1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/IR/ConstantRange.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/MDBuilder.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 using namespace llvm; 26 27 #define DEBUG_TYPE "instcombine" 28 29 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 30 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 31 32 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 33 /// some part of a constant global variable. This intentionally only accepts 34 /// constant expressions because we can't rewrite arbitrary instructions. 35 static bool pointsToConstantGlobal(Value *V) { 36 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 37 return GV->isConstant(); 38 39 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 40 if (CE->getOpcode() == Instruction::BitCast || 41 CE->getOpcode() == Instruction::AddrSpaceCast || 42 CE->getOpcode() == Instruction::GetElementPtr) 43 return pointsToConstantGlobal(CE->getOperand(0)); 44 } 45 return false; 46 } 47 48 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 49 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 50 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 51 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 52 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 53 /// the alloca, and if the source pointer is a pointer to a constant global, we 54 /// can optimize this. 55 static bool 56 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 57 SmallVectorImpl<Instruction *> &ToDelete) { 58 // We track lifetime intrinsics as we encounter them. If we decide to go 59 // ahead and replace the value with the global, this lets the caller quickly 60 // eliminate the markers. 61 62 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 63 ValuesToInspect.emplace_back(V, false); 64 while (!ValuesToInspect.empty()) { 65 auto ValuePair = ValuesToInspect.pop_back_val(); 66 const bool IsOffset = ValuePair.second; 67 for (auto &U : ValuePair.first->uses()) { 68 auto *I = cast<Instruction>(U.getUser()); 69 70 if (auto *LI = dyn_cast<LoadInst>(I)) { 71 // Ignore non-volatile loads, they are always ok. 72 if (!LI->isSimple()) return false; 73 continue; 74 } 75 76 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 77 // If uses of the bitcast are ok, we are ok. 78 ValuesToInspect.emplace_back(I, IsOffset); 79 continue; 80 } 81 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 82 // If the GEP has all zero indices, it doesn't offset the pointer. If it 83 // doesn't, it does. 84 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 85 continue; 86 } 87 88 if (auto CS = CallSite(I)) { 89 // If this is the function being called then we treat it like a load and 90 // ignore it. 91 if (CS.isCallee(&U)) 92 continue; 93 94 unsigned DataOpNo = CS.getDataOperandNo(&U); 95 bool IsArgOperand = CS.isArgOperand(&U); 96 97 // Inalloca arguments are clobbered by the call. 98 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 99 return false; 100 101 // If this is a readonly/readnone call site, then we know it is just a 102 // load (but one that potentially returns the value itself), so we can 103 // ignore it if we know that the value isn't captured. 104 if (CS.onlyReadsMemory() && 105 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 106 continue; 107 108 // If this is being passed as a byval argument, the caller is making a 109 // copy, so it is only a read of the alloca. 110 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 111 continue; 112 } 113 114 // Lifetime intrinsics can be handled by the caller. 115 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 116 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 117 II->getIntrinsicID() == Intrinsic::lifetime_end) { 118 assert(II->use_empty() && "Lifetime markers have no result to use!"); 119 ToDelete.push_back(II); 120 continue; 121 } 122 } 123 124 // If this is isn't our memcpy/memmove, reject it as something we can't 125 // handle. 126 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 127 if (!MI) 128 return false; 129 130 // If the transfer is using the alloca as a source of the transfer, then 131 // ignore it since it is a load (unless the transfer is volatile). 132 if (U.getOperandNo() == 1) { 133 if (MI->isVolatile()) return false; 134 continue; 135 } 136 137 // If we already have seen a copy, reject the second one. 138 if (TheCopy) return false; 139 140 // If the pointer has been offset from the start of the alloca, we can't 141 // safely handle this. 142 if (IsOffset) return false; 143 144 // If the memintrinsic isn't using the alloca as the dest, reject it. 145 if (U.getOperandNo() != 0) return false; 146 147 // If the source of the memcpy/move is not a constant global, reject it. 148 if (!pointsToConstantGlobal(MI->getSource())) 149 return false; 150 151 // Otherwise, the transform is safe. Remember the copy instruction. 152 TheCopy = MI; 153 } 154 } 155 return true; 156 } 157 158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 159 /// modified by a copy from a constant global. If we can prove this, we can 160 /// replace any uses of the alloca with uses of the global directly. 161 static MemTransferInst * 162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 163 SmallVectorImpl<Instruction *> &ToDelete) { 164 MemTransferInst *TheCopy = nullptr; 165 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 166 return TheCopy; 167 return nullptr; 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 171 // Check for array size of 1 (scalar allocation). 172 if (!AI.isArrayAllocation()) { 173 // i32 1 is the canonical array size for scalar allocations. 174 if (AI.getArraySize()->getType()->isIntegerTy(32)) 175 return nullptr; 176 177 // Canonicalize it. 178 Value *V = IC.Builder->getInt32(1); 179 AI.setOperand(0, V); 180 return &AI; 181 } 182 183 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 184 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName()); 187 New->setAlignment(AI.getAlignment()); 188 189 // Scan to the end of the allocation instructions, to skip over a block of 190 // allocas if possible...also skip interleaved debug info 191 // 192 BasicBlock::iterator It(New); 193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 194 ++It; 195 196 // Now that I is pointing to the first non-allocation-inst in the block, 197 // insert our getelementptr instruction... 