1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for load, store and alloca.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/IR/ConstantRange.h"
19 #include "llvm/IR/DataLayout.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/IntrinsicInst.h"
22 #include "llvm/IR/MDBuilder.h"
23 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
24 #include "llvm/Transforms/Utils/Local.h"
25 using namespace llvm;
26 
27 #define DEBUG_TYPE "instcombine"
28 
29 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
30 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
31 
32 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
33 /// some part of a constant global variable.  This intentionally only accepts
34 /// constant expressions because we can't rewrite arbitrary instructions.
35 static bool pointsToConstantGlobal(Value *V) {
36   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
37     return GV->isConstant();
38 
39   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
40     if (CE->getOpcode() == Instruction::BitCast ||
41         CE->getOpcode() == Instruction::AddrSpaceCast ||
42         CE->getOpcode() == Instruction::GetElementPtr)
43       return pointsToConstantGlobal(CE->getOperand(0));
44   }
45   return false;
46 }
47 
48 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
49 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
50 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
51 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
52 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
53 /// the alloca, and if the source pointer is a pointer to a constant global, we
54 /// can optimize this.
55 static bool
56 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
57                                SmallVectorImpl<Instruction *> &ToDelete) {
58   // We track lifetime intrinsics as we encounter them.  If we decide to go
59   // ahead and replace the value with the global, this lets the caller quickly
60   // eliminate the markers.
61 
62   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
63   ValuesToInspect.emplace_back(V, false);
64   while (!ValuesToInspect.empty()) {
65     auto ValuePair = ValuesToInspect.pop_back_val();
66     const bool IsOffset = ValuePair.second;
67     for (auto &U : ValuePair.first->uses()) {
68       auto *I = cast<Instruction>(U.getUser());
69 
70       if (auto *LI = dyn_cast<LoadInst>(I)) {
71         // Ignore non-volatile loads, they are always ok.
72         if (!LI->isSimple()) return false;
73         continue;
74       }
75 
76       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
77         // If uses of the bitcast are ok, we are ok.
78         ValuesToInspect.emplace_back(I, IsOffset);
79         continue;
80       }
81       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
82         // If the GEP has all zero indices, it doesn't offset the pointer. If it
83         // doesn't, it does.
84         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
85         continue;
86       }
87 
88       if (auto CS = CallSite(I)) {
89         // If this is the function being called then we treat it like a load and
90         // ignore it.
91         if (CS.isCallee(&U))
92           continue;
93 
94         unsigned DataOpNo = CS.getDataOperandNo(&U);
95         bool IsArgOperand = CS.isArgOperand(&U);
96 
97         // Inalloca arguments are clobbered by the call.
98         if (IsArgOperand && CS.isInAllocaArgument(DataOpNo))
99           return false;
100 
101         // If this is a readonly/readnone call site, then we know it is just a
102         // load (but one that potentially returns the value itself), so we can
103         // ignore it if we know that the value isn't captured.
104         if (CS.onlyReadsMemory() &&
105             (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo)))
106           continue;
107 
108         // If this is being passed as a byval argument, the caller is making a
109         // copy, so it is only a read of the alloca.
110         if (IsArgOperand && CS.isByValArgument(DataOpNo))
111           continue;
112       }
113 
114       // Lifetime intrinsics can be handled by the caller.
115       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
116         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
117             II->getIntrinsicID() == Intrinsic::lifetime_end) {
118           assert(II->use_empty() && "Lifetime markers have no result to use!");
119           ToDelete.push_back(II);
120           continue;
121         }
122       }
123 
124       // If this is isn't our memcpy/memmove, reject it as something we can't
125       // handle.
126       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
127       if (!MI)
128         return false;
129 
130       // If the transfer is using the alloca as a source of the transfer, then
131       // ignore it since it is a load (unless the transfer is volatile).
132       if (U.getOperandNo() == 1) {
133         if (MI->isVolatile()) return false;
134         continue;
135       }
136 
137       // If we already have seen a copy, reject the second one.
138       if (TheCopy) return false;
139 
140       // If the pointer has been offset from the start of the alloca, we can't
141       // safely handle this.
142       if (IsOffset) return false;
143 
144       // If the memintrinsic isn't using the alloca as the dest, reject it.
145       if (U.getOperandNo() != 0) return false;
146 
147       // If the source of the memcpy/move is not a constant global, reject it.
148       if (!pointsToConstantGlobal(MI->getSource()))
149         return false;
150 
151       // Otherwise, the transform is safe.  Remember the copy instruction.
152       TheCopy = MI;
153     }
154   }
155   return true;
156 }
157 
158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
159 /// modified by a copy from a constant global.  If we can prove this, we can
160 /// replace any uses of the alloca with uses of the global directly.
161 static MemTransferInst *
162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
163                                SmallVectorImpl<Instruction *> &ToDelete) {
164   MemTransferInst *TheCopy = nullptr;
165   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
166     return TheCopy;
167   return nullptr;
168 }
169 
170 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
171   // Check for array size of 1 (scalar allocation).
172   if (!AI.isArrayAllocation()) {
173     // i32 1 is the canonical array size for scalar allocations.
174     if (AI.getArraySize()->getType()->isIntegerTy(32))
175       return nullptr;
176 
177     // Canonicalize it.
178     Value *V = IC.Builder->getInt32(1);
179     AI.setOperand(0, V);
180     return &AI;
181   }
182 
183   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
184   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
185     Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
186     AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
187     New->setAlignment(AI.getAlignment());
188 
189     // Scan to the end of the allocation instructions, to skip over a block of
190     // allocas if possible...also skip interleaved debug info
191     //
192     BasicBlock::iterator It(New);
193     while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
194       ++It;
195 
196     // Now that I is pointing to the first non-allocation-inst in the block,
197     // insert our getelementptr instruction...
198     //
199     Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
200     Value *NullIdx = Constant::getNullValue(IdxTy);
201     Value *Idx[2] = {NullIdx, NullIdx};
202     Instruction *GEP =
203         GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
204     IC.InsertNewInstBefore(GEP, *It);
205 
206     // Now make everything use the getelementptr instead of the original
207     // allocation.
