *Fabs = Builder.CreateUnaryIntrinsic(Intrinsic::fabs, TrueVal, &SI);
2759     return replaceInstUsesWith(SI, Fabs);
2760   }
2761 
2762   // See if we are selecting two values based on a comparison of the two values.
2763   if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
2764     if (Instruction *Result = foldSelectInstWithICmp(SI, ICI))
2765       return Result;
2766 
2767   if (Instruction *Add = foldAddSubSelect(SI, Builder))
2768     return Add;
2769   if (Instruction *Add = foldOverflowingAddSubSelect(SI, Builder))
2770     return Add;
2771   if (Instruction *Or = foldSetClearBits(SI, Builder))
2772     return Or;
2773   if (Instruction *Mul = foldSelectZeroOrMul(SI, *this))
2774     return Mul;
2775 
2776   // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
2777   auto *TI = dyn_cast<Instruction>(TrueVal);
2778   auto *FI = dyn_cast<Instruction>(FalseVal);
2779   if (TI && FI && TI->getOpcode() == FI->getOpcode())
2780     if (Instruction *IV = foldSelectOpOp(SI, TI, FI))
2781       return IV;
2782 
2783   if (Instruction *I = foldSelectExtConst(SI))
2784     return I;
2785 
2786   // Fold (select C, (gep Ptr, Idx), Ptr) -> (gep Ptr, (select C, Idx, 0))
2787   // Fold (select C, Ptr, (gep Ptr, Idx)) -> (gep Ptr, (select C, 0, Idx))
2788   auto SelectGepWithBase = [&](GetElementPtrInst *Gep, Value *Base,
2789                                bool Swap) -> GetElementPtrInst * {
2790     Value *Ptr = Gep->getPointerOperand();
2791     if (Gep->getNumOperands() != 2 || Gep->getPointerOperand() != Base ||
2792         !Gep->hasOneUse())
2793       return nullptr;
2794     Value *Idx = Gep->getOperand(1);
2795     if (isa<VectorType>(CondVal->getType()) && !isa<VectorType>(Idx->getType()))
2796       return nullptr;
2797     Type *ElementType = Gep->getResultElementType();
2798     Value *NewT = Idx;
2799     Value *NewF = Constant::getNullValue(Idx->getType());
2800     if (Swap)
2801       std::swap(NewT, NewF);
2802     Value *NewSI =
2803         Builder.CreateSelect(CondVal, NewT, NewF, SI.getName() + ".idx", &SI);
2804     return GetElementPtrInst::Create(ElementType, Ptr, {NewSI});
2805   };
2806   if (auto *TrueGep = dyn_cast<GetElementPtrInst>(TrueVal))
2807     if (auto *NewGep = SelectGepWithBase(TrueGep, FalseVal, false))
2808       return NewGep;
2809   if (auto *FalseGep = dyn_cast<GetElementPtrInst>(FalseVal))
2810     if (auto *NewGep = SelectGepWithBase(FalseGep, TrueVal, true))
2811       return NewGep;
2812 
2813   // See if we can fold the select into one of our operands.
2814   if (SelType->isIntOrIntVectorTy() || SelType->isFPOrFPVectorTy()) {
2815     if (Instruction *FoldI = foldSelectIntoOp(SI, TrueVal, FalseVal))
2816       return FoldI;
2817 
2818     Value *LHS, *RHS;
2819     Instruction::CastOps CastOp;
2820     SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp);
2821     auto SPF = SPR.Flavor;
2822     if (SPF) {
2823       Value *LHS2, *RHS2;
2824       if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor)
2825         if (Instruction *R = foldSPFofSPF(cast<Instruction>(LHS), SPF2, LHS2,
2826                                           RHS2, SI, SPF, RHS))
2827           return R;
2828       if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor)
2829         if (Instruction *R = foldSPFofSPF(cast<Instruction>(RHS), SPF2, LHS2,
2830                                           RHS2, SI, SPF, LHS))
2831           return R;
2832     }
2833 
2834     if (SelectPatternResult::isMinOrMax(SPF)) {
2835       // Canonicalize so that
2836       // - type casts are outside select patterns.