198 // 199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 200 Value *NullIdx = Constant::getNullValue(IdxTy); 201 Value *Idx[2] = {NullIdx, NullIdx}; 202 Instruction *GEP = 203 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 204 IC.InsertNewInstBefore(GEP, *It); 205 206 // Now make everything use the getelementptr instead of the original 207 // allocation. 208 return IC.replaceInstUsesWith(AI, GEP); 209 } 210 211 if (isa<UndefValue>(AI.getArraySize())) 212 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 213 214 // Ensure that the alloca array size argument has type intptr_t, so that 215 // any casting is exposed early. 216 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 217 if (AI.getArraySize()->getType() != IntPtrTy) { 218 Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false); 219 AI.setOperand(0, V); 220 return &AI; 221 } 222 223 return nullptr; 224 } 225 226 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 227 if (auto *I = simplifyAllocaArraySize(*this, AI)) 228 return I; 229 230 if (AI.getAllocatedType()->isSized()) { 231 // If the alignment is 0 (unspecified), assign it the preferred alignment. 232 if (AI.getAlignment() == 0) 233 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 234 235 // Move all alloca's of zero byte objects to the entry block and merge them 236 // together. Note that we only do this for alloca's, because malloc should 237 // allocate and return a unique pointer, even for a zero byte allocation. 238 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 239 // For a zero sized alloca there is no point in doing an array allocation. 240 // This is helpful if the array size is a complicated expression not used 241 // elsewhere. 242 if (AI.isArrayAllocation()) { 243 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 244 return &AI; 245 } 246 247 // Get the first instruction in the entry block. 248 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 249 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 250 if (FirstInst != &AI) { 251 // If the entry block doesn't start with a zero-size alloca then move 252 // this one to the start of the entry block. There is no problem with 253 // dominance as the array size was forced to a constant earlier already. 254 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 255 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 256 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 257 AI.moveBefore(FirstInst); 258 return &AI; 259 } 260 261 // If the alignment of the entry block alloca is 0 (unspecified), 262 // assign it the preferred alignment. 263 if (EntryAI->getAlignment() == 0) 264 EntryAI->setAlignment( 265 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 266 // Replace this zero-sized alloca with the one at the start of the entry 267 // block after ensuring that the address will be aligned enough for both 268 // types. 269 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 270 AI.getAlignment()); 271 EntryAI->setAlignment(MaxAlign); 272 if (AI.getType() != EntryAI->getType()) 273 return new BitCastInst(EntryAI, AI.getType()); 274 return replaceInstUsesWith(AI, EntryAI); 275 } 276 } 277 } 278 279 if (AI.getAlignment()) { 280 // Check to see if this allocation is only modified by a memcpy/memmove from 281 // a constant global whose alignment is equal to or exceeds that of the 282 // allocation. If this is the case, we can change all users to use 283 // the constant global instead. This is commonly produced by the CFE by 284 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 285 // is only subsequently read. 286 SmallVector<Instruction *, 4> ToDelete; 287 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 288 unsigned SourceAlign = getOrEnforceKnownAlignment( 289 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 290 if (AI.getAlignment() <= SourceAlign) { 291 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 292 DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 293 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 294 eraseInstFromFunction(*ToDelete[i]); 295 Constant *TheSrc = cast<Constant>(Copy->getSource()); 296 Constant *Cast 297 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType()); 298 Instruction *NewI = replaceInstUsesWith(AI, Cast); 299 eraseInstFromFunction(*Copy); 300 ++NumGlobalCopies; 301 return NewI; 302 } 303 } 304 } 305 306 // At last, use the generic allocation site handler to aggressively remove 307 // unused allocas. 308 return visitAllocSite(AI); 309 } 310 311 /// \brief Helper to combine a load to a new type. 312 /// 313 /// This just does the work of combining a load to a new type. It handles 314 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 315 /// loaded *value* type. This will convert it to a pointer, cast the operand to 316 /// that pointer type, load it, etc. 317 /// 318 /// Note that this will create all of the instructions with whatever insert 319 /// point the \c InstCombiner currently is using. 320 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 321 const Twine &Suffix = "") { 322 Value *Ptr = LI.getPointerOperand(); 323 unsigned AS = LI.getPointerAddressSpace(); 324 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 325 LI.getAllMetadata(MD); 326 327 LoadInst *NewLoad = IC.Builder->CreateAlignedLoad( 328 IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)), 329 LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 330 NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope()); 331 MDBuilder MDB(NewLoad->getContext()); 332 for (const auto &MDPair : MD) { 333 unsigned ID = MDPair.first; 334 MDNode *N = MDPair.second; 335 // Note, essentially every kind of metadata should be preserved here! This 336 // routine is supposed to clone a load instruction changing *only its type*. 337 // The only metadata it makes sense to drop is metadata which is invalidated 338 // when the pointer type changes. This should essentially never be the case 339 // in LLVM, but we explicitly switch over only known metadata to be 340 // conservatively correct. If you are adding metadata to LLVM which pertains 341 // to loads, you almost certainly want to add it here. 342 switch (ID) { 343 case LLVMContext::MD_dbg: 344 case LLVMContext::MD_tbaa: 345 case LLVMContext::MD_prof: 346 case LLVMContext::MD_fpmath: 347 case LLVMContext::MD_tbaa_struct: 348 case LLVMContext::MD_invariant_load: 349 case LLVMContext::MD_alias_scope: 350 case LLVMContext::MD_noalias: 351 case LLVMContext::MD_nontemporal: 352 case LLVMContext::MD_mem_parallel_loop_access: 353 // All of these directly apply. 