1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
36 
37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
38 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
39 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
41 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
42 /// the alloca, and if the source pointer is a pointer to a constant global, we
43 /// can optimize this.
44 static bool
45 isOnlyCopiedFromConstantMemory(AAResults *AA,
46                                Value *V, MemTransferInst *&TheCopy,
47                                SmallVectorImpl<Instruction *> &ToDelete) {
48   // We track lifetime intrinsics as we encounter them.  If we decide to go
49   // ahead and replace the value with the global, this lets the caller quickly
50   // eliminate the markers.
51 
52   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
53   ValuesToInspect.emplace_back(V, false);
54   while (!ValuesToInspect.empty()) {
55     auto ValuePair = ValuesToInspect.pop_back_val();
56     const bool IsOffset = ValuePair.second;
57     for (auto &U : ValuePair.first->uses()) {
58       auto *I = cast<Instruction>(U.getUser());
59 
60       if (auto *LI = dyn_cast<LoadInst>(I)) {
61         // Ignore non-volatile loads, they are always ok.
62         if (!LI->isSimple()) return false;
63         continue;
64       }
65 
66       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
67         // If uses of the bitcast are ok, we are ok.
68         ValuesToInspect.emplace_back(I, IsOffset);
69         continue;
70       }
71       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
72         // If the GEP has all zero indices, it doesn't offset the pointer. If it
73         // doesn't, it does.
74         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
75         continue;
76       }
77 
78       if (auto *Call = dyn_cast<CallBase>(I)) {
79         // If this is the function being called then we treat it like a load and
80         // ignore it.
81         if (Call->isCallee(&U))
82           continue;
83 
84         unsigned DataOpNo = Call->getDataOperandNo(&U);
85         bool IsArgOperand = Call->isArgOperand(&U);
86 
87         // Inalloca arguments are clobbered by the call.
88         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
89           return false;
90 
91         // If this is a readonly/readnone call site, then we know it is just a
92         // load (but one that potentially returns the value itself), so we can
93         // ignore it if we know that the value isn't captured.
94         if (Call->onlyReadsMemory() &&
95             (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
96           continue;
97 
98         // If this is being passed as a byval argument, the caller is making a
99         // copy, so it is only a read of the alloca.
100         if (IsArgOperand && Call->isByValArgument(DataOpNo))
101           continue;
102       }
103 
104       // Lifetime intrinsics can be handled by the caller.
105       if (I->isLifetimeStartOrEnd()) {
106         assert(I->use_empty() && "Lifetime markers have no result to use!");
107         ToDelete.push_back(I);
108         continue;
109       }
110 
111       // If this is isn't our memcpy/memmove, reject it as something we can't
112       // handle.
113       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
114       if (!MI)
115         return false;
116 
117       // If the transfer is using the alloca as a source of the transfer, then
118       // ignore it since it is a load (unless the transfer is volatile).
119       if (U.getOperandNo() == 1) {
120         if (MI->isVolatile()) return false;
121         continue;
122       }
123 
124       // If we already have seen a copy, reject the second one.
125       if (TheCopy) return false;
126 
127       // If the pointer has been offset from the start of the alloca, we can't
128       // safely handle this.
129       if (IsOffset) return false;
130 
131       // If the memintrinsic isn't using the alloca as the dest, reject it.
132       if (U.getOperandNo() != 0) return false;
133 
134       // If the source of the memcpy/move is not a constant global, reject it.
135       if (!AA->pointsToConstantMemory(MI->getSource()))
136         return false;
137 
138       // Otherwise, the transform is safe.  Remember the copy instruction.
139       TheCopy = MI;
140     }
141   }
142   return true;
143 }
144 
145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
146 /// modified by a copy from a constant global.  If we can prove this, we can
147 /// replace any uses of the alloca with uses of the global directly.
148 static MemTransferInst *
149 isOnlyCopiedFromConstantMemory(AAResults *AA,
150                                AllocaInst *AI,
151                                SmallVectorImpl<Instruction *> &ToDelete) {
152   MemTransferInst *TheCopy = nullptr;
153   if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
154     return TheCopy;
155   return nullptr;
156 }
157 
158 /// Returns true if V is dereferenceable for size of alloca.
159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
160                                            const DataLayout &DL) {
161   if (AI->isArrayAllocation())
162     return false;
163   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
164   if (!AllocaSize)
165     return false;
166   return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
167                                             APInt(64, AllocaSize), DL);
168 }
169 
170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
171                                             AllocaInst &AI) {
172   // Check for array size of 1 (scalar allocation).
173   if (!AI.isArrayAllocation()) {
174     // i32 1 is the canonical array size for scalar allocations.
175     if (AI.getArraySize()->getType()->isIntegerTy(32))
176       return nullptr;
177 
178     // Canonicalize it.
179     return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
180   }
181 
182   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
183   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
184     if (C->getValue().getActiveBits() <= 64) {
185       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
186       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
187       New->setAlignment(AI.getAlign());
188 
189       // Scan to the end of the allocation instructions, to skip over a block of
190       // allocas if possible...also skip interleaved debug info
191       //
192       BasicBlock::iterator It(New);
193       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
194         ++It;
195 
196       // Now that I is pointing to the first non-allocation-inst in the block,
197       // insert our getelementptr instruction...
198       //
199       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
200       Value *NullIdx = Constant::getNullValue(IdxTy);
201       Value *Idx[2] = {NullIdx, NullIdx};
202       Instruction *GEP = GetElementPtrInst::CreateInBounds(
203           NewTy, New, Idx, New->getName() + ".sub");
204       IC.InsertNewInstBefore(GEP, *It);
205 
206       // Now make everything use the getelementptr instead of the original
207       // allocation.
208       return IC.replaceInstUsesWith(AI, GEP);
209     }
210   }
211 
212   if (isa<UndefValue>(AI.getArraySize()))
213     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
214 
215   // Ensure that the alloca array size argument has type intptr_t, so that
216   // any casting is exposed early.
217   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
218   if (AI.getArraySize()->getType() != IntPtrTy) {
219     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
220     return IC.replaceOperand(AI, 0, V);
221   }
222 
223   return nullptr;
224 }
225 
226 namespace {
227 // If I and V are pointers in different address space, it is not allowed to
228 // use replaceAllUsesWith since I and V have different types. A
229 // non-target-specific transformation should not use addrspacecast on V since
230 // the two address space may be disjoint depending on target.
