1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Transforms/Utils/Local.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "instcombine"
31 
32 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
34 
35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
36 /// some part of a constant global variable.  This intentionally only accepts
37 /// constant expressions because we can't rewrite arbitrary instructions.
38 static bool pointsToConstantGlobal(Value *V) {
39   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
40     return GV->isConstant();
41 
42   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
43     if (CE->getOpcode() == Instruction::BitCast ||
44         CE->getOpcode() == Instruction::AddrSpaceCast ||
45         CE->getOpcode() == Instruction::GetElementPtr)
46       return pointsToConstantGlobal(CE->getOperand(0));
47   }
48   return false;
49 }
50 
51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
52 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
53 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
55 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
56 /// the alloca, and if the source pointer is a pointer to a constant global, we
57 /// can optimize this.
58 static bool
59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
60                                SmallVectorImpl<Instruction *> &ToDelete) {
61   // We track lifetime intrinsics as we encounter them.  If we decide to go
62   // ahead and replace the value with the global, this lets the caller quickly
63   // eliminate the markers.
64 
65   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
66   ValuesToInspect.emplace_back(V, false);
67   while (!ValuesToInspect.empty()) {
68     auto ValuePair = ValuesToInspect.pop_back_val();
69     const bool IsOffset = ValuePair.second;
70     for (auto &U : ValuePair.first->uses()) {
71       auto *I = cast<Instruction>(U.getUser());
72 
73       if (auto *LI = dyn_cast<LoadInst>(I)) {
74         // Ignore non-volatile loads, they are always ok.
75         if (!LI->isSimple()) return false;
76         continue;
77       }
78 
79       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
80         // If uses of the bitcast are ok, we are ok.
81         ValuesToInspect.emplace_back(I, IsOffset);
82         continue;
83       }
84       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
85         // If the GEP has all zero indices, it doesn't offset the pointer. If it
86         // doesn't, it does.
87         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
88         continue;
89       }
90 
91       if (auto *Call = dyn_cast<CallBase>(I)) {
92         // If this is the function being called then we treat it like a load and
93         // ignore it.
94         if (Call->isCallee(&U))
95           continue;
96 
97         unsigned DataOpNo = Call->getDataOperandNo(&U);
98         bool IsArgOperand = Call->isArgOperand(&U);
99 
100         // Inalloca arguments are clobbered by the call.
101         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
102           return false;
103 
104         // If this is a readonly/readnone call site, then we know it is just a
105         // load (but one that potentially returns the value itself), so we can
106         // ignore it if we know that the value isn't captured.
107         if (Call->onlyReadsMemory() &&
108             (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
109           continue;
110 
111         // If this is being passed as a byval argument, the caller is making a
112         // copy, so it is only a read of the alloca.
113         if (IsArgOperand && Call->isByValArgument(DataOpNo))
114           continue;
115       }
116 
117       // Lifetime intrinsics can be handled by the caller.
118       if (I->isLifetimeStartOrEnd()) {
119         assert(I->use_empty() && "Lifetime markers have no result to use!");
120         ToDelete.push_back(I);
121         continue;
122       }
123 
124       // If this is isn't our memcpy/memmove, reject it as something we can't
125       // handle.
126       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
127       if (!MI)
128         return false;
129 
130       // If the transfer is using the alloca as a source of the transfer, then
131       // ignore it since it is a load (unless the transfer is volatile).
132       if (U.getOperandNo() == 1) {
133         if (MI->isVolatile()) return false;
134         continue;
135       }
136 
137       // If we already have seen a copy, reject the second one.
138       if (TheCopy) return false;
139 
140       // If the pointer has been offset from the start of the alloca, we can't
141       // safely handle this.
142       if (IsOffset) return false;
143 
144       // If the memintrinsic isn't using the alloca as the dest, reject it.
145       if (U.getOperandNo() != 0) return false;
146 
147       // If the source of the memcpy/move is not a constant global, reject it.
148       if (!pointsToConstantGlobal(MI->getSource()))
149         return false;
150 
151       // Otherwise, the transform is safe.  Remember the copy instruction.
152       TheCopy = MI;
153     }
154   }
155   return true;
156 }
157 
158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
159 /// modified by a copy from a constant global.  If we can prove this, we can
160 /// replace any uses of the alloca with uses of the global directly.
161 static MemTransferInst *
162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
163                                SmallVectorImpl<Instruction *> &ToDelete) {
164   MemTransferInst *TheCopy = nullptr;
165   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
166     return TheCopy;
167   return nullptr;
168 }
169 
170 /// Returns true if V is dereferenceable for size of alloca.
171 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
172                                            const DataLayout &DL) {
173   if (AI->isArrayAllocation())
174     return false;
175   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
176   if (!AllocaSize)
177     return false;
178   return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
179                                             APInt(64, AllocaSize), DL);
180 }
181 
182 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
183   // Check for array size of 1 (scalar allocation).
184   if (!AI.isArrayAllocation()) {
185     // i32 1 is the canonical array size for scalar allocations.
186     if (AI.getArraySize()->getType()->isIntegerTy(32))
187       return nullptr;
188 
189     // Canonicalize it.
190     return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
191   }
192 
193   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
194   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
195     if (C->getValue().getActiveBits() <= 64) {
196       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
197       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
198       New->setAlignment(MaybeAlign(AI.getAlignment()));
199 
200       // Scan to the end of the allocation instructions, to skip over a block of
201       // allocas if possible...also skip interleaved debug info
202       //
203       BasicBlock::iterator It(New);
204       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
205         ++It;
206 
207       // Now that I is pointing to the first non-allocation-inst in the block,
208       // insert our getelementptr instruction...
209       //
210       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
211       Value *NullIdx = Constant::getNullValue(IdxTy);
212       Value *Idx[2] = {NullIdx, NullIdx};
213       Instruction *GEP = GetElementPtrInst::CreateInBounds(
214           NewTy, New, Idx, New->getName() + ".sub");
215       IC.InsertNewInstBefore(GEP, *It);
216 
217       // Now make everything use the getelementptr instead of the original
218       // allocation.
219       return IC.replaceInstUsesWith(AI, GEP);
220     }
221   }
222 
223   if (isa<UndefValue>(AI.getArraySize()))
224     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
225 
226   // Ensure that the alloca array size argument has type intptr_t, so that
227   // any casting is exposed early.
228   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
229   if (AI.getArraySize()->getType() != IntPtrTy) {
230     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
231     return IC.replaceOperand(AI, 0, V);
232   }
233 
234   return nullptr;
235 }
236 
237 namespace {
238 // If I and V are pointers in different address space, it is not allowed to
239 // use replaceAllUsesWith since I and V have different types. A
240 // non-target-specific transformation should not use addrspacecast on V since
241 // the two address space may be disjoint depending on target.
