1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/MapVector.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Transforms/Utils/Local.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "instcombine" 31 32 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 34 35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 36 /// some part of a constant global variable. This intentionally only accepts 37 /// constant expressions because we can't rewrite arbitrary instructions. 38 static bool pointsToConstantGlobal(Value *V) { 39 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 40 return GV->isConstant(); 41 42 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 43 if (CE->getOpcode() == Instruction::BitCast || 44 CE->getOpcode() == Instruction::AddrSpaceCast || 45 CE->getOpcode() == Instruction::GetElementPtr) 46 return pointsToConstantGlobal(CE->getOperand(0)); 47 } 48 return false; 49 } 50 51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 52 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 53 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 55 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 56 /// the alloca, and if the source pointer is a pointer to a constant global, we 57 /// can optimize this. 58 static bool 59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 60 SmallVectorImpl<Instruction *> &ToDelete) { 61 // We track lifetime intrinsics as we encounter them. If we decide to go 62 // ahead and replace the value with the global, this lets the caller quickly 63 // eliminate the markers. 64 65 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 66 ValuesToInspect.emplace_back(V, false); 67 while (!ValuesToInspect.empty()) { 68 auto ValuePair = ValuesToInspect.pop_back_val(); 69 const bool IsOffset = ValuePair.second; 70 for (auto &U : ValuePair.first->uses()) { 71 auto *I = cast<Instruction>(U.getUser()); 72 73 if (auto *LI = dyn_cast<LoadInst>(I)) { 74 // Ignore non-volatile loads, they are always ok. 75 if (!LI->isSimple()) return false; 76 continue; 77 } 78 79 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 80 // If uses of the bitcast are ok, we are ok. 81 ValuesToInspect.emplace_back(I, IsOffset); 82 continue; 83 } 84 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 85 // If the GEP has all zero indices, it doesn't offset the pointer. If it 86 // doesn't, it does. 87 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 88 continue; 89 } 90 91 if (auto CS = CallSite(I)) { 92 // If this is the function being called then we treat it like a load and 93 // ignore it. 94 if (CS.isCallee(&U)) 95 continue; 96 97 unsigned DataOpNo = CS.getDataOperandNo(&U); 98 bool IsArgOperand = CS.isArgOperand(&U); 99 100 // Inalloca arguments are clobbered by the call. 101 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 102 return false; 103 104 // If this is a readonly/readnone call site, then we know it is just a 105 // load (but one that potentially returns the value itself), so we can 106 // ignore it if we know that the value isn't captured. 107 if (CS.onlyReadsMemory() && 108 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 109 continue; 110 111 // If this is being passed as a byval argument, the caller is making a 112 // copy, so it is only a read of the alloca. 113 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 114 continue; 115 } 116 117 // Lifetime intrinsics can be handled by the caller. 118 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 119 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 120 II->getIntrinsicID() == Intrinsic::lifetime_end) { 121 assert(II->use_empty() && "Lifetime markers have no result to use!"); 122 ToDelete.push_back(II); 123 continue; 124 } 125 } 126 127 // If this is isn't our memcpy/memmove, reject it as something we can't 128 // handle. 129 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 130 if (!MI) 131 return false; 132 133 // If the transfer is using the alloca as a source of the transfer, then 134 // ignore it since it is a load (unless the transfer is volatile). 135 if (U.getOperandNo() == 1) { 136 if (MI->isVolatile()) return false; 137 continue; 138 } 139 140 // If we already have seen a copy, reject the second one. 141 if (TheCopy) return false; 142 143 // If the pointer has been offset from the start of the alloca, we can't 144 // safely handle this. 145 if (IsOffset) return false; 146 147 // If the memintrinsic isn't using the alloca as the dest, reject it. 148 if (U.getOperandNo() != 0) return false; 149 150 // If the source of the memcpy/move is not a constant global, reject it. 151 if (!pointsToConstantGlobal(MI->getSource())) 152 return false; 153 154 // Otherwise, the transform is safe. Remember the copy instruction. 155 TheCopy = MI; 156 } 157 } 158 return true; 159 } 160 161 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 162 /// modified by a copy from a constant global. If we can prove this, we can 163 /// replace any uses of the alloca with uses of the global directly. 164 static MemTransferInst * 165 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 166 SmallVectorImpl<Instruction *> &ToDelete) { 167 MemTransferInst *TheCopy = nullptr; 168 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 169 return TheCopy; 170 return nullptr; 171 } 172 173 /// Returns true if V is dereferenceable for size of alloca. 174 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 175 const DataLayout &DL) { 176 if (AI->isArrayAllocation()) 177 return false; 178 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 179 if (!AllocaSize) 180 return false; 181 return isDereferenceableAndAlignedPointer(V, AI->getAlignment(), 182 APInt(64, AllocaSize), DL); 183 } 184 185 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 186 // Check for array size of 1 (scalar allocation). 187 if (!AI.isArrayAllocation()) { 188 // i32 1 is the canonical array size for scalar allocations. 189 if (AI.getArraySize()->getType()->isIntegerTy(32)) 190 return nullptr; 191 192 // Canonicalize it. 193 Value *V = IC.Builder.getInt32(1); 194 AI.setOperand(0, V); 195 return &AI; 196 } 197 198 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 199 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 200 if (C->getValue().getActiveBits() <= 64) { 201 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 202 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 203 New->setAlignment(AI.getAlignment()); 204 205 // Scan to the end of the allocation instructions, to skip over a block of 206 // allocas if possible...also skip interleaved debug info 207 // 208 BasicBlock::iterator It(New); 209 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 210 ++It; 211 212 // Now that I is pointing to the first non-allocation-inst in the block, 213 // insert our getelementptr instruction... 214 // 215 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 216 Value *NullIdx = Constant::getNullValue(IdxTy); 217 Value *Idx[2] = {NullIdx, NullIdx}; 218 Instruction *GEP = 219 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 220 IC.InsertNewInstBefore(GEP, *It); 221 222 // Now make everything use the getelementptr instead of the original 223 // allocation. 224 return IC.replaceInstUsesWith(AI, GEP); 225 } 226 } 227 228 if (isa<UndefValue>(AI.getArraySize())) 229 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 230 231 // Ensure that the alloca array size argument has type intptr_t, so that 232 // any casting is exposed early. 