354 NewLoad->setMetadata(ID, N); 355 break; 356 357 case LLVMContext::MD_nonnull: 358 // This only directly applies if the new type is also a pointer. 359 if (NewTy->isPointerTy()) { 360 NewLoad->setMetadata(ID, N); 361 break; 362 } 363 // If it's integral now, translate it to !range metadata. 364 if (NewTy->isIntegerTy()) { 365 auto *ITy = cast<IntegerType>(NewTy); 366 auto *NullInt = ConstantExpr::getPtrToInt( 367 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 368 auto *NonNullInt = 369 ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 370 NewLoad->setMetadata(LLVMContext::MD_range, 371 MDB.createRange(NonNullInt, NullInt)); 372 } 373 break; 374 case LLVMContext::MD_align: 375 case LLVMContext::MD_dereferenceable: 376 case LLVMContext::MD_dereferenceable_or_null: 377 // These only directly apply if the new type is also a pointer. 378 if (NewTy->isPointerTy()) 379 NewLoad->setMetadata(ID, N); 380 break; 381 case LLVMContext::MD_range: 382 // FIXME: It would be nice to propagate this in some way, but the type 383 // conversions make it hard. 384 385 // If it's a pointer now and the range does not contain 0, make it !nonnull. 386 if (NewTy->isPointerTy()) { 387 unsigned BitWidth = IC.getDataLayout().getTypeSizeInBits(NewTy); 388 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 389 MDNode *NN = MDNode::get(LI.getContext(), None); 390 NewLoad->setMetadata(LLVMContext::MD_nonnull, NN); 391 } 392 } 393 break; 394 } 395 } 396 return NewLoad; 397 } 398 399 /// \brief Combine a store to a new type. 400 /// 401 /// Returns the newly created store instruction. 402 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 403 Value *Ptr = SI.getPointerOperand(); 404 unsigned AS = SI.getPointerAddressSpace(); 405 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 406 SI.getAllMetadata(MD); 407 408 StoreInst *NewStore = IC.Builder->CreateAlignedStore( 409 V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 410 SI.getAlignment(), SI.isVolatile()); 411 NewStore->setAtomic(SI.getOrdering(), SI.getSynchScope()); 412 for (const auto &MDPair : MD) { 413 unsigned ID = MDPair.first; 414 MDNode *N = MDPair.second; 415 // Note, essentially every kind of metadata should be preserved here! This 416 // routine is supposed to clone a store instruction changing *only its 417 // type*. The only metadata it makes sense to drop is metadata which is 418 // invalidated when the pointer type changes. This should essentially 419 // never be the case in LLVM, but we explicitly switch over only known 420 // metadata to be conservatively correct. If you are adding metadata to 421 // LLVM which pertains to stores, you almost certainly want to add it 422 // here. 423 switch (ID) { 424 case LLVMContext::MD_dbg: 425 case LLVMContext::MD_tbaa: 426 case LLVMContext::MD_prof: 427 case LLVMContext::MD_fpmath: 428 case LLVMContext::MD_tbaa_struct: 429 case LLVMContext::MD_alias_scope: 430 case LLVMContext::MD_noalias: 431 case LLVMContext::MD_nontemporal: 432 case LLVMContext::MD_mem_parallel_loop_access: 433 // All of these directly apply. 434 NewStore->setMetadata(ID, N); 435 break; 436 437 case LLVMContext::MD_invariant_load: 438 case LLVMContext::MD_nonnull: 439 case LLVMContext::MD_range: 440 case LLVMContext::MD_align: 441 case LLVMContext::MD_dereferenceable: 442 case LLVMContext::MD_dereferenceable_or_null: 443 // These don't apply for stores. 444 break; 445 } 446 } 447 448 return NewStore; 449 } 450 451 /// \brief Combine loads to match the type of their uses' value after looking 452 /// through intervening bitcasts. 453 /// 454 /// The core idea here is that if the result of a load is used in an operation, 455 /// we should load the type most conducive to that operation. For example, when 456 /// loading an integer and converting that immediately to a pointer, we should 457 /// instead directly load a pointer. 458 /// 459 /// However, this routine must never change the width of a load or the number of 460 /// loads as that would introduce a semantic change. This combine is expected to 461 /// be a semantic no-op which just allows loads to more closely model the types 462 /// of their consuming operations. 463 /// 464 /// Currently, we also refuse to change the precise type used for an atomic load 465 /// or a volatile load. This is debatable, and might be reasonable to change 466 /// later. However, it is risky in case some backend or other part of LLVM is 467 /// relying on the exact type loaded to select appropriate atomic operations. 468 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 469 // FIXME: We could probably with some care handle both volatile and ordered 470 // atomic loads here but it isn't clear that this is important. 471 if (!LI.isUnordered()) 472 return nullptr; 473 474 if (LI.use_empty()) 475 return nullptr; 476 477 // swifterror values can't be bitcasted. 478 if (LI.getPointerOperand()->isSwiftError()) 479 return nullptr; 480 481 Type *Ty = LI.getType(); 482 const DataLayout &DL = IC.getDataLayout(); 483 484 // Try to canonicalize loads which are only ever stored to operate over 485 // integers instead of any other type. We only do this when the loaded type 486 // is sized and has a size exactly the same as its store size and the store 487 // size is a legal integer type. 488 if (!Ty->isIntegerTy() && Ty->isSized() && 489 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 490 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) && 491 !DL.isNonIntegralPointerType(Ty)) { 492 if (all_of(LI.users(), [&LI](User *U) { 493 auto *SI = dyn_cast<StoreInst>(U); 494 return SI && SI->getPointerOperand() != &LI; 495 })) { 496 LoadInst *NewLoad = combineLoadToNewType( 497 IC, LI, 498 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 499 // Replace all the stores with stores of the newly loaded value. 500 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 501 auto *SI = cast<StoreInst>(*UI++); 502 IC.Builder->SetInsertPoint(SI); 503 combineStoreToNewValue(IC, *SI, NewLoad); 504 IC.eraseInstFromFunction(*SI); 505 } 506 assert(LI.use_empty() && "Failed to remove all users of the load!"); 507 // Return the old load so the combiner can delete it safely. 508 return &LI; 509 } 510 } 511 512 // Fold away bit casts of the loaded value by loading the desired type. 513 // We can do this for BitCastInsts as well as casts from and to pointer types, 514 // as long as those are noops (i.e., the source or dest type have the same 515 // bitwidth as the target's pointers). 