208     return IC.replaceInstUsesWith(AI, GEP);
209   }
210 
211   if (isa<UndefValue>(AI.getArraySize()))
212     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
213 
214   // Ensure that the alloca array size argument has type intptr_t, so that
215   // any casting is exposed early.
216   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
217   if (AI.getArraySize()->getType() != IntPtrTy) {
218     Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
219     AI.setOperand(0, V);
220     return &AI;
221   }
222 
223   return nullptr;
224 }
225 
226 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
227   if (auto *I = simplifyAllocaArraySize(*this, AI))
228     return I;
229 
230   if (AI.getAllocatedType()->isSized()) {
231     // If the alignment is 0 (unspecified), assign it the preferred alignment.
232     if (AI.getAlignment() == 0)
233       AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
234 
235     // Move all alloca's of zero byte objects to the entry block and merge them
236     // together.  Note that we only do this for alloca's, because malloc should
237     // allocate and return a unique pointer, even for a zero byte allocation.
238     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
239       // For a zero sized alloca there is no point in doing an array allocation.
240       // This is helpful if the array size is a complicated expression not used
241       // elsewhere.
242       if (AI.isArrayAllocation()) {
243         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
244         return &AI;
245       }
246 
247       // Get the first instruction in the entry block.
248       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
249       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
250       if (FirstInst != &AI) {
251         // If the entry block doesn't start with a zero-size alloca then move
252         // this one to the start of the entry block.  There is no problem with
253         // dominance as the array size was forced to a constant earlier already.
254         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
255         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
256             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
257           AI.moveBefore(FirstInst);
258           return &AI;
259         }
260 
261         // If the alignment of the entry block alloca is 0 (unspecified),
262         // assign it the preferred alignment.
263         if (EntryAI->getAlignment() == 0)
264           EntryAI->setAlignment(
265               DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
266         // Replace this zero-sized alloca with the one at the start of the entry
267         // block after ensuring that the address will be aligned enough for both
268         // types.
269         unsigned MaxAlign = std::max(EntryAI->getAlignment(),
270                                      AI.getAlignment());
271         EntryAI->setAlignment(MaxAlign);
272         if (AI.getType() != EntryAI->getType())
273           return new BitCastInst(EntryAI, AI.getType());
274         return replaceInstUsesWith(AI, EntryAI);
275       }
276     }
277   }
278 
279   if (AI.getAlignment()) {
280     // Check to see if this allocation is only modified by a memcpy/memmove from
281     // a constant global whose alignment is equal to or exceeds that of the
282     // allocation.  If this is the case, we can change all users to use
283     // the constant global instead.  This is commonly produced by the CFE by
284     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
285     // is only subsequently read.
286     SmallVector<Instruction *, 4> ToDelete;
287     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
288       unsigned SourceAlign = getOrEnforceKnownAlignment(
289           Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
290       if (AI.getAlignment() <= SourceAlign) {
291         DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
292         DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
293         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
294           eraseInstFromFunction(*ToDelete[i]);
295         Constant *TheSrc = cast<Constant>(Copy->getSource());
296         Constant *Cast
297           = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
298         Instruction *NewI = replaceInstUsesWith(AI, Cast);
299         eraseInstFromFunction(*Copy);
300         ++NumGlobalCopies;
301         return NewI;
302       }
303     }
304   }
305 
306   // At last, use the generic allocation site handler to aggressively remove
307   // unused allocas.
308   return visitAllocSite(AI);
309 }
310 
311 /// \brief Helper to combine a load to a new type.
312 ///
313 /// This just does the work of combining a load to a new type. It handles
314 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
315 /// loaded *value* type. This will convert it to a pointer, cast the operand to
316 /// that pointer type, load it, etc.
317 ///
318 /// Note that this will create all of the instructions with whatever insert
319 /// point the \c InstCombiner currently is using.
320 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
321                                       const Twine &Suffix = "") {
322   Value *Ptr = LI.getPointerOperand();
323   unsigned AS = LI.getPointerAddressSpace();
324   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
325   LI.getAllMetadata(MD);
326 
327   LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
328       IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
329       LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix);
330   NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope());
331   MDBuilder MDB(NewLoad->getContext());
332   for (const auto &MDPair : MD) {
333     unsigned ID = MDPair.first;
334     MDNode *N = MDPair.second;
335     // Note, essentially every kind of metadata should be preserved here! This
336     // routine is supposed to clone a load instruction changing *only its type*.
337     // The only metadata it makes sense to drop is metadata which is invalidated
338     // when the pointer type changes. This should essentially never be the case
339     // in LLVM, but we explicitly switch over only known metadata to be
340     // conservatively correct. If you are adding metadata to LLVM which pertains
341     // to loads, you almost certainly want to add it here.
342     switch (ID) {
343     case LLVMContext::MD_dbg:
344     case LLVMContext::MD_tbaa:
345     case LLVMContext::MD_prof:
346     case LLVMContext::MD_fpmath:
347     case LLVMContext::MD_tbaa_struct:
348     case LLVMContext::MD_invariant_load:
349     case LLVMContext::MD_alias_scope:
350     case LLVMContext::MD_noalias:
351     case LLVMContext::MD_nontemporal:
352     case LLVMContext::MD_mem_parallel_loop_access:
353       // All of these directly apply.
354       NewLoad->setMetadata(ID, N);
355       break;
356 
357     case LLVMContext::MD_nonnull:
358       // This only directly applies if the new type is also a pointer.
359       if (NewTy->isPointerTy()) {
360         NewLoad->setMetadata(ID, N);
361         break;
362       }
363       // If it's integral now, translate it to !range metadata.
364       if (NewTy->isIntegerTy()) {
365         auto *ITy = cast<IntegerType>(NewTy);
366         auto *NullInt = ConstantExpr::getPtrToInt(
367             ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
368         auto *NonNullInt =
369             ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
370         NewLoad->setMetadata(LLVMContext::MD_range,
371                              MDB.createRange(NonNullInt, NullInt));
372       }
373       break;
374     case LLVMContext::MD_align:
375     case LLVMContext::MD_dereferenceable:
376     case LLVMContext::MD_dereferenceable_or_null:
377       // These only directly apply if the new type is also a pointer.