2837       // - float clamp is transformed to min/max pattern
2838 
2839       bool IsCastNeeded = LHS->getType() != SelType;
2840       Value *CmpLHS = cast<CmpInst>(CondVal)->getOperand(0);
2841       Value *CmpRHS = cast<CmpInst>(CondVal)->getOperand(1);
2842       if (IsCastNeeded ||
2843           (LHS->getType()->isFPOrFPVectorTy() &&
2844            ((CmpLHS != LHS && CmpLHS != RHS) ||
2845             (CmpRHS != LHS && CmpRHS != RHS)))) {
2846         CmpInst::Predicate MinMaxPred = getMinMaxPred(SPF, SPR.Ordered);
2847 
2848         Value *Cmp;
2849         if (CmpInst::isIntPredicate(MinMaxPred)) {
2850           Cmp = Builder.CreateICmp(MinMaxPred, LHS, RHS);
2851         } else {
2852           IRBuilder<>::FastMathFlagGuard FMFG(Builder);
2853           auto FMF =
2854               cast<FPMathOperator>(SI.getCondition())->getFastMathFlags();
2855           Builder.setFastMathFlags(FMF);
2856           Cmp = Builder.CreateFCmp(MinMaxPred, LHS, RHS);
2857         }
2858 
2859         Value *NewSI = Builder.CreateSelect(Cmp, LHS, RHS, SI.getName(), &SI);
2860         if (!IsCastNeeded)
2861           return replaceInstUsesWith(SI, NewSI);
2862 
2863         Value *NewCast = Builder.CreateCast(CastOp, NewSI, SelType);
2864         return replaceInstUsesWith(SI, NewCast);
2865       }
2866     }
2867   }
2868 
2869   // Canonicalize select of FP values where NaN and -0.0 are not valid as
2870   // minnum/maxnum intrinsics.
2871   if (isa<FPMathOperator>(SI) && SI.hasNoNaNs() && SI.hasNoSignedZeros()) {
2872     Value *X, *Y;
2873     if (match(&SI, m_OrdFMax(m_Value(X), m_Value(Y))))
2874       return replaceInstUsesWith(
2875           SI, Builder.CreateBinaryIntrinsic(Intrinsic::maxnum, X, Y, &SI));
2876 
2877     if (match(&SI, m_OrdFMin(m_Value(X), m_Value(Y))))
2878       return replaceInstUsesWith(
2879           SI, Builder.CreateBinaryIntrinsic(Intrinsic::minnum, X, Y, &SI));
2880   }
2881 
2882   // See if we can fold the select into a phi node if the condition is a select.
2883   if (auto *PN = dyn_cast<PHINode>(SI.getCondition()))
2884     // The true/false values have to be live in the PHI predecessor's blocks.
2885     if (canSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
2886         canSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
2887       if (Instruction *NV = foldOpIntoPhi(SI, PN))
2888         return NV;
2889 
2890   if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) {
2891     if (TrueSI->getCondition()->getType() == CondVal->getType()) {
2892       // select(C, select(C, a, b), c) -> select(C, a, c)
2893       if (TrueSI->getCondition() == CondVal) {
2894         if (SI.getTrueValue() == TrueSI->getTrueValue())
2895           return nullptr;
2896         return replaceOperand(SI, 1, TrueSI->getTrueValue());
2897       }
2898       // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b)
2899       // We choose this as normal form to enable folding on the And and
2900       // shortening paths for the values (this helps getUnderlyingObjects() for
2901       // example).
