1 //===- InstCombineSelect.cpp ----------------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visitSelect function. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/Analysis/ConstantFolding.h" 16 #include "llvm/Analysis/InstructionSimplify.h" 17 #include "llvm/Analysis/ValueTracking.h" 18 #include "llvm/IR/PatternMatch.h" 19 using namespace llvm; 20 using namespace PatternMatch; 21 22 #define DEBUG_TYPE "instcombine" 23 24 static SelectPatternFlavor 25 getInverseMinMaxSelectPattern(SelectPatternFlavor SPF) { 26 switch (SPF) { 27 default: 28 llvm_unreachable("unhandled!"); 29 30 case SPF_SMIN: 31 return SPF_SMAX; 32 case SPF_UMIN: 33 return SPF_UMAX; 34 case SPF_SMAX: 35 return SPF_SMIN; 36 case SPF_UMAX: 37 return SPF_UMIN; 38 } 39 } 40 41 static CmpInst::Predicate getCmpPredicateForMinMax(SelectPatternFlavor SPF, 42 bool Ordered=false) { 43 switch (SPF) { 44 default: 45 llvm_unreachable("unhandled!"); 46 47 case SPF_SMIN: 48 return ICmpInst::ICMP_SLT; 49 case SPF_UMIN: 50 return ICmpInst::ICMP_ULT; 51 case SPF_SMAX: 52 return ICmpInst::ICMP_SGT; 53 case SPF_UMAX: 54 return ICmpInst::ICMP_UGT; 55 case SPF_FMINNUM: 56 return Ordered ? FCmpInst::FCMP_OLT : FCmpInst::FCMP_ULT; 57 case SPF_FMAXNUM: 58 return Ordered ? FCmpInst::FCMP_OGT : FCmpInst::FCMP_UGT; 59 } 60 } 61 62 static Value *generateMinMaxSelectPattern(InstCombiner::BuilderTy *Builder, 63 SelectPatternFlavor SPF, Value *A, 64 Value *B) { 65 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF); 66 assert(CmpInst::isIntPredicate(Pred)); 67 return Builder->CreateSelect(Builder->CreateICmp(Pred, A, B), A, B); 68 } 69 70 /// We want to turn code that looks like this: 71 /// %C = or %A, %B 72 /// %D = select %cond, %C, %A 73 /// into: 74 /// %C = select %cond, %B, 0 75 /// %D = or %A, %C 76 /// 77 /// Assuming that the specified instruction is an operand to the select, return 78 /// a bitmask indicating which operands of this instruction are foldable if they 79 /// equal the other incoming value of the select. 80 /// 81 static unsigned GetSelectFoldableOperands(Instruction *I) { 82 switch (I->getOpcode()) { 83 case Instruction::Add: 84 case Instruction::Mul: 85 case Instruction::And: 86 case Instruction::Or: 87 case Instruction::Xor: 88 return 3; // Can fold through either operand. 89 case Instruction::Sub: // Can only fold on the amount subtracted. 90 case Instruction::Shl: // Can only fold on the shift amount. 91 case Instruction::LShr: 92 case Instruction::AShr: 93 return 1; 94 default: 95 return 0; // Cannot fold 96 } 97 } 98 99 /// For the same transformation as the previous function, return the identity 100 /// constant that goes into the select. 101 static Constant *GetSelectFoldableConstant(Instruction *I) { 102 switch (I->getOpcode()) { 103 default: llvm_unreachable("This cannot happen!"); 104 case Instruction::Add: 105 case Instruction::Sub: 106 case Instruction::Or: 107 case Instruction::Xor: 108 case Instruction::Shl: 109 case Instruction::LShr: 110 case Instruction::AShr: 111 return Constant::getNullValue(I->getType()); 112 case Instruction::And: 113 return Constant::getAllOnesValue(I->getType()); 114 case Instruction::Mul: 115 return ConstantInt::get(I->getType(), 1); 116 } 117 } 118 119 /// We have (select c, TI, FI), and we know that TI and FI have the same opcode. 120 Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI, 121 Instruction *FI) { 122 // If this is a cast from the same type, merge. 123 if (TI->getNumOperands() == 1 && TI->isCast()) { 124 Type *FIOpndTy = FI->getOperand(0)->getType(); 125 if (TI->getOperand(0)->getType() != FIOpndTy) 126 return nullptr; 127 128 // The select condition may be a vector. We may only change the operand 129 // type if the vector width remains the same (and matches the condition). 130 Type *CondTy = SI.getCondition()->getType(); 131 if (CondTy->isVectorTy()) { 132 if (!FIOpndTy->isVectorTy()) 133 return nullptr; 134 if (CondTy->getVectorNumElements() != FIOpndTy->getVectorNumElements()) 135 return nullptr; 136 137 // TODO: If the backend knew how to deal with casts better, we could 138 // remove this limitation. For now, there's too much potential to create 139 // worse codegen by promoting the select ahead of size-altering casts 140 // (PR28160). 141 // 142 // Note that ValueTracking's matchSelectPattern() looks through casts 143 // without checking 'hasOneUse' when it matches min/max patterns, so this 144 // transform may end up happening anyway. 145 if (TI->getOpcode() != Instruction::BitCast && 146 (!TI->hasOneUse() || !FI->hasOneUse())) 147 return nullptr; 148 149 } else if (!TI->hasOneUse() || !FI->hasOneUse()) { 150 // TODO: The one-use restrictions for a scalar select could be eased if 151 // the fold of a select in visitLoadInst() was enhanced to match a pattern 152 // that includes a cast. 153 return nullptr; 154 } 155 156 // Fold this by inserting a select from the input values. 157 Value *NewSI = Builder->CreateSelect(SI.getCondition(), TI->getOperand(0), 158 FI->getOperand(0), SI.getName()+".v"); 159 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI, 160 TI->getType()); 161 } 162 163 // TODO: This function ends awkwardly in unreachable - fix to be more normal. 164 165 // Only handle binary operators with one-use here. As with the cast case 166 // above, it may be possible to relax the one-use constraint, but that needs 167 // be examined carefully since it may not reduce the total number of 168 // instructions. 169 if (!isa<BinaryOperator>(TI) || !TI->hasOneUse() || !FI->hasOneUse()) 170 return nullptr; 171 172 // Figure out if the operations have any operands in common. 