1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for load, store and alloca.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/MapVector.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Transforms/Utils/Local.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "instcombine"
31 
32 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
34 
35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
36 /// some part of a constant global variable.  This intentionally only accepts
37 /// constant expressions because we can't rewrite arbitrary instructions.
38 static bool pointsToConstantGlobal(Value *V) {
39   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
40     return GV->isConstant();
41 
42   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
43     if (CE->getOpcode() == Instruction::BitCast ||
44         CE->getOpcode() == Instruction::AddrSpaceCast ||
45         CE->getOpcode() == Instruction::GetElementPtr)
46       return pointsToConstantGlobal(CE->getOperand(0));
47   }
48   return false;
49 }
50 
51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
52 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
53 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
55 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
56 /// the alloca, and if the source pointer is a pointer to a constant global, we
57 /// can optimize this.
58 static bool
59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
60                                SmallVectorImpl<Instruction *> &ToDelete) {
61   // We track lifetime intrinsics as we encounter them.  If we decide to go
62   // ahead and replace the value with the global, this lets the caller quickly
63   // eliminate the markers.
64 
65   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
66   ValuesToInspect.emplace_back(V, false);
67   while (!ValuesToInspect.empty()) {
68     auto ValuePair = ValuesToInspect.pop_back_val();
69     const bool IsOffset = ValuePair.second;
70     for (auto &U : ValuePair.first->uses()) {
71       auto *I = cast<Instruction>(U.getUser());
72 
73       if (auto *LI = dyn_cast<LoadInst>(I)) {
74         // Ignore non-volatile loads, they are always ok.
75         if (!LI->isSimple()) return false;
76         continue;
77       }
78 
79       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
80         // If uses of the bitcast are ok, we are ok.
81         ValuesToInspect.emplace_back(I, IsOffset);
82         continue;
83       }
84       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
85         // If the GEP has all zero indices, it doesn't offset the pointer. If it
86         // doesn't, it does.
87         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
88         continue;
89       }
90 
91       if (auto CS = CallSite(I)) {
92         // If this is the function being called then we treat it like a load and
93         // ignore it.
94         if (CS.isCallee(&U))
95           continue;
96 
97         unsigned DataOpNo = CS.getDataOperandNo(&U);
98         bool IsArgOperand = CS.isArgOperand(&U);
99 
100         // Inalloca arguments are clobbered by the call.
101         if (IsArgOperand && CS.isInAllocaArgument(DataOpNo))
102           return false;
103 
104         // If this is a readonly/readnone call site, then we know it is just a
105         // load (but one that potentially returns the value itself), so we can
106         // ignore it if we know that the value isn't captured.
107         if (CS.onlyReadsMemory() &&
108             (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo)))
109           continue;
110 
111         // If this is being passed as a byval argument, the caller is making a
112         // copy, so it is only a read of the alloca.
113         if (IsArgOperand && CS.isByValArgument(DataOpNo))
114           continue;
115       }
116 
117       // Lifetime intrinsics can be handled by the caller.
118       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
119         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
120             II->getIntrinsicID() == Intrinsic::lifetime_end) {
121           assert(II->use_empty() && "Lifetime markers have no result to use!");
122           ToDelete.push_back(II);
123           continue;
124         }
125       }
126 
127       // If this is isn't our memcpy/memmove, reject it as something we can't
128       // handle.
129       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
130       if (!MI)
131         return false;
132 
133       // If the transfer is using the alloca as a source of the transfer, then
134       // ignore it since it is a load (unless the transfer is volatile).
135       if (U.getOperandNo() == 1) {
136         if (MI->isVolatile()) return false;
137         continue;
138       }
139 
140       // If we already have seen a copy, reject the second one.
141       if (TheCopy) return false;
142 
143       // If the pointer has been offset from the start of the alloca, we can't
144       // safely handle this.
145       if (IsOffset) return false;
146 
147       // If the memintrinsic isn't using the alloca as the dest, reject it.
148       if (U.getOperandNo() != 0) return false;
149 
150       // If the source of the memcpy/move is not a constant global, reject it.
151       if (!pointsToConstantGlobal(MI->getSource()))
152         return false;
153 
154       // Otherwise, the transform is safe.  Remember the copy instruction.
155       TheCopy = MI;
156     }
157   }
158   return true;
159 }
160 
161 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
162 /// modified by a copy from a constant global.  If we can prove this, we can
163 /// replace any uses of the alloca with uses of the global directly.
164 static MemTransferInst *
165 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
166                                SmallVectorImpl<Instruction *> &ToDelete) {
167   MemTransferInst *TheCopy = nullptr;
168   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
169     return TheCopy;
170   return nullptr;
171 }
172 
173 /// Returns true if V is dereferenceable for size of alloca.
174 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
175                                            const DataLayout &DL) {
176   if (AI->isArrayAllocation())
177     return false;
178   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
179   if (!AllocaSize)
180     return false;
181   return isDereferenceableAndAlignedPointer(V, AI->getAlignment(),
182                                             APInt(64, AllocaSize), DL);
183 }
184 
185 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
186   // Check for array size of 1 (scalar allocation).
187   if (!AI.isArrayAllocation()) {
188     // i32 1 is the canonical array size for scalar allocations.
189     if (AI.getArraySize()->getType()->isIntegerTy(32))
190       return nullptr;
191 
192     // Canonicalize it.
193     Value *V = IC.Builder.getInt32(1);
194     AI.setOperand(0, V);
195     return &AI;
196   }
197 
198   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
199   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
200     if (C->getValue().getActiveBits() <= 64) {
201       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
202       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
203       New->setAlignment(AI.getAlignment());
204 
205       // Scan to the end of the allocation instructions, to skip over a block of
206       // allocas if possible...also skip interleaved debug info
207       //
208       BasicBlock::iterator It(New);
209       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
210         ++It;
211 
212       // Now that I is pointing to the first non-allocation-inst in the block,
213       // insert our getelementptr instruction...
214       //
215       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
216       Value *NullIdx = Constant::getNullValue(IdxTy);
217       Value *Idx[2] = {NullIdx, NullIdx};
218       Instruction *GEP =
219           GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
220       IC.InsertNewInstBefore(GEP, *It);
221 
222       // Now make everything use the getelementptr instead of the original
223       // allocation.
224       return IC.replaceInstUsesWith(AI, GEP);
225     }
226   }
227 
228   if (isa<UndefValue>(AI.getArraySize()))
229     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
230 
231   // Ensure that the alloca array size argument has type intptr_t, so that
232   // any casting is exposed early.
233   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
234   if (AI.getArraySize()->getType() != IntPtrTy) {
235     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
236     AI.setOperand(0, V);
237     return &AI;
238   }
239 
240   return nullptr;
241 }
242 
243 namespace {
244 // If I and V are pointers in different address space, it is not allowed to
245 // use replaceAllUsesWith since I and V have different types. A
246 // non-target-specific transformation should not use addrspacecast on V since
247 // the two address space may be disjoint depending on target.