233 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 234 if (AI.getArraySize()->getType() != IntPtrTy) { 235 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 236 AI.setOperand(0, V); 237 return &AI; 238 } 239 240 return nullptr; 241 } 242 243 namespace { 244 // If I and V are pointers in different address space, it is not allowed to 245 // use replaceAllUsesWith since I and V have different types. A 246 // non-target-specific transformation should not use addrspacecast on V since 247 // the two address space may be disjoint depending on target. 248 // 249 // This class chases down uses of the old pointer until reaching the load 250 // instructions, then replaces the old pointer in the load instructions with 251 // the new pointer. If during the chasing it sees bitcast or GEP, it will 252 // create new bitcast or GEP with the new pointer and use them in the load 253 // instruction. 254 class PointerReplacer { 255 public: 256 PointerReplacer(InstCombiner &IC) : IC(IC) {} 257 void replacePointer(Instruction &I, Value *V); 258 259 private: 260 void findLoadAndReplace(Instruction &I); 261 void replace(Instruction *I); 262 Value *getReplacement(Value *I); 263 264 SmallVector<Instruction *, 4> Path; 265 MapVector<Value *, Value *> WorkMap; 266 InstCombiner &IC; 267 }; 268 } // end anonymous namespace 269 270 void PointerReplacer::findLoadAndReplace(Instruction &I) { 271 for (auto U : I.users()) { 272 auto *Inst = dyn_cast<Instruction>(&*U); 273 if (!Inst) 274 return; 275 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 276 if (isa<LoadInst>(Inst)) { 277 for (auto P : Path) 278 replace(P); 279 replace(Inst); 280 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 281 Path.push_back(Inst); 282 findLoadAndReplace(*Inst); 283 Path.pop_back(); 284 } else { 285 return; 286 } 287 } 288 } 289 290 Value *PointerReplacer::getReplacement(Value *V) { 291 auto Loc = WorkMap.find(V); 292 if (Loc != WorkMap.end()) 293 return Loc->second; 294 return nullptr; 295 } 296 297 void PointerReplacer::replace(Instruction *I) { 298 if (getReplacement(I)) 299 return; 300 301 if (auto *LT = dyn_cast<LoadInst>(I)) { 302 auto *V = getReplacement(LT->getPointerOperand()); 303 assert(V && "Operand not replaced"); 304 auto *NewI = new LoadInst(V); 305 NewI->takeName(LT); 306 IC.InsertNewInstWith(NewI, *LT); 307 IC.replaceInstUsesWith(*LT, NewI); 308 WorkMap[LT] = NewI; 309 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 310 auto *V = getReplacement(GEP->getPointerOperand()); 311 assert(V && "Operand not replaced"); 312 SmallVector<Value *, 8> Indices; 313 Indices.append(GEP->idx_begin(), GEP->idx_end()); 314 auto *NewI = GetElementPtrInst::Create( 315 V->getType()->getPointerElementType(), V, Indices); 316 IC.InsertNewInstWith(NewI, *GEP); 317 NewI->takeName(GEP); 318 WorkMap[GEP] = NewI; 319 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 320 auto *V = getReplacement(BC->getOperand(0)); 321 assert(V && "Operand not replaced"); 322 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 323 V->getType()->getPointerAddressSpace()); 324 auto *NewI = new BitCastInst(V, NewT); 325 IC.InsertNewInstWith(NewI, *BC); 326 NewI->takeName(BC); 327 WorkMap[BC] = NewI; 328 } else { 329 llvm_unreachable("should never reach here"); 330 } 331 } 332 333 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 334 #ifndef NDEBUG 335 auto *PT = cast<PointerType>(I.getType()); 336 auto *NT = cast<PointerType>(V->getType()); 337 assert(PT != NT && PT->getElementType() == NT->getElementType() && 338 "Invalid usage"); 339 #endif 340 WorkMap[&I] = V; 341 findLoadAndReplace(I); 342 } 343 344 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 345 if (auto *I = simplifyAllocaArraySize(*this, AI)) 346 return I; 347 348 if (AI.getAllocatedType()->isSized()) { 349 // If the alignment is 0 (unspecified), assign it the preferred alignment. 350 if (AI.getAlignment() == 0) 351 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 352 353 // Move all alloca's of zero byte objects to the entry block and merge them 354 // together. Note that we only do this for alloca's, because malloc should 355 // allocate and return a unique pointer, even for a zero byte allocation. 356 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 357 // For a zero sized alloca there is no point in doing an array allocation. 358 // This is helpful if the array size is a complicated expression not used 359 // elsewhere. 360 if (AI.isArrayAllocation()) { 361 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 362 return &AI; 363 } 364 365 // Get the first instruction in the entry block. 366 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 367 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 368 if (FirstInst != &AI) { 369 // If the entry block doesn't start with a zero-size alloca then move 370 // this one to the start of the entry block. There is no problem with 371 // dominance as the array size was forced to a constant earlier already. 372 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 373 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 374 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 375 AI.moveBefore(FirstInst); 376 return &AI; 377 } 378 379 // If the alignment of the entry block alloca is 0 (unspecified), 380 // assign it the preferred alignment. 381 if (EntryAI->getAlignment() == 0) 382 EntryAI->setAlignment( 383 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 384 // Replace this zero-sized alloca with the one at the start of the entry 385 // block after ensuring that the address will be aligned enough for both 386 // types. 387 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 388 AI.getAlignment()); 389 EntryAI->setAlignment(MaxAlign); 390 if (AI.getType() != EntryAI->getType()) 391 return new BitCastInst(EntryAI, AI.getType()); 392 return replaceInstUsesWith(AI, EntryAI); 393 } 394 } 395 } 396 397 if (AI.getAlignment()) { 398 // Check to see if this allocation is only modified by a memcpy/memmove from 399 // a constant global whose alignment is equal to or exceeds that of the 400 // allocation. If this is the case, we can change all users to use 401 // the constant global instead. This is commonly produced by the CFE by 402 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 403 // is only subsequently read. 404 SmallVector<Instruction *, 4> ToDelete; 405 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 406 unsigned SourceAlign = getOrEnforceKnownAlignment( 407 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 408 if (AI.getAlignment() <= SourceAlign && 409 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 410 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 411 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 412 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 413 eraseInstFromFunction(*ToDelete[i]); 414 Constant *TheSrc = cast<Constant>(Copy->getSource()); 415 auto *SrcTy = TheSrc->getType(); 416 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 417 SrcTy->getPointerAddressSpace()); 418 Constant *Cast = 419 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 420 if (AI.getType()->getPointerAddressSpace() == 421 SrcTy->getPointerAddressSpace()) { 422 Instruction *NewI = replaceInstUsesWith(AI, Cast); 423 eraseInstFromFunction(*Copy); 424 ++NumGlobalCopies; 425 return NewI; 426 } else { 427 PointerReplacer PtrReplacer(*this); 428 PtrReplacer.replacePointer(AI, Cast); 429 ++NumGlobalCopies; 430 } 431 } 432 } 433 } 434 435 // At last, use the generic allocation site handler to aggressively remove 436 // unused allocas. 