242 //
243 // This class chases down uses of the old pointer until reaching the load
244 // instructions, then replaces the old pointer in the load instructions with
245 // the new pointer. If during the chasing it sees bitcast or GEP, it will
246 // create new bitcast or GEP with the new pointer and use them in the load
247 // instruction.
248 class PointerReplacer {
249 public:
250   PointerReplacer(InstCombiner &IC) : IC(IC) {}
251   void replacePointer(Instruction &I, Value *V);
252 
253 private:
254   void findLoadAndReplace(Instruction &I);
255   void replace(Instruction *I);
256   Value *getReplacement(Value *I);
257 
258   SmallVector<Instruction *, 4> Path;
259   MapVector<Value *, Value *> WorkMap;
260   InstCombiner &IC;
261 };
262 } // end anonymous namespace
263 
264 void PointerReplacer::findLoadAndReplace(Instruction &I) {
265   for (auto U : I.users()) {
266     auto *Inst = dyn_cast<Instruction>(&*U);
267     if (!Inst)
268       return;
269     LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n');
270     if (isa<LoadInst>(Inst)) {
271       for (auto P : Path)
272         replace(P);
273       replace(Inst);
274     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
275       Path.push_back(Inst);
276       findLoadAndReplace(*Inst);
277       Path.pop_back();
278     } else {
279       return;
280     }
281   }
282 }
283 
284 Value *PointerReplacer::getReplacement(Value *V) {
285   auto Loc = WorkMap.find(V);
286   if (Loc != WorkMap.end())
287     return Loc->second;
288   return nullptr;
289 }
290 
291 void PointerReplacer::replace(Instruction *I) {
292   if (getReplacement(I))
293     return;
294 
295   if (auto *LT = dyn_cast<LoadInst>(I)) {
296     auto *V = getReplacement(LT->getPointerOperand());
297     assert(V && "Operand not replaced");
298     auto *NewI = new LoadInst(I->getType(), V);
299     NewI->takeName(LT);
300     IC.InsertNewInstWith(NewI, *LT);
301     IC.replaceInstUsesWith(*LT, NewI);
302     WorkMap[LT] = NewI;
303   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
304     auto *V = getReplacement(GEP->getPointerOperand());
305     assert(V && "Operand not replaced");
306     SmallVector<Value *, 8> Indices;
307     Indices.append(GEP->idx_begin(), GEP->idx_end());
308     auto *NewI = GetElementPtrInst::Create(
309         V->getType()->getPointerElementType(), V, Indices);
310     IC.InsertNewInstWith(NewI, *GEP);
311     NewI->takeName(GEP);
312     WorkMap[GEP] = NewI;
313   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
314     auto *V = getReplacement(BC->getOperand(0));
315     assert(V && "Operand not replaced");
316     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
317                                   V->getType()->getPointerAddressSpace());
318     auto *NewI = new BitCastInst(V, NewT);
319     IC.InsertNewInstWith(NewI, *BC);
320     NewI->takeName(BC);
321     WorkMap[BC] = NewI;
322   } else {
323     llvm_unreachable("should never reach here");
324   }
325 }
326 
327 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
328 #ifndef NDEBUG
329   auto *PT = cast<PointerType>(I.getType());
330   auto *NT = cast<PointerType>(V->getType());
331   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
332          "Invalid usage");
333 #endif
334   WorkMap[&I] = V;
335   findLoadAndReplace(I);
336 }
337 
338 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
339   if (auto *I = simplifyAllocaArraySize(*this, AI))
340     return I;
341 
342   if (AI.getAllocatedType()->isSized()) {
343     // If the alignment is 0 (unspecified), assign it the preferred alignment.
344     if (AI.getAlignment() == 0)
345       AI.setAlignment(
346           MaybeAlign(DL.getPrefTypeAlignment(AI.getAllocatedType())));
347 
348     // Move all alloca's of zero byte objects to the entry block and merge them
349     // together.  Note that we only do this for alloca's, because malloc should
350     // allocate and return a unique pointer, even for a zero byte allocation.
351     if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
352       // For a zero sized alloca there is no point in doing an array allocation.
353       // This is helpful if the array size is a complicated expression not used
354       // elsewhere.
355       if (AI.isArrayAllocation())
356         return replaceOperand(AI, 0,
357             ConstantInt::get(AI.getArraySize()->getType(), 1));
358 
359       // Get the first instruction in the entry block.
360       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
361       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
362       if (FirstInst != &AI) {
363         // If the entry block doesn't start with a zero-size alloca then move
364         // this one to the start of the entry block.  There is no problem with
365         // dominance as the array size was forced to a constant earlier already.
366         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
367         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
368             DL.getTypeAllocSize(EntryAI->getAllocatedType())
369                     .getKnownMinSize() != 0) {
370           AI.moveBefore(FirstInst);
371           return &AI;
372         }
373 
374         // If the alignment of the entry block alloca is 0 (unspecified),
375         // assign it the preferred alignment.
376         if (EntryAI->getAlignment() == 0)
377           EntryAI->setAlignment(
378               MaybeAlign(DL.getPrefTypeAlignment(EntryAI->getAllocatedType())));
379         // Replace this zero-sized alloca with the one at the start of the entry
380         // block after ensuring that the address will be aligned enough for both
381         // types.
382         const MaybeAlign MaxAlign(
383             std::max(EntryAI->getAlignment(), AI.getAlignment()));
384         EntryAI->setAlignment(MaxAlign);
385         if (AI.getType() != EntryAI->getType())
386           return new BitCastInst(EntryAI, AI.getType());
387         return replaceInstUsesWith(AI, EntryAI);
388       }
389     }
390   }
391 
392   if (AI.getAlignment()) {
393     // Check to see if this allocation is only modified by a memcpy/memmove from
394     // a constant global whose alignment is equal to or exceeds that of the
395     // allocation.  If this is the case, we can change all users to use
396     // the constant global instead.  This is commonly produced by the CFE by
397     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
398     // is only subsequently read.
399     SmallVector<Instruction *, 4> ToDelete;
400     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
401       unsigned SourceAlign = getOrEnforceKnownAlignment(
402           Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
403       if (AI.getAlignment() <= SourceAlign &&
404           isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) {
405         LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
406         LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
407         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
408           eraseInstFromFunction(*ToDelete[i]);
409         Constant *TheSrc = cast<Constant>(Copy->getSource());
410         auto *SrcTy = TheSrc->getType();
411         auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(),
412                                         SrcTy->getPointerAddressSpace());
413         Constant *Cast =
414             ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy);
415         if (AI.getType()->getPointerAddressSpace() ==
416             SrcTy->getPointerAddressSpace()) {
417           Instruction *NewI = replaceInstUsesWith(AI, Cast);
418           eraseInstFromFunction(*Copy);
419           ++NumGlobalCopies;
420           return NewI;
421         } else {
422           PointerReplacer PtrReplacer(*this);
423           PtrReplacer.replacePointer(AI, Cast);
424           ++NumGlobalCopies;
425         }
426       }
427     }
428   }
429 
430   // At last, use the generic allocation site handler to aggressively remove
431   // unused allocas.