248 //
249 // This class chases down uses of the old pointer until reaching the load
250 // instructions, then replaces the old pointer in the load instructions with
251 // the new pointer. If during the chasing it sees bitcast or GEP, it will
252 // create new bitcast or GEP with the new pointer and use them in the load
253 // instruction.
254 class PointerReplacer {
255 public:
256   PointerReplacer(InstCombiner &IC) : IC(IC) {}
257   void replacePointer(Instruction &I, Value *V);
258 
259 private:
260   void findLoadAndReplace(Instruction &I);
261   void replace(Instruction *I);
262   Value *getReplacement(Value *I);
263 
264   SmallVector<Instruction *, 4> Path;
265   MapVector<Value *, Value *> WorkMap;
266   InstCombiner &IC;
267 };
268 } // end anonymous namespace
269 
270 void PointerReplacer::findLoadAndReplace(Instruction &I) {
271   for (auto U : I.users()) {
272     auto *Inst = dyn_cast<Instruction>(&*U);
273     if (!Inst)
274       return;
275     LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n');
276     if (isa<LoadInst>(Inst)) {
277       for (auto P : Path)
278         replace(P);
279       replace(Inst);
280     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
281       Path.push_back(Inst);
282       findLoadAndReplace(*Inst);
283       Path.pop_back();
284     } else {
285       return;
286     }
287   }
288 }
289 
290 Value *PointerReplacer::getReplacement(Value *V) {
291   auto Loc = WorkMap.find(V);
292   if (Loc != WorkMap.end())
293     return Loc->second;
294   return nullptr;
295 }
296 
297 void PointerReplacer::replace(Instruction *I) {
298   if (getReplacement(I))
299     return;
300 
301   if (auto *LT = dyn_cast<LoadInst>(I)) {
302     auto *V = getReplacement(LT->getPointerOperand());
303     assert(V && "Operand not replaced");
304     auto *NewI = new LoadInst(V);
305     NewI->takeName(LT);
306     IC.InsertNewInstWith(NewI, *LT);
307     IC.replaceInstUsesWith(*LT, NewI);
308     WorkMap[LT] = NewI;
309   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
310     auto *V = getReplacement(GEP->getPointerOperand());
311     assert(V && "Operand not replaced");
312     SmallVector<Value *, 8> Indices;
313     Indices.append(GEP->idx_begin(), GEP->idx_end());
314     auto *NewI = GetElementPtrInst::Create(
315         V->getType()->getPointerElementType(), V, Indices);
316     IC.InsertNewInstWith(NewI, *GEP);
317     NewI->takeName(GEP);
318     WorkMap[GEP] = NewI;
319   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
320     auto *V = getReplacement(BC->getOperand(0));
321     assert(V && "Operand not replaced");
322     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
323                                   V->getType()->getPointerAddressSpace());
324     auto *NewI = new BitCastInst(V, NewT);
325     IC.InsertNewInstWith(NewI, *BC);
326     NewI->takeName(BC);
327     WorkMap[BC] = NewI;
328   } else {
329     llvm_unreachable("should never reach here");
330   }
331 }
332 
333 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
334 #ifndef NDEBUG
335   auto *PT = cast<PointerType>(I.getType());
336   auto *NT = cast<PointerType>(V->getType());
337   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
338          "Invalid usage");
339 #endif
340   WorkMap[&I] = V;
341   findLoadAndReplace(I);
342 }
343 
344 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
345   if (auto *I = simplifyAllocaArraySize(*this, AI))
346     return I;
347 
348   if (AI.getAllocatedType()->isSized()) {
349     // If the alignment is 0 (unspecified), assign it the preferred alignment.
350     if (AI.getAlignment() == 0)
351       AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
352 
353     // Move all alloca's of zero byte objects to the entry block and merge them
354     // together.  Note that we only do this for alloca's, because malloc should
355     // allocate and return a unique pointer, even for a zero byte allocation.
356     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
357       // For a zero sized alloca there is no point in doing an array allocation.
358       // This is helpful if the array size is a complicated expression not used
359       // elsewhere.
360       if (AI.isArrayAllocation()) {
361         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
362         return &AI;
363       }
364 
365       // Get the first instruction in the entry block.
366       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
367       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
368       if (FirstInst != &AI) {
369         // If the entry block doesn't start with a zero-size alloca then move
370         // this one to the start of the entry block.  There is no problem with
371         // dominance as the array size was forced to a constant earlier already.
372         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
373         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
374             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
375           AI.moveBefore(FirstInst);
376           return &AI;
377         }
378 
379         // If the alignment of the entry block alloca is 0 (unspecified),
380         // assign it the preferred alignment.
381         if (EntryAI->getAlignment() == 0)
382           EntryAI->setAlignment(
383               DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
384         // Replace this zero-sized alloca with the one at the start of the entry
385         // block after ensuring that the address will be aligned enough for both
386         // types.
387         unsigned MaxAlign = std::max(EntryAI->getAlignment(),
388                                      AI.getAlignment());
389         EntryAI->setAlignment(MaxAlign);
390         if (AI.getType() != EntryAI->getType())
391           return new BitCastInst(EntryAI, AI.getType());
392         return replaceInstUsesWith(AI, EntryAI);
393       }
394     }
395   }
396 
397   if (AI.getAlignment()) {
398     // Check to see if this allocation is only modified by a memcpy/memmove from
399     // a constant global whose alignment is equal to or exceeds that of the
400     // allocation.  If this is the case, we can change all users to use
401     // the constant global instead.  This is commonly produced by the CFE by
402     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
403     // is only subsequently read.
404     SmallVector<Instruction *, 4> ToDelete;
405     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
406       unsigned SourceAlign = getOrEnforceKnownAlignment(
407           Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
408       if (AI.getAlignment() <= SourceAlign &&
409           isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) {
410         LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
411         LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
412         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
413           eraseInstFromFunction(*ToDelete[i]);
414         Constant *TheSrc = cast<Constant>(Copy->getSource());
415         auto *SrcTy = TheSrc->getType();
416         auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(),
417                                         SrcTy->getPointerAddressSpace());
418         Constant *Cast =
419             ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy);
420         if (AI.getType()->getPointerAddressSpace() ==
421             SrcTy->getPointerAddressSpace()) {
422           Instruction *NewI = replaceInstUsesWith(AI, Cast);
423           eraseInstFromFunction(*Copy);
424           ++NumGlobalCopies;
425           return NewI;
426         } else {
427           PointerReplacer PtrReplacer(*this);
428           PtrReplacer.replacePointer(AI, Cast);
429           ++NumGlobalCopies;
430         }
431       }
432     }
433   }
434 
435   // At last, use the generic allocation site handler to aggressively remove
436   // unused allocas.
437   return visitAllocSite(AI);
438 }
439 
440 // Are we allowed to form a atomic load or store of this type?
441 static bool isSupportedAtomicType(Type *Ty) {
442   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
443 }
444 
445 /// Helper to combine a load to a new type.