437 return visitAllocSite(AI); 438 } 439 440 // Are we allowed to form a atomic load or store of this type? 441 static bool isSupportedAtomicType(Type *Ty) { 442 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 443 } 444 445 /// Helper to combine a load to a new type. 446 /// 447 /// This just does the work of combining a load to a new type. It handles 448 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 449 /// loaded *value* type. This will convert it to a pointer, cast the operand to 450 /// that pointer type, load it, etc. 451 /// 452 /// Note that this will create all of the instructions with whatever insert 453 /// point the \c InstCombiner currently is using. 454 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 455 const Twine &Suffix = "") { 456 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 457 "can't fold an atomic load to requested type"); 458 459 Value *Ptr = LI.getPointerOperand(); 460 unsigned AS = LI.getPointerAddressSpace(); 461 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 462 LI.getAllMetadata(MD); 463 464 Value *NewPtr = nullptr; 465 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 466 NewPtr->getType()->getPointerElementType() == NewTy && 467 NewPtr->getType()->getPointerAddressSpace() == AS)) 468 NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 469 470 LoadInst *NewLoad = IC.Builder.CreateAlignedLoad( 471 NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 472 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 473 MDBuilder MDB(NewLoad->getContext()); 474 for (const auto &MDPair : MD) { 475 unsigned ID = MDPair.first; 476 MDNode *N = MDPair.second; 477 // Note, essentially every kind of metadata should be preserved here! This 478 // routine is supposed to clone a load instruction changing *only its type*. 479 // The only metadata it makes sense to drop is metadata which is invalidated 480 // when the pointer type changes. This should essentially never be the case 481 // in LLVM, but we explicitly switch over only known metadata to be 482 // conservatively correct. If you are adding metadata to LLVM which pertains 483 // to loads, you almost certainly want to add it here. 484 switch (ID) { 485 case LLVMContext::MD_dbg: 486 case LLVMContext::MD_tbaa: 487 case LLVMContext::MD_prof: 488 case LLVMContext::MD_fpmath: 489 case LLVMContext::MD_tbaa_struct: 490 case LLVMContext::MD_invariant_load: 491 case LLVMContext::MD_alias_scope: 492 case LLVMContext::MD_noalias: 493 case LLVMContext::MD_nontemporal: 494 case LLVMContext::MD_mem_parallel_loop_access: 495 // All of these directly apply. 496 NewLoad->setMetadata(ID, N); 497 break; 498 499 case LLVMContext::MD_nonnull: 500 copyNonnullMetadata(LI, N, *NewLoad); 501 break; 502 case LLVMContext::MD_align: 503 case LLVMContext::MD_dereferenceable: 504 case LLVMContext::MD_dereferenceable_or_null: 505 // These only directly apply if the new type is also a pointer. 506 if (NewTy->isPointerTy()) 507 NewLoad->setMetadata(ID, N); 508 break; 509 case LLVMContext::MD_range: 510 copyRangeMetadata(IC.getDataLayout(), LI, N, *NewLoad); 511 break; 512 } 513 } 514 return NewLoad; 515 } 516 517 /// Combine a store to a new type. 518 /// 519 /// Returns the newly created store instruction. 520 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 521 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 522 "can't fold an atomic store of requested type"); 523 524 Value *Ptr = SI.getPointerOperand(); 525 unsigned AS = SI.getPointerAddressSpace(); 526 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 527 SI.getAllMetadata(MD); 528 529 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 530 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 531 SI.getAlignment(), SI.isVolatile()); 532 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 533 for (const auto &MDPair : MD) { 534 unsigned ID = MDPair.first; 535 MDNode *N = MDPair.second; 536 // Note, essentially every kind of metadata should be preserved here! This 537 // routine is supposed to clone a store instruction changing *only its 538 // type*. The only metadata it makes sense to drop is metadata which is 539 // invalidated when the pointer type changes. This should essentially 540 // never be the case in LLVM, but we explicitly switch over only known 541 // metadata to be conservatively correct. If you are adding metadata to 542 // LLVM which pertains to stores, you almost certainly want to add it 543 // here. 544 switch (ID) { 545 case LLVMContext::MD_dbg: 546 case LLVMContext::MD_tbaa: 547 case LLVMContext::MD_prof: 548 case LLVMContext::MD_fpmath: 549 case LLVMContext::MD_tbaa_struct: 550 case LLVMContext::MD_alias_scope: 551 case LLVMContext::MD_noalias: 552 case LLVMContext::MD_nontemporal: 553 case LLVMContext::MD_mem_parallel_loop_access: 554 // All of these directly apply. 555 NewStore->setMetadata(ID, N); 556 break; 557 558 case LLVMContext::MD_invariant_load: 559 case LLVMContext::MD_nonnull: 560 case LLVMContext::MD_range: 561 case LLVMContext::MD_align: 562 case LLVMContext::MD_dereferenceable: 563 case LLVMContext::MD_dereferenceable_or_null: 564 // These don't apply for stores. 565 break; 566 } 567 } 568 569 return NewStore; 570 } 571 572 /// Returns true if instruction represent minmax pattern like: 573 /// select ((cmp load V1, load V2), V1, V2). 574 static bool isMinMaxWithLoads(Value *V) { 575 assert(V->getType()->isPointerTy() && "Expected pointer type."); 576 // Ignore possible ty* to ixx* bitcast. 577 V = peekThroughBitcast(V); 578 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 579 // pattern. 580 CmpInst::Predicate Pred; 581 Instruction *L1; 582 Instruction *L2; 583 Value *LHS; 584 Value *RHS; 585 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 586 m_Value(LHS), m_Value(RHS)))) 587 return false; 588 return (match(L1, m_Load(m_Specific(LHS))) && 589 match(L2, m_Load(m_Specific(RHS)))) || 590 (match(L1, m_Load(m_Specific(RHS))) && 591 match(L2, m_Load(m_Specific(LHS)))); 592 } 593 594 /// Combine loads to match the type of their uses' value after looking 595 /// through intervening bitcasts. 596 /// 597 /// The core idea here is that if the result of a load is used in an operation, 598 /// we should load the type most conducive to that operation. For example, when 599 /// loading an integer and converting that immediately to a pointer, we should 600 /// instead directly load a pointer. 601 /// 602 /// However, this routine must never change the width of a load or the number of 603 /// loads as that would introduce a semantic change. This combine is expected to 604 /// be a semantic no-op which just allows loads to more closely model the types 605 /// of their consuming operations. 606 /// 607 /// Currently, we also refuse to change the precise type used for an atomic load 608 /// or a volatile load. This is debatable, and might be reasonable to change 609 /// later. However, it is risky in case some backend or other part of LLVM is 610 /// relying on the exact type loaded to select appropriate atomic operations. 611 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 612 // FIXME: We could probably with some care handle both volatile and ordered 613 // atomic loads here but it isn't clear that this is important. 