432   return visitAllocSite(AI);
433 }
434 
435 // Are we allowed to form a atomic load or store of this type?
436 static bool isSupportedAtomicType(Type *Ty) {
437   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
438 }
439 
440 /// Helper to combine a load to a new type.
441 ///
442 /// This just does the work of combining a load to a new type. It handles
443 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
444 /// loaded *value* type. This will convert it to a pointer, cast the operand to
445 /// that pointer type, load it, etc.
446 ///
447 /// Note that this will create all of the instructions with whatever insert
448 /// point the \c InstCombiner currently is using.
449 LoadInst *InstCombiner::combineLoadToNewType(LoadInst &LI, Type *NewTy,
450                                              const Twine &Suffix) {
451   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
452          "can't fold an atomic load to requested type");
453 
454   Value *Ptr = LI.getPointerOperand();
455   unsigned AS = LI.getPointerAddressSpace();
456   Value *NewPtr = nullptr;
457   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
458         NewPtr->getType()->getPointerElementType() == NewTy &&
459         NewPtr->getType()->getPointerAddressSpace() == AS))
460     NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
461 
462     // If old load did not have an explicit alignment specified,
463     // manually preserve the implied (ABI) alignment of the load.
464     // Else we may inadvertently incorrectly over-promise alignment.
465   const auto Align =
466       getDataLayout().getValueOrABITypeAlignment(LI.getAlign(), LI.getType());
467 
468   LoadInst *NewLoad = Builder.CreateAlignedLoad(
469       NewTy, NewPtr, Align, LI.isVolatile(), LI.getName() + Suffix);
470   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
471   copyMetadataForLoad(*NewLoad, LI);
472   return NewLoad;
473 }
474 
475 /// Combine a store to a new type.
476 ///
477 /// Returns the newly created store instruction.
478 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
479   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
480          "can't fold an atomic store of requested type");
481 
482   Value *Ptr = SI.getPointerOperand();
483   unsigned AS = SI.getPointerAddressSpace();
484   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
485   SI.getAllMetadata(MD);
486 
487   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
488       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
489       SI.getAlign(), SI.isVolatile());
490   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
491   for (const auto &MDPair : MD) {
492     unsigned ID = MDPair.first;
493     MDNode *N = MDPair.second;
494     // Note, essentially every kind of metadata should be preserved here! This
495     // routine is supposed to clone a store instruction changing *only its
496     // type*. The only metadata it makes sense to drop is metadata which is
497     // invalidated when the pointer type changes. This should essentially
498     // never be the case in LLVM, but we explicitly switch over only known
499     // metadata to be conservatively correct. If you are adding metadata to
500     // LLVM which pertains to stores, you almost certainly want to add it
501     // here.
502     switch (ID) {
503     case LLVMContext::MD_dbg:
504     case LLVMContext::MD_tbaa:
505     case LLVMContext::MD_prof:
506     case LLVMContext::MD_fpmath:
507     case LLVMContext::MD_tbaa_struct:
508     case LLVMContext::MD_alias_scope:
509     case LLVMContext::MD_noalias:
510     case LLVMContext::MD_nontemporal:
511     case LLVMContext::MD_mem_parallel_loop_access:
512     case LLVMContext::MD_access_group:
513       // All of these directly apply.
514       NewStore->setMetadata(ID, N);
515       break;
516     case LLVMContext::MD_invariant_load:
517     case LLVMContext::MD_nonnull:
518     case LLVMContext::MD_range:
519     case LLVMContext::MD_align:
520     case LLVMContext::MD_dereferenceable:
521     case LLVMContext::MD_dereferenceable_or_null:
522       // These don't apply for stores.
523       break;
524     }
525   }
526 
527   return NewStore;
528 }
529 
530 /// Returns true if instruction represent minmax pattern like:
531 ///   select ((cmp load V1, load V2), V1, V2).
532 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
533   assert(V->getType()->isPointerTy() && "Expected pointer type.");
534   // Ignore possible ty* to ixx* bitcast.
535   V = peekThroughBitcast(V);
536   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
537   // pattern.
538   CmpInst::Predicate Pred;
539   Instruction *L1;
540   Instruction *L2;
541   Value *LHS;
542   Value *RHS;
543   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
544                          m_Value(LHS), m_Value(RHS))))
545     return false;
546   LoadTy = L1->getType();
547   return (match(L1, m_Load(m_Specific(LHS))) &&
548           match(L2, m_Load(m_Specific(RHS)))) ||
549          (match(L1, m_Load(m_Specific(RHS))) &&
550           match(L2, m_Load(m_Specific(LHS))));
551 }
552 
553 /// Combine loads to match the type of their uses' value after looking
554 /// through intervening bitcasts.
555 ///
556 /// The core idea here is that if the result of a load is used in an operation,
557 /// we should load the type most conducive to that operation. For example, when
558 /// loading an integer and converting that immediately to a pointer, we should
559 /// instead directly load a pointer.
560 ///
561 /// However, this routine must never change the width of a load or the number of
562 /// loads as that would introduce a semantic change. This combine is expected to
563 /// be a semantic no-op which just allows loads to more closely model the types
564 /// of their consuming operations.
565 ///
566 /// Currently, we also refuse to change the precise type used for an atomic load
567 /// or a volatile load. This is debatable, and might be reasonable to change
568 /// later. However, it is risky in case some backend or other part of LLVM is
569 /// relying on the exact type loaded to select appropriate atomic operations.
570 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
571   // FIXME: We could probably with some care handle both volatile and ordered
572   // atomic loads here but it isn't clear that this is important.
573   if (!LI.isUnordered())
574     return nullptr;
575 
576   if (LI.use_empty())
577     return nullptr;
578 
579   // swifterror values can't be bitcasted.
580   if (LI.getPointerOperand()->isSwiftError())
581     return nullptr;
582 
583   Type *Ty = LI.getType();
584   const DataLayout &DL = IC.getDataLayout();
585 
586   // Try to canonicalize loads which are only ever stored to operate over
587   // integers instead of any other type. We only do this when the loaded type
588   // is sized and has a size exactly the same as its store size and the store
589   // size is a legal integer type.
590   // Do not perform canonicalization if minmax pattern is found (to avoid
591   // infinite loop).
592   Type *Dummy;
593   if (!Ty->isIntegerTy() && Ty->isSized() &&
594       !(Ty->isVectorTy() && Ty->getVectorIsScalable()) &&
595       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
596       DL.typeSizeEqualsStoreSize(Ty) &&
597       !DL.isNonIntegralPointerType(Ty) &&
598       !isMinMaxWithLoads(
599           peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true),
600           Dummy)) {
601     if (all_of(LI.users(), [&LI](User *U) {
602           auto *SI = dyn_cast<StoreInst>(U);
603           return SI && SI->getPointerOperand() != &LI &&
604                  !SI->getPointerOperand()->isSwiftError();
605         })) {
606       LoadInst *NewLoad = IC.combineLoadToNewType(
607           LI, Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
608       // Replace all the stores with stores of the newly loaded value.