231 //
232 // This class chases down uses of the old pointer until reaching the load
233 // instructions, then replaces the old pointer in the load instructions with
234 // the new pointer. If during the chasing it sees bitcast or GEP, it will
235 // create new bitcast or GEP with the new pointer and use them in the load
236 // instruction.
237 class PointerReplacer {
238 public:
239   PointerReplacer(InstCombinerImpl &IC) : IC(IC) {}
240 
241   bool collectUsers(Instruction &I);
242   void replacePointer(Instruction &I, Value *V);
243 
244 private:
245   void replace(Instruction *I);
246   Value *getReplacement(Value *I);
247 
248   SmallSetVector<Instruction *, 4> Worklist;
249   MapVector<Value *, Value *> WorkMap;
250   InstCombinerImpl &IC;
251 };
252 } // end anonymous namespace
253 
254 bool PointerReplacer::collectUsers(Instruction &I) {
255   for (auto U : I.users()) {
256     Instruction *Inst = cast<Instruction>(&*U);
257     if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) {
258       if (Load->isVolatile())
259         return false;
260       Worklist.insert(Load);
261     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
262       Worklist.insert(Inst);
263       if (!collectUsers(*Inst))
264         return false;
265     } else if (isa<MemTransferInst>(Inst)) {
266       Worklist.insert(Inst);
267     } else {
268       LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
269       return false;
270     }
271   }
272 
273   return true;
274 }
275 
276 Value *PointerReplacer::getReplacement(Value *V) {
277   auto Loc = WorkMap.find(V);
278   if (Loc != WorkMap.end())
279     return Loc->second;
280   return nullptr;
281 }
282 
283 void PointerReplacer::replace(Instruction *I) {
284   if (getReplacement(I))
285     return;
286 
287   if (auto *LT = dyn_cast<LoadInst>(I)) {
288     auto *V = getReplacement(LT->getPointerOperand());
289     assert(V && "Operand not replaced");
290     auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
291                               LT->getAlign(), LT->getOrdering(),
292                               LT->getSyncScopeID());
293     NewI->takeName(LT);
294     copyMetadataForLoad(*NewI, *LT);
295 
296     IC.InsertNewInstWith(NewI, *LT);
297     IC.replaceInstUsesWith(*LT, NewI);
298     WorkMap[LT] = NewI;
299   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
300     auto *V = getReplacement(GEP->getPointerOperand());
301     assert(V && "Operand not replaced");
302     SmallVector<Value *, 8> Indices;
303     Indices.append(GEP->idx_begin(), GEP->idx_end());
304     auto *NewI = GetElementPtrInst::Create(
305         V->getType()->getPointerElementType(), V, Indices);
306     IC.InsertNewInstWith(NewI, *GEP);
307     NewI->takeName(GEP);
308     WorkMap[GEP] = NewI;
309   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
310     auto *V = getReplacement(BC->getOperand(0));
311     assert(V && "Operand not replaced");
312     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
313                                   V->getType()->getPointerAddressSpace());
314     auto *NewI = new BitCastInst(V, NewT);
315     IC.InsertNewInstWith(NewI, *BC);
316     NewI->takeName(BC);
317     WorkMap[BC] = NewI;
318   } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
319     auto *SrcV = getReplacement(MemCpy->getRawSource());
320     // The pointer may appear in the destination of a copy, but we don't want to
321     // replace it.
322     if (!SrcV) {
323       assert(getReplacement(MemCpy->getRawDest()) &&
324              "destination not in replace list");
325       return;
326     }
327 
328     IC.Builder.SetInsertPoint(MemCpy);
329     auto *NewI = IC.Builder.CreateMemTransferInst(
330         MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(),
331         SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(),
332         MemCpy->isVolatile());
333     AAMDNodes AAMD;
334     MemCpy->getAAMetadata(AAMD);
335     if (AAMD)
336       NewI->setAAMetadata(AAMD);
337 
338     IC.eraseInstFromFunction(*MemCpy);
339     WorkMap[MemCpy] = NewI;
340   } else {
341     llvm_unreachable("should never reach here");
342   }
343 }
344 
345 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
346 #ifndef NDEBUG
347   auto *PT = cast<PointerType>(I.getType());
348   auto *NT = cast<PointerType>(V->getType());
349   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
350          "Invalid usage");
351 #endif
352   WorkMap[&I] = V;
353 
354   for (Instruction *Workitem : Worklist)
355     replace(Workitem);
356 }
357 
358 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
359   if (auto *I = simplifyAllocaArraySize(*this, AI))
360     return I;
361 
362   if (AI.getAllocatedType()->isSized()) {
363     // Move all alloca's of zero byte objects to the entry block and merge them
364     // together.  Note that we only do this for alloca's, because malloc should
365     // allocate and return a unique pointer, even for a zero byte allocation.
366     if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
367       // For a zero sized alloca there is no point in doing an array allocation.
368       // This is helpful if the array size is a complicated expression not used
369       // elsewhere.
370       if (AI.isArrayAllocation())
371         return replaceOperand(AI, 0,
372             ConstantInt::get(AI.getArraySize()->getType(), 1));
373 
374       // Get the first instruction in the entry block.
375       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
376       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
377       if (FirstInst != &AI) {
378         // If the entry block doesn't start with a zero-size alloca then move
379         // this one to the start of the entry block.  There is no problem with
380         // dominance as the array size was forced to a constant earlier already.
381         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
382         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
383             DL.getTypeAllocSize(EntryAI->getAllocatedType())
384                     .getKnownMinSize() != 0) {
385           AI.moveBefore(FirstInst);
386           return &AI;
387         }
388 
389         // Replace this zero-sized alloca with the one at the start of the entry
390         // block after ensuring that the address will be aligned enough for both
391         // types.
392         const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
393         EntryAI->setAlignment(MaxAlign);
394         if (AI.getType() != EntryAI->getType())
395           return new BitCastInst(EntryAI, AI.getType());
396         return replaceInstUsesWith(AI, EntryAI);
397       }
398     }
399   }
400 
401   // Check to see if this allocation is only modified by a memcpy/memmove from
402   // a constant whose alignment is equal to or exceeds that of the allocation.
403   // If this is the case, we can change all users to use the constant global
404   // instead.  This is commonly produced by the CFE by constructs like "void
405   // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently
406   // read.