614 if (!LI.isUnordered()) 615 return nullptr; 616 617 if (LI.use_empty()) 618 return nullptr; 619 620 // swifterror values can't be bitcasted. 621 if (LI.getPointerOperand()->isSwiftError()) 622 return nullptr; 623 624 Type *Ty = LI.getType(); 625 const DataLayout &DL = IC.getDataLayout(); 626 627 // Try to canonicalize loads which are only ever stored to operate over 628 // integers instead of any other type. We only do this when the loaded type 629 // is sized and has a size exactly the same as its store size and the store 630 // size is a legal integer type. 631 // Do not perform canonicalization if minmax pattern is found (to avoid 632 // infinite loop). 633 if (!Ty->isIntegerTy() && Ty->isSized() && 634 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 635 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) && 636 !DL.isNonIntegralPointerType(Ty) && 637 !isMinMaxWithLoads( 638 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) { 639 if (all_of(LI.users(), [&LI](User *U) { 640 auto *SI = dyn_cast<StoreInst>(U); 641 return SI && SI->getPointerOperand() != &LI && 642 !SI->getPointerOperand()->isSwiftError(); 643 })) { 644 LoadInst *NewLoad = combineLoadToNewType( 645 IC, LI, 646 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 647 // Replace all the stores with stores of the newly loaded value. 648 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 649 auto *SI = cast<StoreInst>(*UI++); 650 IC.Builder.SetInsertPoint(SI); 651 combineStoreToNewValue(IC, *SI, NewLoad); 652 IC.eraseInstFromFunction(*SI); 653 } 654 assert(LI.use_empty() && "Failed to remove all users of the load!"); 655 // Return the old load so the combiner can delete it safely. 656 return &LI; 657 } 658 } 659 660 // Fold away bit casts of the loaded value by loading the desired type. 661 // We can do this for BitCastInsts as well as casts from and to pointer types, 662 // as long as those are noops (i.e., the source or dest type have the same 663 // bitwidth as the target's pointers). 664 if (LI.hasOneUse()) 665 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 666 if (CI->isNoopCast(DL)) 667 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 668 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 669 CI->replaceAllUsesWith(NewLoad); 670 IC.eraseInstFromFunction(*CI); 671 return &LI; 672 } 673 674 // FIXME: We should also canonicalize loads of vectors when their elements are 675 // cast to other types. 676 return nullptr; 677 } 678 679 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 680 // FIXME: We could probably with some care handle both volatile and atomic 681 // stores here but it isn't clear that this is important. 682 if (!LI.isSimple()) 683 return nullptr; 684 685 Type *T = LI.getType(); 686 if (!T->isAggregateType()) 687 return nullptr; 688 689 StringRef Name = LI.getName(); 690 assert(LI.getAlignment() && "Alignment must be set at this point"); 691 692 if (auto *ST = dyn_cast<StructType>(T)) { 693 // If the struct only have one element, we unpack. 694 auto NumElements = ST->getNumElements(); 695 if (NumElements == 1) { 696 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 697 ".unpack"); 698 AAMDNodes AAMD; 699 LI.getAAMetadata(AAMD); 700 NewLoad->setAAMetadata(AAMD); 701 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 702 UndefValue::get(T), NewLoad, 0, Name)); 703 } 704 705 // We don't want to break loads with padding here as we'd loose 706 // the knowledge that padding exists for the rest of the pipeline. 707 const DataLayout &DL = IC.getDataLayout(); 708 auto *SL = DL.getStructLayout(ST); 709 if (SL->hasPadding()) 710 return nullptr; 711 712 auto Align = LI.getAlignment(); 713 if (!Align) 714 Align = DL.getABITypeAlignment(ST); 715 716 auto *Addr = LI.getPointerOperand(); 717 auto *IdxType = Type::getInt32Ty(T->getContext()); 718 auto *Zero = ConstantInt::get(IdxType, 0); 719 720 Value *V = UndefValue::get(T); 721 for (unsigned i = 0; i < NumElements; i++) { 722 Value *Indices[2] = { 723 Zero, 724 ConstantInt::get(IdxType, i), 725 }; 726 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 727 Name + ".elt"); 728 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 729 auto *L = IC.Builder.CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 730 // Propagate AA metadata. It'll still be valid on the narrowed load. 731 AAMDNodes AAMD; 732 LI.getAAMetadata(AAMD); 733 L->setAAMetadata(AAMD); 734 V = IC.Builder.CreateInsertValue(V, L, i); 735 } 736 737 V->setName(Name); 738 return IC.replaceInstUsesWith(LI, V); 739 } 740 741 if (auto *AT = dyn_cast<ArrayType>(T)) { 742 auto *ET = AT->getElementType(); 743 auto NumElements = AT->getNumElements(); 744 if (NumElements == 1) { 745 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 746 AAMDNodes AAMD; 747 LI.getAAMetadata(AAMD); 748 NewLoad->setAAMetadata(AAMD); 749 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 750 UndefValue::get(T), NewLoad, 0, Name)); 751 } 752 753 // Bail out if the array is too large. Ideally we would like to optimize 754 // arrays of arbitrary size but this has a terrible impact on compile time. 755 // The threshold here is chosen arbitrarily, maybe needs a little bit of 756 // tuning. 757 if (NumElements > IC.MaxArraySizeForCombine) 758 return nullptr; 759 760 const DataLayout &DL = IC.getDataLayout(); 761 auto EltSize = DL.getTypeAllocSize(ET); 762 auto Align = LI.getAlignment(); 763 if (!Align) 764 Align = DL.getABITypeAlignment(T); 765 766 auto *Addr = LI.getPointerOperand(); 767 auto *IdxType = Type::getInt64Ty(T->getContext()); 768 auto *Zero = ConstantInt::get(IdxType, 0); 769 770 Value *V = UndefValue::get(T); 771 uint64_t Offset = 0; 772 for (uint64_t i = 0; i < NumElements; i++) { 773 Value *Indices[2] = { 774 Zero, 775 ConstantInt::get(IdxType, i), 776 }; 777 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 778 Name + ".elt"); 779 auto *L = IC.Builder.CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 780 Name + ".unpack"); 781 AAMDNodes AAMD; 782 LI.getAAMetadata(AAMD); 783 L->setAAMetadata(AAMD); 784 V = IC.Builder.CreateInsertValue(V, L, i); 785 Offset += EltSize; 786 } 787 788 V->setName(Name); 789 return IC.replaceInstUsesWith(LI, V); 790 } 791 792 return nullptr; 793 } 794 795 // If we can determine that all possible objects pointed to by the provided 796 // pointer value are, not only dereferenceable, but also definitively less than 797 // or equal to the provided maximum size, then return true. Otherwise, return 798 // false (constant global values and allocas fall into this category). 799 // 800 // FIXME: This should probably live in ValueTracking (or similar). 801 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 802 const DataLayout &DL) { 803 SmallPtrSet<Value *, 4> Visited; 804 SmallVector<Value *, 4> Worklist(1, V); 805 806 do { 807 Value *P = Worklist.pop_back_val(); 808 P = P->stripPointerCasts(); 809 810 if (!Visited.insert(P).second) 811 continue; 812 813 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 814 Worklist.push_back(SI->getTrueValue()); 815 Worklist.push_back(SI->getFalseValue()); 816 continue; 817 } 818 819 if (PHINode *PN = dyn_cast<PHINode>(P)) { 820 for (Value *IncValue : PN->incoming_values()) 821 Worklist.push_back(IncValue); 822 continue; 823 } 824 825 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 826 if (GA->isInterposable()) 827 return false; 828 Worklist.push_back(GA->getAliasee()); 829 continue; 830 } 831 832 // If we know how big this object is, and it is less than MaxSize, continue 833 // searching. Otherwise, return false. 