609       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
610         auto *SI = cast<StoreInst>(*UI++);
611         IC.Builder.SetInsertPoint(SI);
612         combineStoreToNewValue(IC, *SI, NewLoad);
613         IC.eraseInstFromFunction(*SI);
614       }
615       assert(LI.use_empty() && "Failed to remove all users of the load!");
616       // Return the old load so the combiner can delete it safely.
617       return &LI;
618     }
619   }
620 
621   // Fold away bit casts of the loaded value by loading the desired type.
622   // We can do this for BitCastInsts as well as casts from and to pointer types,
623   // as long as those are noops (i.e., the source or dest type have the same
624   // bitwidth as the target's pointers).
625   if (LI.hasOneUse())
626     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
627       if (CI->isNoopCast(DL))
628         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
629           LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
630           CI->replaceAllUsesWith(NewLoad);
631           IC.eraseInstFromFunction(*CI);
632           return &LI;
633         }
634 
635   // FIXME: We should also canonicalize loads of vectors when their elements are
636   // cast to other types.
637   return nullptr;
638 }
639 
640 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
641   // FIXME: We could probably with some care handle both volatile and atomic
642   // stores here but it isn't clear that this is important.
643   if (!LI.isSimple())
644     return nullptr;
645 
646   Type *T = LI.getType();
647   if (!T->isAggregateType())
648     return nullptr;
649 
650   StringRef Name = LI.getName();
651   assert(LI.getAlignment() && "Alignment must be set at this point");
652 
653   if (auto *ST = dyn_cast<StructType>(T)) {
654     // If the struct only have one element, we unpack.
655     auto NumElements = ST->getNumElements();
656     if (NumElements == 1) {
657       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
658                                                   ".unpack");
659       AAMDNodes AAMD;
660       LI.getAAMetadata(AAMD);
661       NewLoad->setAAMetadata(AAMD);
662       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
663         UndefValue::get(T), NewLoad, 0, Name));
664     }
665 
666     // We don't want to break loads with padding here as we'd loose
667     // the knowledge that padding exists for the rest of the pipeline.
668     const DataLayout &DL = IC.getDataLayout();
669     auto *SL = DL.getStructLayout(ST);
670     if (SL->hasPadding())
671       return nullptr;
672 
673     const auto Align = DL.getValueOrABITypeAlignment(LI.getAlign(), ST);
674 
675     auto *Addr = LI.getPointerOperand();
676     auto *IdxType = Type::getInt32Ty(T->getContext());
677     auto *Zero = ConstantInt::get(IdxType, 0);
678 
679     Value *V = UndefValue::get(T);
680     for (unsigned i = 0; i < NumElements; i++) {
681       Value *Indices[2] = {
682         Zero,
683         ConstantInt::get(IdxType, i),
684       };
685       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
686                                                Name + ".elt");
687       auto *L = IC.Builder.CreateAlignedLoad(
688           ST->getElementType(i), Ptr,
689           commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
690       // Propagate AA metadata. It'll still be valid on the narrowed load.
691       AAMDNodes AAMD;
692       LI.getAAMetadata(AAMD);
693       L->setAAMetadata(AAMD);
694       V = IC.Builder.CreateInsertValue(V, L, i);
695     }
696 
697     V->setName(Name);
698     return IC.replaceInstUsesWith(LI, V);
699   }
700 
701   if (auto *AT = dyn_cast<ArrayType>(T)) {
702     auto *ET = AT->getElementType();
703     auto NumElements = AT->getNumElements();
704     if (NumElements == 1) {
705       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
706       AAMDNodes AAMD;
707       LI.getAAMetadata(AAMD);
708       NewLoad->setAAMetadata(AAMD);
709       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
710         UndefValue::get(T), NewLoad, 0, Name));
711     }
712 
713     // Bail out if the array is too large. Ideally we would like to optimize
714     // arrays of arbitrary size but this has a terrible impact on compile time.
715     // The threshold here is chosen arbitrarily, maybe needs a little bit of
716     // tuning.
717     if (NumElements > IC.MaxArraySizeForCombine)
718       return nullptr;
719 
720     const DataLayout &DL = IC.getDataLayout();
721     auto EltSize = DL.getTypeAllocSize(ET);
722     const auto Align = DL.getValueOrABITypeAlignment(LI.getAlign(), T);
723 
724     auto *Addr = LI.getPointerOperand();
725     auto *IdxType = Type::getInt64Ty(T->getContext());
726     auto *Zero = ConstantInt::get(IdxType, 0);
727 
728     Value *V = UndefValue::get(T);
729     uint64_t Offset = 0;
730     for (uint64_t i = 0; i < NumElements; i++) {
731       Value *Indices[2] = {
732         Zero,
733         ConstantInt::get(IdxType, i),
734       };
735       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
736                                                Name + ".elt");
737       auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
738                                              commonAlignment(Align, Offset),
739                                              Name + ".unpack");
740       AAMDNodes AAMD;
741       LI.getAAMetadata(AAMD);
742       L->setAAMetadata(AAMD);
743       V = IC.Builder.CreateInsertValue(V, L, i);
744       Offset += EltSize;
745     }
746 
747     V->setName(Name);
748     return IC.replaceInstUsesWith(LI, V);
749   }
750 
751   return nullptr;
752 }
753 
754 // If we can determine that all possible objects pointed to by the provided
755 // pointer value are, not only dereferenceable, but also definitively less than
756 // or equal to the provided maximum size, then return true. Otherwise, return
757 // false (constant global values and allocas fall into this category).
758 //
759 // FIXME: This should probably live in ValueTracking (or similar).
760 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
761                                      const DataLayout &DL) {
762   SmallPtrSet<Value *, 4> Visited;
763   SmallVector<Value *, 4> Worklist(1, V);
764 
765   do {
766     Value *P = Worklist.pop_back_val();
767     P = P->stripPointerCasts();
768 
769     if (!Visited.insert(P).second)
770       continue;
771 
772     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
773       Worklist.push_back(SI->getTrueValue());
774       Worklist.push_back(SI->getFalseValue());
775       continue;
776     }
777 
778     if (PHINode *PN = dyn_cast<PHINode>(P)) {
779       for (Value *IncValue : PN->incoming_values())
780         Worklist.push_back(IncValue);
781       continue;
782     }
783 
784     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
785       if (GA->isInterposable())
786         return false;
787       Worklist.push_back(GA->getAliasee());
788       continue;
789     }
790 
791     // If we know how big this object is, and it is less than MaxSize, continue
792     // searching. Otherwise, return false.