446 ///
447 /// This just does the work of combining a load to a new type. It handles
448 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
449 /// loaded *value* type. This will convert it to a pointer, cast the operand to
450 /// that pointer type, load it, etc.
451 ///
452 /// Note that this will create all of the instructions with whatever insert
453 /// point the \c InstCombiner currently is using.
454 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
455                                       const Twine &Suffix = "") {
456   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
457          "can't fold an atomic load to requested type");
458 
459   Value *Ptr = LI.getPointerOperand();
460   unsigned AS = LI.getPointerAddressSpace();
461   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
462   LI.getAllMetadata(MD);
463 
464   Value *NewPtr = nullptr;
465   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
466         NewPtr->getType()->getPointerElementType() == NewTy &&
467         NewPtr->getType()->getPointerAddressSpace() == AS))
468     NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
469 
470   LoadInst *NewLoad = IC.Builder.CreateAlignedLoad(
471       NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix);
472   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
473   MDBuilder MDB(NewLoad->getContext());
474   for (const auto &MDPair : MD) {
475     unsigned ID = MDPair.first;
476     MDNode *N = MDPair.second;
477     // Note, essentially every kind of metadata should be preserved here! This
478     // routine is supposed to clone a load instruction changing *only its type*.
479     // The only metadata it makes sense to drop is metadata which is invalidated
480     // when the pointer type changes. This should essentially never be the case
481     // in LLVM, but we explicitly switch over only known metadata to be
482     // conservatively correct. If you are adding metadata to LLVM which pertains
483     // to loads, you almost certainly want to add it here.
484     switch (ID) {
485     case LLVMContext::MD_dbg:
486     case LLVMContext::MD_tbaa:
487     case LLVMContext::MD_prof:
488     case LLVMContext::MD_fpmath:
489     case LLVMContext::MD_tbaa_struct:
490     case LLVMContext::MD_invariant_load:
491     case LLVMContext::MD_alias_scope:
492     case LLVMContext::MD_noalias:
493     case LLVMContext::MD_nontemporal:
494     case LLVMContext::MD_mem_parallel_loop_access:
495       // All of these directly apply.
496       NewLoad->setMetadata(ID, N);
497       break;
498 
499     case LLVMContext::MD_nonnull:
500       copyNonnullMetadata(LI, N, *NewLoad);
501       break;
502     case LLVMContext::MD_align:
503     case LLVMContext::MD_dereferenceable:
504     case LLVMContext::MD_dereferenceable_or_null:
505       // These only directly apply if the new type is also a pointer.
506       if (NewTy->isPointerTy())
507         NewLoad->setMetadata(ID, N);
508       break;
509     case LLVMContext::MD_range:
510       copyRangeMetadata(IC.getDataLayout(), LI, N, *NewLoad);
511       break;
512     }
513   }
514   return NewLoad;
515 }
516 
517 /// Combine a store to a new type.
518 ///
519 /// Returns the newly created store instruction.
520 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
521   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
522          "can't fold an atomic store of requested type");
523 
524   Value *Ptr = SI.getPointerOperand();
525   unsigned AS = SI.getPointerAddressSpace();
526   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
527   SI.getAllMetadata(MD);
528 
529   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
530       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
531       SI.getAlignment(), SI.isVolatile());
532   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
533   for (const auto &MDPair : MD) {
534     unsigned ID = MDPair.first;
535     MDNode *N = MDPair.second;
536     // Note, essentially every kind of metadata should be preserved here! This
537     // routine is supposed to clone a store instruction changing *only its
538     // type*. The only metadata it makes sense to drop is metadata which is
539     // invalidated when the pointer type changes. This should essentially
540     // never be the case in LLVM, but we explicitly switch over only known
541     // metadata to be conservatively correct. If you are adding metadata to
542     // LLVM which pertains to stores, you almost certainly want to add it
543     // here.
544     switch (ID) {
545     case LLVMContext::MD_dbg:
546     case LLVMContext::MD_tbaa:
547     case LLVMContext::MD_prof:
548     case LLVMContext::MD_fpmath:
549     case LLVMContext::MD_tbaa_struct:
550     case LLVMContext::MD_alias_scope:
551     case LLVMContext::MD_noalias:
552     case LLVMContext::MD_nontemporal:
553     case LLVMContext::MD_mem_parallel_loop_access:
554       // All of these directly apply.
555       NewStore->setMetadata(ID, N);
556       break;
557 
558     case LLVMContext::MD_invariant_load:
559     case LLVMContext::MD_nonnull:
560     case LLVMContext::MD_range:
561     case LLVMContext::MD_align:
562     case LLVMContext::MD_dereferenceable:
563     case LLVMContext::MD_dereferenceable_or_null:
564       // These don't apply for stores.
565       break;
566     }
567   }
568 
569   return NewStore;
570 }
571 
572 /// Returns true if instruction represent minmax pattern like:
573 ///   select ((cmp load V1, load V2), V1, V2).
574 static bool isMinMaxWithLoads(Value *V) {
575   assert(V->getType()->isPointerTy() && "Expected pointer type.");
576   // Ignore possible ty* to ixx* bitcast.
577   V = peekThroughBitcast(V);
578   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
579   // pattern.
580   CmpInst::Predicate Pred;
581   Instruction *L1;
582   Instruction *L2;
583   Value *LHS;
584   Value *RHS;
585   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
586                          m_Value(LHS), m_Value(RHS))))
587     return false;
588   return (match(L1, m_Load(m_Specific(LHS))) &&
589           match(L2, m_Load(m_Specific(RHS)))) ||
590          (match(L1, m_Load(m_Specific(RHS))) &&
591           match(L2, m_Load(m_Specific(LHS))));
592 }
593 
594 /// Combine loads to match the type of their uses' value after looking
595 /// through intervening bitcasts.
596 ///
597 /// The core idea here is that if the result of a load is used in an operation,
598 /// we should load the type most conducive to that operation. For example, when
599 /// loading an integer and converting that immediately to a pointer, we should
600 /// instead directly load a pointer.
601 ///
602 /// However, this routine must never change the width of a load or the number of
603 /// loads as that would introduce a semantic change. This combine is expected to
604 /// be a semantic no-op which just allows loads to more closely model the types
605 /// of their consuming operations.
606 ///
607 /// Currently, we also refuse to change the precise type used for an atomic load
608 /// or a volatile load. This is debatable, and might be reasonable to change
609 /// later. However, it is risky in case some backend or other part of LLVM is
610 /// relying on the exact type loaded to select appropriate atomic operations.
611 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
612   // FIXME: We could probably with some care handle both volatile and ordered
613   // atomic loads here but it isn't clear that this is important.
614   if (!LI.isUnordered())
615     return nullptr;
616 
617   if (LI.use_empty())
618     return nullptr;
619 
620   // swifterror values can't be bitcasted.
621   if (LI.getPointerOperand()->isSwiftError())
622     return nullptr;
623 
624   Type *Ty = LI.getType();
625   const DataLayout &DL = IC.getDataLayout();
626 
627   // Try to canonicalize loads which are only ever stored to operate over
628   // integers instead of any other type. We only do this when the loaded type
629   // is sized and has a size exactly the same as its store size and the store
630   // size is a legal integer type.