173 Value *MatchOp, *OtherOpT, *OtherOpF; 174 bool MatchIsOpZero; 175 if (TI->getOperand(0) == FI->getOperand(0)) { 176 MatchOp = TI->getOperand(0); 177 OtherOpT = TI->getOperand(1); 178 OtherOpF = FI->getOperand(1); 179 MatchIsOpZero = true; 180 } else if (TI->getOperand(1) == FI->getOperand(1)) { 181 MatchOp = TI->getOperand(1); 182 OtherOpT = TI->getOperand(0); 183 OtherOpF = FI->getOperand(0); 184 MatchIsOpZero = false; 185 } else if (!TI->isCommutative()) { 186 return nullptr; 187 } else if (TI->getOperand(0) == FI->getOperand(1)) { 188 MatchOp = TI->getOperand(0); 189 OtherOpT = TI->getOperand(1); 190 OtherOpF = FI->getOperand(0); 191 MatchIsOpZero = true; 192 } else if (TI->getOperand(1) == FI->getOperand(0)) { 193 MatchOp = TI->getOperand(1); 194 OtherOpT = TI->getOperand(0); 195 OtherOpF = FI->getOperand(1); 196 MatchIsOpZero = true; 197 } else { 198 return nullptr; 199 } 200 201 // If we reach here, they do have operations in common. 202 Value *NewSI = Builder->CreateSelect(SI.getCondition(), OtherOpT, 203 OtherOpF, SI.getName()+".v"); 204 205 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) { 206 if (MatchIsOpZero) 207 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI); 208 else 209 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp); 210 } 211 llvm_unreachable("Shouldn't get here"); 212 } 213 214 static bool isSelect01(Constant *C1, Constant *C2) { 215 ConstantInt *C1I = dyn_cast<ConstantInt>(C1); 216 if (!C1I) 217 return false; 218 ConstantInt *C2I = dyn_cast<ConstantInt>(C2); 219 if (!C2I) 220 return false; 221 if (!C1I->isZero() && !C2I->isZero()) // One side must be zero. 222 return false; 223 return C1I->isOne() || C1I->isAllOnesValue() || 224 C2I->isOne() || C2I->isAllOnesValue(); 225 } 226 227 /// Try to fold the select into one of the operands to allow further 228 /// optimization. 229 Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal, 230 Value *FalseVal) { 231 // See the comment above GetSelectFoldableOperands for a description of the 232 // transformation we are doing here. 233 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) { 234 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 && 235 !isa<Constant>(FalseVal)) { 236 if (unsigned SFO = GetSelectFoldableOperands(TVI)) { 237 unsigned OpToFold = 0; 238 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) { 239 OpToFold = 1; 240 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) { 241 OpToFold = 2; 242 } 243 244 if (OpToFold) { 245 Constant *C = GetSelectFoldableConstant(TVI); 246 Value *OOp = TVI->getOperand(2-OpToFold); 247 // Avoid creating select between 2 constants unless it's selecting 248 // between 0, 1 and -1. 249 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 250 Value *NewSel = Builder->CreateSelect(SI.getCondition(), OOp, C); 251 NewSel->takeName(TVI); 252 BinaryOperator *TVI_BO = cast<BinaryOperator>(TVI); 253 BinaryOperator *BO = BinaryOperator::Create(TVI_BO->getOpcode(), 254 FalseVal, NewSel); 255 BO->copyIRFlags(TVI_BO); 256 return BO; 257 } 258 } 259 } 260 } 261 } 262 263 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) { 264 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 && 265 !isa<Constant>(TrueVal)) { 266 if (unsigned SFO = GetSelectFoldableOperands(FVI)) { 267 unsigned OpToFold = 0; 268 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) { 269 OpToFold = 1; 270 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) { 271 OpToFold = 2; 272 } 273 274 if (OpToFold) { 275 Constant *C = GetSelectFoldableConstant(FVI); 276 Value *OOp = FVI->getOperand(2-OpToFold); 277 // Avoid creating select between 2 constants unless it's selecting 278 // between 0, 1 and -1. 279 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) { 280 Value *NewSel = Builder->CreateSelect(SI.getCondition(), C, OOp); 281 NewSel->takeName(FVI); 282 BinaryOperator *FVI_BO = cast<BinaryOperator>(FVI); 283 BinaryOperator *BO = BinaryOperator::Create(FVI_BO->getOpcode(), 284 TrueVal, NewSel); 285 BO->copyIRFlags(FVI_BO); 286 return BO; 287 } 288 } 289 } 290 } 291 } 292 293 return nullptr; 294 } 295 296 /// We want to turn: 297 /// (select (icmp eq (and X, C1), 0), Y, (or Y, C2)) 298 /// into: 299 /// (or (shl (and X, C1), C3), y) 300 /// iff: 301 /// C1 and C2 are both powers of 2 302 /// where: 303 /// C3 = Log(C2) - Log(C1) 304 /// 305 /// This transform handles cases where: 306 /// 1. The icmp predicate is inverted 307 /// 2. The select operands are reversed 308 /// 3. The magnitude of C2 and C1 are flipped 309 static Value *foldSelectICmpAndOr(const SelectInst &SI, Value *TrueVal, 310 Value *FalseVal, 311 InstCombiner::BuilderTy *Builder) { 312 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 313 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 314 return nullptr; 315 316 Value *CmpLHS = IC->getOperand(0); 317 Value *CmpRHS = IC->getOperand(1); 318 319 if (!match(CmpRHS, m_Zero())) 320 return nullptr; 321 322 Value *X; 323 const APInt *C1; 324 if (!match(CmpLHS, m_And(m_Value(X), m_Power2(C1)))) 325 return nullptr; 326 327 const APInt *C2; 328 bool OrOnTrueVal = false; 329 bool OrOnFalseVal = match(FalseVal, m_Or(m_Specific(TrueVal), m_Power2(C2))); 330 if (!OrOnFalseVal) 331 OrOnTrueVal = match(TrueVal, m_Or(m_Specific(FalseVal), m_Power2(C2))); 332 333 if (!OrOnFalseVal && !OrOnTrueVal) 334 return nullptr; 335 336 Value *V = CmpLHS; 337 Value *Y = OrOnFalseVal ? TrueVal : FalseVal; 338 339 unsigned C1Log = C1->logBase2(); 340 unsigned C2Log = C2->logBase2(); 341 if (C2Log > C1Log) { 342 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 343 V = Builder->CreateShl(V, C2Log - C1Log); 344 } else if (C1Log > C2Log) { 345 V = Builder->CreateLShr(V, C1Log - C2Log); 346 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 347 } else 348 V = Builder->CreateZExtOrTrunc(V, Y->getType()); 349 350 ICmpInst::Predicate Pred = IC->getPredicate(); 351 if ((Pred == ICmpInst::ICMP_NE && OrOnFalseVal) || 352 (Pred == ICmpInst::ICMP_EQ && OrOnTrueVal)) 353 V = Builder->CreateXor(V, *C2); 354 355 return Builder->CreateOr(V, Y); 356 } 357 358 /// Attempt to fold a cttz/ctlz followed by a icmp plus select into a single 359 /// call to cttz/ctlz with flag 'is_zero_undef' cleared. 