834 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 835 if (!AI->getAllocatedType()->isSized()) 836 return false; 837 838 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 839 if (!CS) 840 return false; 841 842 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 843 // Make sure that, even if the multiplication below would wrap as an 844 // uint64_t, we still do the right thing. 845 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 846 return false; 847 continue; 848 } 849 850 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 851 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 852 return false; 853 854 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 855 if (InitSize > MaxSize) 856 return false; 857 continue; 858 } 859 860 return false; 861 } while (!Worklist.empty()); 862 863 return true; 864 } 865 866 // If we're indexing into an object of a known size, and the outer index is 867 // not a constant, but having any value but zero would lead to undefined 868 // behavior, replace it with zero. 869 // 870 // For example, if we have: 871 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 872 // ... 873 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 874 // ... = load i32* %arrayidx, align 4 875 // Then we know that we can replace %x in the GEP with i64 0. 876 // 877 // FIXME: We could fold any GEP index to zero that would cause UB if it were 878 // not zero. Currently, we only handle the first such index. Also, we could 879 // also search through non-zero constant indices if we kept track of the 880 // offsets those indices implied. 881 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 882 Instruction *MemI, unsigned &Idx) { 883 if (GEPI->getNumOperands() < 2) 884 return false; 885 886 // Find the first non-zero index of a GEP. If all indices are zero, return 887 // one past the last index. 888 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 889 unsigned I = 1; 890 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 891 Value *V = GEPI->getOperand(I); 892 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 893 if (CI->isZero()) 894 continue; 895 896 break; 897 } 898 899 return I; 900 }; 901 902 // Skip through initial 'zero' indices, and find the corresponding pointer 903 // type. See if the next index is not a constant. 904 Idx = FirstNZIdx(GEPI); 905 if (Idx == GEPI->getNumOperands()) 906 return false; 907 if (isa<Constant>(GEPI->getOperand(Idx))) 908 return false; 909 910 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 911 Type *AllocTy = 912 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 913 if (!AllocTy || !AllocTy->isSized()) 914 return false; 915 const DataLayout &DL = IC.getDataLayout(); 916 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 917 918 // If there are more indices after the one we might replace with a zero, make 919 // sure they're all non-negative. If any of them are negative, the overall 920 // address being computed might be before the base address determined by the 921 // first non-zero index. 922 auto IsAllNonNegative = [&]() { 923 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 924 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 925 if (Known.isNonNegative()) 926 continue; 927 return false; 928 } 929 930 return true; 931 }; 932 933 // FIXME: If the GEP is not inbounds, and there are extra indices after the 934 // one we'll replace, those could cause the address computation to wrap 935 // (rendering the IsAllNonNegative() check below insufficient). We can do 936 // better, ignoring zero indices (and other indices we can prove small 937 // enough not to wrap). 938 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 939 return false; 940 941 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 942 // also known to be dereferenceable. 943 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 944 IsAllNonNegative(); 945 } 946 947 // If we're indexing into an object with a variable index for the memory 948 // access, but the object has only one element, we can assume that the index 949 // will always be zero. If we replace the GEP, return it. 950 template <typename T> 951 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 952 T &MemI) { 953 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 954 unsigned Idx; 955 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 956 Instruction *NewGEPI = GEPI->clone(); 957 NewGEPI->setOperand(Idx, 958 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 959 NewGEPI->insertBefore(GEPI); 960 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 961 return NewGEPI; 962 } 963 } 964 965 return nullptr; 966 } 967 968 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 969 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 970 return false; 971 972 auto *Ptr = SI.getPointerOperand(); 973 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 974 Ptr = GEPI->getOperand(0); 975 return (isa<ConstantPointerNull>(Ptr) && 976 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 977 } 978 979 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 980 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 981 const Value *GEPI0 = GEPI->getOperand(0); 982 if (isa<ConstantPointerNull>(GEPI0) && 983 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 984 return true; 985 } 986 if (isa<UndefValue>(Op) || 987 (isa<ConstantPointerNull>(Op) && 988 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 989 return true; 990 return false; 991 } 992 993 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 994 Value *Op = LI.getOperand(0); 995 996 // Try to canonicalize the loaded type. 997 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 998 return Res; 999 1000 // Attempt to improve the alignment. 1001 unsigned KnownAlign = getOrEnforceKnownAlignment( 1002 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 1003 unsigned LoadAlign = LI.getAlignment(); 1004 unsigned EffectiveLoadAlign = 1005 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 1006 1007 if (KnownAlign > EffectiveLoadAlign) 1008 LI.setAlignment(KnownAlign); 1009 else if (LoadAlign == 0) 1010 LI.setAlignment(EffectiveLoadAlign); 1011 1012 // Replace GEP indices if possible. 1013 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 1014 Worklist.Add(NewGEPI); 1015 return &LI; 1016 } 1017 1018 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 1019 return Res; 1020 1021 // Do really simple store-to-load forwarding and load CSE, to catch cases 1022 // where there are several consecutive memory accesses to the same location, 1023 // separated by a few arithmetic operations. 1024 BasicBlock::iterator BBI(LI); 1025 bool IsLoadCSE = false; 1026 if (Value *AvailableVal = FindAvailableLoadedValue( 1027 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1028 if (IsLoadCSE) 1029 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 1030 1031 return replaceInstUsesWith( 1032 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 1033 LI.getName() + ".cast")); 1034 } 1035 1036 // None of the following transforms are legal for volatile/ordered atomic 1037 // loads. Most of them do apply for unordered atomics. 1038 if (!LI.isUnordered()) return nullptr; 1039 1040 // load(gep null, ...) -> unreachable 1041 // load null/undef -> unreachable 1042 // TODO: Consider a target hook for valid address spaces for this xforms. 