631   // Do not perform canonicalization if minmax pattern is found (to avoid
632   // infinite loop).
633   if (!Ty->isIntegerTy() && Ty->isSized() &&
634       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
635       DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) &&
636       !DL.isNonIntegralPointerType(Ty) &&
637       !isMinMaxWithLoads(
638           peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) {
639     if (all_of(LI.users(), [&LI](User *U) {
640           auto *SI = dyn_cast<StoreInst>(U);
641           return SI && SI->getPointerOperand() != &LI &&
642                  !SI->getPointerOperand()->isSwiftError();
643         })) {
644       LoadInst *NewLoad = combineLoadToNewType(
645           IC, LI,
646           Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
647       // Replace all the stores with stores of the newly loaded value.
648       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
649         auto *SI = cast<StoreInst>(*UI++);
650         IC.Builder.SetInsertPoint(SI);
651         combineStoreToNewValue(IC, *SI, NewLoad);
652         IC.eraseInstFromFunction(*SI);
653       }
654       assert(LI.use_empty() && "Failed to remove all users of the load!");
655       // Return the old load so the combiner can delete it safely.
656       return &LI;
657     }
658   }
659 
660   // Fold away bit casts of the loaded value by loading the desired type.
661   // We can do this for BitCastInsts as well as casts from and to pointer types,
662   // as long as those are noops (i.e., the source or dest type have the same
663   // bitwidth as the target's pointers).
664   if (LI.hasOneUse())
665     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
666       if (CI->isNoopCast(DL))
667         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
668           LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
669           CI->replaceAllUsesWith(NewLoad);
670           IC.eraseInstFromFunction(*CI);
671           return &LI;
672         }
673 
674   // FIXME: We should also canonicalize loads of vectors when their elements are
675   // cast to other types.
676   return nullptr;
677 }
678 
679 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
680   // FIXME: We could probably with some care handle both volatile and atomic
681   // stores here but it isn't clear that this is important.
682   if (!LI.isSimple())
683     return nullptr;
684 
685   Type *T = LI.getType();
686   if (!T->isAggregateType())
687     return nullptr;
688 
689   StringRef Name = LI.getName();
690   assert(LI.getAlignment() && "Alignment must be set at this point");
691 
692   if (auto *ST = dyn_cast<StructType>(T)) {
693     // If the struct only have one element, we unpack.
694     auto NumElements = ST->getNumElements();
695     if (NumElements == 1) {
696       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
697                                                ".unpack");
698       AAMDNodes AAMD;
699       LI.getAAMetadata(AAMD);
700       NewLoad->setAAMetadata(AAMD);
701       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
702         UndefValue::get(T), NewLoad, 0, Name));
703     }
704 
705     // We don't want to break loads with padding here as we'd loose
706     // the knowledge that padding exists for the rest of the pipeline.
707     const DataLayout &DL = IC.getDataLayout();
708     auto *SL = DL.getStructLayout(ST);
709     if (SL->hasPadding())
710       return nullptr;
711 
712     auto Align = LI.getAlignment();
713     if (!Align)
714       Align = DL.getABITypeAlignment(ST);
715 
716     auto *Addr = LI.getPointerOperand();
717     auto *IdxType = Type::getInt32Ty(T->getContext());
718     auto *Zero = ConstantInt::get(IdxType, 0);
719 
720     Value *V = UndefValue::get(T);
721     for (unsigned i = 0; i < NumElements; i++) {
722       Value *Indices[2] = {
723         Zero,
724         ConstantInt::get(IdxType, i),
725       };
726       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
727                                                Name + ".elt");
728       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
729       auto *L = IC.Builder.CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack");
730       // Propagate AA metadata. It'll still be valid on the narrowed load.
731       AAMDNodes AAMD;
732       LI.getAAMetadata(AAMD);
733       L->setAAMetadata(AAMD);
734       V = IC.Builder.CreateInsertValue(V, L, i);
735     }
736 
737     V->setName(Name);
738     return IC.replaceInstUsesWith(LI, V);
739   }
740 
741   if (auto *AT = dyn_cast<ArrayType>(T)) {
742     auto *ET = AT->getElementType();
743     auto NumElements = AT->getNumElements();
744     if (NumElements == 1) {
745       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
746       AAMDNodes AAMD;
747       LI.getAAMetadata(AAMD);
748       NewLoad->setAAMetadata(AAMD);
749       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
750         UndefValue::get(T), NewLoad, 0, Name));
751     }
752 
753     // Bail out if the array is too large. Ideally we would like to optimize
754     // arrays of arbitrary size but this has a terrible impact on compile time.
755     // The threshold here is chosen arbitrarily, maybe needs a little bit of
756     // tuning.
757     if (NumElements > IC.MaxArraySizeForCombine)
758       return nullptr;
759 
760     const DataLayout &DL = IC.getDataLayout();
761     auto EltSize = DL.getTypeAllocSize(ET);
762     auto Align = LI.getAlignment();
763     if (!Align)
764       Align = DL.getABITypeAlignment(T);
765 
766     auto *Addr = LI.getPointerOperand();
767     auto *IdxType = Type::getInt64Ty(T->getContext());
768     auto *Zero = ConstantInt::get(IdxType, 0);
769 
770     Value *V = UndefValue::get(T);
771     uint64_t Offset = 0;
772     for (uint64_t i = 0; i < NumElements; i++) {
773       Value *Indices[2] = {
774         Zero,
775         ConstantInt::get(IdxType, i),
776       };
777       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
778                                                Name + ".elt");
779       auto *L = IC.Builder.CreateAlignedLoad(Ptr, MinAlign(Align, Offset),
780                                              Name + ".unpack");
781       AAMDNodes AAMD;
782       LI.getAAMetadata(AAMD);
783       L->setAAMetadata(AAMD);
784       V = IC.Builder.CreateInsertValue(V, L, i);
785       Offset += EltSize;
786     }
787 
788     V->setName(Name);
789     return IC.replaceInstUsesWith(LI, V);
790   }
791 
792   return nullptr;
793 }
794 
795 // If we can determine that all possible objects pointed to by the provided
796 // pointer value are, not only dereferenceable, but also definitively less than
797 // or equal to the provided maximum size, then return true. Otherwise, return
798 // false (constant global values and allocas fall into this category).
799 //
800 // FIXME: This should probably live in ValueTracking (or similar).