360 /// 361 /// For example, we can fold the following code sequence: 362 /// \code 363 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 true) 364 /// %1 = icmp ne i32 %x, 0 365 /// %2 = select i1 %1, i32 %0, i32 32 366 /// \code 367 /// 368 /// into: 369 /// %0 = tail call i32 @llvm.cttz.i32(i32 %x, i1 false) 370 static Value *foldSelectCttzCtlz(ICmpInst *ICI, Value *TrueVal, Value *FalseVal, 371 InstCombiner::BuilderTy *Builder) { 372 ICmpInst::Predicate Pred = ICI->getPredicate(); 373 Value *CmpLHS = ICI->getOperand(0); 374 Value *CmpRHS = ICI->getOperand(1); 375 376 // Check if the condition value compares a value for equality against zero. 377 if (!ICI->isEquality() || !match(CmpRHS, m_Zero())) 378 return nullptr; 379 380 Value *Count = FalseVal; 381 Value *ValueOnZero = TrueVal; 382 if (Pred == ICmpInst::ICMP_NE) 383 std::swap(Count, ValueOnZero); 384 385 // Skip zero extend/truncate. 386 Value *V = nullptr; 387 if (match(Count, m_ZExt(m_Value(V))) || 388 match(Count, m_Trunc(m_Value(V)))) 389 Count = V; 390 391 // Check if the value propagated on zero is a constant number equal to the 392 // sizeof in bits of 'Count'. 393 unsigned SizeOfInBits = Count->getType()->getScalarSizeInBits(); 394 if (!match(ValueOnZero, m_SpecificInt(SizeOfInBits))) 395 return nullptr; 396 397 // Check that 'Count' is a call to intrinsic cttz/ctlz. Also check that the 398 // input to the cttz/ctlz is used as LHS for the compare instruction. 399 if (match(Count, m_Intrinsic<Intrinsic::cttz>(m_Specific(CmpLHS))) || 400 match(Count, m_Intrinsic<Intrinsic::ctlz>(m_Specific(CmpLHS)))) { 401 IntrinsicInst *II = cast<IntrinsicInst>(Count); 402 IRBuilder<> Builder(II); 403 // Explicitly clear the 'undef_on_zero' flag. 404 IntrinsicInst *NewI = cast<IntrinsicInst>(II->clone()); 405 Type *Ty = NewI->getArgOperand(1)->getType(); 406 NewI->setArgOperand(1, Constant::getNullValue(Ty)); 407 Builder.Insert(NewI); 408 return Builder.CreateZExtOrTrunc(NewI, ValueOnZero->getType()); 409 } 410 411 return nullptr; 412 } 413 414 /// Visit a SelectInst that has an ICmpInst as its first operand. 415 Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI, 416 ICmpInst *ICI) { 417 bool Changed = false; 418 ICmpInst::Predicate Pred = ICI->getPredicate(); 419 Value *CmpLHS = ICI->getOperand(0); 420 Value *CmpRHS = ICI->getOperand(1); 421 Value *TrueVal = SI.getTrueValue(); 422 Value *FalseVal = SI.getFalseValue(); 423 424 // Check cases where the comparison is with a constant that 425 // can be adjusted to fit the min/max idiom. We may move or edit ICI 426 // here, so make sure the select is the only user. 427 if (ICI->hasOneUse()) 428 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) { 429 switch (Pred) { 430 default: break; 431 case ICmpInst::ICMP_ULT: 432 case ICmpInst::ICMP_SLT: 433 case ICmpInst::ICMP_UGT: 434 case ICmpInst::ICMP_SGT: { 435 // These transformations only work for selects over integers. 436 IntegerType *SelectTy = dyn_cast<IntegerType>(SI.getType()); 437 if (!SelectTy) 438 break; 439 440 Constant *AdjustedRHS; 441 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_SGT) 442 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() + 1); 443 else // (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) 444 AdjustedRHS = ConstantInt::get(CI->getContext(), CI->getValue() - 1); 445 446 // X > C ? X : C+1 --> X < C+1 ? C+1 : X 447 // X < C ? X : C-1 --> X > C-1 ? C-1 : X 448 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) || 449 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) 450 ; // Nothing to do here. Values match without any sign/zero extension. 451 452 // Types do not match. Instead of calculating this with mixed types 453 // promote all to the larger type. This enables scalar evolution to 454 // analyze this expression. 455 else if (CmpRHS->getType()->getScalarSizeInBits() 456 < SelectTy->getBitWidth()) { 457 Constant *sextRHS = ConstantExpr::getSExt(AdjustedRHS, SelectTy); 458 459 // X = sext x; x >s c ? X : C+1 --> X = sext x; X <s C+1 ? C+1 : X 460 // X = sext x; x <s c ? X : C-1 --> X = sext x; X >s C-1 ? C-1 : X 461 // X = sext x; x >u c ? X : C+1 --> X = sext x; X <u C+1 ? C+1 : X 462 // X = sext x; x <u c ? X : C-1 --> X = sext x; X >u C-1 ? C-1 : X 463 if (match(TrueVal, m_SExt(m_Specific(CmpLHS))) && 464 sextRHS == FalseVal) { 465 CmpLHS = TrueVal; 466 AdjustedRHS = sextRHS; 467 } else if (match(FalseVal, m_SExt(m_Specific(CmpLHS))) && 468 sextRHS == TrueVal) { 469 CmpLHS = FalseVal; 470 AdjustedRHS = sextRHS; 471 } else if (ICI->isUnsigned()) { 472 Constant *zextRHS = ConstantExpr::getZExt(AdjustedRHS, SelectTy); 473 // X = zext x; x >u c ? X : C+1 --> X = zext x; X <u C+1 ? C+1 : X 474 // X = zext x; x <u c ? X : C-1 --> X = zext x; X >u C-1 ? C-1 : X 475 // zext + signed compare cannot be changed: 476 // 0xff <s 0x00, but 0x00ff >s 0x0000 477 if (match(TrueVal, m_ZExt(m_Specific(CmpLHS))) && 478 zextRHS == FalseVal) { 479 CmpLHS = TrueVal; 480 AdjustedRHS = zextRHS; 481 } else if (match(FalseVal, m_ZExt(m_Specific(CmpLHS))) && 482 zextRHS == TrueVal) { 483 CmpLHS = FalseVal; 484 AdjustedRHS = zextRHS; 485 } else 486 break; 487 } else 