378       if (NewTy->isPointerTy())
379         NewLoad->setMetadata(ID, N);
380       break;
381     case LLVMContext::MD_range:
382       // FIXME: It would be nice to propagate this in some way, but the type
383       // conversions make it hard.
384 
385       // If it's a pointer now and the range does not contain 0, make it !nonnull.
386       if (NewTy->isPointerTy()) {
387         unsigned BitWidth = IC.getDataLayout().getTypeSizeInBits(NewTy);
388         if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) {
389           MDNode *NN = MDNode::get(LI.getContext(), None);
390           NewLoad->setMetadata(LLVMContext::MD_nonnull, NN);
391         }
392       }
393       break;
394     }
395   }
396   return NewLoad;
397 }
398 
399 /// \brief Combine a store to a new type.
400 ///
401 /// Returns the newly created store instruction.
402 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
403   Value *Ptr = SI.getPointerOperand();
404   unsigned AS = SI.getPointerAddressSpace();
405   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
406   SI.getAllMetadata(MD);
407 
408   StoreInst *NewStore = IC.Builder->CreateAlignedStore(
409       V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
410       SI.getAlignment(), SI.isVolatile());
411   NewStore->setAtomic(SI.getOrdering(), SI.getSynchScope());
412   for (const auto &MDPair : MD) {
413     unsigned ID = MDPair.first;
414     MDNode *N = MDPair.second;
415     // Note, essentially every kind of metadata should be preserved here! This
416     // routine is supposed to clone a store instruction changing *only its
417     // type*. The only metadata it makes sense to drop is metadata which is
418     // invalidated when the pointer type changes. This should essentially
419     // never be the case in LLVM, but we explicitly switch over only known
420     // metadata to be conservatively correct. If you are adding metadata to
421     // LLVM which pertains to stores, you almost certainly want to add it
422     // here.
423     switch (ID) {
424     case LLVMContext::MD_dbg:
425     case LLVMContext::MD_tbaa:
426     case LLVMContext::MD_prof:
427     case LLVMContext::MD_fpmath:
428     case LLVMContext::MD_tbaa_struct:
429     case LLVMContext::MD_alias_scope:
430     case LLVMContext::MD_noalias:
431     case LLVMContext::MD_nontemporal:
432     case LLVMContext::MD_mem_parallel_loop_access:
433       // All of these directly apply.
434       NewStore->setMetadata(ID, N);
435       break;
436 
437     case LLVMContext::MD_invariant_load:
438     case LLVMContext::MD_nonnull:
439     case LLVMContext::MD_range:
440     case LLVMContext::MD_align:
441     case LLVMContext::MD_dereferenceable:
442     case LLVMContext::MD_dereferenceable_or_null:
443       // These don't apply for stores.
444       break;
445     }
446   }
447 
448   return NewStore;
449 }
450 
451 /// \brief Combine loads to match the type of their uses' value after looking
452 /// through intervening bitcasts.
453 ///
454 /// The core idea here is that if the result of a load is used in an operation,
455 /// we should load the type most conducive to that operation. For example, when
456 /// loading an integer and converting that immediately to a pointer, we should
457 /// instead directly load a pointer.
458 ///
459 /// However, this routine must never change the width of a load or the number of
460 /// loads as that would introduce a semantic change. This combine is expected to
461 /// be a semantic no-op which just allows loads to more closely model the types
462 /// of their consuming operations.
463 ///
464 /// Currently, we also refuse to change the precise type used for an atomic load
465 /// or a volatile load. This is debatable, and might be reasonable to change
466 /// later. However, it is risky in case some backend or other part of LLVM is
467 /// relying on the exact type loaded to select appropriate atomic operations.
468 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
469   // FIXME: We could probably with some care handle both volatile and ordered
470   // atomic loads here but it isn't clear that this is important.
471   if (!LI.isUnordered())
472     return nullptr;
473 
474   if (LI.use_empty())
475     return nullptr;
476 
477   // swifterror values can't be bitcasted.
478   if (LI.getPointerOperand()->isSwiftError())
479     return nullptr;
480 
481   Type *Ty = LI.getType();
482   const DataLayout &DL = IC.getDataLayout();
483 
484   // Try to canonicalize loads which are only ever stored to operate over
485   // integers instead of any other type. We only do this when the loaded type
486   // is sized and has a size exactly the same as its store size and the store
487   // size is a legal integer type.
488   if (!Ty->isIntegerTy() && Ty->isSized() &&
489       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
490       DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) &&
491       !DL.isNonIntegralPointerType(Ty)) {
492     if (all_of(LI.users(), [&LI](User *U) {
493           auto *SI = dyn_cast<StoreInst>(U);
494           return SI && SI->getPointerOperand() != &LI;
495         })) {
496       LoadInst *NewLoad = combineLoadToNewType(
497           IC, LI,
498           Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
499       // Replace all the stores with stores of the newly loaded value.
500       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
501         auto *SI = cast<StoreInst>(*UI++);
502         IC.Builder->SetInsertPoint(SI);
503         combineStoreToNewValue(IC, *SI, NewLoad);
504         IC.eraseInstFromFunction(*SI);
505       }
506       assert(LI.use_empty() && "Failed to remove all users of the load!");
507       // Return the old load so the combiner can delete it safely.
508       return &LI;
509     }
510   }
511 
512   // Fold away bit casts of the loaded value by loading the desired type.
513   // We can do this for BitCastInsts as well as casts from and to pointer types,
514   // as long as those are noops (i.e., the source or dest type have the same
515   // bitwidth as the target's pointers).
516   if (LI.hasOneUse())
517     if (auto* CI = dyn_cast<CastInst>(LI.user_back())) {
518       if (CI->isNoopCast(DL)) {
519         LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
520         CI->replaceAllUsesWith(NewLoad);
521         IC.eraseInstFromFunction(*CI);
522         return &LI;
523       }
524     }
525 
526   // FIXME: We should also canonicalize loads of vectors when their elements are
527   // cast to other types.
