1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/MapVector.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/MDBuilder.h" 24 #include "llvm/IR/PatternMatch.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "instcombine" 31 32 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 34 35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 36 /// some part of a constant global variable. This intentionally only accepts 37 /// constant expressions because we can't rewrite arbitrary instructions. 38 static bool pointsToConstantGlobal(Value *V) { 39 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 40 return GV->isConstant(); 41 42 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 43 if (CE->getOpcode() == Instruction::BitCast || 44 CE->getOpcode() == Instruction::AddrSpaceCast || 45 CE->getOpcode() == Instruction::GetElementPtr) 46 return pointsToConstantGlobal(CE->getOperand(0)); 47 } 48 return false; 49 } 50 51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 52 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 53 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 55 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 56 /// the alloca, and if the source pointer is a pointer to a constant global, we 57 /// can optimize this. 58 static bool 59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 60 SmallVectorImpl<Instruction *> &ToDelete) { 61 // We track lifetime intrinsics as we encounter them. If we decide to go 62 // ahead and replace the value with the global, this lets the caller quickly 63 // eliminate the markers. 64 65 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 66 ValuesToInspect.emplace_back(V, false); 67 while (!ValuesToInspect.empty()) { 68 auto ValuePair = ValuesToInspect.pop_back_val(); 69 const bool IsOffset = ValuePair.second; 70 for (auto &U : ValuePair.first->uses()) { 71 auto *I = cast<Instruction>(U.getUser()); 72 73 if (auto *LI = dyn_cast<LoadInst>(I)) { 74 // Ignore non-volatile loads, they are always ok. 75 if (!LI->isSimple()) return false; 76 continue; 77 } 78 79 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 80 // If uses of the bitcast are ok, we are ok. 81 ValuesToInspect.emplace_back(I, IsOffset); 82 continue; 83 } 84 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 85 // If the GEP has all zero indices, it doesn't offset the pointer. If it 86 // doesn't, it does. 87 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 88 continue; 89 } 90 91 if (auto CS = CallSite(I)) { 92 // If this is the function being called then we treat it like a load and 93 // ignore it. 94 if (CS.isCallee(&U)) 95 continue; 96 97 unsigned DataOpNo = CS.getDataOperandNo(&U); 98 bool IsArgOperand = CS.isArgOperand(&U); 99 100 // Inalloca arguments are clobbered by the call. 101 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 102 return false; 103 104 // If this is a readonly/readnone call site, then we know it is just a 105 // load (but one that potentially returns the value itself), so we can 106 // ignore it if we know that the value isn't captured. 107 if (CS.onlyReadsMemory() && 108 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 109 continue; 110 111 // If this is being passed as a byval argument, the caller is making a 112 // copy, so it is only a read of the alloca. 113 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 114 continue; 115 } 116 117 // Lifetime intrinsics can be handled by the caller. 118 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 119 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 120 II->getIntrinsicID() == Intrinsic::lifetime_end) { 121 assert(II->use_empty() && "Lifetime markers have no result to use!"); 122 ToDelete.push_back(II); 123 continue; 124 } 125 } 126 127 // If this is isn't our memcpy/memmove, reject it as something we can't 128 // handle. 129 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 130 if (!MI) 131 return false; 132 133 // If the transfer is using the alloca as a source of the transfer, then 134 // ignore it since it is a load (unless the transfer is volatile). 135 if (U.getOperandNo() == 1) { 136 if (MI->isVolatile()) return false; 137 continue; 138 } 139 140 // If we already have seen a copy, reject the second one. 141 if (TheCopy) return false; 142 143 // If the pointer has been offset from the start of the alloca, we can't 144 // safely handle this. 145 if (IsOffset) return false; 146 147 // If the memintrinsic isn't using the alloca as the dest, reject it. 148 if (U.getOperandNo() != 0) return false; 149 150 // If the source of the memcpy/move is not a constant global, reject it. 151 if (!pointsToConstantGlobal(MI->getSource())) 152 return false; 153 154 // Otherwise, the transform is safe. Remember the copy instruction. 