488 break; 489 } else 490 break; 491 492 Pred = ICmpInst::getSwappedPredicate(Pred); 493 CmpRHS = AdjustedRHS; 494 std::swap(FalseVal, TrueVal); 495 ICI->setPredicate(Pred); 496 ICI->setOperand(0, CmpLHS); 497 ICI->setOperand(1, CmpRHS); 498 SI.setOperand(1, TrueVal); 499 SI.setOperand(2, FalseVal); 500 501 // Move ICI instruction right before the select instruction. Otherwise 502 // the sext/zext value may be defined after the ICI instruction uses it. 503 ICI->moveBefore(&SI); 504 505 Changed = true; 506 break; 507 } 508 } 509 } 510 511 // Transform (X >s -1) ? C1 : C2 --> ((X >>s 31) & (C2 - C1)) + C1 512 // and (X <s 0) ? C2 : C1 --> ((X >>s 31) & (C2 - C1)) + C1 513 // FIXME: Type and constness constraints could be lifted, but we have to 514 // watch code size carefully. We should consider xor instead of 515 // sub/add when we decide to do that. 516 if (IntegerType *Ty = dyn_cast<IntegerType>(CmpLHS->getType())) { 517 if (TrueVal->getType() == Ty) { 518 if (ConstantInt *Cmp = dyn_cast<ConstantInt>(CmpRHS)) { 519 ConstantInt *C1 = nullptr, *C2 = nullptr; 520 if (Pred == ICmpInst::ICMP_SGT && Cmp->isAllOnesValue()) { 521 C1 = dyn_cast<ConstantInt>(TrueVal); 522 C2 = dyn_cast<ConstantInt>(FalseVal); 523 } else if (Pred == ICmpInst::ICMP_SLT && Cmp->isNullValue()) { 524 C1 = dyn_cast<ConstantInt>(FalseVal); 525 C2 = dyn_cast<ConstantInt>(TrueVal); 526 } 527 if (C1 && C2) { 528 // This shift results in either -1 or 0. 529 Value *AShr = Builder->CreateAShr(CmpLHS, Ty->getBitWidth()-1); 530 531 // Check if we can express the operation with a single or. 532 if (C2->isAllOnesValue()) 533 return replaceInstUsesWith(SI, Builder->CreateOr(AShr, C1)); 534 535 Value *And = Builder->CreateAnd(AShr, C2->getValue()-C1->getValue()); 536 return replaceInstUsesWith(SI, Builder->CreateAdd(And, C1)); 537 } 538 } 539 } 540 } 541 542 // NOTE: if we wanted to, this is where to detect integer MIN/MAX 543 544 if (CmpRHS != CmpLHS && isa<Constant>(CmpRHS)) { 545 if (CmpLHS == TrueVal && Pred == ICmpInst::ICMP_EQ) { 546 // Transform (X == C) ? X : Y -> (X == C) ? C : Y 547 SI.setOperand(1, CmpRHS); 548 Changed = true; 549 } else if (CmpLHS == FalseVal && Pred == ICmpInst::ICMP_NE) { 550 // Transform (X != C) ? Y : X -> (X != C) ? Y : C 551 SI.setOperand(2, CmpRHS); 552 Changed = true; 553 } 554 } 555 556 { 557 unsigned BitWidth = DL.getTypeSizeInBits(TrueVal->getType()); 558 APInt MinSignedValue = APInt::getSignBit(BitWidth); 559 Value *X; 560 const APInt *Y, *C; 561 bool TrueWhenUnset; 562 bool IsBitTest = false; 563 if (ICmpInst::isEquality(Pred) && 564 match(CmpLHS, m_And(m_Value(X), m_Power2(Y))) && 565 match(CmpRHS, m_Zero())) { 566 IsBitTest = true; 567 TrueWhenUnset = Pred == ICmpInst::ICMP_EQ; 568 } else if (Pred == ICmpInst::ICMP_SLT && match(CmpRHS, m_Zero())) { 569 X = CmpLHS; 570 Y = &MinSignedValue; 571 IsBitTest = true; 572 TrueWhenUnset = false; 573 } else if (Pred == ICmpInst::ICMP_SGT && match(CmpRHS, m_AllOnes())) { 574 X = CmpLHS; 575 Y = &MinSignedValue; 576 IsBitTest = true; 577 TrueWhenUnset = true; 578 } 579 if (IsBitTest) { 580 Value *V = nullptr; 581 // (X & Y) == 0 ? X : X ^ Y --> X & ~Y 582 if (TrueWhenUnset && TrueVal == X && 583 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 584 V = Builder->CreateAnd(X, ~(*Y)); 585 // (X & Y) != 0 ? X ^ Y : X --> X & ~Y 586 else if (!TrueWhenUnset && FalseVal == X && 587 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 588 V = Builder->CreateAnd(X, ~(*Y)); 589 // (X & Y) == 0 ? X ^ Y : X --> X | Y 590 else if (TrueWhenUnset && FalseVal == X && 591 match(TrueVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 592 V = Builder->CreateOr(X, *Y); 593 // (X & Y) != 0 ? X : X ^ Y --> X | Y 594 else if (!TrueWhenUnset && TrueVal == X && 595 match(FalseVal, m_Xor(m_Specific(X), m_APInt(C))) && *Y == *C) 596 V = Builder->CreateOr(X, *Y); 597 598 if (V) 599 return replaceInstUsesWith(SI, V); 600 } 601 } 602 603 if (Value *V = foldSelectICmpAndOr(SI, TrueVal, FalseVal, Builder)) 604 return replaceInstUsesWith(SI, V); 605 606 if (Value *V = foldSelectCttzCtlz(ICI, TrueVal, FalseVal, Builder)) 607 return replaceInstUsesWith(SI, V); 608 609 return Changed ? &SI : nullptr; 610 } 611 612 613 /// SI is a select whose condition is a PHI node (but the two may be in 614 /// different blocks). See if the true/false values (V) are live in all of the 615 /// predecessor blocks of the PHI. For example, cases like this can't be mapped: 616 /// 617 /// X = phi [ C1, BB1], [C2, BB2] 618 /// Y = add 619 /// Z = select X, Y, 0 620 /// 621 /// because Y is not live in BB1/BB2. 622 /// 623 static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V, 624 const SelectInst &SI) { 625 // If the value is a non-instruction value like a constant or argument, it 626 // can always be mapped. 627 const Instruction *I = dyn_cast<Instruction>(V); 628 if (!I) return true; 629 630 // If V is a PHI node defined in the same block as the condition PHI, we can 631 // map the arguments. 