528   return nullptr;
529 }
530 
531 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
532   // FIXME: We could probably with some care handle both volatile and atomic
533   // stores here but it isn't clear that this is important.
534   if (!LI.isSimple())
535     return nullptr;
536 
537   Type *T = LI.getType();
538   if (!T->isAggregateType())
539     return nullptr;
540 
541   StringRef Name = LI.getName();
542   assert(LI.getAlignment() && "Alignment must be set at this point");
543 
544   if (auto *ST = dyn_cast<StructType>(T)) {
545     // If the struct only have one element, we unpack.
546     auto NumElements = ST->getNumElements();
547     if (NumElements == 1) {
548       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
549                                                ".unpack");
550       return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
551         UndefValue::get(T), NewLoad, 0, Name));
552     }
553 
554     // We don't want to break loads with padding here as we'd loose
555     // the knowledge that padding exists for the rest of the pipeline.
556     const DataLayout &DL = IC.getDataLayout();
557     auto *SL = DL.getStructLayout(ST);
558     if (SL->hasPadding())
559       return nullptr;
560 
561     auto Align = LI.getAlignment();
562     if (!Align)
563       Align = DL.getABITypeAlignment(ST);
564 
565     auto *Addr = LI.getPointerOperand();
566     auto *IdxType = Type::getInt32Ty(T->getContext());
567     auto *Zero = ConstantInt::get(IdxType, 0);
568 
569     Value *V = UndefValue::get(T);
570     for (unsigned i = 0; i < NumElements; i++) {
571       Value *Indices[2] = {
572         Zero,
573         ConstantInt::get(IdxType, i),
574       };
575       auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
576                                                 Name + ".elt");
577       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
578       auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack");
579       V = IC.Builder->CreateInsertValue(V, L, i);
580     }
581 
582     V->setName(Name);
583     return IC.replaceInstUsesWith(LI, V);
584   }
585 
586   if (auto *AT = dyn_cast<ArrayType>(T)) {
587     auto *ET = AT->getElementType();
588     auto NumElements = AT->getNumElements();
589     if (NumElements == 1) {
590       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
591       return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
592         UndefValue::get(T), NewLoad, 0, Name));
593     }
594 
595     // Bail out if the array is too large. Ideally we would like to optimize
596     // arrays of arbitrary size but this has a terrible impact on compile time.
597     // The threshold here is chosen arbitrarily, maybe needs a little bit of
598     // tuning.
599     if (NumElements > 1024)
600       return nullptr;
601 
602     const DataLayout &DL = IC.getDataLayout();
603     auto EltSize = DL.getTypeAllocSize(ET);
604     auto Align = LI.getAlignment();
605     if (!Align)
606       Align = DL.getABITypeAlignment(T);
607 
608     auto *Addr = LI.getPointerOperand();
609     auto *IdxType = Type::getInt64Ty(T->getContext());
610     auto *Zero = ConstantInt::get(IdxType, 0);
611 
612     Value *V = UndefValue::get(T);
613     uint64_t Offset = 0;
614     for (uint64_t i = 0; i < NumElements; i++) {
615       Value *Indices[2] = {
616         Zero,
617         ConstantInt::get(IdxType, i),
618       };
619       auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
620                                                 Name + ".elt");
621       auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset),
622                                               Name + ".unpack");
623       V = IC.Builder->CreateInsertValue(V, L, i);
624       Offset += EltSize;
625     }
626 
627     V->setName(Name);
628     return IC.replaceInstUsesWith(LI, V);
629   }
630 
631   return nullptr;
632 }
633 
634 // If we can determine that all possible objects pointed to by the provided
635 // pointer value are, not only dereferenceable, but also definitively less than
636 // or equal to the provided maximum size, then return true. Otherwise, return
637 // false (constant global values and allocas fall into this category).
638 //
639 // FIXME: This should probably live in ValueTracking (or similar).
640 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
641                                      const DataLayout &DL) {
642   SmallPtrSet<Value *, 4> Visited;
643   SmallVector<Value *, 4> Worklist(1, V);
644 
645   do {
646     Value *P = Worklist.pop_back_val();
647     P = P->stripPointerCasts();
648 
649     if (!Visited.insert(P).second)
650       continue;
651 
652     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
653       Worklist.push_back(SI->getTrueValue());
654       Worklist.push_back(SI->getFalseValue());
655       continue;
656     }
657 
658     if (PHINode *PN = dyn_cast<PHINode>(P)) {
659       for (Value *IncValue : PN->incoming_values())
660         Worklist.push_back(IncValue);
661       continue;
662     }
663 
664     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
665       if (GA->isInterposable())
666         return false;
667       Worklist.push_back(GA->getAliasee());
668       continue;
669     }
670 
671     // If we know how big this object is, and it is less than MaxSize, continue
672     // searching. Otherwise, return false.
673     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
674       if (!AI->getAllocatedType()->isSized())
675         return false;
676 
677       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
678       if (!CS)
679         return false;
680 
681       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
682       // Make sure that, even if the multiplication below would wrap as an
683       // uint64_t, we still do the right thing.
684       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
685         return false;
686       continue;
687     }
688 
689     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
690       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
691         return false;
692 
693       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
694       if (InitSize > MaxSize)
695         return false;
696       continue;
697     }
698 
699     return false;
700   } while (!Worklist.empty());
701 
702   return true;
703 }
704 
705 // If we're indexing into an object of a known size, and the outer index is
706 // not a constant, but having any value but zero would lead to undefined
707 // behavior, replace it with zero.
708 //
709 // For example, if we have:
710 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
711 // ...
712 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
713 // ... = load i32* %arrayidx, align 4
714 // Then we know that we can replace %x in the GEP with i64 0.
715 //
716 // FIXME: We could fold any GEP index to zero that would cause UB if it were
717 // not zero. Currently, we only handle the first such index. Also, we could
718 // also search through non-zero constant indices if we kept track of the
719 // offsets those indices implied.
720 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
721                                      Instruction *MemI, unsigned &Idx) {
722   if (GEPI->getNumOperands() < 2)
723     return false;
724 
725   // Find the first non-zero index of a GEP. If all indices are zero, return
726   // one past the last index.