801 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
802                                      const DataLayout &DL) {
803   SmallPtrSet<Value *, 4> Visited;
804   SmallVector<Value *, 4> Worklist(1, V);
805 
806   do {
807     Value *P = Worklist.pop_back_val();
808     P = P->stripPointerCasts();
809 
810     if (!Visited.insert(P).second)
811       continue;
812 
813     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
814       Worklist.push_back(SI->getTrueValue());
815       Worklist.push_back(SI->getFalseValue());
816       continue;
817     }
818 
819     if (PHINode *PN = dyn_cast<PHINode>(P)) {
820       for (Value *IncValue : PN->incoming_values())
821         Worklist.push_back(IncValue);
822       continue;
823     }
824 
825     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
826       if (GA->isInterposable())
827         return false;
828       Worklist.push_back(GA->getAliasee());
829       continue;
830     }
831 
832     // If we know how big this object is, and it is less than MaxSize, continue
833     // searching. Otherwise, return false.
834     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
835       if (!AI->getAllocatedType()->isSized())
836         return false;
837 
838       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
839       if (!CS)
840         return false;
841 
842       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
843       // Make sure that, even if the multiplication below would wrap as an
844       // uint64_t, we still do the right thing.
845       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
846         return false;
847       continue;
848     }
849 
850     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
851       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
852         return false;
853 
854       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
855       if (InitSize > MaxSize)
856         return false;
857       continue;
858     }
859 
860     return false;
861   } while (!Worklist.empty());
862 
863   return true;
864 }
865 
866 // If we're indexing into an object of a known size, and the outer index is
867 // not a constant, but having any value but zero would lead to undefined
868 // behavior, replace it with zero.
869 //
870 // For example, if we have:
871 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
872 // ...
873 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
874 // ... = load i32* %arrayidx, align 4
875 // Then we know that we can replace %x in the GEP with i64 0.
876 //
877 // FIXME: We could fold any GEP index to zero that would cause UB if it were
878 // not zero. Currently, we only handle the first such index. Also, we could
879 // also search through non-zero constant indices if we kept track of the
880 // offsets those indices implied.
881 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
882                                      Instruction *MemI, unsigned &Idx) {
883   if (GEPI->getNumOperands() < 2)
884     return false;
885 
886   // Find the first non-zero index of a GEP. If all indices are zero, return
887   // one past the last index.
888   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
889     unsigned I = 1;
890     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
891       Value *V = GEPI->getOperand(I);
892       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
893         if (CI->isZero())
894           continue;
895 
896       break;
897     }
898 
899     return I;
900   };
901 
902   // Skip through initial 'zero' indices, and find the corresponding pointer
903   // type. See if the next index is not a constant.
904   Idx = FirstNZIdx(GEPI);
905   if (Idx == GEPI->getNumOperands())
906     return false;
907   if (isa<Constant>(GEPI->getOperand(Idx)))
908     return false;
909 
910   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
911   Type *AllocTy =
912     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
913   if (!AllocTy || !AllocTy->isSized())
914     return false;
915   const DataLayout &DL = IC.getDataLayout();
916   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
917 
918   // If there are more indices after the one we might replace with a zero, make
919   // sure they're all non-negative. If any of them are negative, the overall
920   // address being computed might be before the base address determined by the
921   // first non-zero index.
922   auto IsAllNonNegative = [&]() {
923     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
924       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
925       if (Known.isNonNegative())
926         continue;
927       return false;
928     }
929 
930     return true;
931   };
932 
933   // FIXME: If the GEP is not inbounds, and there are extra indices after the
934   // one we'll replace, those could cause the address computation to wrap
935   // (rendering the IsAllNonNegative() check below insufficient). We can do
936   // better, ignoring zero indices (and other indices we can prove small
937   // enough not to wrap).
938   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
939     return false;
940 
941   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
942   // also known to be dereferenceable.
943   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
944          IsAllNonNegative();
945 }
946 
947 // If we're indexing into an object with a variable index for the memory
948 // access, but the object has only one element, we can assume that the index
949 // will always be zero. If we replace the GEP, return it.
950 template <typename T>
951 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
952                                           T &MemI) {
953   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
954     unsigned Idx;
955     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
956       Instruction *NewGEPI = GEPI->clone();
957       NewGEPI->setOperand(Idx,
958         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
959       NewGEPI->insertBefore(GEPI);
960       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
961       return NewGEPI;
962     }
963   }
964 
965   return nullptr;
966 }
967 
968 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
969   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
970     return false;
971 
972   auto *Ptr = SI.getPointerOperand();
973   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
974     Ptr = GEPI->getOperand(0);
975   return (isa<ConstantPointerNull>(Ptr) &&
976           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
977 }
978 
979 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
980   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
981     const Value *GEPI0 = GEPI->getOperand(0);
982     if (isa<ConstantPointerNull>(GEPI0) &&
983         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
984       return true;
985   }
986   if (isa<UndefValue>(Op) ||
987       (isa<ConstantPointerNull>(Op) &&
988        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
989     return true;
990   return false;
991 }
992 
993 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
994   Value *Op = LI.getOperand(0);
995 
996   // Try to canonicalize the loaded type.
997   if (Instruction *Res = combineLoadToOperationType(*this, LI))
998     return Res;
999 
1000   // Attempt to improve the alignment.
1001   unsigned KnownAlign = getOrEnforceKnownAlignment(
1002       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
1003   unsigned LoadAlign = LI.getAlignment();
1004   unsigned EffectiveLoadAlign =
1005       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
1006 
1007   if (KnownAlign > EffectiveLoadAlign)
1008     LI.setAlignment(KnownAlign);
1009   else if (LoadAlign == 0)
1010     LI.setAlignment(EffectiveLoadAlign);
1011 
1012   // Replace GEP indices if possible.
1013   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
1014       Worklist.Add(NewGEPI);
1015       return &LI;
1016   }
1017 
1018   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
1019     return Res;
1020 
1021   // Do really simple store-to-load forwarding and load CSE, to catch cases
1022   // where there are several consecutive memory accesses to the same location,
1023   // separated by a few arithmetic operations.
1024   BasicBlock::iterator BBI(LI);
1025   bool IsLoadCSE = false;
1026   if (Value *AvailableVal = FindAvailableLoadedValue(
1027           &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1028     if (IsLoadCSE)
1029       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
1030 
1031     return replaceInstUsesWith(
1032         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
1033                                            LI.getName() + ".cast"));
1034   }
1035 
1036   // None of the following transforms are legal for volatile/ordered atomic
1037   // loads.  Most of them do apply for unordered atomics.
1038   if (!LI.isUnordered()) return nullptr;
1039 
1040   // load(gep null, ...) -> unreachable
1041   // load null/undef -> unreachable
1042   // TODO: Consider a target hook for valid address spaces for this xforms.
1043   if (canSimplifyNullLoadOrGEP(LI, Op)) {
1044     // Insert a new store to null instruction before the load to indicate
1045     // that this code is not reachable.  We do this instead of inserting
1046     // an unreachable instruction directly because we cannot modify the
1047     // CFG.
1048     StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
1049                                   Constant::getNullValue(Op->getType()), &LI);
1050     SI->setDebugLoc(LI.getDebugLoc());
1051     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
1052   }
1053 
1054   if (Op->hasOneUse()) {
1055     // Change select and PHI nodes to select values instead of addresses: this
1056     // helps alias analysis out a lot, allows many others simplifications, and
1057     // exposes redundancy in the code.