407   SmallVector<Instruction *, 4> ToDelete;
408   if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
409     Value *TheSrc = Copy->getSource();
410     Align AllocaAlign = AI.getAlign();
411     Align SourceAlign = getOrEnforceKnownAlignment(
412       TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
413     if (AllocaAlign <= SourceAlign &&
414         isDereferenceableForAllocaSize(TheSrc, &AI, DL)) {
415       LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
416       LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
417       unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
418       auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace);
419       if (AI.getType()->getAddressSpace() == SrcAddrSpace) {
420         for (Instruction *Delete : ToDelete)
421           eraseInstFromFunction(*Delete);
422 
423         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
424         Instruction *NewI = replaceInstUsesWith(AI, Cast);
425         eraseInstFromFunction(*Copy);
426         ++NumGlobalCopies;
427         return NewI;
428       }
429 
430       PointerReplacer PtrReplacer(*this);
431       if (PtrReplacer.collectUsers(AI)) {
432         for (Instruction *Delete : ToDelete)
433           eraseInstFromFunction(*Delete);
434 
435         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
436         PtrReplacer.replacePointer(AI, Cast);
437         ++NumGlobalCopies;
438       }
439     }
440   }
441 
442   // At last, use the generic allocation site handler to aggressively remove
443   // unused allocas.
444   return visitAllocSite(AI);
445 }
446 
447 // Are we allowed to form a atomic load or store of this type?
448 static bool isSupportedAtomicType(Type *Ty) {
449   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
450 }
451 
452 /// Helper to combine a load to a new type.
453 ///
454 /// This just does the work of combining a load to a new type. It handles
455 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
456 /// loaded *value* type. This will convert it to a pointer, cast the operand to
457 /// that pointer type, load it, etc.
458 ///
459 /// Note that this will create all of the instructions with whatever insert
460 /// point the \c InstCombinerImpl currently is using.
461 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
462                                                  const Twine &Suffix) {
463   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
464          "can't fold an atomic load to requested type");
465 
466   Value *Ptr = LI.getPointerOperand();
467   unsigned AS = LI.getPointerAddressSpace();
468   Value *NewPtr = nullptr;
469   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
470         NewPtr->getType()->getPointerElementType() == NewTy &&
471         NewPtr->getType()->getPointerAddressSpace() == AS))
472     NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
473 
474   LoadInst *NewLoad = Builder.CreateAlignedLoad(
475       NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix);
476   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
477   copyMetadataForLoad(*NewLoad, LI);
478   return NewLoad;
479 }
480 
481 /// Combine a store to a new type.
482 ///
483 /// Returns the newly created store instruction.
484 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
485                                          Value *V) {
486   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
487          "can't fold an atomic store of requested type");
488 
489   Value *Ptr = SI.getPointerOperand();
490   unsigned AS = SI.getPointerAddressSpace();
491   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
492   SI.getAllMetadata(MD);
493 
494   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
495       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
496       SI.getAlign(), SI.isVolatile());
497   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
498   for (const auto &MDPair : MD) {
499     unsigned ID = MDPair.first;
500     MDNode *N = MDPair.second;
501     // Note, essentially every kind of metadata should be preserved here! This
502     // routine is supposed to clone a store instruction changing *only its
503     // type*. The only metadata it makes sense to drop is metadata which is
504     // invalidated when the pointer type changes. This should essentially
505     // never be the case in LLVM, but we explicitly switch over only known
506     // metadata to be conservatively correct. If you are adding metadata to
507     // LLVM which pertains to stores, you almost certainly want to add it
508     // here.
509     switch (ID) {
510     case LLVMContext::MD_dbg:
511     case LLVMContext::MD_tbaa:
512     case LLVMContext::MD_prof:
513     case LLVMContext::MD_fpmath:
514     case LLVMContext::MD_tbaa_struct:
515     case LLVMContext::MD_alias_scope:
516     case LLVMContext::MD_noalias:
517     case LLVMContext::MD_nontemporal:
518     case LLVMContext::MD_mem_parallel_loop_access:
519     case LLVMContext::MD_access_group:
520       // All of these directly apply.
521       NewStore->setMetadata(ID, N);
522       break;
523     case LLVMContext::MD_invariant_load:
524     case LLVMContext::MD_nonnull:
525     case LLVMContext::MD_noundef:
526     case LLVMContext::MD_range:
527     case LLVMContext::MD_align:
528     case LLVMContext::MD_dereferenceable:
529     case LLVMContext::MD_dereferenceable_or_null:
530       // These don't apply for stores.
531       break;
532     }
533   }
534 
535   return NewStore;
536 }
537 
538 /// Returns true if instruction represent minmax pattern like:
539 ///   select ((cmp load V1, load V2), V1, V2).
540 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
541   assert(V->getType()->isPointerTy() && "Expected pointer type.");
542   // Ignore possible ty* to ixx* bitcast.
543   V = InstCombiner::peekThroughBitcast(V);
544   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
545   // pattern.
546   CmpInst::Predicate Pred;
547   Instruction *L1;
548   Instruction *L2;
549   Value *LHS;
550   Value *RHS;
551   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
552                          m_Value(LHS), m_Value(RHS))))
553     return false;
554   LoadTy = L1->getType();
555   return (match(L1, m_Load(m_Specific(LHS))) &&
556           match(L2, m_Load(m_Specific(RHS)))) ||
557          (match(L1, m_Load(m_Specific(RHS))) &&
558           match(L2, m_Load(m_Specific(LHS))));
559 }
560 
561 /// Combine loads to match the type of their uses' value after looking
562 /// through intervening bitcasts.
563 ///
564 /// The core idea here is that if the result of a load is used in an operation,
565 /// we should load the type most conducive to that operation. For example, when
566 /// loading an integer and converting that immediately to a pointer, we should
567 /// instead directly load a pointer.
568 ///
569 /// However, this routine must never change the width of a load or the number of
570 /// loads as that would introduce a semantic change. This combine is expected to
571 /// be a semantic no-op which just allows loads to more closely model the types
572 /// of their consuming operations.
573 ///
574 /// Currently, we also refuse to change the precise type used for an atomic load
575 /// or a volatile load. This is debatable, and might be reasonable to change
576 /// later. However, it is risky in case some backend or other part of LLVM is
577 /// relying on the exact type loaded to select appropriate atomic operations.
578 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
579                                                LoadInst &LI) {
580   // FIXME: We could probably with some care handle both volatile and ordered
581   // atomic loads here but it isn't clear that this is important.
582   if (!LI.isUnordered())
583     return nullptr;
584 
585   if (LI.use_empty())
586     return nullptr;
587 
588   // swifterror values can't be bitcasted.