1043 if (canSimplifyNullLoadOrGEP(LI, Op)) { 1044 // Insert a new store to null instruction before the load to indicate 1045 // that this code is not reachable. We do this instead of inserting 1046 // an unreachable instruction directly because we cannot modify the 1047 // CFG. 1048 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 1049 Constant::getNullValue(Op->getType()), &LI); 1050 SI->setDebugLoc(LI.getDebugLoc()); 1051 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 1052 } 1053 1054 if (Op->hasOneUse()) { 1055 // Change select and PHI nodes to select values instead of addresses: this 1056 // helps alias analysis out a lot, allows many others simplifications, and 1057 // exposes redundancy in the code. 1058 // 1059 // Note that we cannot do the transformation unless we know that the 1060 // introduced loads cannot trap! Something like this is valid as long as 1061 // the condition is always false: load (select bool %C, int* null, int* %G), 1062 // but it would not be valid if we transformed it to load from null 1063 // unconditionally. 1064 // 1065 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1066 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1067 unsigned Align = LI.getAlignment(); 1068 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && 1069 isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { 1070 LoadInst *V1 = Builder.CreateLoad(SI->getOperand(1), 1071 SI->getOperand(1)->getName()+".val"); 1072 LoadInst *V2 = Builder.CreateLoad(SI->getOperand(2), 1073 SI->getOperand(2)->getName()+".val"); 1074 assert(LI.isUnordered() && "implied by above"); 1075 V1->setAlignment(Align); 1076 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1077 V2->setAlignment(Align); 1078 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1079 return SelectInst::Create(SI->getCondition(), V1, V2); 1080 } 1081 1082 // load (select (cond, null, P)) -> load P 1083 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1084 !NullPointerIsDefined(SI->getFunction(), 1085 LI.getPointerAddressSpace())) { 1086 LI.setOperand(0, SI->getOperand(2)); 1087 return &LI; 1088 } 1089 1090 // load (select (cond, P, null)) -> load P 1091 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1092 !NullPointerIsDefined(SI->getFunction(), 1093 LI.getPointerAddressSpace())) { 1094 LI.setOperand(0, SI->getOperand(1)); 1095 return &LI; 1096 } 1097 } 1098 } 1099 return nullptr; 1100 } 1101 1102 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1103 /// 1104 /// \returns underlying value that was "cast", or nullptr otherwise. 1105 /// 1106 /// For example, if we have: 1107 /// 1108 /// %E0 = extractelement <2 x double> %U, i32 0 1109 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1110 /// %E1 = extractelement <2 x double> %U, i32 1 1111 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1112 /// 1113 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1114 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1115 /// Note that %U may contain non-undef values where %V1 has undef. 1116 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1117 Value *U = nullptr; 1118 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1119 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1120 if (!E) 1121 return nullptr; 1122 auto *W = E->getVectorOperand(); 1123 if (!U) 1124 U = W; 1125 else if (U != W) 1126 return nullptr; 1127 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1128 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1129 return nullptr; 1130 V = IV->getAggregateOperand(); 1131 } 1132 if (!isa<UndefValue>(V) ||!U) 1133 return nullptr; 1134 1135 auto *UT = cast<VectorType>(U->getType()); 1136 auto *VT = V->getType(); 1137 // Check that types UT and VT are bitwise isomorphic. 1138 const auto &DL = IC.getDataLayout(); 1139 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1140 return nullptr; 1141 } 1142 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1143 if (AT->getNumElements() != UT->getNumElements()) 1144 return nullptr; 1145 } else { 1146 auto *ST = cast<StructType>(VT); 1147 if (ST->getNumElements() != UT->getNumElements()) 1148 return nullptr; 1149 for (const auto *EltT : ST->elements()) { 1150 if (EltT != UT->getElementType()) 1151 return nullptr; 1152 } 1153 } 1154 return U; 1155 } 1156 1157 /// Combine stores to match the type of value being stored. 1158 /// 1159 /// The core idea here is that the memory does not have any intrinsic type and 1160 /// where we can we should match the type of a store to the type of value being 1161 /// stored. 1162 /// 1163 /// However, this routine must never change the width of a store or the number of 1164 /// stores as that would introduce a semantic change. This combine is expected to 1165 /// be a semantic no-op which just allows stores to more closely model the types 1166 /// of their incoming values. 1167 /// 1168 /// Currently, we also refuse to change the precise type used for an atomic or 1169 /// volatile store. This is debatable, and might be reasonable to change later. 1170 /// However, it is risky in case some backend or other part of LLVM is relying 1171 /// on the exact type stored to select appropriate atomic operations. 1172 /// 1173 /// \returns true if the store was successfully combined away. This indicates 1174 /// the caller must erase the store instruction. We have to let the caller erase 1175 /// the store instruction as otherwise there is no way to signal whether it was 1176 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1177 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1178 // FIXME: We could probably with some care handle both volatile and ordered 1179 // atomic stores here but it isn't clear that this is important. 1180 if (!SI.isUnordered()) 1181 return false; 1182 1183 // swifterror values can't be bitcasted. 1184 if (SI.getPointerOperand()->isSwiftError()) 1185 return false; 1186 1187 Value *V = SI.getValueOperand(); 1188 1189 // Fold away bit casts of the stored value by storing the original type. 1190 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1191 V = BC->getOperand(0); 1192 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1193 combineStoreToNewValue(IC, SI, V); 1194 return true; 1195 } 1196 } 1197 1198 if (Value *U = likeBitCastFromVector(IC, V)) 1199 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1200 combineStoreToNewValue(IC, SI, U); 1201 return true; 1202 } 1203 1204 // FIXME: We should also canonicalize stores of vectors when their elements 1205 // are cast to other types. 1206 return false; 1207 } 1208 1209 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1210 // FIXME: We could probably with some care handle both volatile and atomic 1211 // stores here but it isn't clear that this is important. 1212 if (!SI.isSimple()) 1213 return false; 1214 1215 Value *V = SI.getValueOperand(); 1216 Type *T = V->getType(); 1217 1218 if (!T->isAggregateType()) 1219 return false; 1220 1221 if (auto *ST = dyn_cast<StructType>(T)) { 1222 // If the struct only have one element, we unpack. 1223 unsigned Count = ST->getNumElements(); 1224 if (Count == 1) { 1225 V = IC.Builder.CreateExtractValue(V, 0); 1226 combineStoreToNewValue(IC, SI, V); 1227 return true; 1228 } 1229 1230 // We don't want to break loads with padding here as we'd loose 1231 // the knowledge that padding exists for the rest of the pipeline. 