516 if (LI.hasOneUse()) 517 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) { 518 if (CI->isNoopCast(DL)) { 519 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 520 CI->replaceAllUsesWith(NewLoad); 521 IC.eraseInstFromFunction(*CI); 522 return &LI; 523 } 524 } 525 526 // FIXME: We should also canonicalize loads of vectors when their elements are 527 // cast to other types. 528 return nullptr; 529 } 530 531 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 532 // FIXME: We could probably with some care handle both volatile and atomic 533 // stores here but it isn't clear that this is important. 534 if (!LI.isSimple()) 535 return nullptr; 536 537 Type *T = LI.getType(); 538 if (!T->isAggregateType()) 539 return nullptr; 540 541 StringRef Name = LI.getName(); 542 assert(LI.getAlignment() && "Alignment must be set at this point"); 543 544 if (auto *ST = dyn_cast<StructType>(T)) { 545 // If the struct only have one element, we unpack. 546 auto NumElements = ST->getNumElements(); 547 if (NumElements == 1) { 548 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 549 ".unpack"); 550 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 551 UndefValue::get(T), NewLoad, 0, Name)); 552 } 553 554 // We don't want to break loads with padding here as we'd loose 555 // the knowledge that padding exists for the rest of the pipeline. 556 const DataLayout &DL = IC.getDataLayout(); 557 auto *SL = DL.getStructLayout(ST); 558 if (SL->hasPadding()) 559 return nullptr; 560 561 auto Align = LI.getAlignment(); 562 if (!Align) 563 Align = DL.getABITypeAlignment(ST); 564 565 auto *Addr = LI.getPointerOperand(); 566 auto *IdxType = Type::getInt32Ty(T->getContext()); 567 auto *Zero = ConstantInt::get(IdxType, 0); 568 569 Value *V = UndefValue::get(T); 570 for (unsigned i = 0; i < NumElements; i++) { 571 Value *Indices[2] = { 572 Zero, 573 ConstantInt::get(IdxType, i), 574 }; 575 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 576 Name + ".elt"); 577 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 578 auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 579 V = IC.Builder->CreateInsertValue(V, L, i); 580 } 581 582 V->setName(Name); 583 return IC.replaceInstUsesWith(LI, V); 584 } 585 586 if (auto *AT = dyn_cast<ArrayType>(T)) { 587 auto *ET = AT->getElementType(); 588 auto NumElements = AT->getNumElements(); 589 if (NumElements == 1) { 590 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 591 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 592 UndefValue::get(T), NewLoad, 0, Name)); 593 } 594 595 // Bail out if the array is too large. Ideally we would like to optimize 596 // arrays of arbitrary size but this has a terrible impact on compile time. 597 // The threshold here is chosen arbitrarily, maybe needs a little bit of 598 // tuning. 599 if (NumElements > 1024) 600 return nullptr; 601 602 const DataLayout &DL = IC.getDataLayout(); 603 auto EltSize = DL.getTypeAllocSize(ET); 604 auto Align = LI.getAlignment(); 605 if (!Align) 606 Align = DL.getABITypeAlignment(T); 607 608 auto *Addr = LI.getPointerOperand(); 609 auto *IdxType = Type::getInt64Ty(T->getContext()); 610 auto *Zero = ConstantInt::get(IdxType, 0); 611 612 Value *V = UndefValue::get(T); 613 uint64_t Offset = 0; 614 for (uint64_t i = 0; i < NumElements; i++) { 615 Value *Indices[2] = { 616 Zero, 617 ConstantInt::get(IdxType, i), 618 }; 619 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 620 Name + ".elt"); 621 auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 622 Name + ".unpack"); 623 V = IC.Builder->CreateInsertValue(V, L, i); 624 Offset += EltSize; 625 } 626 627 V->setName(Name); 628 return IC.replaceInstUsesWith(LI, V); 629 } 630 631 return nullptr; 632 } 633 634 // If we can determine that all possible objects pointed to by the provided 635 // pointer value are, not only dereferenceable, but also definitively less than 636 // or equal to the provided maximum size, then return true. Otherwise, return 637 // false (constant global values and allocas fall into this category). 638 // 639 // FIXME: This should probably live in ValueTracking (or similar). 640 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 641 const DataLayout &DL) { 642 SmallPtrSet<Value *, 4> Visited; 643 SmallVector<Value *, 4> Worklist(1, V); 644 645 do { 646 Value *P = Worklist.pop_back_val(); 647 P = P->stripPointerCasts(); 648 649 if (!Visited.insert(P).second) 650 continue; 651 652 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 653 Worklist.push_back(SI->getTrueValue()); 654 Worklist.push_back(SI->getFalseValue()); 655 continue; 656 } 657 658 if (PHINode *PN = dyn_cast<PHINode>(P)) { 659 for (Value *IncValue : PN->incoming_values()) 660 Worklist.push_back(IncValue); 661 continue; 662 } 663 664 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 665 if (GA->isInterposable()) 666 return false; 667 Worklist.push_back(GA->getAliasee()); 668 continue; 669 } 670 671 // If we know how big this object is, and it is less than MaxSize, continue 672 // searching. Otherwise, return false. 673 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 674 if (!AI->getAllocatedType()->isSized()) 675 return false; 676 677 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 678 if (!CS) 679 return false; 680 681 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 682 // Make sure that, even if the multiplication below would wrap as an 683 // uint64_t, we still do the right thing. 684 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 685 return false; 686 continue; 687 } 688 689 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 690 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 691 return false; 692 693 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 694 if (InitSize > MaxSize) 695 return false; 696 continue; 697 } 698 699 return false; 700 } while (!Worklist.empty()); 701 702 return true; 703 } 704 705 // If we're indexing into an object of a known size, and the outer index is 706 // not a constant, but having any value but zero would lead to undefined 707 // behavior, replace it with zero. 708 // 709 // For example, if we have: 710 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 711 // ... 712 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 713 // ... = load i32* %arrayidx, align 4 714 // Then we know that we can replace %x in the GEP with i64 0. 715 // 716 // FIXME: We could fold any GEP index to zero that would cause UB if it were 717 // not zero. Currently, we only handle the first such index. Also, we could 718 // also search through non-zero constant indices if we kept track of the 719 // offsets those indices implied. 