793     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
794       if (!AI->getAllocatedType()->isSized())
795         return false;
796 
797       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
798       if (!CS)
799         return false;
800 
801       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
802       // Make sure that, even if the multiplication below would wrap as an
803       // uint64_t, we still do the right thing.
804       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
805         return false;
806       continue;
807     }
808 
809     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
810       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
811         return false;
812 
813       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
814       if (InitSize > MaxSize)
815         return false;
816       continue;
817     }
818 
819     return false;
820   } while (!Worklist.empty());
821 
822   return true;
823 }
824 
825 // If we're indexing into an object of a known size, and the outer index is
826 // not a constant, but having any value but zero would lead to undefined
827 // behavior, replace it with zero.
828 //
829 // For example, if we have:
830 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
831 // ...
832 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
833 // ... = load i32* %arrayidx, align 4
834 // Then we know that we can replace %x in the GEP with i64 0.
835 //
836 // FIXME: We could fold any GEP index to zero that would cause UB if it were
837 // not zero. Currently, we only handle the first such index. Also, we could
838 // also search through non-zero constant indices if we kept track of the
839 // offsets those indices implied.
840 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
841                                      Instruction *MemI, unsigned &Idx) {
842   if (GEPI->getNumOperands() < 2)
843     return false;
844 
845   // Find the first non-zero index of a GEP. If all indices are zero, return
846   // one past the last index.
847   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
848     unsigned I = 1;
849     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
850       Value *V = GEPI->getOperand(I);
851       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
852         if (CI->isZero())
853           continue;
854 
855       break;
856     }
857 
858     return I;
859   };
860 
861   // Skip through initial 'zero' indices, and find the corresponding pointer
862   // type. See if the next index is not a constant.
863   Idx = FirstNZIdx(GEPI);
864   if (Idx == GEPI->getNumOperands())
865     return false;
866   if (isa<Constant>(GEPI->getOperand(Idx)))
867     return false;
868 
869   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
870   Type *AllocTy =
871     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
872   if (!AllocTy || !AllocTy->isSized())
873     return false;
874   const DataLayout &DL = IC.getDataLayout();
875   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
876 
877   // If there are more indices after the one we might replace with a zero, make
878   // sure they're all non-negative. If any of them are negative, the overall
879   // address being computed might be before the base address determined by the
880   // first non-zero index.
881   auto IsAllNonNegative = [&]() {
882     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
883       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
884       if (Known.isNonNegative())
885         continue;
886       return false;
887     }
888 
889     return true;
890   };
891 
892   // FIXME: If the GEP is not inbounds, and there are extra indices after the
893   // one we'll replace, those could cause the address computation to wrap
894   // (rendering the IsAllNonNegative() check below insufficient). We can do
895   // better, ignoring zero indices (and other indices we can prove small
896   // enough not to wrap).
897   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
898     return false;
899 
900   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
901   // also known to be dereferenceable.
902   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
903          IsAllNonNegative();
904 }
905 
906 // If we're indexing into an object with a variable index for the memory
907 // access, but the object has only one element, we can assume that the index
908 // will always be zero. If we replace the GEP, return it.
909 template <typename T>
910 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
911                                           T &MemI) {
912   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
913     unsigned Idx;
914     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
915       Instruction *NewGEPI = GEPI->clone();
916       NewGEPI->setOperand(Idx,
917         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
918       NewGEPI->insertBefore(GEPI);
919       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
920       return NewGEPI;
921     }
922   }
923 
924   return nullptr;
925 }
926 
927 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
928   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
929     return false;
930 
931   auto *Ptr = SI.getPointerOperand();
932   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
933     Ptr = GEPI->getOperand(0);
934   return (isa<ConstantPointerNull>(Ptr) &&
935           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
936 }
937 
938 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
939   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
940     const Value *GEPI0 = GEPI->getOperand(0);
941     if (isa<ConstantPointerNull>(GEPI0) &&
942         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
943       return true;
944   }
945   if (isa<UndefValue>(Op) ||
946       (isa<ConstantPointerNull>(Op) &&
947        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
948     return true;
949   return false;
950 }
951 
952 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
953   Value *Op = LI.getOperand(0);
954 
955   // Try to canonicalize the loaded type.
956   if (Instruction *Res = combineLoadToOperationType(*this, LI))
957     return Res;
958 
959   // Attempt to improve the alignment.
960   unsigned KnownAlign = getOrEnforceKnownAlignment(
961       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
962   unsigned LoadAlign = LI.getAlignment();
963   unsigned EffectiveLoadAlign =
964       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
965 
966   if (KnownAlign > EffectiveLoadAlign)
967     LI.setAlignment(MaybeAlign(KnownAlign));
968   else if (LoadAlign == 0)
969     LI.setAlignment(MaybeAlign(EffectiveLoadAlign));
970 
971   // Replace GEP indices if possible.
972   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
973       Worklist.push(NewGEPI);
974       return &LI;
975   }
976 
977   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
978     return Res;
979 
980   // Do really simple store-to-load forwarding and load CSE, to catch cases
981   // where there are several consecutive memory accesses to the same location,
982   // separated by a few arithmetic operations.
983   BasicBlock::iterator BBI(LI);
984   bool IsLoadCSE = false;
985   if (Value *AvailableVal = FindAvailableLoadedValue(
986           &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
987     if (IsLoadCSE)
988       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
989 
990     return replaceInstUsesWith(
991         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
992                                            LI.getName() + ".cast"));
993   }
994 
995   // None of the following transforms are legal for volatile/ordered atomic
996   // loads.  Most of them do apply for unordered atomics.
997   if (!LI.isUnordered()) return nullptr;
998 
999   // load(gep null, ...) -> unreachable
1000   // load null/undef -> unreachable
1001   // TODO: Consider a target hook for valid address spaces for this xforms.
1002   if (canSimplifyNullLoadOrGEP(LI, Op)) {
1003     // Insert a new store to null instruction before the load to indicate
1004     // that this code is not reachable.  We do this instead of inserting
1005     // an unreachable instruction directly because we cannot modify the
1006     // CFG.
1007     StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
1008                                   Constant::getNullValue(Op->getType()), &LI);
1009     SI->setDebugLoc(LI.getDebugLoc());
1010     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
1011   }
1012 
1013   if (Op->hasOneUse()) {
1014     // Change select and PHI nodes to select values instead of addresses: this
1015     // helps alias analysis out a lot, allows many others simplifications, and
1016     // exposes redundancy in the code.
1017     //
1018     // Note that we cannot do the transformation unless we know that the
1019     // introduced loads cannot trap!  Something like this is valid as long as
1020     // the condition is always false: load (select bool %C, int* null, int* %G),
1021     // but it would not be valid if we transformed it to load from null
1022     // unconditionally.