589   if (LI.getPointerOperand()->isSwiftError())
590     return nullptr;
591 
592   const DataLayout &DL = IC.getDataLayout();
593 
594   // Fold away bit casts of the loaded value by loading the desired type.
595   // Note that we should not do this for pointer<->integer casts,
596   // because that would result in type punning.
597   if (LI.hasOneUse())
598     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
599       if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() ==
600                                     CI->getDestTy()->isPtrOrPtrVectorTy())
601         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
602           LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
603           CI->replaceAllUsesWith(NewLoad);
604           IC.eraseInstFromFunction(*CI);
605           return &LI;
606         }
607 
608   // FIXME: We should also canonicalize loads of vectors when their elements are
609   // cast to other types.
610   return nullptr;
611 }
612 
613 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
614   // FIXME: We could probably with some care handle both volatile and atomic
615   // stores here but it isn't clear that this is important.
616   if (!LI.isSimple())
617     return nullptr;
618 
619   Type *T = LI.getType();
620   if (!T->isAggregateType())
621     return nullptr;
622 
623   StringRef Name = LI.getName();
624   assert(LI.getAlignment() && "Alignment must be set at this point");
625 
626   if (auto *ST = dyn_cast<StructType>(T)) {
627     // If the struct only have one element, we unpack.
628     auto NumElements = ST->getNumElements();
629     if (NumElements == 1) {
630       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
631                                                   ".unpack");
632       AAMDNodes AAMD;
633       LI.getAAMetadata(AAMD);
634       NewLoad->setAAMetadata(AAMD);
635       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
636         UndefValue::get(T), NewLoad, 0, Name));
637     }
638 
639     // We don't want to break loads with padding here as we'd loose
640     // the knowledge that padding exists for the rest of the pipeline.
641     const DataLayout &DL = IC.getDataLayout();
642     auto *SL = DL.getStructLayout(ST);
643     if (SL->hasPadding())
644       return nullptr;
645 
646     const auto Align = LI.getAlign();
647     auto *Addr = LI.getPointerOperand();
648     auto *IdxType = Type::getInt32Ty(T->getContext());
649     auto *Zero = ConstantInt::get(IdxType, 0);
650 
651     Value *V = UndefValue::get(T);
652     for (unsigned i = 0; i < NumElements; i++) {
653       Value *Indices[2] = {
654         Zero,
655         ConstantInt::get(IdxType, i),
656       };
657       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
658                                                Name + ".elt");
659       auto *L = IC.Builder.CreateAlignedLoad(
660           ST->getElementType(i), Ptr,
661           commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
662       // Propagate AA metadata. It'll still be valid on the narrowed load.
663       AAMDNodes AAMD;
664       LI.getAAMetadata(AAMD);
665       L->setAAMetadata(AAMD);
666       V = IC.Builder.CreateInsertValue(V, L, i);
667     }
668 
669     V->setName(Name);
670     return IC.replaceInstUsesWith(LI, V);
671   }
672 
673   if (auto *AT = dyn_cast<ArrayType>(T)) {
674     auto *ET = AT->getElementType();
675     auto NumElements = AT->getNumElements();
676     if (NumElements == 1) {
677       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
678       AAMDNodes AAMD;
679       LI.getAAMetadata(AAMD);
680       NewLoad->setAAMetadata(AAMD);
681       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
682         UndefValue::get(T), NewLoad, 0, Name));
683     }
684 
685     // Bail out if the array is too large. Ideally we would like to optimize
686     // arrays of arbitrary size but this has a terrible impact on compile time.
687     // The threshold here is chosen arbitrarily, maybe needs a little bit of
688     // tuning.
689     if (NumElements > IC.MaxArraySizeForCombine)
690       return nullptr;
691 
692     const DataLayout &DL = IC.getDataLayout();
693     auto EltSize = DL.getTypeAllocSize(ET);
694     const auto Align = LI.getAlign();
695 
696     auto *Addr = LI.getPointerOperand();
697     auto *IdxType = Type::getInt64Ty(T->getContext());
698     auto *Zero = ConstantInt::get(IdxType, 0);
699 
700     Value *V = UndefValue::get(T);
701     uint64_t Offset = 0;
702     for (uint64_t i = 0; i < NumElements; i++) {
703       Value *Indices[2] = {
704         Zero,
705         ConstantInt::get(IdxType, i),
706       };
707       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
708                                                Name + ".elt");
709       auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
710                                              commonAlignment(Align, Offset),
711                                              Name + ".unpack");
712       AAMDNodes AAMD;
713       LI.getAAMetadata(AAMD);
714       L->setAAMetadata(AAMD);
715       V = IC.Builder.CreateInsertValue(V, L, i);
716       Offset += EltSize;
717     }
718 
719     V->setName(Name);
720     return IC.replaceInstUsesWith(LI, V);
721   }
722 
723   return nullptr;
724 }
725 
726 // If we can determine that all possible objects pointed to by the provided
727 // pointer value are, not only dereferenceable, but also definitively less than
728 // or equal to the provided maximum size, then return true. Otherwise, return
729 // false (constant global values and allocas fall into this category).
730 //
731 // FIXME: This should probably live in ValueTracking (or similar).
732 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
733                                      const DataLayout &DL) {
734   SmallPtrSet<Value *, 4> Visited;
735   SmallVector<Value *, 4> Worklist(1, V);
736 
737   do {
738     Value *P = Worklist.pop_back_val();
739     P = P->stripPointerCasts();
740 
741     if (!Visited.insert(P).second)
742       continue;
743 
744     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
745       Worklist.push_back(SI->getTrueValue());
746       Worklist.push_back(SI->getFalseValue());
747       continue;
748     }
749 
750     if (PHINode *PN = dyn_cast<PHINode>(P)) {
751       for (Value *IncValue : PN->incoming_values())
752         Worklist.push_back(IncValue);
753       continue;
754     }
755 
756     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
757       if (GA->isInterposable())
758         return false;
759       Worklist.push_back(GA->getAliasee());
760       continue;
761     }
762 
763     // If we know how big this object is, and it is less than MaxSize, continue
764     // searching. Otherwise, return false.
765     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
766       if (!AI->getAllocatedType()->isSized())
767         return false;
768 
769       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
770       if (!CS)
771         return false;
772 
773       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
774       // Make sure that, even if the multiplication below would wrap as an
775       // uint64_t, we still do the right thing.