720 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 721 Instruction *MemI, unsigned &Idx) { 722 if (GEPI->getNumOperands() < 2) 723 return false; 724 725 // Find the first non-zero index of a GEP. If all indices are zero, return 726 // one past the last index. 727 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 728 unsigned I = 1; 729 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 730 Value *V = GEPI->getOperand(I); 731 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 732 if (CI->isZero()) 733 continue; 734 735 break; 736 } 737 738 return I; 739 }; 740 741 // Skip through initial 'zero' indices, and find the corresponding pointer 742 // type. See if the next index is not a constant. 743 Idx = FirstNZIdx(GEPI); 744 if (Idx == GEPI->getNumOperands()) 745 return false; 746 if (isa<Constant>(GEPI->getOperand(Idx))) 747 return false; 748 749 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 750 Type *AllocTy = 751 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 752 if (!AllocTy || !AllocTy->isSized()) 753 return false; 754 const DataLayout &DL = IC.getDataLayout(); 755 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 756 757 // If there are more indices after the one we might replace with a zero, make 758 // sure they're all non-negative. If any of them are negative, the overall 759 // address being computed might be before the base address determined by the 760 // first non-zero index. 761 auto IsAllNonNegative = [&]() { 762 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 763 bool KnownNonNegative, KnownNegative; 764 IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative, 765 KnownNegative, 0, MemI); 766 if (KnownNonNegative) 767 continue; 768 return false; 769 } 770 771 return true; 772 }; 773 774 // FIXME: If the GEP is not inbounds, and there are extra indices after the 775 // one we'll replace, those could cause the address computation to wrap 776 // (rendering the IsAllNonNegative() check below insufficient). We can do 777 // better, ignoring zero indices (and other indices we can prove small 778 // enough not to wrap). 779 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 780 return false; 781 782 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 783 // also known to be dereferenceable. 784 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 785 IsAllNonNegative(); 786 } 787 788 // If we're indexing into an object with a variable index for the memory 789 // access, but the object has only one element, we can assume that the index 790 // will always be zero. If we replace the GEP, return it. 791 template <typename T> 792 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 793 T &MemI) { 794 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 795 unsigned Idx; 796 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 797 Instruction *NewGEPI = GEPI->clone(); 798 NewGEPI->setOperand(Idx, 799 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 800 NewGEPI->insertBefore(GEPI); 801 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 802 return NewGEPI; 803 } 804 } 805 806 return nullptr; 807 } 808 809 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 810 Value *Op = LI.getOperand(0); 811 812 // Try to canonicalize the loaded type. 813 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 814 return Res; 815 816 // Attempt to improve the alignment. 817 unsigned KnownAlign = getOrEnforceKnownAlignment( 818 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 819 unsigned LoadAlign = LI.getAlignment(); 820 unsigned EffectiveLoadAlign = 821 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 822 823 if (KnownAlign > EffectiveLoadAlign) 824 LI.setAlignment(KnownAlign); 825 else if (LoadAlign == 0) 826 LI.setAlignment(EffectiveLoadAlign); 827 828 // Replace GEP indices if possible. 829 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 830 Worklist.Add(NewGEPI); 831 return &LI; 832 } 833 834 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 835 return Res; 836 837 // Do really simple store-to-load forwarding and load CSE, to catch cases 838 // where there are several consecutive memory accesses to the same location, 839 // separated by a few arithmetic operations. 840 BasicBlock::iterator BBI(LI); 841 bool IsLoadCSE = false; 842 if (Value *AvailableVal = 843 FindAvailableLoadedValue(&LI, LI.getParent(), BBI, 844 DefMaxInstsToScan, AA, &IsLoadCSE)) { 845 if (IsLoadCSE) { 846 LoadInst *NLI = cast<LoadInst>(AvailableVal); 847 unsigned KnownIDs[] = { 848 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 849 LLVMContext::MD_noalias, LLVMContext::MD_range, 850 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 851 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 852 LLVMContext::MD_dereferenceable, 853 LLVMContext::MD_dereferenceable_or_null}; 854 combineMetadata(NLI, &LI, KnownIDs); 855 }; 856 857 return replaceInstUsesWith( 858 LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(), 859 LI.getName() + ".cast")); 860 } 861 862 // None of the following transforms are legal for volatile/ordered atomic 863 // loads. Most of them do apply for unordered atomics. 864 if (!LI.isUnordered()) return nullptr; 865 866 // load(gep null, ...) -> unreachable 867 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 868 const Value *GEPI0 = GEPI->getOperand(0); 869 // TODO: Consider a target hook for valid address spaces for this xform. 870 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ 871 // Insert a new store to null instruction before the load to indicate 872 // that this code is not reachable. We do this instead of inserting 873 // an unreachable instruction directly because we cannot modify the 874 // CFG. 875 new StoreInst(UndefValue::get(LI.getType()), 876 Constant::getNullValue(Op->getType()), &LI); 877 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 878 } 879 } 880 881 // load null/undef -> unreachable 882 // TODO: Consider a target hook for valid address spaces for this xform. 