1023     //
1024     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1025       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1026       const MaybeAlign Alignment(LI.getAlignment());
1027       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1028                                       Alignment, DL, SI) &&
1029           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1030                                       Alignment, DL, SI)) {
1031         LoadInst *V1 =
1032             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1033                                SI->getOperand(1)->getName() + ".val");
1034         LoadInst *V2 =
1035             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1036                                SI->getOperand(2)->getName() + ".val");
1037         assert(LI.isUnordered() && "implied by above");
1038         V1->setAlignment(Alignment);
1039         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1040         V2->setAlignment(Alignment);
1041         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1042         return SelectInst::Create(SI->getCondition(), V1, V2);
1043       }
1044 
1045       // load (select (cond, null, P)) -> load P
1046       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1047           !NullPointerIsDefined(SI->getFunction(),
1048                                 LI.getPointerAddressSpace()))
1049         return replaceOperand(LI, 0, SI->getOperand(2));
1050 
1051       // load (select (cond, P, null)) -> load P
1052       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1053           !NullPointerIsDefined(SI->getFunction(),
1054                                 LI.getPointerAddressSpace()))
1055         return replaceOperand(LI, 0, SI->getOperand(1));
1056     }
1057   }
1058   return nullptr;
1059 }
1060 
1061 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1062 ///
1063 /// \returns underlying value that was "cast", or nullptr otherwise.
1064 ///
1065 /// For example, if we have:
1066 ///
1067 ///     %E0 = extractelement <2 x double> %U, i32 0
1068 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1069 ///     %E1 = extractelement <2 x double> %U, i32 1
1070 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1071 ///
1072 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1073 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1074 /// Note that %U may contain non-undef values where %V1 has undef.
1075 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
1076   Value *U = nullptr;
1077   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1078     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1079     if (!E)
1080       return nullptr;
1081     auto *W = E->getVectorOperand();
1082     if (!U)
1083       U = W;
1084     else if (U != W)
1085       return nullptr;
1086     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1087     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1088       return nullptr;
1089     V = IV->getAggregateOperand();
1090   }
1091   if (!isa<UndefValue>(V) ||!U)
1092     return nullptr;
1093 
1094   auto *UT = cast<VectorType>(U->getType());
1095   auto *VT = V->getType();
1096   // Check that types UT and VT are bitwise isomorphic.
1097   const auto &DL = IC.getDataLayout();
1098   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1099     return nullptr;
1100   }
1101   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1102     if (AT->getNumElements() != UT->getNumElements())
1103       return nullptr;
1104   } else {
1105     auto *ST = cast<StructType>(VT);
1106     if (ST->getNumElements() != UT->getNumElements())
1107       return nullptr;
1108     for (const auto *EltT : ST->elements()) {
1109       if (EltT != UT->getElementType())
1110         return nullptr;
1111     }
1112   }
1113   return U;
1114 }
1115 
1116 /// Combine stores to match the type of value being stored.
1117 ///
1118 /// The core idea here is that the memory does not have any intrinsic type and
1119 /// where we can we should match the type of a store to the type of value being
1120 /// stored.
1121 ///
1122 /// However, this routine must never change the width of a store or the number of
1123 /// stores as that would introduce a semantic change. This combine is expected to
1124 /// be a semantic no-op which just allows stores to more closely model the types
1125 /// of their incoming values.
1126 ///
1127 /// Currently, we also refuse to change the precise type used for an atomic or
1128 /// volatile store. This is debatable, and might be reasonable to change later.
1129 /// However, it is risky in case some backend or other part of LLVM is relying
1130 /// on the exact type stored to select appropriate atomic operations.
1131 ///
1132 /// \returns true if the store was successfully combined away. This indicates
1133 /// the caller must erase the store instruction. We have to let the caller erase
1134 /// the store instruction as otherwise there is no way to signal whether it was
1135 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1136 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
1137   // FIXME: We could probably with some care handle both volatile and ordered
1138   // atomic stores here but it isn't clear that this is important.
1139   if (!SI.isUnordered())
1140     return false;
1141 
1142   // swifterror values can't be bitcasted.
1143   if (SI.getPointerOperand()->isSwiftError())
1144     return false;
1145 
1146   Value *V = SI.getValueOperand();
1147 
1148   // Fold away bit casts of the stored value by storing the original type.
1149   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1150     V = BC->getOperand(0);
1151     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1152       combineStoreToNewValue(IC, SI, V);
1153       return true;
1154     }
1155   }
1156 
1157   if (Value *U = likeBitCastFromVector(IC, V))
1158     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1159       combineStoreToNewValue(IC, SI, U);
1160       return true;
1161     }
1162 
1163   // FIXME: We should also canonicalize stores of vectors when their elements
1164   // are cast to other types.
1165   return false;
1166 }
1167 
1168 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1169   // FIXME: We could probably with some care handle both volatile and atomic
1170   // stores here but it isn't clear that this is important.
1171   if (!SI.isSimple())
1172     return false;
1173 
1174   Value *V = SI.getValueOperand();
1175   Type *T = V->getType();
1176 
1177   if (!T->isAggregateType())
1178     return false;
1179 
1180   if (auto *ST = dyn_cast<StructType>(T)) {
1181     // If the struct only have one element, we unpack.
1182     unsigned Count = ST->getNumElements();
1183     if (Count == 1) {
1184       V = IC.Builder.CreateExtractValue(V, 0);
1185       combineStoreToNewValue(IC, SI, V);
1186       return true;
1187     }
1188 
1189     // We don't want to break loads with padding here as we'd loose
1190     // the knowledge that padding exists for the rest of the pipeline.
1191     const DataLayout &DL = IC.getDataLayout();
1192     auto *SL = DL.getStructLayout(ST);
1193     if (SL->hasPadding())
1194       return false;
1195 
1196     const auto Align = DL.getValueOrABITypeAlignment(SI.getAlign(), ST);
1197 
1198     SmallString<16> EltName = V->getName();
1199     EltName += ".elt";
1200     auto *Addr = SI.getPointerOperand();
1201     SmallString<16> AddrName = Addr->getName();
1202     AddrName += ".repack";
1203 
1204     auto *IdxType = Type::getInt32Ty(ST->getContext());
1205     auto *Zero = ConstantInt::get(IdxType, 0);
1206     for (unsigned i = 0; i < Count; i++) {
1207       Value *Indices[2] = {
1208         Zero,
1209         ConstantInt::get(IdxType, i),
1210       };
1211       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1212                                                AddrName);
1213       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1214       auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1215       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1216       AAMDNodes AAMD;
1217       SI.getAAMetadata(AAMD);
1218       NS->setAAMetadata(AAMD);
1219     }
1220 
1221     return true;
1222   }
1223 
1224   if (auto *AT = dyn_cast<ArrayType>(T)) {
1225     // If the array only have one element, we unpack.