632 const PHINode *CondPHI = cast<PHINode>(SI.getCondition()); 633 634 if (const PHINode *VP = dyn_cast<PHINode>(I)) 635 if (VP->getParent() == CondPHI->getParent()) 636 return true; 637 638 // Otherwise, if the PHI and select are defined in the same block and if V is 639 // defined in a different block, then we can transform it. 640 if (SI.getParent() == CondPHI->getParent() && 641 I->getParent() != CondPHI->getParent()) 642 return true; 643 644 // Otherwise we have a 'hard' case and we can't tell without doing more 645 // detailed dominator based analysis, punt. 646 return false; 647 } 648 649 /// We have an SPF (e.g. a min or max) of an SPF of the form: 650 /// SPF2(SPF1(A, B), C) 651 Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner, 652 SelectPatternFlavor SPF1, 653 Value *A, Value *B, 654 Instruction &Outer, 655 SelectPatternFlavor SPF2, Value *C) { 656 if (Outer.getType() != Inner->getType()) 657 return nullptr; 658 659 if (C == A || C == B) { 660 // MAX(MAX(A, B), B) -> MAX(A, B) 661 // MIN(MIN(a, b), a) -> MIN(a, b) 662 if (SPF1 == SPF2) 663 return replaceInstUsesWith(Outer, Inner); 664 665 // MAX(MIN(a, b), a) -> a 666 // MIN(MAX(a, b), a) -> a 667 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) || 668 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) || 669 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) || 670 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN)) 671 return replaceInstUsesWith(Outer, C); 672 } 673 674 if (SPF1 == SPF2) { 675 if (ConstantInt *CB = dyn_cast<ConstantInt>(B)) { 676 if (ConstantInt *CC = dyn_cast<ConstantInt>(C)) { 677 const APInt &ACB = CB->getValue(); 678 const APInt &ACC = CC->getValue(); 679 680 // MIN(MIN(A, 23), 97) -> MIN(A, 23) 681 // MAX(MAX(A, 97), 23) -> MAX(A, 97) 682 if ((SPF1 == SPF_UMIN && ACB.ule(ACC)) || 683 (SPF1 == SPF_SMIN && ACB.sle(ACC)) || 684 (SPF1 == SPF_UMAX && ACB.uge(ACC)) || 685 (SPF1 == SPF_SMAX && ACB.sge(ACC))) 686 return replaceInstUsesWith(Outer, Inner); 687 688 // MIN(MIN(A, 97), 23) -> MIN(A, 23) 689 // MAX(MAX(A, 23), 97) -> MAX(A, 97) 690 if ((SPF1 == SPF_UMIN && ACB.ugt(ACC)) || 691 (SPF1 == SPF_SMIN && ACB.sgt(ACC)) || 692 (SPF1 == SPF_UMAX && ACB.ult(ACC)) || 693 (SPF1 == SPF_SMAX && ACB.slt(ACC))) { 694 Outer.replaceUsesOfWith(Inner, A); 695 return &Outer; 696 } 697 } 698 } 699 } 700 701 // ABS(ABS(X)) -> ABS(X) 702 // NABS(NABS(X)) -> NABS(X) 703 if (SPF1 == SPF2 && (SPF1 == SPF_ABS || SPF1 == SPF_NABS)) { 704 return replaceInstUsesWith(Outer, Inner); 705 } 706 707 // ABS(NABS(X)) -> ABS(X) 708 // NABS(ABS(X)) -> NABS(X) 709 if ((SPF1 == SPF_ABS && SPF2 == SPF_NABS) || 710 (SPF1 == SPF_NABS && SPF2 == SPF_ABS)) { 711 SelectInst *SI = cast<SelectInst>(Inner); 712 Value *NewSI = Builder->CreateSelect( 713 SI->getCondition(), SI->getFalseValue(), SI->getTrueValue()); 714 return replaceInstUsesWith(Outer, NewSI); 715 } 716 717 auto IsFreeOrProfitableToInvert = 718 [&](Value *V, Value *&NotV, bool &ElidesXor) { 719 if (match(V, m_Not(m_Value(NotV)))) { 720 // If V has at most 2 uses then we can get rid of the xor operation 721 // entirely. 722 ElidesXor |= !V->hasNUsesOrMore(3); 723 return true; 724 } 725 726 if (IsFreeToInvert(V, !V->hasNUsesOrMore(3))) { 727 NotV = nullptr; 728 return true; 729 } 730 731 return false; 732 }; 733 734 Value *NotA, *NotB, *NotC; 735 bool ElidesXor = false; 736 737 // MIN(MIN(~A, ~B), ~C) == ~MAX(MAX(A, B), C) 738 // MIN(MAX(~A, ~B), ~C) == ~MAX(MIN(A, B), C) 739 // MAX(MIN(~A, ~B), ~C) == ~MIN(MAX(A, B), C) 740 // MAX(MAX(~A, ~B), ~C) == ~MIN(MIN(A, B), C) 741 // 742 // This transform is performance neutral if we can elide at least one xor from 743 // the set of three operands, since we'll be tacking on an xor at the very 744 // end. 745 if (IsFreeOrProfitableToInvert(A, NotA, ElidesXor) && 746 IsFreeOrProfitableToInvert(B, NotB, ElidesXor) && 747 IsFreeOrProfitableToInvert(C, NotC, ElidesXor) && ElidesXor) { 748 if (!NotA) 749 NotA = Builder->CreateNot(A); 750 if (!NotB) 751 NotB = Builder->CreateNot(B); 752 if (!NotC) 753 NotC = Builder->CreateNot(C); 754 755 Value *NewInner = generateMinMaxSelectPattern( 756 Builder, getInverseMinMaxSelectPattern(SPF1), NotA, NotB); 757 Value *NewOuter = Builder->CreateNot(generateMinMaxSelectPattern( 758 Builder, getInverseMinMaxSelectPattern(SPF2), NewInner, NotC)); 759 return replaceInstUsesWith(Outer, NewOuter); 760 } 761 762 return nullptr; 763 } 764 765 /// If one of the constants is zero (we know they can't both be) and we have an 766 /// icmp instruction with zero, and we have an 'and' with the non-constant value 767 /// and a power of two we can turn the select into a shift on the result of the 768 /// 'and'. 769 static Value *foldSelectICmpAnd(const SelectInst &SI, ConstantInt *TrueVal, 770 ConstantInt *FalseVal, 771 InstCombiner::BuilderTy *Builder) { 772 const ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition()); 773 if (!IC || !IC->isEquality() || !SI.getType()->isIntegerTy()) 774 return nullptr; 775 776 if (!match(IC->getOperand(1), m_Zero())) 777 return nullptr; 778 779 ConstantInt *AndRHS; 780 Value *LHS = IC->getOperand(0); 781 if (!match(LHS, m_And(m_Value(), m_ConstantInt(AndRHS)))) 782 return nullptr; 783 784 // If both select arms are non-zero see if we have a select of the form 785 // 'x ? 2^n + C : C'. Then we can offset both arms by C, use the logic 786 // for 'x ? 2^n : 0' and fix the thing up at the end. 787 ConstantInt *Offset = nullptr; 788 if (!TrueVal->isZero() && !FalseVal->isZero()) { 789 if ((TrueVal->getValue() - FalseVal->getValue()).isPowerOf2()) 790 Offset = FalseVal; 791 else if ((FalseVal->getValue() - TrueVal->getValue()).isPowerOf2()) 792 Offset = TrueVal; 793 else 794 return nullptr; 795 796 // Adjust TrueVal and FalseVal to the offset. 797 TrueVal = ConstantInt::get(Builder->getContext(), 798 TrueVal->getValue() - Offset->getValue()); 799 FalseVal = ConstantInt::get(Builder->getContext(), 800 FalseVal->getValue() - Offset->getValue()); 801 } 802 803 // Make sure the mask in the 'and' and one of the select arms is a power of 2. 804 if (!AndRHS->getValue().isPowerOf2() || 805 (!TrueVal->getValue().isPowerOf2() && 806 !FalseVal->getValue().isPowerOf2())) 807 return nullptr; 808 809 // Determine which shift is needed to transform result of the 'and' into the 810 // desired result. 