1232 const DataLayout &DL = IC.getDataLayout(); 1233 auto *SL = DL.getStructLayout(ST); 1234 if (SL->hasPadding()) 1235 return false; 1236 1237 auto Align = SI.getAlignment(); 1238 if (!Align) 1239 Align = DL.getABITypeAlignment(ST); 1240 1241 SmallString<16> EltName = V->getName(); 1242 EltName += ".elt"; 1243 auto *Addr = SI.getPointerOperand(); 1244 SmallString<16> AddrName = Addr->getName(); 1245 AddrName += ".repack"; 1246 1247 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1248 auto *Zero = ConstantInt::get(IdxType, 0); 1249 for (unsigned i = 0; i < Count; i++) { 1250 Value *Indices[2] = { 1251 Zero, 1252 ConstantInt::get(IdxType, i), 1253 }; 1254 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1255 AddrName); 1256 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1257 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1258 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1259 AAMDNodes AAMD; 1260 SI.getAAMetadata(AAMD); 1261 NS->setAAMetadata(AAMD); 1262 } 1263 1264 return true; 1265 } 1266 1267 if (auto *AT = dyn_cast<ArrayType>(T)) { 1268 // If the array only have one element, we unpack. 1269 auto NumElements = AT->getNumElements(); 1270 if (NumElements == 1) { 1271 V = IC.Builder.CreateExtractValue(V, 0); 1272 combineStoreToNewValue(IC, SI, V); 1273 return true; 1274 } 1275 1276 // Bail out if the array is too large. Ideally we would like to optimize 1277 // arrays of arbitrary size but this has a terrible impact on compile time. 1278 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1279 // tuning. 1280 if (NumElements > IC.MaxArraySizeForCombine) 1281 return false; 1282 1283 const DataLayout &DL = IC.getDataLayout(); 1284 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1285 auto Align = SI.getAlignment(); 1286 if (!Align) 1287 Align = DL.getABITypeAlignment(T); 1288 1289 SmallString<16> EltName = V->getName(); 1290 EltName += ".elt"; 1291 auto *Addr = SI.getPointerOperand(); 1292 SmallString<16> AddrName = Addr->getName(); 1293 AddrName += ".repack"; 1294 1295 auto *IdxType = Type::getInt64Ty(T->getContext()); 1296 auto *Zero = ConstantInt::get(IdxType, 0); 1297 1298 uint64_t Offset = 0; 1299 for (uint64_t i = 0; i < NumElements; i++) { 1300 Value *Indices[2] = { 1301 Zero, 1302 ConstantInt::get(IdxType, i), 1303 }; 1304 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1305 AddrName); 1306 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1307 auto EltAlign = MinAlign(Align, Offset); 1308 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1309 AAMDNodes AAMD; 1310 SI.getAAMetadata(AAMD); 1311 NS->setAAMetadata(AAMD); 1312 Offset += EltSize; 1313 } 1314 1315 return true; 1316 } 1317 1318 return false; 1319 } 1320 1321 /// equivalentAddressValues - Test if A and B will obviously have the same 1322 /// value. This includes recognizing that %t0 and %t1 will have the same 1323 /// value in code like this: 1324 /// %t0 = getelementptr \@a, 0, 3 1325 /// store i32 0, i32* %t0 1326 /// %t1 = getelementptr \@a, 0, 3 1327 /// %t2 = load i32* %t1 1328 /// 1329 static bool equivalentAddressValues(Value *A, Value *B) { 1330 // Test if the values are trivially equivalent. 1331 if (A == B) return true; 1332 1333 // Test if the values come form identical arithmetic instructions. 1334 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1335 // its only used to compare two uses within the same basic block, which 1336 // means that they'll always either have the same value or one of them 1337 // will have an undefined value. 1338 if (isa<BinaryOperator>(A) || 1339 isa<CastInst>(A) || 1340 isa<PHINode>(A) || 1341 isa<GetElementPtrInst>(A)) 1342 if (Instruction *BI = dyn_cast<Instruction>(B)) 1343 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1344 return true; 1345 1346 // Otherwise they may not be equivalent. 1347 return false; 1348 } 1349 1350 /// Converts store (bitcast (load (bitcast (select ...)))) to 1351 /// store (load (select ...)), where select is minmax: 1352 /// select ((cmp load V1, load V2), V1, V2). 1353 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC, 1354 StoreInst &SI) { 1355 // bitcast? 1356 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1357 return false; 1358 // load? integer? 1359 Value *LoadAddr; 1360 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1361 return false; 1362 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1363 if (!LI->getType()->isIntegerTy()) 1364 return false; 1365 if (!isMinMaxWithLoads(LoadAddr)) 1366 return false; 1367 1368 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1369 auto *SI = dyn_cast<StoreInst>(U); 1370 return SI && SI->getPointerOperand() != LI && 1371 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && 1372 !SI->getPointerOperand()->isSwiftError(); 1373 })) 1374 return false; 1375 1376 IC.Builder.SetInsertPoint(LI); 1377 LoadInst *NewLI = combineLoadToNewType( 1378 IC, *LI, LoadAddr->getType()->getPointerElementType()); 1379 // Replace all the stores with stores of the newly loaded value. 1380 for (auto *UI : LI->users()) { 1381 auto *USI = cast<StoreInst>(UI); 1382 IC.Builder.SetInsertPoint(USI); 1383 combineStoreToNewValue(IC, *USI, NewLI); 1384 } 1385 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1386 IC.eraseInstFromFunction(*LI); 1387 return true; 1388 } 1389 1390 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1391 Value *Val = SI.getOperand(0); 1392 Value *Ptr = SI.getOperand(1); 1393 1394 // Try to canonicalize the stored type. 1395 if (combineStoreToValueType(*this, SI)) 1396 return eraseInstFromFunction(SI); 1397 1398 // Attempt to improve the alignment. 1399 unsigned KnownAlign = getOrEnforceKnownAlignment( 1400 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1401 unsigned StoreAlign = SI.getAlignment(); 1402 unsigned EffectiveStoreAlign = 1403 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1404 1405 if (KnownAlign > EffectiveStoreAlign) 1406 SI.setAlignment(KnownAlign); 1407 else if (StoreAlign == 0) 1408 SI.setAlignment(EffectiveStoreAlign); 1409 1410 // Try to canonicalize the stored type. 1411 if (unpackStoreToAggregate(*this, SI)) 1412 return eraseInstFromFunction(SI); 1413 1414 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1415 return eraseInstFromFunction(SI); 1416 1417 // Replace GEP indices if possible. 1418 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1419 Worklist.Add(NewGEPI); 1420 return &SI; 1421 } 1422 1423 // Don't hack volatile/ordered stores. 1424 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1425 if (!SI.isUnordered()) return nullptr; 1426 1427 // If the RHS is an alloca with a single use, zapify the store, making the 1428 // alloca dead. 1429 if (Ptr->hasOneUse()) { 1430 if (isa<AllocaInst>(Ptr)) 1431 return eraseInstFromFunction(SI); 1432 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1433 if (isa<AllocaInst>(GEP->getOperand(0))) { 1434 if (GEP->getOperand(0)->hasOneUse()) 1435 return eraseInstFromFunction(SI); 1436 } 1437 } 1438 } 1439 1440 // Do really simple DSE, to catch cases where there are several consecutive 1441 // stores to the same location, separated by a few arithmetic operations. This 1442 // situation often occurs with bitfield accesses. 