883 if (isa<UndefValue>(Op) || 884 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { 885 // Insert a new store to null instruction before the load to indicate that 886 // this code is not reachable. We do this instead of inserting an 887 // unreachable instruction directly because we cannot modify the CFG. 888 new StoreInst(UndefValue::get(LI.getType()), 889 Constant::getNullValue(Op->getType()), &LI); 890 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 891 } 892 893 if (Op->hasOneUse()) { 894 // Change select and PHI nodes to select values instead of addresses: this 895 // helps alias analysis out a lot, allows many others simplifications, and 896 // exposes redundancy in the code. 897 // 898 // Note that we cannot do the transformation unless we know that the 899 // introduced loads cannot trap! Something like this is valid as long as 900 // the condition is always false: load (select bool %C, int* null, int* %G), 901 // but it would not be valid if we transformed it to load from null 902 // unconditionally. 903 // 904 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 905 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 906 unsigned Align = LI.getAlignment(); 907 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && 908 isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { 909 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), 910 SI->getOperand(1)->getName()+".val"); 911 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), 912 SI->getOperand(2)->getName()+".val"); 913 assert(LI.isUnordered() && "implied by above"); 914 V1->setAlignment(Align); 915 V1->setAtomic(LI.getOrdering(), LI.getSynchScope()); 916 V2->setAlignment(Align); 917 V2->setAtomic(LI.getOrdering(), LI.getSynchScope()); 918 return SelectInst::Create(SI->getCondition(), V1, V2); 919 } 920 921 // load (select (cond, null, P)) -> load P 922 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 923 LI.getPointerAddressSpace() == 0) { 924 LI.setOperand(0, SI->getOperand(2)); 925 return &LI; 926 } 927 928 // load (select (cond, P, null)) -> load P 929 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 930 LI.getPointerAddressSpace() == 0) { 931 LI.setOperand(0, SI->getOperand(1)); 932 return &LI; 933 } 934 } 935 } 936 return nullptr; 937 } 938 939 /// \brief Look for extractelement/insertvalue sequence that acts like a bitcast. 940 /// 941 /// \returns underlying value that was "cast", or nullptr otherwise. 942 /// 943 /// For example, if we have: 944 /// 945 /// %E0 = extractelement <2 x double> %U, i32 0 946 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 947 /// %E1 = extractelement <2 x double> %U, i32 1 948 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 949 /// 950 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 951 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 952 /// Note that %U may contain non-undef values where %V1 has undef. 953 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 954 Value *U = nullptr; 955 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 956 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 957 if (!E) 958 return nullptr; 959 auto *W = E->getVectorOperand(); 960 if (!U) 961 U = W; 962 else if (U != W) 963 return nullptr; 964 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 965 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 966 return nullptr; 967 V = IV->getAggregateOperand(); 968 } 969 if (!isa<UndefValue>(V) ||!U) 970 return nullptr; 971 972 auto *UT = cast<VectorType>(U->getType()); 973 auto *VT = V->getType(); 974 // Check that types UT and VT are bitwise isomorphic. 975 const auto &DL = IC.getDataLayout(); 976 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 977 return nullptr; 978 } 979 if (auto *AT = dyn_cast<ArrayType>(VT)) { 980 if (AT->getNumElements() != UT->getNumElements()) 981 return nullptr; 982 } else { 983 auto *ST = cast<StructType>(VT); 984 if (ST->getNumElements() != UT->getNumElements()) 985 return nullptr; 986 for (const auto *EltT : ST->elements()) { 987 if (EltT != UT->getElementType()) 988 return nullptr; 989 } 990 } 991 return U; 992 } 993 994 /// \brief Combine stores to match the type of value being stored. 995 /// 996 /// The core idea here is that the memory does not have any intrinsic type and 997 /// where we can we should match the type of a store to the type of value being 998 /// stored. 999 /// 1000 /// However, this routine must never change the width of a store or the number of 1001 /// stores as that would introduce a semantic change. This combine is expected to 1002 /// be a semantic no-op which just allows stores to more closely model the types 1003 /// of their incoming values. 1004 /// 1005 /// Currently, we also refuse to change the precise type used for an atomic or 1006 /// volatile store. This is debatable, and might be reasonable to change later. 1007 /// However, it is risky in case some backend or other part of LLVM is relying 1008 /// on the exact type stored to select appropriate atomic operations. 1009 /// 1010 /// \returns true if the store was successfully combined away. This indicates 1011 /// the caller must erase the store instruction. We have to let the caller erase 1012 /// the store instruction as otherwise there is no way to signal whether it was 1013 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1014 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1015 // FIXME: We could probably with some care handle both volatile and ordered 1016 // atomic stores here but it isn't clear that this is important. 1017 if (!SI.isUnordered()) 1018 return false; 1019 1020 // swifterror values can't be bitcasted. 1021 if (SI.getPointerOperand()->isSwiftError()) 1022 return false; 1023 1024 Value *V = SI.getValueOperand(); 1025 1026 // Fold away bit casts of the stored value by storing the original type. 1027 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1028 V = BC->getOperand(0); 1029 combineStoreToNewValue(IC, SI, V); 1030 return true; 1031 } 1032 1033 if (Value *U = likeBitCastFromVector(IC, V)) { 1034 combineStoreToNewValue(IC, SI, U); 1035 return true; 1036 } 1037 1038 // FIXME: We should also canonicalize stores of vectors when their elements 1039 // are cast to other types. 1040 return false; 1041 } 1042 1043 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1044 // FIXME: We could probably with some care handle both volatile and atomic 1045 // stores here but it isn't clear that this is important. 1046 if (!SI.isSimple()) 1047 return false; 1048 1049 Value *V = SI.getValueOperand(); 1050 Type *T = V->getType(); 1051 1052 if (!T->isAggregateType()) 1053 return false; 1054 1055 if (auto *ST = dyn_cast<StructType>(T)) { 1056 // If the struct only have one element, we unpack. 1057 unsigned Count = ST->getNumElements(); 1058 if (Count == 1) { 1059 V = IC.Builder->CreateExtractValue(V, 0); 1060 combineStoreToNewValue(IC, SI, V); 1061 return true; 1062 } 1063 1064 // We don't want to break loads with padding here as we'd loose 1065 // the knowledge that padding exists for the rest of the pipeline. 