811 ConstantInt *ValC = !TrueVal->isZero() ? TrueVal : FalseVal; 812 unsigned ValZeros = ValC->getValue().logBase2(); 813 unsigned AndZeros = AndRHS->getValue().logBase2(); 814 815 // If types don't match we can still convert the select by introducing a zext 816 // or a trunc of the 'and'. The trunc case requires that all of the truncated 817 // bits are zero, we can figure that out by looking at the 'and' mask. 818 if (AndZeros >= ValC->getBitWidth()) 819 return nullptr; 820 821 Value *V = Builder->CreateZExtOrTrunc(LHS, SI.getType()); 822 if (ValZeros > AndZeros) 823 V = Builder->CreateShl(V, ValZeros - AndZeros); 824 else if (ValZeros < AndZeros) 825 V = Builder->CreateLShr(V, AndZeros - ValZeros); 826 827 // Okay, now we know that everything is set up, we just don't know whether we 828 // have a icmp_ne or icmp_eq and whether the true or false val is the zero. 829 bool ShouldNotVal = !TrueVal->isZero(); 830 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE; 831 if (ShouldNotVal) 832 V = Builder->CreateXor(V, ValC); 833 834 // Apply an offset if needed. 835 if (Offset) 836 V = Builder->CreateAdd(V, Offset); 837 return V; 838 } 839 840 /// Turn select C, (X + Y), (X - Y) --> (X + (select C, Y, (-Y))). 841 /// This is even legal for FP. 842 static Instruction *foldAddSubSelect(SelectInst &SI, 843 InstCombiner::BuilderTy &Builder) { 844 Value *CondVal = SI.getCondition(); 845 Value *TrueVal = SI.getTrueValue(); 846 Value *FalseVal = SI.getFalseValue(); 847 auto *TI = dyn_cast<Instruction>(TrueVal); 848 auto *FI = dyn_cast<Instruction>(FalseVal); 849 if (!TI || !FI || !TI->hasOneUse() || !FI->hasOneUse()) 850 return nullptr; 851 852 Instruction *AddOp = nullptr, *SubOp = nullptr; 853 if ((TI->getOpcode() == Instruction::Sub && 854 FI->getOpcode() == Instruction::Add) || 855 (TI->getOpcode() == Instruction::FSub && 856 FI->getOpcode() == Instruction::FAdd)) { 857 AddOp = FI; 858 SubOp = TI; 859 } else if ((FI->getOpcode() == Instruction::Sub && 860 TI->getOpcode() == Instruction::Add) || 861 (FI->getOpcode() == Instruction::FSub && 862 TI->getOpcode() == Instruction::FAdd)) { 863 AddOp = TI; 864 SubOp = FI; 865 } 866 867 if (AddOp) { 868 Value *OtherAddOp = nullptr; 869 if (SubOp->getOperand(0) == AddOp->getOperand(0)) { 870 OtherAddOp = AddOp->getOperand(1); 871 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) { 872 OtherAddOp = AddOp->getOperand(0); 873 } 874 875 if (OtherAddOp) { 876 // So at this point we know we have (Y -> OtherAddOp): 877 // select C, (add X, Y), (sub X, Z) 878 Value *NegVal; // Compute -Z 879 if (SI.getType()->isFPOrFPVectorTy()) { 880 NegVal = Builder.CreateFNeg(SubOp->getOperand(1)); 881 if (Instruction *NegInst = dyn_cast<Instruction>(NegVal)) { 882 FastMathFlags Flags = AddOp->getFastMathFlags(); 883 Flags &= SubOp->getFastMathFlags(); 884 NegInst->setFastMathFlags(Flags); 885 } 886 } else { 887 NegVal = Builder.CreateNeg(SubOp->getOperand(1)); 888 } 889 890 Value *NewTrueOp = OtherAddOp; 891 Value *NewFalseOp = NegVal; 892 if (AddOp != TI) 893 std::swap(NewTrueOp, NewFalseOp); 894 Value *NewSel = Builder.CreateSelect(CondVal, NewTrueOp, NewFalseOp, 895 SI.getName() + ".p"); 896 897 if (SI.getType()->isFPOrFPVectorTy()) { 898 Instruction *RI = 899 BinaryOperator::CreateFAdd(SubOp->getOperand(0), NewSel); 900 901 FastMathFlags Flags = AddOp->getFastMathFlags(); 902 Flags &= SubOp->getFastMathFlags(); 903 RI->setFastMathFlags(Flags); 904 return RI; 905 } else 906 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel); 907 } 908 } 909 return nullptr; 910 } 911 912 Instruction *InstCombiner::visitSelectInst(SelectInst &SI) { 913 Value *CondVal = SI.getCondition(); 914 Value *TrueVal = SI.getTrueValue(); 915 Value *FalseVal = SI.getFalseValue(); 916 917 if (Value *V = 918 SimplifySelectInst(CondVal, TrueVal, FalseVal, DL, TLI, DT, AC)) 919 return replaceInstUsesWith(SI, V); 920 921 if (SI.getType()->isIntegerTy(1)) { 922 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) { 923 if (C->getZExtValue()) { 924 // Change: A = select B, true, C --> A = or B, C 925 return BinaryOperator::CreateOr(CondVal, FalseVal); 926 } 927 // Change: A = select B, false, C --> A = and !B, C 928 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); 929 return BinaryOperator::CreateAnd(NotCond, FalseVal); 930 } 931 if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) { 932 if (!C->getZExtValue()) { 933 // Change: A = select B, C, false --> A = and B, C 934 return BinaryOperator::CreateAnd(CondVal, TrueVal); 935 } 936 // Change: A = select B, C, true --> A = or !B, C 937 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); 938 return BinaryOperator::CreateOr(NotCond, TrueVal); 939 } 940 941 // select a, b, a -> a&b 942 // select a, a, b -> a|b 943 if (CondVal == TrueVal) 944 return BinaryOperator::CreateOr(CondVal, FalseVal); 945 if (CondVal == FalseVal) 946 return BinaryOperator::CreateAnd(CondVal, TrueVal); 947 948 // select a, ~a, b -> (~a)&b 949 // select a, b, ~a -> (~a)|b 950 if (match(TrueVal, m_Not(m_Specific(CondVal)))) 951 return BinaryOperator::CreateAnd(TrueVal, FalseVal); 952 if (match(FalseVal, m_Not(m_Specific(CondVal)))) 953 return BinaryOperator::CreateOr(TrueVal, FalseVal); 954 } 955 956 // Selecting between two integer constants? 