155 TheCopy = MI; 156 } 157 } 158 return true; 159 } 160 161 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 162 /// modified by a copy from a constant global. If we can prove this, we can 163 /// replace any uses of the alloca with uses of the global directly. 164 static MemTransferInst * 165 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 166 SmallVectorImpl<Instruction *> &ToDelete) { 167 MemTransferInst *TheCopy = nullptr; 168 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 169 return TheCopy; 170 return nullptr; 171 } 172 173 /// Returns true if V is dereferenceable for size of alloca. 174 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 175 const DataLayout &DL) { 176 if (AI->isArrayAllocation()) 177 return false; 178 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 179 if (!AllocaSize) 180 return false; 181 return isDereferenceableAndAlignedPointer(V, AI->getAlignment(), 182 APInt(64, AllocaSize), DL); 183 } 184 185 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 186 // Check for array size of 1 (scalar allocation). 187 if (!AI.isArrayAllocation()) { 188 // i32 1 is the canonical array size for scalar allocations. 189 if (AI.getArraySize()->getType()->isIntegerTy(32)) 190 return nullptr; 191 192 // Canonicalize it. 193 Value *V = IC.Builder.getInt32(1); 194 AI.setOperand(0, V); 195 return &AI; 196 } 197 198 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 199 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 200 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 201 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 202 New->setAlignment(AI.getAlignment()); 203 204 // Scan to the end of the allocation instructions, to skip over a block of 205 // allocas if possible...also skip interleaved debug info 206 // 207 BasicBlock::iterator It(New); 208 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 209 ++It; 210 211 // Now that I is pointing to the first non-allocation-inst in the block, 212 // insert our getelementptr instruction... 213 // 214 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 215 Value *NullIdx = Constant::getNullValue(IdxTy); 216 Value *Idx[2] = {NullIdx, NullIdx}; 217 Instruction *GEP = 218 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 219 IC.InsertNewInstBefore(GEP, *It); 220 221 // Now make everything use the getelementptr instead of the original 222 // allocation. 223 return IC.replaceInstUsesWith(AI, GEP); 224 } 225 226 if (isa<UndefValue>(AI.getArraySize())) 227 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 228 229 // Ensure that the alloca array size argument has type intptr_t, so that 230 // any casting is exposed early. 231 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 232 if (AI.getArraySize()->getType() != IntPtrTy) { 233 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 234 AI.setOperand(0, V); 235 return &AI; 236 } 237 238 return nullptr; 239 } 240 241 namespace { 242 // If I and V are pointers in different address space, it is not allowed to 243 // use replaceAllUsesWith since I and V have different types. A 244 // non-target-specific transformation should not use addrspacecast on V since 245 // the two address space may be disjoint depending on target. 246 // 247 // This class chases down uses of the old pointer until reaching the load 248 // instructions, then replaces the old pointer in the load instructions with 249 // the new pointer. If during the chasing it sees bitcast or GEP, it will 250 // create new bitcast or GEP with the new pointer and use them in the load 251 // instruction. 252 class PointerReplacer { 253 public: 254 PointerReplacer(InstCombiner &IC) : IC(IC) {} 255 void replacePointer(Instruction &I, Value *V); 256 257 private: 258 void findLoadAndReplace(Instruction &I); 259 void replace(Instruction *I); 260 Value *getReplacement(Value *I); 261 262 SmallVector<Instruction *, 4> Path; 263 MapVector<Value *, Value *> WorkMap; 264 InstCombiner &IC; 265 }; 266 } // end anonymous namespace 267 268 void PointerReplacer::findLoadAndReplace(Instruction &I) { 269 for (auto U : I.users()) { 270 auto *Inst = dyn_cast<Instruction>(&*U); 271 if (!Inst) 272 return; 273 DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 274 if (isa<LoadInst>(Inst)) { 275 for (auto P : Path) 276 replace(P); 277 replace(Inst); 278 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 279 