2902       if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) {
2903         Value *And = Builder.CreateLogicalAnd(CondVal, TrueSI->getCondition());
2904         replaceOperand(SI, 0, And);
2905         replaceOperand(SI, 1, TrueSI->getTrueValue());
2906         return &SI;
2907       }
2908     }
2909   }
2910   if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) {
2911     if (FalseSI->getCondition()->getType() == CondVal->getType()) {
2912       // select(C, a, select(C, b, c)) -> select(C, a, c)
2913       if (FalseSI->getCondition() == CondVal) {
2914         if (SI.getFalseValue() == FalseSI->getFalseValue())
2915           return nullptr;
2916         return replaceOperand(SI, 2, FalseSI->getFalseValue());
2917       }
2918       // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b)
2919       if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) {
2920         Value *Or = Builder.CreateLogicalOr(CondVal, FalseSI->getCondition());
2921         replaceOperand(SI, 0, Or);
2922         replaceOperand(SI, 2, FalseSI->getFalseValue());
2923         return &SI;
2924       }
2925     }
2926   }
2927 
2928   auto canMergeSelectThroughBinop = [](BinaryOperator *BO) {
2929     // The select might be preventing a division by 0.
2930     switch (BO->getOpcode()) {
2931     default:
2932       return true;
2933     case Instruction::SRem:
2934     case Instruction::URem:
2935     case Instruction::SDiv:
2936     case Instruction::UDiv:
2937       return false;
2938     }
2939   };
2940 
2941   // Try to simplify a binop sandwiched between 2 selects with the same
2942   // condition.
2943   // select(C, binop(select(C, X, Y), W), Z) -> select(C, binop(X, W), Z)
2944   BinaryOperator *TrueBO;
2945   if (match(TrueVal, m_OneUse(m_BinOp(TrueBO))) &&
2946       canMergeSelectThroughBinop(TrueBO)) {
2947     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(0))) {
2948       if (TrueBOSI->getCondition() == CondVal) {
2949         replaceOperand(*TrueBO, 0, TrueBOSI->getTrueValue());
2950         Worklist.push(TrueBO);
2951         return &SI;
2952       }
2953     }
2954     if (auto *TrueBOSI = dyn_cast<SelectInst>(TrueBO->getOperand(1))) {
2955       if (TrueBOSI->getCondition() == CondVal) {
2956         replaceOperand(*TrueBO, 1, TrueBOSI->getTrueValue());
2957         Worklist.push(TrueBO);
2958         return &SI;
2959       }
2960     }
2961   }
2962 
2963   // select(C, Z, binop(select(C, X, Y), W)) -> select(C, Z, binop(Y, W))
2964   BinaryOperator *FalseBO;
2965   if (match(FalseVal, m_OneUse(m_BinOp(FalseBO))) &&
2966       canMergeSelectThroughBinop(FalseBO)) {
2967     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(0))) {
2968       if (FalseBOSI->getCondition() == CondVal) {
2969         replaceOperand(*FalseBO, 0, FalseBOSI->getFalseValue());
2970         Worklist.push(FalseBO);
2971         return &SI;
2972       }
2973     }
2974     if (auto *FalseBOSI = dyn_cast<SelectInst>(FalseBO->getOperand(1))) {
2975       if (FalseBOSI->getCondition() == CondVal) {
2976         replaceOperand(*FalseBO, 1, FalseBOSI->getFalseValue());
2977         Worklist.push(FalseBO);
2978         return &SI;
2979       }
2980     }
2981   }
2982 
2983   Value *NotCond;
2984   if (match(CondVal, m_Not(m_Value(NotCond))) &&
2985       !InstCombiner::shouldAvoidAbsorbingNotIntoSelect(SI)) {
2986     replaceOperand(SI, 0, NotCond);
2987     SI.swapValues();
2988     SI.swapProfMetadata();
2989     return &SI;
2990   }
2991 
2992   if (Instruction *I = foldVectorSelect(SI))
2993     return I;
2994 
2995   // If we can compute the condition, there's no need for a select.
2996   // Like the above fold, we are attempting to reduce compile-time cost by
2997   // putting this fold here with limitations rather than in InstSimplify.