957 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal)) 958 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) { 959 // select C, 1, 0 -> zext C to int 960 if (FalseValC->isZero() && TrueValC->getValue() == 1) 961 return new ZExtInst(CondVal, SI.getType()); 962 963 // select C, -1, 0 -> sext C to int 964 if (FalseValC->isZero() && TrueValC->isAllOnesValue()) 965 return new SExtInst(CondVal, SI.getType()); 966 967 // select C, 0, 1 -> zext !C to int 968 if (TrueValC->isZero() && FalseValC->getValue() == 1) { 969 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); 970 return new ZExtInst(NotCond, SI.getType()); 971 } 972 973 // select C, 0, -1 -> sext !C to int 974 if (TrueValC->isZero() && FalseValC->isAllOnesValue()) { 975 Value *NotCond = Builder->CreateNot(CondVal, "not."+CondVal->getName()); 976 return new SExtInst(NotCond, SI.getType()); 977 } 978 979 if (Value *V = foldSelectICmpAnd(SI, TrueValC, FalseValC, Builder)) 980 return replaceInstUsesWith(SI, V); 981 } 982 983 // See if we are selecting two values based on a comparison of the two values. 984 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) { 985 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) { 986 // Transform (X == Y) ? X : Y -> Y 987 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 988 // This is not safe in general for floating point: 989 // consider X== -0, Y== +0. 990 // It becomes safe if either operand is a nonzero constant. 991 ConstantFP *CFPt, *CFPf; 992 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 993 !CFPt->getValueAPF().isZero()) || 994 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 995 !CFPf->getValueAPF().isZero())) 996 return replaceInstUsesWith(SI, FalseVal); 997 } 998 // Transform (X une Y) ? X : Y -> X 999 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1000 // This is not safe in general for floating point: 1001 // consider X== -0, Y== +0. 1002 // It becomes safe if either operand is a nonzero constant. 1003 ConstantFP *CFPt, *CFPf; 1004 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1005 !CFPt->getValueAPF().isZero()) || 1006 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1007 !CFPf->getValueAPF().isZero())) 1008 return replaceInstUsesWith(SI, TrueVal); 1009 } 1010 1011 // Canonicalize to use ordered comparisons by swapping the select 1012 // operands. 1013 // 1014 // e.g. 1015 // (X ugt Y) ? X : Y -> (X ole Y) ? Y : X 1016 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1017 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1018 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1019 Builder->setFastMathFlags(FCI->getFastMathFlags()); 1020 Value *NewCond = Builder->CreateFCmp(InvPred, TrueVal, FalseVal, 1021 FCI->getName() + ".inv"); 1022 1023 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1024 SI.getName() + ".p"); 1025 } 1026 1027 // NOTE: if we wanted to, this is where to detect MIN/MAX 1028 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){ 1029 // Transform (X == Y) ? Y : X -> X 1030 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) { 1031 // This is not safe in general for floating point: 1032 // consider X== -0, Y== +0. 1033 // It becomes safe if either operand is a nonzero constant. 1034 ConstantFP *CFPt, *CFPf; 1035 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1036 !CFPt->getValueAPF().isZero()) || 1037 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1038 !CFPf->getValueAPF().isZero())) 1039 return replaceInstUsesWith(SI, FalseVal); 1040 } 1041 // Transform (X une Y) ? Y : X -> Y 1042 if (FCI->getPredicate() == FCmpInst::FCMP_UNE) { 1043 // This is not safe in general for floating point: 1044 // consider X== -0, Y== +0. 1045 // It becomes safe if either operand is a nonzero constant. 1046 ConstantFP *CFPt, *CFPf; 1047 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) && 1048 !CFPt->getValueAPF().isZero()) || 1049 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) && 1050 !CFPf->getValueAPF().isZero())) 1051 return replaceInstUsesWith(SI, TrueVal); 1052 } 1053 1054 // Canonicalize to use ordered comparisons by swapping the select 1055 // operands. 1056 // 1057 // e.g. 1058 // (X ugt Y) ? X : Y -> (X ole Y) ? X : Y 1059 if (FCI->hasOneUse() && FCmpInst::isUnordered(FCI->getPredicate())) { 1060 FCmpInst::Predicate InvPred = FCI->getInversePredicate(); 1061 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1062 Builder->setFastMathFlags(FCI->getFastMathFlags()); 1063 Value *NewCond = Builder->CreateFCmp(InvPred, FalseVal, TrueVal, 1064 FCI->getName() + ".inv"); 1065 1066 return SelectInst::Create(NewCond, FalseVal, TrueVal, 1067 SI.getName() + ".p"); 1068 } 1069 1070 // NOTE: if we wanted to, this is where to detect MIN/MAX 1071 } 1072 // NOTE: if we wanted to, this is where to detect ABS 1073 } 1074 1075 // See if we are selecting two values based on a comparison of the two values. 1076 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) 1077 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI)) 1078 return Result; 1079 1080 if (Instruction *Add = foldAddSubSelect(SI, *Builder)) 1081 return Add; 1082 1083 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z)) 1084 auto *TI = dyn_cast<Instruction>(TrueVal); 1085 auto *FI = dyn_cast<Instruction>(FalseVal); 1086 if (TI && FI && TI->getOpcode() == FI->getOpcode()) 1087 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI)) 1088 return IV; 1089 1090 // See if we can fold the select into one of our operands. 1091 if (SI.getType()->isIntOrIntVectorTy() || SI.getType()->isFPOrFPVectorTy()) { 1092 if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal)) 1093 return FoldI; 1094 1095 Value *LHS, *RHS, *LHS2, *RHS2; 1096 Instruction::CastOps CastOp; 1097 SelectPatternResult SPR = matchSelectPattern(&SI, LHS, RHS, &CastOp); 1098 auto SPF = SPR.Flavor; 1099 1100 if (SelectPatternResult::isMinOrMax(SPF)) { 1101 // Canonicalize so that type casts are outside select patterns. 