Path.push_back(Inst); 280 findLoadAndReplace(*Inst); 281 Path.pop_back(); 282 } else { 283 return; 284 } 285 } 286 } 287 288 Value *PointerReplacer::getReplacement(Value *V) { 289 auto Loc = WorkMap.find(V); 290 if (Loc != WorkMap.end()) 291 return Loc->second; 292 return nullptr; 293 } 294 295 void PointerReplacer::replace(Instruction *I) { 296 if (getReplacement(I)) 297 return; 298 299 if (auto *LT = dyn_cast<LoadInst>(I)) { 300 auto *V = getReplacement(LT->getPointerOperand()); 301 assert(V && "Operand not replaced"); 302 auto *NewI = new LoadInst(V); 303 NewI->takeName(LT); 304 IC.InsertNewInstWith(NewI, *LT); 305 IC.replaceInstUsesWith(*LT, NewI); 306 WorkMap[LT] = NewI; 307 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 308 auto *V = getReplacement(GEP->getPointerOperand()); 309 assert(V && "Operand not replaced"); 310 SmallVector<Value *, 8> Indices; 311 Indices.append(GEP->idx_begin(), GEP->idx_end()); 312 auto *NewI = GetElementPtrInst::Create( 313 V->getType()->getPointerElementType(), V, Indices); 314 IC.InsertNewInstWith(NewI, *GEP); 315 NewI->takeName(GEP); 316 WorkMap[GEP] = NewI; 317 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 318 auto *V = getReplacement(BC->getOperand(0)); 319 assert(V && "Operand not replaced"); 320 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 321 V->getType()->getPointerAddressSpace()); 322 auto *NewI = new BitCastInst(V, NewT); 323 IC.InsertNewInstWith(NewI, *BC); 324 NewI->takeName(BC); 325 WorkMap[BC] = NewI; 326 } else { 327 llvm_unreachable("should never reach here"); 328 } 329 } 330 331 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 332 #ifndef NDEBUG 333 auto *PT = cast<PointerType>(I.getType()); 334 auto *NT = cast<PointerType>(V->getType()); 335 assert(PT != NT && PT->getElementType() == NT->getElementType() && 336 "Invalid usage"); 337 #endif 338 WorkMap[&I] = V; 339 findLoadAndReplace(I); 340 } 341 342 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 343 if (auto *I = simplifyAllocaArraySize(*this, AI)) 344 return I; 345 346 if (AI.getAllocatedType()->isSized()) { 347 // If the alignment is 0 (unspecified), assign it the preferred alignment. 348 if (AI.getAlignment() == 0) 349 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 350 351 // Move all alloca's of zero byte objects to the entry block and merge them 352 // together. Note that we only do this for alloca's, because malloc should 353 // allocate and return a unique pointer, even for a zero byte allocation. 354 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 355 // For a zero sized alloca there is no point in doing an array allocation. 356 // This is helpful if the array size is a complicated expression not used 357 // elsewhere. 358 if (AI.isArrayAllocation()) { 359 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 360 return &AI; 361 } 362 363 // Get the first instruction in the entry block. 364 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 365 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 366 if (FirstInst != &AI) { 367 // If the entry block doesn't start with a zero-size alloca then move 368 // this one to the start of the entry block. There is no problem with 369 // dominance as the array size was forced to a constant earlier already. 370 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 371 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 372 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 373 AI.moveBefore(FirstInst); 374 return &AI; 375 } 376 377 // If the alignment of the entry block alloca is 0 (unspecified), 378 // assign it the preferred alignment. 379 if (EntryAI->getAlignment() == 0) 380 EntryAI->setAlignment( 381 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 382 // Replace this zero-sized alloca with the one at the start of the entry 383 // block after ensuring that the address will be aligned enough for both 384 // types. 