776       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
777         return false;
778       continue;
779     }
780 
781     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
782       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
783         return false;
784 
785       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
786       if (InitSize > MaxSize)
787         return false;
788       continue;
789     }
790 
791     return false;
792   } while (!Worklist.empty());
793 
794   return true;
795 }
796 
797 // If we're indexing into an object of a known size, and the outer index is
798 // not a constant, but having any value but zero would lead to undefined
799 // behavior, replace it with zero.
800 //
801 // For example, if we have:
802 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
803 // ...
804 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
805 // ... = load i32* %arrayidx, align 4
806 // Then we know that we can replace %x in the GEP with i64 0.
807 //
808 // FIXME: We could fold any GEP index to zero that would cause UB if it were
809 // not zero. Currently, we only handle the first such index. Also, we could
810 // also search through non-zero constant indices if we kept track of the
811 // offsets those indices implied.
812 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
813                                      GetElementPtrInst *GEPI, Instruction *MemI,
814                                      unsigned &Idx) {
815   if (GEPI->getNumOperands() < 2)
816     return false;
817 
818   // Find the first non-zero index of a GEP. If all indices are zero, return
819   // one past the last index.
820   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
821     unsigned I = 1;
822     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
823       Value *V = GEPI->getOperand(I);
824       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
825         if (CI->isZero())
826           continue;
827 
828       break;
829     }
830 
831     return I;
832   };
833 
834   // Skip through initial 'zero' indices, and find the corresponding pointer
835   // type. See if the next index is not a constant.
836   Idx = FirstNZIdx(GEPI);
837   if (Idx == GEPI->getNumOperands())
838     return false;
839   if (isa<Constant>(GEPI->getOperand(Idx)))
840     return false;
841 
842   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
843   Type *AllocTy =
844     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
845   if (!AllocTy || !AllocTy->isSized())
846     return false;
847   const DataLayout &DL = IC.getDataLayout();
848   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
849 
850   // If there are more indices after the one we might replace with a zero, make
851   // sure they're all non-negative. If any of them are negative, the overall
852   // address being computed might be before the base address determined by the
853   // first non-zero index.
854   auto IsAllNonNegative = [&]() {
855     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
856       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
857       if (Known.isNonNegative())
858         continue;
859       return false;
860     }
861 
862     return true;
863   };
864 
865   // FIXME: If the GEP is not inbounds, and there are extra indices after the
866   // one we'll replace, those could cause the address computation to wrap
867   // (rendering the IsAllNonNegative() check below insufficient). We can do
868   // better, ignoring zero indices (and other indices we can prove small
869   // enough not to wrap).
870   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
871     return false;
872 
873   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
874   // also known to be dereferenceable.
875   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
876          IsAllNonNegative();
877 }
878 
879 // If we're indexing into an object with a variable index for the memory
880 // access, but the object has only one element, we can assume that the index
881 // will always be zero. If we replace the GEP, return it.
882 template <typename T>
883 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
884                                           T &MemI) {
885   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
886     unsigned Idx;
887     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
888       Instruction *NewGEPI = GEPI->clone();
889       NewGEPI->setOperand(Idx,
890         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
891       NewGEPI->insertBefore(GEPI);
892       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
893       return NewGEPI;
894     }
895   }
896 
897   return nullptr;
898 }
899 
900 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
901   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
902     return false;
903 
904   auto *Ptr = SI.getPointerOperand();
905   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
906     Ptr = GEPI->getOperand(0);
907   return (isa<ConstantPointerNull>(Ptr) &&
908           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
909 }
910 
911 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
912   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
913     const Value *GEPI0 = GEPI->getOperand(0);
914     if (isa<ConstantPointerNull>(GEPI0) &&
915         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
916       return true;
917   }
918   if (isa<UndefValue>(Op) ||
919       (isa<ConstantPointerNull>(Op) &&
920        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
921     return true;
922   return false;
923 }
924 
925 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
926   Value *Op = LI.getOperand(0);
927 
928   // Try to canonicalize the loaded type.
929   if (Instruction *Res = combineLoadToOperationType(*this, LI))
930     return Res;
931 
932   // Attempt to improve the alignment.
933   Align KnownAlign = getOrEnforceKnownAlignment(
934       Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
935   if (KnownAlign > LI.getAlign())
936     LI.setAlignment(KnownAlign);
937 
938   // Replace GEP indices if possible.
939   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
940       Worklist.push(NewGEPI);
941       return &LI;
942   }
943 
944   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
945     return Res;
946 
947   // Do really simple store-to-load forwarding and load CSE, to catch cases
948   // where there are several consecutive memory accesses to the same location,
949   // separated by a few arithmetic operations.
950   BasicBlock::iterator BBI(LI);
951   bool IsLoadCSE = false;
952   if (Value *AvailableVal = FindAvailableLoadedValue(
953           &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
954     if (IsLoadCSE)
955       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
956 
957     return replaceInstUsesWith(
958         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
959                                            LI.getName() + ".cast"));
960   }
961 
962   // None of the following transforms are legal for volatile/ordered atomic
963   // loads.  Most of them do apply for unordered atomics.
964   if (!LI.isUnordered()) return nullptr;
965 
966   // load(gep null, ...) -> unreachable
967   // load null/undef -> unreachable
968   // TODO: Consider a target hook for valid address spaces for this xforms.
969   if (canSimplifyNullLoadOrGEP(LI, Op)) {
970     // Insert a new store to null instruction before the load to indicate
971     // that this code is not reachable.  We do this instead of inserting
972     // an unreachable instruction directly because we cannot modify the
973     // CFG.
974     StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
975                                   Constant::getNullValue(Op->getType()), &LI);
976     SI->setDebugLoc(LI.getDebugLoc());
977     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
978   }
979 
980   if (Op->hasOneUse()) {
981     // Change select and PHI nodes to select values instead of addresses: this
982     // helps alias analysis out a lot, allows many others simplifications, and
983     // exposes redundancy in the code.
984     //
985     // Note that we cannot do the transformation unless we know that the
986     // introduced loads cannot trap!  Something like this is valid as long as
987     // the condition is always false: load (select bool %C, int* null, int* %G),
988     // but it would not be valid if we transformed it to load from null
989     // unconditionally.