727   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
728     unsigned I = 1;
729     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
730       Value *V = GEPI->getOperand(I);
731       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
732         if (CI->isZero())
733           continue;
734 
735       break;
736     }
737 
738     return I;
739   };
740 
741   // Skip through initial 'zero' indices, and find the corresponding pointer
742   // type. See if the next index is not a constant.
743   Idx = FirstNZIdx(GEPI);
744   if (Idx == GEPI->getNumOperands())
745     return false;
746   if (isa<Constant>(GEPI->getOperand(Idx)))
747     return false;
748 
749   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
750   Type *AllocTy =
751     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
752   if (!AllocTy || !AllocTy->isSized())
753     return false;
754   const DataLayout &DL = IC.getDataLayout();
755   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
756 
757   // If there are more indices after the one we might replace with a zero, make
758   // sure they're all non-negative. If any of them are negative, the overall
759   // address being computed might be before the base address determined by the
760   // first non-zero index.
761   auto IsAllNonNegative = [&]() {
762     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
763       bool KnownNonNegative, KnownNegative;
764       IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative,
765                         KnownNegative, 0, MemI);
766       if (KnownNonNegative)
767         continue;
768       return false;
769     }
770 
771     return true;
772   };
773 
774   // FIXME: If the GEP is not inbounds, and there are extra indices after the
775   // one we'll replace, those could cause the address computation to wrap
776   // (rendering the IsAllNonNegative() check below insufficient). We can do
777   // better, ignoring zero indices (and other indices we can prove small
778   // enough not to wrap).
779   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
780     return false;
781 
782   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
783   // also known to be dereferenceable.
784   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
785          IsAllNonNegative();
786 }
787 
788 // If we're indexing into an object with a variable index for the memory
789 // access, but the object has only one element, we can assume that the index
790 // will always be zero. If we replace the GEP, return it.
791 template <typename T>
792 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
793                                           T &MemI) {
794   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
795     unsigned Idx;
796     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
797       Instruction *NewGEPI = GEPI->clone();
798       NewGEPI->setOperand(Idx,
799         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
800       NewGEPI->insertBefore(GEPI);
801       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
802       return NewGEPI;
803     }
804   }
805 
806   return nullptr;
807 }
808 
809 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
810   Value *Op = LI.getOperand(0);
811 
812   // Try to canonicalize the loaded type.
813   if (Instruction *Res = combineLoadToOperationType(*this, LI))
814     return Res;
815 
816   // Attempt to improve the alignment.
817   unsigned KnownAlign = getOrEnforceKnownAlignment(
818       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
819   unsigned LoadAlign = LI.getAlignment();
820   unsigned EffectiveLoadAlign =
821       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
822 
823   if (KnownAlign > EffectiveLoadAlign)
824     LI.setAlignment(KnownAlign);
825   else if (LoadAlign == 0)
826     LI.setAlignment(EffectiveLoadAlign);
827 
828   // Replace GEP indices if possible.
829   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
830       Worklist.Add(NewGEPI);
831       return &LI;
832   }
833 
834   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
835     return Res;
836 
837   // Do really simple store-to-load forwarding and load CSE, to catch cases
838   // where there are several consecutive memory accesses to the same location,
839   // separated by a few arithmetic operations.
840   BasicBlock::iterator BBI(LI);
841   bool IsLoadCSE = false;
842   if (Value *AvailableVal =
843       FindAvailableLoadedValue(&LI, LI.getParent(), BBI,
844                                DefMaxInstsToScan, AA, &IsLoadCSE)) {
845     if (IsLoadCSE) {
846       LoadInst *NLI = cast<LoadInst>(AvailableVal);
847       unsigned KnownIDs[] = {
848           LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
849           LLVMContext::MD_noalias,         LLVMContext::MD_range,
850           LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
851           LLVMContext::MD_invariant_group, LLVMContext::MD_align,
852           LLVMContext::MD_dereferenceable,
853           LLVMContext::MD_dereferenceable_or_null};
854       combineMetadata(NLI, &LI, KnownIDs);
855     };
856 
857     return replaceInstUsesWith(
858         LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
859                                             LI.getName() + ".cast"));
860   }
861 
862   // None of the following transforms are legal for volatile/ordered atomic
863   // loads.  Most of them do apply for unordered atomics.
864   if (!LI.isUnordered()) return nullptr;
865 
866   // load(gep null, ...) -> unreachable
867   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
868     const Value *GEPI0 = GEPI->getOperand(0);
869     // TODO: Consider a target hook for valid address spaces for this xform.
870     if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
871       // Insert a new store to null instruction before the load to indicate
872       // that this code is not reachable.  We do this instead of inserting
873       // an unreachable instruction directly because we cannot modify the
874       // CFG.
875       new StoreInst(UndefValue::get(LI.getType()),
876                     Constant::getNullValue(Op->getType()), &LI);
877       return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
878     }
879   }
880 
881   // load null/undef -> unreachable
882   // TODO: Consider a target hook for valid address spaces for this xform.
883   if (isa<UndefValue>(Op) ||
884       (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
885     // Insert a new store to null instruction before the load to indicate that
886     // this code is not reachable.  We do this instead of inserting an
887     // unreachable instruction directly because we cannot modify the CFG.
888     new StoreInst(UndefValue::get(LI.getType()),
889                   Constant::getNullValue(Op->getType()), &LI);
890     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
891   }
892 
893   if (Op->hasOneUse()) {
894     // Change select and PHI nodes to select values instead of addresses: this
895     // helps alias analysis out a lot, allows many others simplifications, and
896     // exposes redundancy in the code.
897     //
898     // Note that we cannot do the transformation unless we know that the
899     // introduced loads cannot trap!  Something like this is valid as long as
900     // the condition is always false: load (select bool %C, int* null, int* %G),
901     // but it would not be valid if we transformed it to load from null
902     // unconditionally.