1226     auto NumElements = AT->getNumElements();
1227     if (NumElements == 1) {
1228       V = IC.Builder.CreateExtractValue(V, 0);
1229       combineStoreToNewValue(IC, SI, V);
1230       return true;
1231     }
1232 
1233     // Bail out if the array is too large. Ideally we would like to optimize
1234     // arrays of arbitrary size but this has a terrible impact on compile time.
1235     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1236     // tuning.
1237     if (NumElements > IC.MaxArraySizeForCombine)
1238       return false;
1239 
1240     const DataLayout &DL = IC.getDataLayout();
1241     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1242     const auto Align = DL.getValueOrABITypeAlignment(SI.getAlign(), T);
1243 
1244     SmallString<16> EltName = V->getName();
1245     EltName += ".elt";
1246     auto *Addr = SI.getPointerOperand();
1247     SmallString<16> AddrName = Addr->getName();
1248     AddrName += ".repack";
1249 
1250     auto *IdxType = Type::getInt64Ty(T->getContext());
1251     auto *Zero = ConstantInt::get(IdxType, 0);
1252 
1253     uint64_t Offset = 0;
1254     for (uint64_t i = 0; i < NumElements; i++) {
1255       Value *Indices[2] = {
1256         Zero,
1257         ConstantInt::get(IdxType, i),
1258       };
1259       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1260                                                AddrName);
1261       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1262       auto EltAlign = commonAlignment(Align, Offset);
1263       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1264       AAMDNodes AAMD;
1265       SI.getAAMetadata(AAMD);
1266       NS->setAAMetadata(AAMD);
1267       Offset += EltSize;
1268     }
1269 
1270     return true;
1271   }
1272 
1273   return false;
1274 }
1275 
1276 /// equivalentAddressValues - Test if A and B will obviously have the same
1277 /// value. This includes recognizing that %t0 and %t1 will have the same
1278 /// value in code like this:
1279 ///   %t0 = getelementptr \@a, 0, 3
1280 ///   store i32 0, i32* %t0
1281 ///   %t1 = getelementptr \@a, 0, 3
1282 ///   %t2 = load i32* %t1
1283 ///
1284 static bool equivalentAddressValues(Value *A, Value *B) {
1285   // Test if the values are trivially equivalent.
1286   if (A == B) return true;
1287 
1288   // Test if the values come form identical arithmetic instructions.
1289   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1290   // its only used to compare two uses within the same basic block, which
1291   // means that they'll always either have the same value or one of them
1292   // will have an undefined value.
1293   if (isa<BinaryOperator>(A) ||
1294       isa<CastInst>(A) ||
1295       isa<PHINode>(A) ||
1296       isa<GetElementPtrInst>(A))
1297     if (Instruction *BI = dyn_cast<Instruction>(B))
1298       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1299         return true;
1300 
1301   // Otherwise they may not be equivalent.
1302   return false;
1303 }
1304 
1305 /// Converts store (bitcast (load (bitcast (select ...)))) to
1306 /// store (load (select ...)), where select is minmax:
1307 /// select ((cmp load V1, load V2), V1, V2).
1308 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC,
1309                                                 StoreInst &SI) {
1310   // bitcast?
1311   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1312     return false;
1313   // load? integer?
1314   Value *LoadAddr;
1315   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1316     return false;
1317   auto *LI = cast<LoadInst>(SI.getValueOperand());
1318   if (!LI->getType()->isIntegerTy())
1319     return false;
1320   Type *CmpLoadTy;
1321   if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
1322     return false;
1323 
1324   // Make sure the type would actually change.
1325   // This condition can be hit with chains of bitcasts.
1326   if (LI->getType() == CmpLoadTy)
1327     return false;
1328 
1329   // Make sure we're not changing the size of the load/store.
1330   const auto &DL = IC.getDataLayout();
1331   if (DL.getTypeStoreSizeInBits(LI->getType()) !=
1332       DL.getTypeStoreSizeInBits(CmpLoadTy))
1333     return false;
1334 
1335   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1336         auto *SI = dyn_cast<StoreInst>(U);
1337         return SI && SI->getPointerOperand() != LI &&
1338                peekThroughBitcast(SI->getPointerOperand()) != LoadAddr &&
1339                !SI->getPointerOperand()->isSwiftError();
1340       }))
1341     return false;
1342 
1343   IC.Builder.SetInsertPoint(LI);
1344   LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
1345   // Replace all the stores with stores of the newly loaded value.
1346   for (auto *UI : LI->users()) {
1347     auto *USI = cast<StoreInst>(UI);
1348     IC.Builder.SetInsertPoint(USI);
1349     combineStoreToNewValue(IC, *USI, NewLI);
1350   }
1351   IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1352   IC.eraseInstFromFunction(*LI);
1353   return true;
1354 }
1355 
1356 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1357   Value *Val = SI.getOperand(0);
1358   Value *Ptr = SI.getOperand(1);
1359 
1360   // Try to canonicalize the stored type.
1361   if (combineStoreToValueType(*this, SI))
1362     return eraseInstFromFunction(SI);
1363 
1364   // Attempt to improve the alignment.
1365   const Align KnownAlign = Align(getOrEnforceKnownAlignment(
1366       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT));
1367   const MaybeAlign StoreAlign = MaybeAlign(SI.getAlignment());
1368   const Align EffectiveStoreAlign =
1369       StoreAlign ? *StoreAlign : Align(DL.getABITypeAlignment(Val->getType()));
1370 
1371   if (KnownAlign > EffectiveStoreAlign)
1372     SI.setAlignment(KnownAlign);
1373   else if (!StoreAlign)
1374     SI.setAlignment(EffectiveStoreAlign);
1375 
1376   // Try to canonicalize the stored type.
1377   if (unpackStoreToAggregate(*this, SI))
1378     return eraseInstFromFunction(SI);
1379 
1380   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1381     return eraseInstFromFunction(SI);
1382 
1383   // Replace GEP indices if possible.
1384   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1385       Worklist.push(NewGEPI);
1386       return &SI;
1387   }
1388 
1389   // Don't hack volatile/ordered stores.
1390   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1391   if (!SI.isUnordered()) return nullptr;
1392 
1393   // If the RHS is an alloca with a single use, zapify the store, making the
1394   // alloca dead.
1395   if (Ptr->hasOneUse()) {
1396     if (isa<AllocaInst>(Ptr))
1397       return eraseInstFromFunction(SI);
1398     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1399       if (isa<AllocaInst>(GEP->getOperand(0))) {
1400         if (GEP->getOperand(0)->hasOneUse())
1401           return eraseInstFromFunction(SI);
1402       }
1403     }
1404   }
1405 
1406   // If we have a store to a location which is known constant, we can conclude
1407   // that the store must be storing the constant value (else the memory
1408   // wouldn't be constant), and this must be a noop.