990     //
991     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
992       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
993       Align Alignment = LI.getAlign();
994       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
995                                       Alignment, DL, SI) &&
996           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
997                                       Alignment, DL, SI)) {
998         LoadInst *V1 =
999             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1000                                SI->getOperand(1)->getName() + ".val");
1001         LoadInst *V2 =
1002             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1003                                SI->getOperand(2)->getName() + ".val");
1004         assert(LI.isUnordered() && "implied by above");
1005         V1->setAlignment(Alignment);
1006         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1007         V2->setAlignment(Alignment);
1008         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1009         return SelectInst::Create(SI->getCondition(), V1, V2);
1010       }
1011 
1012       // load (select (cond, null, P)) -> load P
1013       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1014           !NullPointerIsDefined(SI->getFunction(),
1015                                 LI.getPointerAddressSpace()))
1016         return replaceOperand(LI, 0, SI->getOperand(2));
1017 
1018       // load (select (cond, P, null)) -> load P
1019       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1020           !NullPointerIsDefined(SI->getFunction(),
1021                                 LI.getPointerAddressSpace()))
1022         return replaceOperand(LI, 0, SI->getOperand(1));
1023     }
1024   }
1025   return nullptr;
1026 }
1027 
1028 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1029 ///
1030 /// \returns underlying value that was "cast", or nullptr otherwise.
1031 ///
1032 /// For example, if we have:
1033 ///
1034 ///     %E0 = extractelement <2 x double> %U, i32 0
1035 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1036 ///     %E1 = extractelement <2 x double> %U, i32 1
1037 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1038 ///
1039 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1040 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1041 /// Note that %U may contain non-undef values where %V1 has undef.
1042 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
1043   Value *U = nullptr;
1044   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1045     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1046     if (!E)
1047       return nullptr;
1048     auto *W = E->getVectorOperand();
1049     if (!U)
1050       U = W;
1051     else if (U != W)
1052       return nullptr;
1053     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1054     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1055       return nullptr;
1056     V = IV->getAggregateOperand();
1057   }
1058   if (!isa<UndefValue>(V) ||!U)
1059     return nullptr;
1060 
1061   auto *UT = cast<VectorType>(U->getType());
1062   auto *VT = V->getType();
1063   // Check that types UT and VT are bitwise isomorphic.
1064   const auto &DL = IC.getDataLayout();
1065   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1066     return nullptr;
1067   }
1068   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1069     if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1070       return nullptr;
1071   } else {
1072     auto *ST = cast<StructType>(VT);
1073     if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1074       return nullptr;
1075     for (const auto *EltT : ST->elements()) {
1076       if (EltT != UT->getElementType())
1077         return nullptr;
1078     }
1079   }
1080   return U;
1081 }
1082 
1083 /// Combine stores to match the type of value being stored.
1084 ///
1085 /// The core idea here is that the memory does not have any intrinsic type and
1086 /// where we can we should match the type of a store to the type of value being
1087 /// stored.
1088 ///
1089 /// However, this routine must never change the width of a store or the number of
1090 /// stores as that would introduce a semantic change. This combine is expected to
1091 /// be a semantic no-op which just allows stores to more closely model the types
1092 /// of their incoming values.
1093 ///
1094 /// Currently, we also refuse to change the precise type used for an atomic or
1095 /// volatile store. This is debatable, and might be reasonable to change later.
1096 /// However, it is risky in case some backend or other part of LLVM is relying
1097 /// on the exact type stored to select appropriate atomic operations.
1098 ///
1099 /// \returns true if the store was successfully combined away. This indicates
1100 /// the caller must erase the store instruction. We have to let the caller erase
1101 /// the store instruction as otherwise there is no way to signal whether it was
1102 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1103 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
1104   // FIXME: We could probably with some care handle both volatile and ordered
1105   // atomic stores here but it isn't clear that this is important.
1106   if (!SI.isUnordered())
1107     return false;
1108 
1109   // swifterror values can't be bitcasted.
1110   if (SI.getPointerOperand()->isSwiftError())
1111     return false;
1112 
1113   Value *V = SI.getValueOperand();
1114 
1115   // Fold away bit casts of the stored value by storing the original type.
1116   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1117     V = BC->getOperand(0);
1118     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1119       combineStoreToNewValue(IC, SI, V);
1120       return true;
1121     }
1122   }
1123 
1124   if (Value *U = likeBitCastFromVector(IC, V))
1125     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1126       combineStoreToNewValue(IC, SI, U);
1127       return true;
1128     }
1129 
1130   // FIXME: We should also canonicalize stores of vectors when their elements
1131   // are cast to other types.
1132   return false;
1133 }
1134 
1135 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
1136   // FIXME: We could probably with some care handle both volatile and atomic
1137   // stores here but it isn't clear that this is important.
1138   if (!SI.isSimple())
1139     return false;
1140 
1141   Value *V = SI.getValueOperand();
1142   Type *T = V->getType();
1143 
1144   if (!T->isAggregateType())
1145     return false;
1146 
1147   if (auto *ST = dyn_cast<StructType>(T)) {
1148     // If the struct only have one element, we unpack.
1149     unsigned Count = ST->getNumElements();
1150     if (Count == 1) {
1151       V = IC.Builder.CreateExtractValue(V, 0);
1152       combineStoreToNewValue(IC, SI, V);
1153       return true;
1154     }
1155 
1156     // We don't want to break loads with padding here as we'd loose
1157     // the knowledge that padding exists for the rest of the pipeline.
1158     const DataLayout &DL = IC.getDataLayout();
1159     auto *SL = DL.getStructLayout(ST);
1160     if (SL->hasPadding())
1161       return false;
1162 
1163     const auto Align = SI.getAlign();
1164 
1165     SmallString<16> EltName = V->getName();
1166     EltName += ".elt";
1167     auto *Addr = SI.getPointerOperand();
1168     SmallString<16> AddrName = Addr->getName();
1169     AddrName += ".repack";
1170 
1171     auto *IdxType = Type::getInt32Ty(ST->getContext());
1172     auto *Zero = ConstantInt::get(IdxType, 0);
1173     for (unsigned i = 0; i < Count; i++) {
1174       Value *Indices[2] = {
1175         Zero,
1176         ConstantInt::get(IdxType, i),
1177       };
1178       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1179                                                AddrName);
1180       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1181       auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1182       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1183       AAMDNodes AAMD;
1184       SI.getAAMetadata(AAMD);
1185       NS->setAAMetadata(AAMD);
1186     }
1187 
1188     return true;
1189   }
1190 
1191   if (auto *AT = dyn_cast<ArrayType>(T)) {
1192     // If the array only have one element, we unpack.