1102 if (LHS->getType()->getPrimitiveSizeInBits() != 1103 SI.getType()->getPrimitiveSizeInBits()) { 1104 CmpInst::Predicate Pred = getCmpPredicateForMinMax(SPF, SPR.Ordered); 1105 1106 Value *Cmp; 1107 if (CmpInst::isIntPredicate(Pred)) { 1108 Cmp = Builder->CreateICmp(Pred, LHS, RHS); 1109 } else { 1110 IRBuilder<>::FastMathFlagGuard FMFG(*Builder); 1111 auto FMF = cast<FPMathOperator>(SI.getCondition())->getFastMathFlags(); 1112 Builder->setFastMathFlags(FMF); 1113 Cmp = Builder->CreateFCmp(Pred, LHS, RHS); 1114 } 1115 1116 Value *NewSI = Builder->CreateCast(CastOp, 1117 Builder->CreateSelect(Cmp, LHS, RHS), 1118 SI.getType()); 1119 return replaceInstUsesWith(SI, NewSI); 1120 } 1121 } 1122 1123 if (SPF) { 1124 // MAX(MAX(a, b), a) -> MAX(a, b) 1125 // MIN(MIN(a, b), a) -> MIN(a, b) 1126 // MAX(MIN(a, b), a) -> a 1127 // MIN(MAX(a, b), a) -> a 1128 // ABS(ABS(a)) -> ABS(a) 1129 // NABS(NABS(a)) -> NABS(a) 1130 if (SelectPatternFlavor SPF2 = matchSelectPattern(LHS, LHS2, RHS2).Flavor) 1131 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2, 1132 SI, SPF, RHS)) 1133 return R; 1134 if (SelectPatternFlavor SPF2 = matchSelectPattern(RHS, LHS2, RHS2).Flavor) 1135 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2, 1136 SI, SPF, LHS)) 1137 return R; 1138 } 1139 1140 // MAX(~a, ~b) -> ~MIN(a, b) 1141 if (SPF == SPF_SMAX || SPF == SPF_UMAX) { 1142 if (IsFreeToInvert(LHS, LHS->hasNUses(2)) && 1143 IsFreeToInvert(RHS, RHS->hasNUses(2))) { 1144 1145 // This transform adds a xor operation and that extra cost needs to be 1146 // justified. We look for simplifications that will result from 1147 // applying this rule: 1148 1149 bool Profitable = 1150 (LHS->hasNUses(2) && match(LHS, m_Not(m_Value()))) || 1151 (RHS->hasNUses(2) && match(RHS, m_Not(m_Value()))) || 1152 (SI.hasOneUse() && match(*SI.user_begin(), m_Not(m_Value()))); 1153 1154 if (Profitable) { 1155 Value *NewLHS = Builder->CreateNot(LHS); 1156 Value *NewRHS = Builder->CreateNot(RHS); 1157 Value *NewCmp = SPF == SPF_SMAX 1158 ? Builder->CreateICmpSLT(NewLHS, NewRHS) 1159 : Builder->CreateICmpULT(NewLHS, NewRHS); 1160 Value *NewSI = 1161 Builder->CreateNot(Builder->CreateSelect(NewCmp, NewLHS, NewRHS)); 1162 return replaceInstUsesWith(SI, NewSI); 1163 } 1164 } 1165 } 1166 1167 // TODO. 1168 // ABS(-X) -> ABS(X) 1169 } 1170 1171 // See if we can fold the select into a phi node if the condition is a select. 1172 if (isa<PHINode>(SI.getCondition())) 1173 // The true/false values have to be live in the PHI predecessor's blocks. 1174 if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) && 1175 CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI)) 1176 if (Instruction *NV = FoldOpIntoPhi(SI)) 1177 return NV; 1178 1179 if (SelectInst *TrueSI = dyn_cast<SelectInst>(TrueVal)) { 1180 if (TrueSI->getCondition()->getType() == CondVal->getType()) { 1181 // select(C, select(C, a, b), c) -> select(C, a, c) 1182 if (TrueSI->getCondition() == CondVal) { 1183 if (SI.getTrueValue() == TrueSI->getTrueValue()) 1184 return nullptr; 1185 SI.setOperand(1, TrueSI->getTrueValue()); 1186 return &SI; 1187 } 1188 // select(C0, select(C1, a, b), b) -> select(C0&C1, a, b) 1189 // We choose this as normal form to enable folding on the And and shortening 1190 // paths for the values (this helps GetUnderlyingObjects() for example). 1191 if (TrueSI->getFalseValue() == FalseVal && TrueSI->hasOneUse()) { 1192 Value *And = Builder->CreateAnd(CondVal, TrueSI->getCondition()); 1193 SI.setOperand(0, And); 1194 SI.setOperand(1, TrueSI->getTrueValue()); 1195 return &SI; 1196 } 1197 } 1198 } 1199 if (SelectInst *FalseSI = dyn_cast<SelectInst>(FalseVal)) { 1200 if (FalseSI->getCondition()->getType() == CondVal->getType()) { 1201 // select(C, a, select(C, b, c)) -> select(C, a, c) 1202 if (FalseSI->getCondition() == CondVal) { 1203 if (SI.getFalseValue() == FalseSI->getFalseValue()) 1204 return nullptr; 1205 SI.setOperand(2, FalseSI->getFalseValue()); 1206 return &SI; 1207 } 1208 // select(C0, a, select(C1, a, b)) -> select(C0|C1, a, b) 1209 if (FalseSI->getTrueValue() == TrueVal && FalseSI->hasOneUse()) { 1210 Value *Or = Builder->CreateOr(CondVal, FalseSI->getCondition()); 1211 SI.setOperand(0, Or); 1212 SI.setOperand(2, FalseSI->getFalseValue()); 1213 return &SI; 1214 } 1215 } 1216 } 1217 1218 if (BinaryOperator::isNot(CondVal)) { 1219 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal)); 1220 SI.setOperand(1, FalseVal); 1221 SI.setOperand(2, TrueVal); 1222 return &SI; 1223 } 1224 1225 if (VectorType* VecTy = dyn_cast<VectorType>(SI.getType())) { 1226 unsigned VWidth = VecTy->getNumElements(); 1227 APInt UndefElts(VWidth, 0); 1228 APInt AllOnesEltMask(APInt::getAllOnesValue(VWidth)); 1229 if (Value *V = SimplifyDemandedVectorElts(&SI, AllOnesEltMask, UndefElts)) { 1230 if (V != &SI) 1231 return replaceInstUsesWith(SI, V); 1232 return &SI; 1233 } 1234 1235 if (isa<ConstantAggregateZero>(CondVal)) { 1236 return replaceInstUsesWith(SI, FalseVal); 1237 } 1238 } 1239 1240 // See if we can determine the result of this select based on a dominating 1241 // condition. 1242 BasicBlock *Parent = SI.getParent(); 1243 if (BasicBlock *Dom = Parent->getSinglePredecessor()) { 1244 auto *PBI = dyn_cast_or_null<BranchInst>(Dom->getTerminator()); 1245 if (PBI && PBI->isConditional() && 1246 PBI->getSuccessor(0) != PBI->getSuccessor(1) && 1247 (PBI->getSuccessor(0) == Parent || PBI->getSuccessor(1) == Parent)) { 1248 bool CondIsFalse = PBI->getSuccessor(1) == Parent; 1249 Optional<bool> Implication = isImpliedCondition( 1250 PBI->getCondition(), SI.getCondition(), DL, CondIsFalse); 1251 if (Implication) { 1252 Value *V = *Implication ? TrueVal : FalseVal; 1253 return replaceInstUsesWith(SI, V); 1254 } 1255 } 1256 } 1257 1258 return nullptr; 1259 } 1260