1066 const DataLayout &DL = IC.getDataLayout(); 1067 auto *SL = DL.getStructLayout(ST); 1068 if (SL->hasPadding()) 1069 return false; 1070 1071 auto Align = SI.getAlignment(); 1072 if (!Align) 1073 Align = DL.getABITypeAlignment(ST); 1074 1075 SmallString<16> EltName = V->getName(); 1076 EltName += ".elt"; 1077 auto *Addr = SI.getPointerOperand(); 1078 SmallString<16> AddrName = Addr->getName(); 1079 AddrName += ".repack"; 1080 1081 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1082 auto *Zero = ConstantInt::get(IdxType, 0); 1083 for (unsigned i = 0; i < Count; i++) { 1084 Value *Indices[2] = { 1085 Zero, 1086 ConstantInt::get(IdxType, i), 1087 }; 1088 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1089 AddrName); 1090 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1091 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1092 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1093 } 1094 1095 return true; 1096 } 1097 1098 if (auto *AT = dyn_cast<ArrayType>(T)) { 1099 // If the array only have one element, we unpack. 1100 auto NumElements = AT->getNumElements(); 1101 if (NumElements == 1) { 1102 V = IC.Builder->CreateExtractValue(V, 0); 1103 combineStoreToNewValue(IC, SI, V); 1104 return true; 1105 } 1106 1107 // Bail out if the array is too large. Ideally we would like to optimize 1108 // arrays of arbitrary size but this has a terrible impact on compile time. 1109 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1110 // tuning. 1111 if (NumElements > 1024) 1112 return false; 1113 1114 const DataLayout &DL = IC.getDataLayout(); 1115 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1116 auto Align = SI.getAlignment(); 1117 if (!Align) 1118 Align = DL.getABITypeAlignment(T); 1119 1120 SmallString<16> EltName = V->getName(); 1121 EltName += ".elt"; 1122 auto *Addr = SI.getPointerOperand(); 1123 SmallString<16> AddrName = Addr->getName(); 1124 AddrName += ".repack"; 1125 1126 auto *IdxType = Type::getInt64Ty(T->getContext()); 1127 auto *Zero = ConstantInt::get(IdxType, 0); 1128 1129 uint64_t Offset = 0; 1130 for (uint64_t i = 0; i < NumElements; i++) { 1131 Value *Indices[2] = { 1132 Zero, 1133 ConstantInt::get(IdxType, i), 1134 }; 1135 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1136 AddrName); 1137 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1138 auto EltAlign = MinAlign(Align, Offset); 1139 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1140 Offset += EltSize; 1141 } 1142 1143 return true; 1144 } 1145 1146 return false; 1147 } 1148 1149 /// equivalentAddressValues - Test if A and B will obviously have the same 1150 /// value. This includes recognizing that %t0 and %t1 will have the same 1151 /// value in code like this: 1152 /// %t0 = getelementptr \@a, 0, 3 1153 /// store i32 0, i32* %t0 1154 /// %t1 = getelementptr \@a, 0, 3 1155 /// %t2 = load i32* %t1 1156 /// 1157 static bool equivalentAddressValues(Value *A, Value *B) { 1158 // Test if the values are trivially equivalent. 1159 if (A == B) return true; 1160 1161 // Test if the values come form identical arithmetic instructions. 1162 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1163 // its only used to compare two uses within the same basic block, which 1164 // means that they'll always either have the same value or one of them 1165 // will have an undefined value. 1166 if (isa<BinaryOperator>(A) || 1167 isa<CastInst>(A) || 1168 isa<PHINode>(A) || 1169 isa<GetElementPtrInst>(A)) 1170 if (Instruction *BI = dyn_cast<Instruction>(B)) 1171 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1172 return true; 1173 1174 // Otherwise they may not be equivalent. 1175 return false; 1176 } 1177 1178 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1179 Value *Val = SI.getOperand(0); 1180 Value *Ptr = SI.getOperand(1); 1181 1182 // Try to canonicalize the stored type. 1183 if (combineStoreToValueType(*this, SI)) 1184 return eraseInstFromFunction(SI); 1185 1186 // Attempt to improve the alignment. 1187 unsigned KnownAlign = getOrEnforceKnownAlignment( 1188 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1189 unsigned StoreAlign = SI.getAlignment(); 1190 unsigned EffectiveStoreAlign = 1191 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1192 1193 if (KnownAlign > EffectiveStoreAlign) 1194 SI.setAlignment(KnownAlign); 1195 else if (StoreAlign == 0) 1196 SI.setAlignment(EffectiveStoreAlign); 1197 1198 // Try to canonicalize the stored type. 1199 if (unpackStoreToAggregate(*this, SI)) 1200 return eraseInstFromFunction(SI); 1201 1202 // Replace GEP indices if possible. 1203 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1204 Worklist.Add(NewGEPI); 1205 return &SI; 1206 } 1207 1208 // Don't hack volatile/ordered stores. 1209 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1210 if (!SI.isUnordered()) return nullptr; 1211 1212 // If the RHS is an alloca with a single use, zapify the store, making the 1213 // alloca dead. 1214 if (Ptr->hasOneUse()) { 1215 if (isa<AllocaInst>(Ptr)) 1216 return eraseInstFromFunction(SI); 1217 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1218 if (isa<AllocaInst>(GEP->getOperand(0))) { 1219 if (GEP->getOperand(0)->hasOneUse()) 1220 return eraseInstFromFunction(SI); 1221 } 1222 } 1223 } 1224 1225 // Do really simple DSE, to catch cases where there are several consecutive 1226 // stores to the same location, separated by a few arithmetic operations. This 1227 // situation often occurs with bitfield accesses. 1228 BasicBlock::iterator BBI(SI); 1229 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1230 --ScanInsts) { 1231 --BBI; 1232 // Don't count debug info directives, lest they affect codegen, 1233 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1234 if (isa<DbgInfoIntrinsic>(BBI) || 1235 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1236 ScanInsts++; 1237 continue; 1238 } 1239 1240 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1241 // Prev store isn't volatile, and stores to the same location? 1242 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1243 SI.getOperand(1))) { 1244 ++NumDeadStore; 1245 ++BBI; 1246 eraseInstFromFunction(*PrevSI); 1247 continue; 1248 } 1249 break; 1250 } 1251 1252 // If this is a load, we have to stop. However, if the loaded value is from 1253 // the pointer we're loading and is producing the pointer we're storing, 1254 // then *this* store is dead (X = load P; store X -> P). 