903     //
904     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
905       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
906       unsigned Align = LI.getAlignment();
907       if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) &&
908           isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) {
909         LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
910                                            SI->getOperand(1)->getName()+".val");
911         LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
912                                            SI->getOperand(2)->getName()+".val");
913         assert(LI.isUnordered() && "implied by above");
914         V1->setAlignment(Align);
915         V1->setAtomic(LI.getOrdering(), LI.getSynchScope());
916         V2->setAlignment(Align);
917         V2->setAtomic(LI.getOrdering(), LI.getSynchScope());
918         return SelectInst::Create(SI->getCondition(), V1, V2);
919       }
920 
921       // load (select (cond, null, P)) -> load P
922       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
923           LI.getPointerAddressSpace() == 0) {
924         LI.setOperand(0, SI->getOperand(2));
925         return &LI;
926       }
927 
928       // load (select (cond, P, null)) -> load P
929       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
930           LI.getPointerAddressSpace() == 0) {
931         LI.setOperand(0, SI->getOperand(1));
932         return &LI;
933       }
934     }
935   }
936   return nullptr;
937 }
938 
939 /// \brief Look for extractelement/insertvalue sequence that acts like a bitcast.
940 ///
941 /// \returns underlying value that was "cast", or nullptr otherwise.
942 ///
943 /// For example, if we have:
944 ///
945 ///     %E0 = extractelement <2 x double> %U, i32 0
946 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
947 ///     %E1 = extractelement <2 x double> %U, i32 1
948 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
949 ///
950 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
951 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
952 /// Note that %U may contain non-undef values where %V1 has undef.
953 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
954   Value *U = nullptr;
955   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
956     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
957     if (!E)
958       return nullptr;
959     auto *W = E->getVectorOperand();
960     if (!U)
961       U = W;
962     else if (U != W)
963       return nullptr;
964     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
965     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
966       return nullptr;
967     V = IV->getAggregateOperand();
968   }
969   if (!isa<UndefValue>(V) ||!U)
970     return nullptr;
971 
972   auto *UT = cast<VectorType>(U->getType());
973   auto *VT = V->getType();
974   // Check that types UT and VT are bitwise isomorphic.
975   const auto &DL = IC.getDataLayout();
976   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
977     return nullptr;
978   }
979   if (auto *AT = dyn_cast<ArrayType>(VT)) {
980     if (AT->getNumElements() != UT->getNumElements())
981       return nullptr;
982   } else {
983     auto *ST = cast<StructType>(VT);
984     if (ST->getNumElements() != UT->getNumElements())
985       return nullptr;
986     for (const auto *EltT : ST->elements()) {
987       if (EltT != UT->getElementType())
988         return nullptr;
989     }
990   }
991   return U;
992 }
993 
994 /// \brief Combine stores to match the type of value being stored.
995 ///
996 /// The core idea here is that the memory does not have any intrinsic type and
997 /// where we can we should match the type of a store to the type of value being
998 /// stored.
999 ///
1000 /// However, this routine must never change the width of a store or the number of
1001 /// stores as that would introduce a semantic change. This combine is expected to
1002 /// be a semantic no-op which just allows stores to more closely model the types
1003 /// of their incoming values.
1004 ///
1005 /// Currently, we also refuse to change the precise type used for an atomic or
1006 /// volatile store. This is debatable, and might be reasonable to change later.
1007 /// However, it is risky in case some backend or other part of LLVM is relying
1008 /// on the exact type stored to select appropriate atomic operations.
1009 ///
1010 /// \returns true if the store was successfully combined away. This indicates
1011 /// the caller must erase the store instruction. We have to let the caller erase
1012 /// the store instruction as otherwise there is no way to signal whether it was
1013 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1014 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
1015   // FIXME: We could probably with some care handle both volatile and ordered
1016   // atomic stores here but it isn't clear that this is important.
1017   if (!SI.isUnordered())
1018     return false;
1019 
1020   // swifterror values can't be bitcasted.
1021   if (SI.getPointerOperand()->isSwiftError())
1022     return false;
1023 
1024   Value *V = SI.getValueOperand();
1025 
1026   // Fold away bit casts of the stored value by storing the original type.
1027   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1028     V = BC->getOperand(0);
1029     combineStoreToNewValue(IC, SI, V);
1030     return true;
1031   }
1032 
1033   if (Value *U = likeBitCastFromVector(IC, V)) {
1034     combineStoreToNewValue(IC, SI, U);
1035     return true;
1036   }
1037 
1038   // FIXME: We should also canonicalize stores of vectors when their elements
1039   // are cast to other types.
1040   return false;
1041 }
1042 
1043 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1044   // FIXME: We could probably with some care handle both volatile and atomic
1045   // stores here but it isn't clear that this is important.
1046   if (!SI.isSimple())
1047     return false;
1048 
1049   Value *V = SI.getValueOperand();
1050   Type *T = V->getType();
1051 
1052   if (!T->isAggregateType())
1053     return false;
1054 
1055   if (auto *ST = dyn_cast<StructType>(T)) {
1056     // If the struct only have one element, we unpack.
1057     unsigned Count = ST->getNumElements();
1058     if (Count == 1) {
1059       V = IC.Builder->CreateExtractValue(V, 0);
1060       combineStoreToNewValue(IC, SI, V);
1061       return true;
1062     }
1063 
1064     // We don't want to break loads with padding here as we'd loose
1065     // the knowledge that padding exists for the rest of the pipeline.
1066     const DataLayout &DL = IC.getDataLayout();
1067     auto *SL = DL.getStructLayout(ST);
1068     if (SL->hasPadding())
1069       return false;
1070 
1071     auto Align = SI.getAlignment();
1072     if (!Align)
1073       Align = DL.getABITypeAlignment(ST);
1074 
1075     SmallString<16> EltName = V->getName();
1076     EltName += ".elt";
1077     auto *Addr = SI.getPointerOperand();
1078     SmallString<16> AddrName = Addr->getName();
1079     AddrName += ".repack";
1080 
1081     auto *IdxType = Type::getInt32Ty(ST->getContext());
1082     auto *Zero = ConstantInt::get(IdxType, 0);
1083     for (unsigned i = 0; i < Count; i++) {
1084       Value *Indices[2] = {
1085         Zero,
1086         ConstantInt::get(IdxType, i),
1087       };
1088       auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1089                                                 AddrName);
1090       auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
1091       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
1092       IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign);
1093     }
1094 
1095     return true;
1096   }
1097 
1098   if (auto *AT = dyn_cast<ArrayType>(T)) {
1099     // If the array only have one element, we unpack.