385 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 386 AI.getAlignment()); 387 EntryAI->setAlignment(MaxAlign); 388 if (AI.getType() != EntryAI->getType()) 389 return new BitCastInst(EntryAI, AI.getType()); 390 return replaceInstUsesWith(AI, EntryAI); 391 } 392 } 393 } 394 395 if (AI.getAlignment()) { 396 // Check to see if this allocation is only modified by a memcpy/memmove from 397 // a constant global whose alignment is equal to or exceeds that of the 398 // allocation. If this is the case, we can change all users to use 399 // the constant global instead. This is commonly produced by the CFE by 400 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 401 // is only subsequently read. 402 SmallVector<Instruction *, 4> ToDelete; 403 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 404 unsigned SourceAlign = getOrEnforceKnownAlignment( 405 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 406 if (AI.getAlignment() <= SourceAlign && 407 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 408 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 409 DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 410 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 411 eraseInstFromFunction(*ToDelete[i]); 412 Constant *TheSrc = cast<Constant>(Copy->getSource()); 413 auto *SrcTy = TheSrc->getType(); 414 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 415 SrcTy->getPointerAddressSpace()); 416 Constant *Cast = 417 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 418 if (AI.getType()->getPointerAddressSpace() == 419 SrcTy->getPointerAddressSpace()) { 420 Instruction *NewI = replaceInstUsesWith(AI, Cast); 421 eraseInstFromFunction(*Copy); 422 ++NumGlobalCopies; 423 return NewI; 424 } else { 425 PointerReplacer PtrReplacer(*this); 426 PtrReplacer.replacePointer(AI, Cast); 427 ++NumGlobalCopies; 428 } 429 } 430 } 431 } 432 433 // At last, use the generic allocation site handler to aggressively remove 434 // unused allocas. 435 return visitAllocSite(AI); 436 } 437 438 // Are we allowed to form a atomic load or store of this type? 439 static bool isSupportedAtomicType(Type *Ty) { 440 return Ty->isIntegerTy() || Ty->isPointerTy() || Ty->isFloatingPointTy(); 441 } 442 443 /// \brief Helper to combine a load to a new type. 444 /// 445 /// This just does the work of combining a load to a new type. It handles 446 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 447 /// loaded *value* type. This will convert it to a pointer, cast the operand to 448 /// that pointer type, load it, etc. 449 /// 450 /// Note that this will create all of the instructions with whatever insert 451 /// point the \c InstCombiner currently is using. 452 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 453 const Twine &Suffix = "") { 454 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 455 "can't fold an atomic load to requested type"); 456 457 Value *Ptr = LI.getPointerOperand(); 458 unsigned AS = LI.getPointerAddressSpace(); 459 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 460 LI.getAllMetadata(MD); 461 462 LoadInst *NewLoad = IC.Builder.CreateAlignedLoad( 463 IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)), 464 LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 465 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 466 MDBuilder MDB(NewLoad->getContext()); 467 for (const auto &MDPair : MD) { 468 unsigned ID = MDPair.first; 469 MDNode *N = MDPair.second; 470 // Note, essentially every kind of metadata should be preserved here! This 471 // routine is supposed to clone a load instruction changing *only its type*. 472 // The only metadata it makes sense to drop is metadata which is invalidated 473 // when the pointer type changes. This should essentially never be the case 474 // in LLVM, but we explicitly switch over only known metadata to be 475 // conservatively correct. If you are adding metadata to LLVM which pertains 476 // to loads, you almost certainly want to add it here. 477 switch (ID) { 478 case LLVMContext::MD_dbg: 479 case LLVMContext::MD_tbaa: 480 case LLVMContext::MD_prof: 481 case LLVMContext::MD_fpmath: 482 case LLVMContext::MD_tbaa_struct: 483 case LLVMContext::MD_invariant_load: 484 case LLVMContext::MD_alias_scope: 485 case LLVMContext::MD_noalias: 486 case LLVMContext::MD_nontemporal: 487 case LLVMContext::MD_mem_parallel_loop_access: 488 // All of these directly apply. 489 NewLoad->setMetadata(ID, N); 490 break; 491 492 case LLVMContext::MD_nonnull: 493 copyNonnullMetadata(LI, N, *NewLoad); 494 break; 495 case LLVMContext::MD_align: 496 case LLVMContext::MD_dereferenceable: 497 case LLVMContext::MD_dereferenceable_or_null: 498 // These only directly apply if the new type is also a pointer. 499 if (NewTy->isPointerTy()) 500 NewLoad->setMetadata(ID, N); 501 break; 502 case LLVMContext::MD_range: 503 copyRangeMetadata(IC.getDataLayout(), LI, N, *NewLoad); 504 break; 505 } 506 } 507 return NewLoad; 508 } 509 510 /// \brief Combine a store to a new type. 511 /// 512 /// Returns the newly created store instruction. 