1058     //
1059     // Note that we cannot do the transformation unless we know that the
1060     // introduced loads cannot trap!  Something like this is valid as long as
1061     // the condition is always false: load (select bool %C, int* null, int* %G),
1062     // but it would not be valid if we transformed it to load from null
1063     // unconditionally.
1064     //
1065     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1066       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1067       unsigned Align = LI.getAlignment();
1068       if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) &&
1069           isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) {
1070         LoadInst *V1 = Builder.CreateLoad(SI->getOperand(1),
1071                                           SI->getOperand(1)->getName()+".val");
1072         LoadInst *V2 = Builder.CreateLoad(SI->getOperand(2),
1073                                           SI->getOperand(2)->getName()+".val");
1074         assert(LI.isUnordered() && "implied by above");
1075         V1->setAlignment(Align);
1076         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1077         V2->setAlignment(Align);
1078         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1079         return SelectInst::Create(SI->getCondition(), V1, V2);
1080       }
1081 
1082       // load (select (cond, null, P)) -> load P
1083       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1084           !NullPointerIsDefined(SI->getFunction(),
1085                                 LI.getPointerAddressSpace())) {
1086         LI.setOperand(0, SI->getOperand(2));
1087         return &LI;
1088       }
1089 
1090       // load (select (cond, P, null)) -> load P
1091       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1092           !NullPointerIsDefined(SI->getFunction(),
1093                                 LI.getPointerAddressSpace())) {
1094         LI.setOperand(0, SI->getOperand(1));
1095         return &LI;
1096       }
1097     }
1098   }
1099   return nullptr;
1100 }
1101 
1102 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1103 ///
1104 /// \returns underlying value that was "cast", or nullptr otherwise.
1105 ///
1106 /// For example, if we have:
1107 ///
1108 ///     %E0 = extractelement <2 x double> %U, i32 0
1109 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1110 ///     %E1 = extractelement <2 x double> %U, i32 1
1111 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1112 ///
1113 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1114 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1115 /// Note that %U may contain non-undef values where %V1 has undef.
1116 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
1117   Value *U = nullptr;
1118   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1119     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1120     if (!E)
1121       return nullptr;
1122     auto *W = E->getVectorOperand();
1123     if (!U)
1124       U = W;
1125     else if (U != W)
1126       return nullptr;
1127     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1128     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1129       return nullptr;
1130     V = IV->getAggregateOperand();
1131   }
1132   if (!isa<UndefValue>(V) ||!U)
1133     return nullptr;
1134 
1135   auto *UT = cast<VectorType>(U->getType());
1136   auto *VT = V->getType();
1137   // Check that types UT and VT are bitwise isomorphic.
1138   const auto &DL = IC.getDataLayout();
1139   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1140     return nullptr;
1141   }
1142   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1143     if (AT->getNumElements() != UT->getNumElements())
1144       return nullptr;
1145   } else {
1146     auto *ST = cast<StructType>(VT);
1147     if (ST->getNumElements() != UT->getNumElements())
1148       return nullptr;
1149     for (const auto *EltT : ST->elements()) {
1150       if (EltT != UT->getElementType())
1151         return nullptr;
1152     }
1153   }
1154   return U;
1155 }
1156 
1157 /// Combine stores to match the type of value being stored.
1158 ///
1159 /// The core idea here is that the memory does not have any intrinsic type and
1160 /// where we can we should match the type of a store to the type of value being
1161 /// stored.
1162 ///
1163 /// However, this routine must never change the width of a store or the number of
1164 /// stores as that would introduce a semantic change. This combine is expected to
1165 /// be a semantic no-op which just allows stores to more closely model the types
1166 /// of their incoming values.
1167 ///
1168 /// Currently, we also refuse to change the precise type used for an atomic or
1169 /// volatile store. This is debatable, and might be reasonable to change later.
1170 /// However, it is risky in case some backend or other part of LLVM is relying
1171 /// on the exact type stored to select appropriate atomic operations.
1172 ///
1173 /// \returns true if the store was successfully combined away. This indicates
1174 /// the caller must erase the store instruction. We have to let the caller erase
1175 /// the store instruction as otherwise there is no way to signal whether it was
1176 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1177 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
1178   // FIXME: We could probably with some care handle both volatile and ordered
1179   // atomic stores here but it isn't clear that this is important.
1180   if (!SI.isUnordered())
1181     return false;
1182 
1183   // swifterror values can't be bitcasted.
1184   if (SI.getPointerOperand()->isSwiftError())
1185     return false;
1186 
1187   Value *V = SI.getValueOperand();
1188 
1189   // Fold away bit casts of the stored value by storing the original type.
1190   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1191     V = BC->getOperand(0);
1192     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1193       combineStoreToNewValue(IC, SI, V);
1194       return true;
1195     }
1196   }
1197 
1198   if (Value *U = likeBitCastFromVector(IC, V))
1199     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1200       combineStoreToNewValue(IC, SI, U);
1201       return true;
1202     }
1203 
1204   // FIXME: We should also canonicalize stores of vectors when their elements
1205   // are cast to other types.
1206   return false;
1207 }
1208 
1209 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1210   // FIXME: We could probably with some care handle both volatile and atomic
1211   // stores here but it isn't clear that this is important.
1212   if (!SI.isSimple())
1213     return false;
1214 
1215   Value *V = SI.getValueOperand();
1216   Type *T = V->getType();
1217 
1218   if (!T->isAggregateType())
1219     return false;
1220 
1221   if (auto *ST = dyn_cast<StructType>(T)) {
1222     // If the struct only have one element, we unpack.
1223     unsigned Count = ST->getNumElements();
1224     if (Count == 1) {
1225       V = IC.Builder.CreateExtractValue(V, 0);
1226       combineStoreToNewValue(IC, SI, V);
1227       return true;
1228     }
1229 
1230     // We don't want to break loads with padding here as we'd loose
1231     // the knowledge that padding exists for the rest of the pipeline.
1232     const DataLayout &DL = IC.getDataLayout();
1233     auto *SL = DL.getStructLayout(ST);
1234     if (SL->hasPadding())
1235       return false;
1236 
1237     auto Align = SI.getAlignment();
1238     if (!Align)
1239       Align = DL.getABITypeAlignment(ST);
1240 
1241     SmallString<16> EltName = V->getName();
1242     EltName += ".elt";
1243     auto *Addr = SI.getPointerOperand();
1244     SmallString<16> AddrName = Addr->getName();
1245     AddrName += ".repack";
1246 
1247     auto *IdxType = Type::getInt32Ty(ST->getContext());
1248     auto *Zero = ConstantInt::get(IdxType, 0);
1249     for (unsigned i = 0; i < Count; i++) {
1250       Value *Indices[2] = {
1251         Zero,
1252         ConstantInt::get(IdxType, i),
1253       };
1254       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1255                                                AddrName);
1256       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1257       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
1258       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1259       AAMDNodes AAMD;
1260       SI.getAAMetadata(AAMD);
1261       NS->setAAMetadata(AAMD);
1262     }
1263 
1264     return true;
1265   }
1266 
1267   if (auto *AT = dyn_cast<ArrayType>(T)) {
1268     // If the array only have one element, we unpack.