1100     auto NumElements = AT->getNumElements();
1101     if (NumElements == 1) {
1102       V = IC.Builder->CreateExtractValue(V, 0);
1103       combineStoreToNewValue(IC, SI, V);
1104       return true;
1105     }
1106 
1107     // Bail out if the array is too large. Ideally we would like to optimize
1108     // arrays of arbitrary size but this has a terrible impact on compile time.
1109     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1110     // tuning.
1111     if (NumElements > 1024)
1112       return false;
1113 
1114     const DataLayout &DL = IC.getDataLayout();
1115     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1116     auto Align = SI.getAlignment();
1117     if (!Align)
1118       Align = DL.getABITypeAlignment(T);
1119 
1120     SmallString<16> EltName = V->getName();
1121     EltName += ".elt";
1122     auto *Addr = SI.getPointerOperand();
1123     SmallString<16> AddrName = Addr->getName();
1124     AddrName += ".repack";
1125 
1126     auto *IdxType = Type::getInt64Ty(T->getContext());
1127     auto *Zero = ConstantInt::get(IdxType, 0);
1128 
1129     uint64_t Offset = 0;
1130     for (uint64_t i = 0; i < NumElements; i++) {
1131       Value *Indices[2] = {
1132         Zero,
1133         ConstantInt::get(IdxType, i),
1134       };
1135       auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1136                                                 AddrName);
1137       auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
1138       auto EltAlign = MinAlign(Align, Offset);
1139       IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign);
1140       Offset += EltSize;
1141     }
1142 
1143     return true;
1144   }
1145 
1146   return false;
1147 }
1148 
1149 /// equivalentAddressValues - Test if A and B will obviously have the same
1150 /// value. This includes recognizing that %t0 and %t1 will have the same
1151 /// value in code like this:
1152 ///   %t0 = getelementptr \@a, 0, 3
1153 ///   store i32 0, i32* %t0
1154 ///   %t1 = getelementptr \@a, 0, 3
1155 ///   %t2 = load i32* %t1
1156 ///
1157 static bool equivalentAddressValues(Value *A, Value *B) {
1158   // Test if the values are trivially equivalent.
1159   if (A == B) return true;
1160 
1161   // Test if the values come form identical arithmetic instructions.
1162   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1163   // its only used to compare two uses within the same basic block, which
1164   // means that they'll always either have the same value or one of them
1165   // will have an undefined value.
1166   if (isa<BinaryOperator>(A) ||
1167       isa<CastInst>(A) ||
1168       isa<PHINode>(A) ||
1169       isa<GetElementPtrInst>(A))
1170     if (Instruction *BI = dyn_cast<Instruction>(B))
1171       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1172         return true;
1173 
1174   // Otherwise they may not be equivalent.
1175   return false;
1176 }
1177 
1178 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1179   Value *Val = SI.getOperand(0);
1180   Value *Ptr = SI.getOperand(1);
1181 
1182   // Try to canonicalize the stored type.
1183   if (combineStoreToValueType(*this, SI))
1184     return eraseInstFromFunction(SI);
1185 
1186   // Attempt to improve the alignment.
1187   unsigned KnownAlign = getOrEnforceKnownAlignment(
1188       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT);
1189   unsigned StoreAlign = SI.getAlignment();
1190   unsigned EffectiveStoreAlign =
1191       StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
1192 
1193   if (KnownAlign > EffectiveStoreAlign)
1194     SI.setAlignment(KnownAlign);
1195   else if (StoreAlign == 0)
1196     SI.setAlignment(EffectiveStoreAlign);
1197 
1198   // Try to canonicalize the stored type.
1199   if (unpackStoreToAggregate(*this, SI))
1200     return eraseInstFromFunction(SI);
1201 
1202   // Replace GEP indices if possible.
1203   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1204       Worklist.Add(NewGEPI);
1205       return &SI;
1206   }
1207 
1208   // Don't hack volatile/ordered stores.
1209   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1210   if (!SI.isUnordered()) return nullptr;
1211 
1212   // If the RHS is an alloca with a single use, zapify the store, making the
1213   // alloca dead.
1214   if (Ptr->hasOneUse()) {
1215     if (isa<AllocaInst>(Ptr))
1216       return eraseInstFromFunction(SI);
1217     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1218       if (isa<AllocaInst>(GEP->getOperand(0))) {
1219         if (GEP->getOperand(0)->hasOneUse())
1220           return eraseInstFromFunction(SI);
1221       }
1222     }
1223   }
1224 
1225   // Do really simple DSE, to catch cases where there are several consecutive
1226   // stores to the same location, separated by a few arithmetic operations. This
1227   // situation often occurs with bitfield accesses.
1228   BasicBlock::iterator BBI(SI);
1229   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1230        --ScanInsts) {
1231     --BBI;
1232     // Don't count debug info directives, lest they affect codegen,
1233     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1234     if (isa<DbgInfoIntrinsic>(BBI) ||
1235         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1236       ScanInsts++;
1237       continue;
1238     }
1239 
1240     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1241       // Prev store isn't volatile, and stores to the same location?
1242       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1243                                                         SI.getOperand(1))) {
1244         ++NumDeadStore;
1245         ++BBI;
1246         eraseInstFromFunction(*PrevSI);
1247         continue;
1248       }
1249       break;
1250     }
1251 
1252     // If this is a load, we have to stop.  However, if the loaded value is from
1253     // the pointer we're loading and is producing the pointer we're storing,
1254     // then *this* store is dead (X = load P; store X -> P).
1255     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1256       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1257         assert(SI.isUnordered() && "can't eliminate ordering operation");
1258         return eraseInstFromFunction(SI);
1259       }
1260 
1261       // Otherwise, this is a load from some other location.  Stores before it
1262       // may not be dead.
1263       break;
1264     }
1265 
1266     // Don't skip over loads or things that can modify memory.