1193     auto NumElements = AT->getNumElements();
1194     if (NumElements == 1) {
1195       V = IC.Builder.CreateExtractValue(V, 0);
1196       combineStoreToNewValue(IC, SI, V);
1197       return true;
1198     }
1199 
1200     // Bail out if the array is too large. Ideally we would like to optimize
1201     // arrays of arbitrary size but this has a terrible impact on compile time.
1202     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1203     // tuning.
1204     if (NumElements > IC.MaxArraySizeForCombine)
1205       return false;
1206 
1207     const DataLayout &DL = IC.getDataLayout();
1208     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1209     const auto Align = SI.getAlign();
1210 
1211     SmallString<16> EltName = V->getName();
1212     EltName += ".elt";
1213     auto *Addr = SI.getPointerOperand();
1214     SmallString<16> AddrName = Addr->getName();
1215     AddrName += ".repack";
1216 
1217     auto *IdxType = Type::getInt64Ty(T->getContext());
1218     auto *Zero = ConstantInt::get(IdxType, 0);
1219 
1220     uint64_t Offset = 0;
1221     for (uint64_t i = 0; i < NumElements; i++) {
1222       Value *Indices[2] = {
1223         Zero,
1224         ConstantInt::get(IdxType, i),
1225       };
1226       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1227                                                AddrName);
1228       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1229       auto EltAlign = commonAlignment(Align, Offset);
1230       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1231       AAMDNodes AAMD;
1232       SI.getAAMetadata(AAMD);
1233       NS->setAAMetadata(AAMD);
1234       Offset += EltSize;
1235     }
1236 
1237     return true;
1238   }
1239 
1240   return false;
1241 }
1242 
1243 /// equivalentAddressValues - Test if A and B will obviously have the same
1244 /// value. This includes recognizing that %t0 and %t1 will have the same
1245 /// value in code like this:
1246 ///   %t0 = getelementptr \@a, 0, 3
1247 ///   store i32 0, i32* %t0
1248 ///   %t1 = getelementptr \@a, 0, 3
1249 ///   %t2 = load i32* %t1
1250 ///
1251 static bool equivalentAddressValues(Value *A, Value *B) {
1252   // Test if the values are trivially equivalent.
1253   if (A == B) return true;
1254 
1255   // Test if the values come form identical arithmetic instructions.
1256   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1257   // its only used to compare two uses within the same basic block, which
1258   // means that they'll always either have the same value or one of them
1259   // will have an undefined value.
1260   if (isa<BinaryOperator>(A) ||
1261       isa<CastInst>(A) ||
1262       isa<PHINode>(A) ||
1263       isa<GetElementPtrInst>(A))
1264     if (Instruction *BI = dyn_cast<Instruction>(B))
1265       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1266         return true;
1267 
1268   // Otherwise they may not be equivalent.
1269   return false;
1270 }
1271 
1272 /// Converts store (bitcast (load (bitcast (select ...)))) to
1273 /// store (load (select ...)), where select is minmax:
1274 /// select ((cmp load V1, load V2), V1, V2).
1275 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC,
1276                                                 StoreInst &SI) {
1277   // bitcast?
1278   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1279     return false;
1280   // load? integer?
1281   Value *LoadAddr;
1282   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1283     return false;
1284   auto *LI = cast<LoadInst>(SI.getValueOperand());
1285   if (!LI->getType()->isIntegerTy())
1286     return false;
1287   Type *CmpLoadTy;
1288   if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
1289     return false;
1290 
1291   // Make sure the type would actually change.
1292   // This condition can be hit with chains of bitcasts.
1293   if (LI->getType() == CmpLoadTy)
1294     return false;
1295 
1296   // Make sure we're not changing the size of the load/store.
1297   const auto &DL = IC.getDataLayout();
1298   if (DL.getTypeStoreSizeInBits(LI->getType()) !=
1299       DL.getTypeStoreSizeInBits(CmpLoadTy))
1300     return false;
1301 
1302   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1303         auto *SI = dyn_cast<StoreInst>(U);
1304         return SI && SI->getPointerOperand() != LI &&
1305                InstCombiner::peekThroughBitcast(SI->getPointerOperand()) !=
1306                    LoadAddr &&
1307                !SI->getPointerOperand()->isSwiftError();
1308       }))
1309     return false;
1310 
1311   IC.Builder.SetInsertPoint(LI);
1312   LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
1313   // Replace all the stores with stores of the newly loaded value.
1314   for (auto *UI : LI->users()) {
1315     auto *USI = cast<StoreInst>(UI);
1316     IC.Builder.SetInsertPoint(USI);
1317     combineStoreToNewValue(IC, *USI, NewLI);
1318   }
1319   IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1320   IC.eraseInstFromFunction(*LI);
1321   return true;
1322 }
1323 
1324 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
1325   Value *Val = SI.getOperand(0);
1326   Value *Ptr = SI.getOperand(1);
1327 
1328   // Try to canonicalize the stored type.
1329   if (combineStoreToValueType(*this, SI))
1330     return eraseInstFromFunction(SI);
1331 
1332   // Attempt to improve the alignment.
1333   const Align KnownAlign = getOrEnforceKnownAlignment(
1334       Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
1335   if (KnownAlign > SI.getAlign())
1336     SI.setAlignment(KnownAlign);
1337 
1338   // Try to canonicalize the stored type.
1339   if (unpackStoreToAggregate(*this, SI))
1340     return eraseInstFromFunction(SI);
1341 
1342   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1343     return eraseInstFromFunction(SI);
1344 
1345   // Replace GEP indices if possible.
1346   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1347       Worklist.push(NewGEPI);
1348       return &SI;
1349   }
1350 
1351   // Don't hack volatile/ordered stores.
1352   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1353   if (!SI.isUnordered()) return nullptr;
1354 
1355   // If the RHS is an alloca with a single use, zapify the store, making the
1356   // alloca dead.
1357   if (Ptr->hasOneUse()) {
1358     if (isa<AllocaInst>(Ptr))
1359       return eraseInstFromFunction(SI);
1360     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1361       if (isa<AllocaInst>(GEP->getOperand(0))) {
1362         if (GEP->getOperand(0)->hasOneUse())
1363           return eraseInstFromFunction(SI);
1364       }
1365     }
1366   }
1367 
1368   // If we have a store to a location which is known constant, we can conclude
1369   // that the store must be storing the constant value (else the memory
1370   // wouldn't be constant), and this must be a noop.