513 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 514 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 515 "can't fold an atomic store of requested type"); 516 517 Value *Ptr = SI.getPointerOperand(); 518 unsigned AS = SI.getPointerAddressSpace(); 519 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 520 SI.getAllMetadata(MD); 521 522 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 523 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 524 SI.getAlignment(), SI.isVolatile()); 525 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 526 for (const auto &MDPair : MD) { 527 unsigned ID = MDPair.first; 528 MDNode *N = MDPair.second; 529 // Note, essentially every kind of metadata should be preserved here! This 530 // routine is supposed to clone a store instruction changing *only its 531 // type*. The only metadata it makes sense to drop is metadata which is 532 // invalidated when the pointer type changes. This should essentially 533 // never be the case in LLVM, but we explicitly switch over only known 534 // metadata to be conservatively correct. If you are adding metadata to 535 // LLVM which pertains to stores, you almost certainly want to add it 536 // here. 537 switch (ID) { 538 case LLVMContext::MD_dbg: 539 case LLVMContext::MD_tbaa: 540 case LLVMContext::MD_prof: 541 case LLVMContext::MD_fpmath: 542 case LLVMContext::MD_tbaa_struct: 543 case LLVMContext::MD_alias_scope: 544 case LLVMContext::MD_noalias: 545 case LLVMContext::MD_nontemporal: 546 case LLVMContext::MD_mem_parallel_loop_access: 547 // All of these directly apply. 548 NewStore->setMetadata(ID, N); 549 break; 550 551 case LLVMContext::MD_invariant_load: 552 case LLVMContext::MD_nonnull: 553 case LLVMContext::MD_range: 554 case LLVMContext::MD_align: 555 case LLVMContext::MD_dereferenceable: 556 case LLVMContext::MD_dereferenceable_or_null: 557 // These don't apply for stores. 558 break; 559 } 560 } 561 562 return NewStore; 563 } 564 565 /// Returns true if instruction represent minmax pattern like: 566 /// select ((cmp load V1, load V2), V1, V2). 567 static bool isMinMaxWithLoads(Value *V) { 568 assert(V->getType()->isPointerTy() && "Expected pointer type."); 569 // Ignore possible ty* to ixx* bitcast. 570 V = peekThroughBitcast(V); 571 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 572 // pattern. 573 CmpInst::Predicate Pred; 574 Instruction *L1; 575 Instruction *L2; 576 Value *LHS; 577 Value *RHS; 578 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 579 m_Value(LHS), m_Value(RHS)))) 580 return false; 581 return (match(L1, m_Load(m_Specific(LHS))) && 582 match(L2, m_Load(m_Specific(RHS)))) || 583 (match(L1, m_Load(m_Specific(RHS))) && 584 match(L2, m_Load(m_Specific(LHS)))); 585 } 586 587 /// \brief Combine loads to match the type of their uses' value after looking 588 /// through intervening bitcasts. 589 /// 590 /// The core idea here is that if the result of a load is used in an operation, 591 /// we should load the type most conducive to that operation. For example, when 592 /// loading an integer and converting that immediately to a pointer, we should 593 /// instead directly load a pointer. 594 /// 595 /// However, this routine must never change the width of a load or the number of 596 /// loads as that would introduce a semantic change. This combine is expected to 597 /// be a semantic no-op which just allows loads to more closely model the types 598 /// of their consuming operations. 599 /// 600 /// Currently, we also refuse to change the precise type used for an atomic load 601 /// or a volatile load. This is debatable, and might be reasonable to change 602 /// later. However, it is risky in case some backend or other part of LLVM is 603 /// relying on the exact type loaded to select appropriate atomic operations. 604 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 605 // FIXME: We could probably with some care handle both volatile and ordered 606 // atomic loads here but it isn't clear that this is important. 607 if (!LI.isUnordered()) 608 return nullptr; 609 610 if (LI.use_empty()) 611 return nullptr; 612 613 // swifterror values can't be bitcasted. 614 if (LI.getPointerOperand()->isSwiftError()) 615 return nullptr; 616 617 Type *Ty = LI.getType(); 618 const DataLayout &DL = IC.getDataLayout(); 619 620 // Try to canonicalize loads which are only ever stored to operate over 621 // integers instead of any other type. We only do this when the loaded type 622 // is sized and has a size exactly the same as its store size and the store 623 // size is a legal integer type. 624 // Do not perform canonicalization if minmax pattern is found (to avoid 625 // infinite loop). 