1269     auto NumElements = AT->getNumElements();
1270     if (NumElements == 1) {
1271       V = IC.Builder.CreateExtractValue(V, 0);
1272       combineStoreToNewValue(IC, SI, V);
1273       return true;
1274     }
1275 
1276     // Bail out if the array is too large. Ideally we would like to optimize
1277     // arrays of arbitrary size but this has a terrible impact on compile time.
1278     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1279     // tuning.
1280     if (NumElements > IC.MaxArraySizeForCombine)
1281       return false;
1282 
1283     const DataLayout &DL = IC.getDataLayout();
1284     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1285     auto Align = SI.getAlignment();
1286     if (!Align)
1287       Align = DL.getABITypeAlignment(T);
1288 
1289     SmallString<16> EltName = V->getName();
1290     EltName += ".elt";
1291     auto *Addr = SI.getPointerOperand();
1292     SmallString<16> AddrName = Addr->getName();
1293     AddrName += ".repack";
1294 
1295     auto *IdxType = Type::getInt64Ty(T->getContext());
1296     auto *Zero = ConstantInt::get(IdxType, 0);
1297 
1298     uint64_t Offset = 0;
1299     for (uint64_t i = 0; i < NumElements; i++) {
1300       Value *Indices[2] = {
1301         Zero,
1302         ConstantInt::get(IdxType, i),
1303       };
1304       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1305                                                AddrName);
1306       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1307       auto EltAlign = MinAlign(Align, Offset);
1308       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1309       AAMDNodes AAMD;
1310       SI.getAAMetadata(AAMD);
1311       NS->setAAMetadata(AAMD);
1312       Offset += EltSize;
1313     }
1314 
1315     return true;
1316   }
1317 
1318   return false;
1319 }
1320 
1321 /// equivalentAddressValues - Test if A and B will obviously have the same
1322 /// value. This includes recognizing that %t0 and %t1 will have the same
1323 /// value in code like this:
1324 ///   %t0 = getelementptr \@a, 0, 3
1325 ///   store i32 0, i32* %t0
1326 ///   %t1 = getelementptr \@a, 0, 3
1327 ///   %t2 = load i32* %t1
1328 ///
1329 static bool equivalentAddressValues(Value *A, Value *B) {
1330   // Test if the values are trivially equivalent.
1331   if (A == B) return true;
1332 
1333   // Test if the values come form identical arithmetic instructions.
1334   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1335   // its only used to compare two uses within the same basic block, which
1336   // means that they'll always either have the same value or one of them
1337   // will have an undefined value.
1338   if (isa<BinaryOperator>(A) ||
1339       isa<CastInst>(A) ||
1340       isa<PHINode>(A) ||
1341       isa<GetElementPtrInst>(A))
1342     if (Instruction *BI = dyn_cast<Instruction>(B))
1343       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1344         return true;
1345 
1346   // Otherwise they may not be equivalent.
1347   return false;
1348 }
1349 
1350 /// Converts store (bitcast (load (bitcast (select ...)))) to
1351 /// store (load (select ...)), where select is minmax:
1352 /// select ((cmp load V1, load V2), V1, V2).
1353 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC,
1354                                                 StoreInst &SI) {
1355   // bitcast?
1356   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1357     return false;
1358   // load? integer?
1359   Value *LoadAddr;
1360   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1361     return false;
1362   auto *LI = cast<LoadInst>(SI.getValueOperand());
1363   if (!LI->getType()->isIntegerTy())
1364     return false;
1365   if (!isMinMaxWithLoads(LoadAddr))
1366     return false;
1367 
1368   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1369         auto *SI = dyn_cast<StoreInst>(U);
1370         return SI && SI->getPointerOperand() != LI &&
1371                peekThroughBitcast(SI->getPointerOperand()) != LoadAddr &&
1372                !SI->getPointerOperand()->isSwiftError();
1373       }))
1374     return false;
1375 
1376   IC.Builder.SetInsertPoint(LI);
1377   LoadInst *NewLI = combineLoadToNewType(
1378       IC, *LI, LoadAddr->getType()->getPointerElementType());
1379   // Replace all the stores with stores of the newly loaded value.
1380   for (auto *UI : LI->users()) {
1381     auto *USI = cast<StoreInst>(UI);
1382     IC.Builder.SetInsertPoint(USI);
1383     combineStoreToNewValue(IC, *USI, NewLI);
1384   }
1385   IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1386   IC.eraseInstFromFunction(*LI);
1387   return true;
1388 }
1389 
1390 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1391   Value *Val = SI.getOperand(0);
1392   Value *Ptr = SI.getOperand(1);
1393 
1394   // Try to canonicalize the stored type.
1395   if (combineStoreToValueType(*this, SI))
1396     return eraseInstFromFunction(SI);
1397 
1398   // Attempt to improve the alignment.
1399   unsigned KnownAlign = getOrEnforceKnownAlignment(
1400       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT);
1401   unsigned StoreAlign = SI.getAlignment();
1402   unsigned EffectiveStoreAlign =
1403       StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
1404 
1405   if (KnownAlign > EffectiveStoreAlign)
1406     SI.setAlignment(KnownAlign);
1407   else if (StoreAlign == 0)
1408     SI.setAlignment(EffectiveStoreAlign);
1409 
1410   // Try to canonicalize the stored type.
1411   if (unpackStoreToAggregate(*this, SI))
1412     return eraseInstFromFunction(SI);
1413 
1414   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1415     return eraseInstFromFunction(SI);
1416 
1417   // Replace GEP indices if possible.
1418   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1419       Worklist.Add(NewGEPI);
1420       return &SI;
1421   }
1422 
1423   // Don't hack volatile/ordered stores.
1424   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1425   if (!SI.isUnordered()) return nullptr;
1426 
1427   // If the RHS is an alloca with a single use, zapify the store, making the
1428   // alloca dead.
1429   if (Ptr->hasOneUse()) {
1430     if (isa<AllocaInst>(Ptr))
1431       return eraseInstFromFunction(SI);
1432     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1433       if (isa<AllocaInst>(GEP->getOperand(0))) {
1434         if (GEP->getOperand(0)->hasOneUse())
1435           return eraseInstFromFunction(SI);
1436       }
1437     }
1438   }
1439 
1440   // Do really simple DSE, to catch cases where there are several consecutive
1441   // stores to the same location, separated by a few arithmetic operations. This
1442   // situation often occurs with bitfield accesses.
1443   BasicBlock::iterator BBI(SI);
1444   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1445        --ScanInsts) {
1446     --BBI;
1447     // Don't count debug info directives, lest they affect codegen,
1448     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1449     if (isa<DbgInfoIntrinsic>(BBI) ||
1450         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1451       ScanInsts++;
1452       continue;
1453     }
1454 
1455     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1456       // Prev store isn't volatile, and stores to the same location?