1267     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
1268       break;
1269   }
1270 
1271   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1272   if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
1273     if (!isa<UndefValue>(Val)) {
1274       SI.setOperand(0, UndefValue::get(Val->getType()));
1275       if (Instruction *U = dyn_cast<Instruction>(Val))
1276         Worklist.Add(U);  // Dropped a use.
1277     }
1278     return nullptr;  // Do not modify these!
1279   }
1280 
1281   // store undef, Ptr -> noop
1282   if (isa<UndefValue>(Val))
1283     return eraseInstFromFunction(SI);
1284 
1285   // If this store is the last instruction in the basic block (possibly
1286   // excepting debug info instructions), and if the block ends with an
1287   // unconditional branch, try to move it to the successor block.
1288   BBI = SI.getIterator();
1289   do {
1290     ++BBI;
1291   } while (isa<DbgInfoIntrinsic>(BBI) ||
1292            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1293   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1294     if (BI->isUnconditional())
1295       if (SimplifyStoreAtEndOfBlock(SI))
1296         return nullptr;  // xform done!
1297 
1298   return nullptr;
1299 }
1300 
1301 /// SimplifyStoreAtEndOfBlock - Turn things like:
1302 ///   if () { *P = v1; } else { *P = v2 }
1303 /// into a phi node with a store in the successor.
1304 ///
1305 /// Simplify things like:
1306 ///   *P = v1; if () { *P = v2; }
1307 /// into a phi node with a store in the successor.
1308 ///
1309 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
1310   assert(SI.isUnordered() &&
1311          "this code has not been auditted for volatile or ordered store case");
1312 
1313   BasicBlock *StoreBB = SI.getParent();
1314 
1315   // Check to see if the successor block has exactly two incoming edges.  If
1316   // so, see if the other predecessor contains a store to the same location.
1317   // if so, insert a PHI node (if needed) and move the stores down.
1318   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1319 
1320   // Determine whether Dest has exactly two predecessors and, if so, compute
1321   // the other predecessor.
1322   pred_iterator PI = pred_begin(DestBB);
1323   BasicBlock *P = *PI;
1324   BasicBlock *OtherBB = nullptr;
1325 
1326   if (P != StoreBB)
1327     OtherBB = P;
1328 
1329   if (++PI == pred_end(DestBB))
1330     return false;
1331 
1332   P = *PI;
1333   if (P != StoreBB) {
1334     if (OtherBB)
1335       return false;
1336     OtherBB = P;
1337   }
1338   if (++PI != pred_end(DestBB))
1339     return false;
1340 
1341   // Bail out if all the relevant blocks aren't distinct (this can happen,
1342   // for example, if SI is in an infinite loop)
1343   if (StoreBB == DestBB || OtherBB == DestBB)
1344     return false;
1345 
1346   // Verify that the other block ends in a branch and is not otherwise empty.
1347   BasicBlock::iterator BBI(OtherBB->getTerminator());
1348   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1349   if (!OtherBr || BBI == OtherBB->begin())
1350     return false;
1351 
1352   // If the other block ends in an unconditional branch, check for the 'if then
1353   // else' case.  there is an instruction before the branch.
1354   StoreInst *OtherStore = nullptr;
1355   if (OtherBr->isUnconditional()) {
1356     --BBI;
1357     // Skip over debugging info.
1358     while (isa<DbgInfoIntrinsic>(BBI) ||
1359            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1360       if (BBI==OtherBB->begin())
1361         return false;
1362       --BBI;
1363     }
1364     // If this isn't a store, isn't a store to the same location, or is not the
1365     // right kind of store, bail out.
1366     OtherStore = dyn_cast<StoreInst>(BBI);
1367     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1368         !SI.isSameOperationAs(OtherStore))
1369       return false;
1370   } else {
1371     // Otherwise, the other block ended with a conditional branch. If one of the
1372     // destinations is StoreBB, then we have the if/then case.
1373     if (OtherBr->getSuccessor(0) != StoreBB &&
1374         OtherBr->getSuccessor(1) != StoreBB)
1375       return false;
1376 
1377     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1378     // if/then triangle.  See if there is a store to the same ptr as SI that
1379     // lives in OtherBB.
1380     for (;; --BBI) {
1381       // Check to see if we find the matching store.
1382       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1383         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1384             !SI.isSameOperationAs(OtherStore))
1385           return false;
1386         break;
1387       }
1388       // If we find something that may be using or overwriting the stored
1389       // value, or if we run out of instructions, we can't do the xform.
1390       if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
1391           BBI == OtherBB->begin())
1392         return false;
1393     }
1394 
1395     // In order to eliminate the store in OtherBr, we have to
1396     // make sure nothing reads or overwrites the stored value in
1397     // StoreBB.
1398     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1399       // FIXME: This should really be AA driven.
1400       if (I->mayReadFromMemory() || I->mayWriteToMemory())
1401         return false;
1402     }
1403   }
1404 
1405   // Insert a PHI node now if we need it.
1406   Value *MergedVal = OtherStore->getOperand(0);
1407   if (MergedVal != SI.getOperand(0)) {
1408     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1409     PN->addIncoming(SI.getOperand(0), SI.getParent());
1410     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1411     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1412   }
1413 
1414   // Advance to a place where it is safe to insert the new store and
1415   // insert it.
1416   BBI = DestBB->getFirstInsertionPt();
1417   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
1418                                    SI.isVolatile(),
1419                                    SI.getAlignment(),
1420                                    SI.getOrdering(),
1421                                    SI.getSynchScope());
1422   InsertNewInstBefore(NewSI, *BBI);
1423   NewSI->setDebugLoc(OtherStore->getDebugLoc());
1424 
1425   // If the two stores had AA tags, merge them.
1426   AAMDNodes AATags;
1427   SI.getAAMetadata(AATags);
1428   if (AATags) {
1429     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1430     NewSI->setAAMetadata(AATags);
1431   }
1432 
1433   // Nuke the old stores.
1434   eraseInstFromFunction(SI);
1435   eraseInstFromFunction(*OtherStore);
1436   return true;
1437 }
1438