1409   if (AA->pointsToConstantMemory(Ptr))
1410     return eraseInstFromFunction(SI);
1411 
1412   // Do really simple DSE, to catch cases where there are several consecutive
1413   // stores to the same location, separated by a few arithmetic operations. This
1414   // situation often occurs with bitfield accesses.
1415   BasicBlock::iterator BBI(SI);
1416   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1417        --ScanInsts) {
1418     --BBI;
1419     // Don't count debug info directives, lest they affect codegen,
1420     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1421     if (isa<DbgInfoIntrinsic>(BBI) ||
1422         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1423       ScanInsts++;
1424       continue;
1425     }
1426 
1427     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1428       // Prev store isn't volatile, and stores to the same location?
1429       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1430                                                         SI.getOperand(1))) {
1431         ++NumDeadStore;
1432         // Manually add back the original store to the worklist now, so it will
1433         // be processed after the operands of the removed store, as this may
1434         // expose additional DSE opportunities.
1435         Worklist.push(&SI);
1436         eraseInstFromFunction(*PrevSI);
1437         return nullptr;
1438       }
1439       break;
1440     }
1441 
1442     // If this is a load, we have to stop.  However, if the loaded value is from
1443     // the pointer we're loading and is producing the pointer we're storing,
1444     // then *this* store is dead (X = load P; store X -> P).
1445     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1446       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1447         assert(SI.isUnordered() && "can't eliminate ordering operation");
1448         return eraseInstFromFunction(SI);
1449       }
1450 
1451       // Otherwise, this is a load from some other location.  Stores before it
1452       // may not be dead.
1453       break;
1454     }
1455 
1456     // Don't skip over loads, throws or things that can modify memory.
1457     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1458       break;
1459   }
1460 
1461   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1462   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1463   if (canSimplifyNullStoreOrGEP(SI)) {
1464     if (!isa<UndefValue>(Val))
1465       return replaceOperand(SI, 0, UndefValue::get(Val->getType()));
1466     return nullptr;  // Do not modify these!
1467   }
1468 
1469   // store undef, Ptr -> noop
1470   if (isa<UndefValue>(Val))
1471     return eraseInstFromFunction(SI);
1472 
1473   // If this store is the second-to-last instruction in the basic block
1474   // (excluding debug info and bitcasts of pointers) and if the block ends with
1475   // an unconditional branch, try to move the store to the successor block.
1476   BBI = SI.getIterator();
1477   do {
1478     ++BBI;
1479   } while (isa<DbgInfoIntrinsic>(BBI) ||
1480            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1481 
1482   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1483     if (BI->isUnconditional())
1484       mergeStoreIntoSuccessor(SI);
1485 
1486   return nullptr;
1487 }
1488 
1489 /// Try to transform:
1490 ///   if () { *P = v1; } else { *P = v2 }
1491 /// or:
1492 ///   *P = v1; if () { *P = v2; }
1493 /// into a phi node with a store in the successor.
1494 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) {
1495   assert(SI.isUnordered() &&
1496          "This code has not been audited for volatile or ordered store case.");
1497 
1498   // Check if the successor block has exactly 2 incoming edges.
1499   BasicBlock *StoreBB = SI.getParent();
1500   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1501   if (!DestBB->hasNPredecessors(2))
1502     return false;
1503 
1504   // Capture the other block (the block that doesn't contain our store).
1505   pred_iterator PredIter = pred_begin(DestBB);
1506   if (*PredIter == StoreBB)
1507     ++PredIter;
1508   BasicBlock *OtherBB = *PredIter;
1509 
1510   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1511   // for example, if SI is in an infinite loop.
1512   if (StoreBB == DestBB || OtherBB == DestBB)
1513     return false;
1514 
1515   // Verify that the other block ends in a branch and is not otherwise empty.
1516   BasicBlock::iterator BBI(OtherBB->getTerminator());
1517   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1518   if (!OtherBr || BBI == OtherBB->begin())
1519     return false;
1520 
1521   // If the other block ends in an unconditional branch, check for the 'if then
1522   // else' case. There is an instruction before the branch.
1523   StoreInst *OtherStore = nullptr;
1524   if (OtherBr->isUnconditional()) {
1525     --BBI;
1526     // Skip over debugging info.
1527     while (isa<DbgInfoIntrinsic>(BBI) ||
1528            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1529       if (BBI==OtherBB->begin())
1530         return false;
1531       --BBI;
1532     }
1533     // If this isn't a store, isn't a store to the same location, or is not the
1534     // right kind of store, bail out.
1535     OtherStore = dyn_cast<StoreInst>(BBI);
1536     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1537         !SI.isSameOperationAs(OtherStore))
1538       return false;
1539   } else {
1540     // Otherwise, the other block ended with a conditional branch. If one of the
1541     // destinations is StoreBB, then we have the if/then case.
1542     if (OtherBr->getSuccessor(0) != StoreBB &&
1543         OtherBr->getSuccessor(1) != StoreBB)
1544       return false;
1545 
1546     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1547     // if/then triangle. See if there is a store to the same ptr as SI that
1548     // lives in OtherBB.
1549     for (;; --BBI) {
1550       // Check to see if we find the matching store.
1551       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1552         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1553             !SI.isSameOperationAs(OtherStore))
1554           return false;
1555         break;
1556       }
1557       // If we find something that may be using or overwriting the stored
1558       // value, or if we run out of instructions, we can't do the transform.
1559       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1560           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1561         return false;
1562     }
1563 
1564     // In order to eliminate the store in OtherBr, we have to make sure nothing
1565     // reads or overwrites the stored value in StoreBB.
1566     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1567       // FIXME: This should really be AA driven.
1568       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1569         return false;
1570     }
1571   }
1572 
1573   // Insert a PHI node now if we need it.
1574   Value *MergedVal = OtherStore->getOperand(0);
1575   // The debug locations of the original instructions might differ. Merge them.
1576   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1577                                                      OtherStore->getDebugLoc());
1578   if (MergedVal != SI.getOperand(0)) {
1579     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1580     PN->addIncoming(SI.getOperand(0), SI.getParent());
1581     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1582     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1583     PN->setDebugLoc(MergedLoc);
1584   }
1585 
1586   // Advance to a place where it is safe to insert the new store and insert it.
1587   BBI = DestBB->getFirstInsertionPt();
1588   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(),
1589                                    MaybeAlign(SI.getAlignment()),
1590                                    SI.getOrdering(), SI.getSyncScopeID());
1591   InsertNewInstBefore(NewSI, *BBI);
1592   NewSI->setDebugLoc(MergedLoc);
1593 
1594   // If the two stores had AA tags, merge them.
1595   AAMDNodes AATags;
1596   SI.getAAMetadata(AATags);
1597   if (AATags) {
1598     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1599     NewSI->setAAMetadata(AATags);
1600   }
1601 
1602   // Nuke the old stores.
1603   eraseInstFromFunction(SI);
1604   eraseInstFromFunction(*OtherStore);
1605   return true;
1606 }
1607