1443 BasicBlock::iterator BBI(SI); 1444 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1445 --ScanInsts) { 1446 --BBI; 1447 // Don't count debug info directives, lest they affect codegen, 1448 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1449 if (isa<DbgInfoIntrinsic>(BBI) || 1450 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1451 ScanInsts++; 1452 continue; 1453 } 1454 1455 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1456 // Prev store isn't volatile, and stores to the same location? 1457 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1458 SI.getOperand(1))) { 1459 ++NumDeadStore; 1460 ++BBI; 1461 eraseInstFromFunction(*PrevSI); 1462 continue; 1463 } 1464 break; 1465 } 1466 1467 // If this is a load, we have to stop. However, if the loaded value is from 1468 // the pointer we're loading and is producing the pointer we're storing, 1469 // then *this* store is dead (X = load P; store X -> P). 1470 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1471 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1472 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1473 return eraseInstFromFunction(SI); 1474 } 1475 1476 // Otherwise, this is a load from some other location. Stores before it 1477 // may not be dead. 1478 break; 1479 } 1480 1481 // Don't skip over loads, throws or things that can modify memory. 1482 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1483 break; 1484 } 1485 1486 // store X, null -> turns into 'unreachable' in SimplifyCFG 1487 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1488 if (canSimplifyNullStoreOrGEP(SI)) { 1489 if (!isa<UndefValue>(Val)) { 1490 SI.setOperand(0, UndefValue::get(Val->getType())); 1491 if (Instruction *U = dyn_cast<Instruction>(Val)) 1492 Worklist.Add(U); // Dropped a use. 1493 } 1494 return nullptr; // Do not modify these! 1495 } 1496 1497 // store undef, Ptr -> noop 1498 if (isa<UndefValue>(Val)) 1499 return eraseInstFromFunction(SI); 1500 1501 // If this store is the last instruction in the basic block (possibly 1502 // excepting debug info instructions), and if the block ends with an 1503 // unconditional branch, try to move it to the successor block. 1504 BBI = SI.getIterator(); 1505 do { 1506 ++BBI; 1507 } while (isa<DbgInfoIntrinsic>(BBI) || 1508 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1509 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1510 if (BI->isUnconditional()) 1511 if (SimplifyStoreAtEndOfBlock(SI)) 1512 return nullptr; // xform done! 1513 1514 return nullptr; 1515 } 1516 1517 /// SimplifyStoreAtEndOfBlock - Turn things like: 1518 /// if () { *P = v1; } else { *P = v2 } 1519 /// into a phi node with a store in the successor. 1520 /// 1521 /// Simplify things like: 1522 /// *P = v1; if () { *P = v2; } 1523 /// into a phi node with a store in the successor. 1524 /// 1525 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1526 assert(SI.isUnordered() && 1527 "this code has not been auditted for volatile or ordered store case"); 1528 1529 BasicBlock *StoreBB = SI.getParent(); 1530 1531 // Check to see if the successor block has exactly two incoming edges. If 1532 // so, see if the other predecessor contains a store to the same location. 1533 // if so, insert a PHI node (if needed) and move the stores down. 1534 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1535 1536 // Determine whether Dest has exactly two predecessors and, if so, compute 1537 // the other predecessor. 1538 pred_iterator PI = pred_begin(DestBB); 1539 BasicBlock *P = *PI; 1540 BasicBlock *OtherBB = nullptr; 1541 1542 if (P != StoreBB) 1543 OtherBB = P; 1544 1545 if (++PI == pred_end(DestBB)) 1546 return false; 1547 1548 P = *PI; 1549 if (P != StoreBB) { 1550 if (OtherBB) 1551 return false; 1552 OtherBB = P; 1553 } 1554 if (++PI != pred_end(DestBB)) 1555 return false; 1556 1557 // Bail out if all the relevant blocks aren't distinct (this can happen, 1558 // for example, if SI is in an infinite loop) 1559 if (StoreBB == DestBB || OtherBB == DestBB) 1560 return false; 1561 1562 // Verify that the other block ends in a branch and is not otherwise empty. 1563 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1564 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1565 if (!OtherBr || BBI == OtherBB->begin()) 1566 return false; 1567 1568 // If the other block ends in an unconditional branch, check for the 'if then 1569 // else' case. there is an instruction before the branch. 1570 StoreInst *OtherStore = nullptr; 1571 if (OtherBr->isUnconditional()) { 1572 --BBI; 1573 // Skip over debugging info. 1574 while (isa<DbgInfoIntrinsic>(BBI) || 1575 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1576 if (BBI==OtherBB->begin()) 1577 return false; 1578 --BBI; 1579 } 1580 // If this isn't a store, isn't a store to the same location, or is not the 1581 // right kind of store, bail out. 1582 OtherStore = dyn_cast<StoreInst>(BBI); 1583 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1584 !SI.isSameOperationAs(OtherStore)) 1585 return false; 1586 } else { 1587 // Otherwise, the other block ended with a conditional branch. If one of the 1588 // destinations is StoreBB, then we have the if/then case. 1589 if (OtherBr->getSuccessor(0) != StoreBB && 1590 OtherBr->getSuccessor(1) != StoreBB) 1591 return false; 1592 1593 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1594 // if/then triangle. See if there is a store to the same ptr as SI that 1595 // lives in OtherBB. 1596 for (;; --BBI) { 1597 // Check to see if we find the matching store. 1598 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1599 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1600 !SI.isSameOperationAs(OtherStore)) 1601 return false; 1602 break; 1603 } 1604 // If we find something that may be using or overwriting the stored 1605 // value, or if we run out of instructions, we can't do the xform. 1606 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1607 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1608 return false; 1609 } 1610 1611 // In order to eliminate the store in OtherBr, we have to 1612 // make sure nothing reads or overwrites the stored value in 1613 // StoreBB. 1614 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1615 // FIXME: This should really be AA driven. 1616 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1617 return false; 1618 } 1619 } 1620 1621 // Insert a PHI node now if we need it. 1622 Value *MergedVal = OtherStore->getOperand(0); 1623 if (MergedVal != SI.getOperand(0)) { 1624 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1625 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1626 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1627 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1628 } 1629 1630 // Advance to a place where it is safe to insert the new store and 1631 // insert it. 1632 BBI = DestBB->getFirstInsertionPt(); 1633 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1634 SI.isVolatile(), 1635 SI.getAlignment(), 1636 SI.getOrdering(), 1637 SI.getSyncScopeID()); 1638 InsertNewInstBefore(NewSI, *BBI); 1639 // The debug locations of the original instructions might differ; merge them. 1640 NewSI->applyMergedLocation(SI.getDebugLoc(), OtherStore->getDebugLoc()); 1641 1642 // If the two stores had AA tags, merge them. 1643 AAMDNodes AATags; 1644 SI.getAAMetadata(AATags); 1645 if (AATags) { 1646 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1647 NewSI->setAAMetadata(AATags); 1648 } 1649 1650 // Nuke the old stores. 1651 eraseInstFromFunction(SI); 1652 eraseInstFromFunction(*OtherStore); 1653 return true; 1654 } 1655