1371   if (AA->pointsToConstantMemory(Ptr))
1372     return eraseInstFromFunction(SI);
1373 
1374   // Do really simple DSE, to catch cases where there are several consecutive
1375   // stores to the same location, separated by a few arithmetic operations. This
1376   // situation often occurs with bitfield accesses.
1377   BasicBlock::iterator BBI(SI);
1378   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1379        --ScanInsts) {
1380     --BBI;
1381     // Don't count debug info directives, lest they affect codegen,
1382     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1383     if (isa<DbgInfoIntrinsic>(BBI) ||
1384         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1385       ScanInsts++;
1386       continue;
1387     }
1388 
1389     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1390       // Prev store isn't volatile, and stores to the same location?
1391       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1392                                                         SI.getOperand(1))) {
1393         ++NumDeadStore;
1394         // Manually add back the original store to the worklist now, so it will
1395         // be processed after the operands of the removed store, as this may
1396         // expose additional DSE opportunities.
1397         Worklist.push(&SI);
1398         eraseInstFromFunction(*PrevSI);
1399         return nullptr;
1400       }
1401       break;
1402     }
1403 
1404     // If this is a load, we have to stop.  However, if the loaded value is from
1405     // the pointer we're loading and is producing the pointer we're storing,
1406     // then *this* store is dead (X = load P; store X -> P).
1407     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1408       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1409         assert(SI.isUnordered() && "can't eliminate ordering operation");
1410         return eraseInstFromFunction(SI);
1411       }
1412 
1413       // Otherwise, this is a load from some other location.  Stores before it
1414       // may not be dead.
1415       break;
1416     }
1417 
1418     // Don't skip over loads, throws or things that can modify memory.
1419     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1420       break;
1421   }
1422 
1423   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1424   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1425   if (canSimplifyNullStoreOrGEP(SI)) {
1426     if (!isa<UndefValue>(Val))
1427       return replaceOperand(SI, 0, UndefValue::get(Val->getType()));
1428     return nullptr;  // Do not modify these!
1429   }
1430 
1431   // store undef, Ptr -> noop
1432   if (isa<UndefValue>(Val))
1433     return eraseInstFromFunction(SI);
1434 
1435   return nullptr;
1436 }
1437 
1438 /// Try to transform:
1439 ///   if () { *P = v1; } else { *P = v2 }
1440 /// or:
1441 ///   *P = v1; if () { *P = v2; }
1442 /// into a phi node with a store in the successor.
1443 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
1444   if (!SI.isUnordered())
1445     return false; // This code has not been audited for volatile/ordered case.
1446 
1447   // Check if the successor block has exactly 2 incoming edges.
1448   BasicBlock *StoreBB = SI.getParent();
1449   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1450   if (!DestBB->hasNPredecessors(2))
1451     return false;
1452 
1453   // Capture the other block (the block that doesn't contain our store).
1454   pred_iterator PredIter = pred_begin(DestBB);
1455   if (*PredIter == StoreBB)
1456     ++PredIter;
1457   BasicBlock *OtherBB = *PredIter;
1458 
1459   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1460   // for example, if SI is in an infinite loop.
1461   if (StoreBB == DestBB || OtherBB == DestBB)
1462     return false;
1463 
1464   // Verify that the other block ends in a branch and is not otherwise empty.
1465   BasicBlock::iterator BBI(OtherBB->getTerminator());
1466   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1467   if (!OtherBr || BBI == OtherBB->begin())
1468     return false;
1469 
1470   // If the other block ends in an unconditional branch, check for the 'if then
1471   // else' case. There is an instruction before the branch.
1472   StoreInst *OtherStore = nullptr;
1473   if (OtherBr->isUnconditional()) {
1474     --BBI;
1475     // Skip over debugging info.
1476     while (isa<DbgInfoIntrinsic>(BBI) ||
1477            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1478       if (BBI==OtherBB->begin())
1479         return false;
1480       --BBI;
1481     }
1482     // If this isn't a store, isn't a store to the same location, or is not the
1483     // right kind of store, bail out.
1484     OtherStore = dyn_cast<StoreInst>(BBI);
1485     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1486         !SI.isSameOperationAs(OtherStore))
1487       return false;
1488   } else {
1489     // Otherwise, the other block ended with a conditional branch. If one of the
1490     // destinations is StoreBB, then we have the if/then case.
1491     if (OtherBr->getSuccessor(0) != StoreBB &&
1492         OtherBr->getSuccessor(1) != StoreBB)
1493       return false;
1494 
1495     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1496     // if/then triangle. See if there is a store to the same ptr as SI that
1497     // lives in OtherBB.
1498     for (;; --BBI) {
1499       // Check to see if we find the matching store.
1500       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1501         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1502             !SI.isSameOperationAs(OtherStore))
1503           return false;
1504         break;
1505       }
1506       // If we find something that may be using or overwriting the stored
1507       // value, or if we run out of instructions, we can't do the transform.
1508       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1509           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1510         return false;
1511     }
1512 
1513     // In order to eliminate the store in OtherBr, we have to make sure nothing
1514     // reads or overwrites the stored value in StoreBB.
1515     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1516       // FIXME: This should really be AA driven.
1517       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1518         return false;
1519     }
1520   }
1521 
1522   // Insert a PHI node now if we need it.
1523   Value *MergedVal = OtherStore->getOperand(0);
1524   // The debug locations of the original instructions might differ. Merge them.
1525   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1526                                                      OtherStore->getDebugLoc());
1527   if (MergedVal != SI.getOperand(0)) {
1528     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1529     PN->addIncoming(SI.getOperand(0), SI.getParent());
1530     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1531     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1532     PN->setDebugLoc(MergedLoc);
1533   }
1534 
1535   // Advance to a place where it is safe to insert the new store and insert it.
1536   BBI = DestBB->getFirstInsertionPt();
1537   StoreInst *NewSI =
1538       new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
1539                     SI.getOrdering(), SI.getSyncScopeID());
1540   InsertNewInstBefore(NewSI, *BBI);
1541   NewSI->setDebugLoc(MergedLoc);
1542 
1543   // If the two stores had AA tags, merge them.
1544   AAMDNodes AATags;
1545   SI.getAAMetadata(AATags);
1546   if (AATags) {
1547     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1548     NewSI->setAAMetadata(AATags);
1549   }
1550 
1551   // Nuke the old stores.
1552   eraseInstFromFunction(SI);
1553   eraseInstFromFunction(*OtherStore);
1554   return true;
1555 }
1556