1255 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1256 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1257 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1258 return eraseInstFromFunction(SI); 1259 } 1260 1261 // Otherwise, this is a load from some other location. Stores before it 1262 // may not be dead. 1263 break; 1264 } 1265 1266 // Don't skip over loads or things that can modify memory. 1267 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) 1268 break; 1269 } 1270 1271 // store X, null -> turns into 'unreachable' in SimplifyCFG 1272 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { 1273 if (!isa<UndefValue>(Val)) { 1274 SI.setOperand(0, UndefValue::get(Val->getType())); 1275 if (Instruction *U = dyn_cast<Instruction>(Val)) 1276 Worklist.Add(U); // Dropped a use. 1277 } 1278 return nullptr; // Do not modify these! 1279 } 1280 1281 // store undef, Ptr -> noop 1282 if (isa<UndefValue>(Val)) 1283 return eraseInstFromFunction(SI); 1284 1285 // If this store is the last instruction in the basic block (possibly 1286 // excepting debug info instructions), and if the block ends with an 1287 // unconditional branch, try to move it to the successor block. 1288 BBI = SI.getIterator(); 1289 do { 1290 ++BBI; 1291 } while (isa<DbgInfoIntrinsic>(BBI) || 1292 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1293 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1294 if (BI->isUnconditional()) 1295 if (SimplifyStoreAtEndOfBlock(SI)) 1296 return nullptr; // xform done! 1297 1298 return nullptr; 1299 } 1300 1301 /// SimplifyStoreAtEndOfBlock - Turn things like: 1302 /// if () { *P = v1; } else { *P = v2 } 1303 /// into a phi node with a store in the successor. 1304 /// 1305 /// Simplify things like: 1306 /// *P = v1; if () { *P = v2; } 1307 /// into a phi node with a store in the successor. 1308 /// 1309 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1310 assert(SI.isUnordered() && 1311 "this code has not been auditted for volatile or ordered store case"); 1312 1313 BasicBlock *StoreBB = SI.getParent(); 1314 1315 // Check to see if the successor block has exactly two incoming edges. If 1316 // so, see if the other predecessor contains a store to the same location. 1317 // if so, insert a PHI node (if needed) and move the stores down. 1318 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1319 1320 // Determine whether Dest has exactly two predecessors and, if so, compute 1321 // the other predecessor. 1322 pred_iterator PI = pred_begin(DestBB); 1323 BasicBlock *P = *PI; 1324 BasicBlock *OtherBB = nullptr; 1325 1326 if (P != StoreBB) 1327 OtherBB = P; 1328 1329 if (++PI == pred_end(DestBB)) 1330 return false; 1331 1332 P = *PI; 1333 if (P != StoreBB) { 1334 if (OtherBB) 1335 return false; 1336 OtherBB = P; 1337 } 1338 if (++PI != pred_end(DestBB)) 1339 return false; 1340 1341 // Bail out if all the relevant blocks aren't distinct (this can happen, 1342 // for example, if SI is in an infinite loop) 1343 if (StoreBB == DestBB || OtherBB == DestBB) 1344 return false; 1345 1346 // Verify that the other block ends in a branch and is not otherwise empty. 1347 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1348 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1349 if (!OtherBr || BBI == OtherBB->begin()) 1350 return false; 1351 1352 // If the other block ends in an unconditional branch, check for the 'if then 1353 // else' case. there is an instruction before the branch. 1354 StoreInst *OtherStore = nullptr; 1355 if (OtherBr->isUnconditional()) { 1356 --BBI; 1357 // Skip over debugging info. 1358 while (isa<DbgInfoIntrinsic>(BBI) || 1359 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1360 if (BBI==OtherBB->begin()) 1361 return false; 1362 --BBI; 1363 } 1364 // If this isn't a store, isn't a store to the same location, or is not the 1365 // right kind of store, bail out. 1366 OtherStore = dyn_cast<StoreInst>(BBI); 1367 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1368 !SI.isSameOperationAs(OtherStore)) 1369 return false; 1370 } else { 1371 // Otherwise, the other block ended with a conditional branch. If one of the 1372 // destinations is StoreBB, then we have the if/then case. 1373 if (OtherBr->getSuccessor(0) != StoreBB && 1374 OtherBr->getSuccessor(1) != StoreBB) 1375 return false; 1376 1377 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1378 // if/then triangle. See if there is a store to the same ptr as SI that 1379 // lives in OtherBB. 1380 for (;; --BBI) { 1381 // Check to see if we find the matching store. 1382 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1383 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1384 !SI.isSameOperationAs(OtherStore)) 1385 return false; 1386 break; 1387 } 1388 // If we find something that may be using or overwriting the stored 1389 // value, or if we run out of instructions, we can't do the xform. 1390 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || 1391 BBI == OtherBB->begin()) 1392 return false; 1393 } 1394 1395 // In order to eliminate the store in OtherBr, we have to 1396 // make sure nothing reads or overwrites the stored value in 1397 // StoreBB. 1398 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1399 // FIXME: This should really be AA driven. 1400 if (I->mayReadFromMemory() || I->mayWriteToMemory()) 1401 return false; 1402 } 1403 } 1404 1405 // Insert a PHI node now if we need it. 1406 Value *MergedVal = OtherStore->getOperand(0); 1407 if (MergedVal != SI.getOperand(0)) { 1408 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1409 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1410 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1411 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1412 } 1413 1414 // Advance to a place where it is safe to insert the new store and 1415 // insert it. 1416 BBI = DestBB->getFirstInsertionPt(); 1417 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1418 SI.isVolatile(), 1419 SI.getAlignment(), 1420 SI.getOrdering(), 1421 SI.getSynchScope()); 1422 InsertNewInstBefore(NewSI, *BBI); 1423 NewSI->setDebugLoc(OtherStore->getDebugLoc()); 1424 1425 // If the two stores had AA tags, merge them. 1426 AAMDNodes AATags; 1427 SI.getAAMetadata(AATags); 1428 if (AATags) { 1429 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1430 NewSI->setAAMetadata(AATags); 1431 } 1432 1433 // Nuke the old stores. 1434 eraseInstFromFunction(SI); 1435 eraseInstFromFunction(*OtherStore); 1436 return true; 1437 } 1438