1457       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1458                                                         SI.getOperand(1))) {
1459         ++NumDeadStore;
1460         ++BBI;
1461         eraseInstFromFunction(*PrevSI);
1462         continue;
1463       }
1464       break;
1465     }
1466 
1467     // If this is a load, we have to stop.  However, if the loaded value is from
1468     // the pointer we're loading and is producing the pointer we're storing,
1469     // then *this* store is dead (X = load P; store X -> P).
1470     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1471       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1472         assert(SI.isUnordered() && "can't eliminate ordering operation");
1473         return eraseInstFromFunction(SI);
1474       }
1475 
1476       // Otherwise, this is a load from some other location.  Stores before it
1477       // may not be dead.
1478       break;
1479     }
1480 
1481     // Don't skip over loads, throws or things that can modify memory.
1482     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1483       break;
1484   }
1485 
1486   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1487   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1488   if (canSimplifyNullStoreOrGEP(SI)) {
1489     if (!isa<UndefValue>(Val)) {
1490       SI.setOperand(0, UndefValue::get(Val->getType()));
1491       if (Instruction *U = dyn_cast<Instruction>(Val))
1492         Worklist.Add(U);  // Dropped a use.
1493     }
1494     return nullptr;  // Do not modify these!
1495   }
1496 
1497   // store undef, Ptr -> noop
1498   if (isa<UndefValue>(Val))
1499     return eraseInstFromFunction(SI);
1500 
1501   // If this store is the last instruction in the basic block (possibly
1502   // excepting debug info instructions), and if the block ends with an
1503   // unconditional branch, try to move it to the successor block.
1504   BBI = SI.getIterator();
1505   do {
1506     ++BBI;
1507   } while (isa<DbgInfoIntrinsic>(BBI) ||
1508            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1509   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1510     if (BI->isUnconditional())
1511       if (SimplifyStoreAtEndOfBlock(SI))
1512         return nullptr;  // xform done!
1513 
1514   return nullptr;
1515 }
1516 
1517 /// SimplifyStoreAtEndOfBlock - Turn things like:
1518 ///   if () { *P = v1; } else { *P = v2 }
1519 /// into a phi node with a store in the successor.
1520 ///
1521 /// Simplify things like:
1522 ///   *P = v1; if () { *P = v2; }
1523 /// into a phi node with a store in the successor.
1524 ///
1525 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
1526   assert(SI.isUnordered() &&
1527          "this code has not been auditted for volatile or ordered store case");
1528 
1529   BasicBlock *StoreBB = SI.getParent();
1530 
1531   // Check to see if the successor block has exactly two incoming edges.  If
1532   // so, see if the other predecessor contains a store to the same location.
1533   // if so, insert a PHI node (if needed) and move the stores down.
1534   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1535 
1536   // Determine whether Dest has exactly two predecessors and, if so, compute
1537   // the other predecessor.
1538   pred_iterator PI = pred_begin(DestBB);
1539   BasicBlock *P = *PI;
1540   BasicBlock *OtherBB = nullptr;
1541 
1542   if (P != StoreBB)
1543     OtherBB = P;
1544 
1545   if (++PI == pred_end(DestBB))
1546     return false;
1547 
1548   P = *PI;
1549   if (P != StoreBB) {
1550     if (OtherBB)
1551       return false;
1552     OtherBB = P;
1553   }
1554   if (++PI != pred_end(DestBB))
1555     return false;
1556 
1557   // Bail out if all the relevant blocks aren't distinct (this can happen,
1558   // for example, if SI is in an infinite loop)
1559   if (StoreBB == DestBB || OtherBB == DestBB)
1560     return false;
1561 
1562   // Verify that the other block ends in a branch and is not otherwise empty.
1563   BasicBlock::iterator BBI(OtherBB->getTerminator());
1564   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1565   if (!OtherBr || BBI == OtherBB->begin())
1566     return false;
1567 
1568   // If the other block ends in an unconditional branch, check for the 'if then
1569   // else' case.  there is an instruction before the branch.
1570   StoreInst *OtherStore = nullptr;
1571   if (OtherBr->isUnconditional()) {
1572     --BBI;
1573     // Skip over debugging info.
1574     while (isa<DbgInfoIntrinsic>(BBI) ||
1575            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1576       if (BBI==OtherBB->begin())
1577         return false;
1578       --BBI;
1579     }
1580     // If this isn't a store, isn't a store to the same location, or is not the
1581     // right kind of store, bail out.
1582     OtherStore = dyn_cast<StoreInst>(BBI);
1583     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1584         !SI.isSameOperationAs(OtherStore))
1585       return false;
1586   } else {
1587     // Otherwise, the other block ended with a conditional branch. If one of the
1588     // destinations is StoreBB, then we have the if/then case.
1589     if (OtherBr->getSuccessor(0) != StoreBB &&
1590         OtherBr->getSuccessor(1) != StoreBB)
1591       return false;
1592 
1593     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1594     // if/then triangle.  See if there is a store to the same ptr as SI that
1595     // lives in OtherBB.
1596     for (;; --BBI) {
1597       // Check to see if we find the matching store.
1598       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1599         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1600             !SI.isSameOperationAs(OtherStore))
1601           return false;
1602         break;
1603       }
1604       // If we find something that may be using or overwriting the stored
1605       // value, or if we run out of instructions, we can't do the xform.
1606       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1607           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1608         return false;
1609     }
1610 
1611     // In order to eliminate the store in OtherBr, we have to
1612     // make sure nothing reads or overwrites the stored value in
1613     // StoreBB.
1614     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1615       // FIXME: This should really be AA driven.
1616       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1617         return false;
1618     }
1619   }
1620 
1621   // Insert a PHI node now if we need it.
1622   Value *MergedVal = OtherStore->getOperand(0);
1623   if (MergedVal != SI.getOperand(0)) {
1624     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1625     PN->addIncoming(SI.getOperand(0), SI.getParent());
1626     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1627     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1628   }
1629 
1630   // Advance to a place where it is safe to insert the new store and
1631   // insert it.
1632   BBI = DestBB->getFirstInsertionPt();
1633   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
1634                                    SI.isVolatile(),
1635                                    SI.getAlignment(),
1636                                    SI.getOrdering(),
1637                                    SI.getSyncScopeID());
1638   InsertNewInstBefore(NewSI, *BBI);
1639   // The debug locations of the original instructions might differ; merge them.
1640   NewSI->applyMergedLocation(SI.getDebugLoc(), OtherStore->getDebugLoc());
1641 
1642   // If the two stores had AA tags, merge them.
1643   AAMDNodes AATags;
1644   SI.getAAMetadata(AATags);
1645   if (AATags) {
1646     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1647     NewSI->setAAMetadata(AATags);
1648   }
1649 
1650   // Nuke the old stores.
1651   eraseInstFromFunction(SI);
1652   eraseInstFromFunction(*OtherStore);
1653   return true;
1654 }
1655