2998   // The motivation for this call into value tracking is to take advantage of
2999   // the assumption cache, so make sure that is populated.
3000   if (!CondVal->getType()->isVectorTy() && !AC.assumptions().empty()) {
3001     KnownBits Known(1);
3002     computeKnownBits(CondVal, Known, 0, &SI);
3003     if (Known.One.isOne())
3004       return replaceInstUsesWith(SI, TrueVal);
3005     if (Known.Zero.isOne())
3006       return replaceInstUsesWith(SI, FalseVal);
3007   }
3008 
3009   if (Instruction *BitCastSel = foldSelectCmpBitcasts(SI, Builder))
3010     return BitCastSel;
3011 
3012   // Simplify selects that test the returned flag of cmpxchg instructions.
3013   if (Value *V = foldSelectCmpXchg(SI))
3014     return replaceInstUsesWith(SI, V);
3015 
3016   if (Instruction *Select = foldSelectBinOpIdentity(SI, TLI, *this))
3017     return Select;
3018 
3019   if (Instruction *Funnel = foldSelectFunnelShift(SI, Builder))
3020     return Funnel;
3021 
3022   if (Instruction *Copysign = foldSelectToCopysign(SI, Builder))
3023     return Copysign;
3024 
3025   if (Instruction *PN = foldSelectToPhi(SI, DT, Builder))
3026     return replaceInstUsesWith(SI, PN);
3027 
3028   if (Value *Fr = foldSelectWithFrozenICmp(SI, Builder))
3029     return replaceInstUsesWith(SI, Fr);
3030 
3031   // select(mask, mload(,,mask,0), 0) -> mload(,,mask,0)
3032   // Load inst is intentionally not checked for hasOneUse()
3033   if (match(FalseVal, m_Zero()) &&
3034       (match(TrueVal, m_MaskedLoad(m_Value(), m_Value(), m_Specific(CondVal),
3035                                    m_CombineOr(m_Undef(), m_Zero()))) ||
3036        match(TrueVal, m_MaskedGather(m_Value(), m_Value(), m_Specific(CondVal),
3037                                      m_CombineOr(m_Undef(), m_Zero()))))) {
3038     auto *MaskedInst = cast<IntrinsicInst>(TrueVal);
3039     if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3040       MaskedInst->setArgOperand(3, FalseVal /* Zero */);
3041     return replaceInstUsesWith(SI, MaskedInst);
3042   }
3043 
3044   Value *Mask;
3045   if (match(TrueVal, m_Zero()) &&
3046       (match(FalseVal, m_MaskedLoad(m_Value(), m_Value(), m_Value(Mask),
3047                                     m_CombineOr(m_Undef(), m_Zero()))) ||
3048        match(FalseVal, m_MaskedGather(m_Value(), m_Value(), m_Value(Mask),
3049                                       m_CombineOr(m_Undef(), m_Zero())))) &&
3050       (CondVal->getType() == Mask->getType())) {
3051     // We can remove the select by ensuring the load zeros all lanes the
3052     // select would have.  We determine this by proving there is no overlap
3053     // between the load and select masks.
3054     // (i.e (load_mask & select_mask) == 0 == no overlap)
3055     bool CanMergeSelectIntoLoad = false;
3056     if (Value *V = SimplifyAndInst(CondVal, Mask, SQ.getWithInstruction(&SI)))
3057       CanMergeSelectIntoLoad = match(V, m_Zero());
3058 
3059     if (CanMergeSelectIntoLoad) {
3060       auto *MaskedInst = cast<IntrinsicInst>(FalseVal);
3061       if (isa<UndefValue>(MaskedInst->getArgOperand(3)))
3062         MaskedInst->setArgOperand(3, TrueVal /* Zero */);
3063       return replaceInstUsesWith(SI, MaskedInst);
3064     }
3065   }
3066 
3067   return nullptr;
3068 }
3069