626 if (!Ty->isIntegerTy() && Ty->isSized() && 627 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 628 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) && 629 !DL.isNonIntegralPointerType(Ty) && 630 !isMinMaxWithLoads( 631 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) { 632 if (all_of(LI.users(), [&LI](User *U) { 633 auto *SI = dyn_cast<StoreInst>(U); 634 return SI && SI->getPointerOperand() != &LI && 635 !SI->getPointerOperand()->isSwiftError(); 636 })) { 637 LoadInst *NewLoad = combineLoadToNewType( 638 IC, LI, 639 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 640 // Replace all the stores with stores of the newly loaded value. 641 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 642 auto *SI = cast<StoreInst>(*UI++); 643 IC.Builder.SetInsertPoint(SI); 644 combineStoreToNewValue(IC, *SI, NewLoad); 645 IC.eraseInstFromFunction(*SI); 646 } 647 assert(LI.use_empty() && "Failed to remove all users of the load!"); 648 // Return the old load so the combiner can delete it safely. 649 return &LI; 650 } 651 } 652 653 // Fold away bit casts of the loaded value by loading the desired type. 654 // We can do this for BitCastInsts as well as casts from and to pointer types, 655 // as long as those are noops (i.e., the source or dest type have the same 656 // bitwidth as the target's pointers). 657 if (LI.hasOneUse()) 658 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 659 if (CI->isNoopCast(DL)) 660 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 661 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 662 CI->replaceAllUsesWith(NewLoad); 663 IC.eraseInstFromFunction(*CI); 664 return &LI; 665 } 666 667 // FIXME: We should also canonicalize loads of vectors when their elements are 668 // cast to other types. 669 return nullptr; 670 } 671 672 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 673 // FIXME: We could probably with some care handle both volatile and atomic 674 // stores here but it isn't clear that this is important. 675 if (!LI.isSimple()) 676 return nullptr; 677 678 Type *T = LI.getType(); 679 if (!T->isAggregateType()) 680 return nullptr; 681 682 StringRef Name = LI.getName(); 683 assert(LI.getAlignment() && "Alignment must be set at this point"); 684 685 if (auto *ST = dyn_cast<StructType>(T)) { 686 // If the struct only have one element, we unpack. 687 auto NumElements = ST->getNumElements(); 688 if (NumElements == 1) { 689 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 690 ".unpack"); 691 AAMDNodes AAMD; 692 LI.getAAMetadata(AAMD); 693 NewLoad->setAAMetadata(AAMD); 694 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 695 UndefValue::get(T), NewLoad, 0, Name)); 696 } 697 698 // We don't want to break loads with padding here as we'd loose 699 // the knowledge that padding exists for the rest of the pipeline. 700 const DataLayout &DL = IC.getDataLayout(); 701 auto *SL = DL.getStructLayout(ST); 702 if (SL->hasPadding()) 703 return nullptr; 704 705 auto Align = LI.getAlignment(); 706 if (!Align) 707 Align = DL.getABITypeAlignment(ST); 708 709 auto *Addr = LI.getPointerOperand(); 710 auto *IdxType = Type::getInt32Ty(T->getContext()); 711 auto *Zero = ConstantInt::get(IdxType, 0); 712 713 Value *V = UndefValue::get(T); 714 for (unsigned i = 0; i < NumElements; i++) { 715 Value *Indices[2] = { 716 Zero, 717 ConstantInt::get(IdxType, i), 718 }; 719 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 720 Name + ".elt"); 721 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 722 auto *L = IC.Builder.CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 723 // Propagate AA metadata. It'll still be valid on the narrowed load. 724 AAMDNodes AAMD; 725 LI.getAAMetadata(AAMD); 726 L->setAAMetadata(AAMD); 727 V = IC.Builder.CreateInsertValue(V, L, i); 728 } 729 730 V->setName(Name); 731 return IC.replaceInstUsesWith(LI, V); 732 } 733 734 if (auto *AT = dyn_cast<ArrayType>(T)) { 735 auto *ET = AT->getElementType(); 736 auto NumElements = AT->getNumElements(); 737 if (NumElements == 1) { 738 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 739 AAMDNodes AAMD; 740 LI.getAAMetadata(AAMD); 741 NewLoad->setAAMetadata(AAMD); 742 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 743 UndefValue::get(T), NewLoad, 0, Name)); 744 } 745 746 // Bail out if the array is too large. Ideally we would like to optimize 747 // arrays of arbitrary size but this has a terrible impact on compile time. 748 // The threshold here is chosen arbitrarily, maybe needs a little bit of 749 // tuning. 750 if (NumElements > IC.MaxArraySizeForCombine) 751 return nullptr; 752 753 const DataLayout &DL = IC.getDataLayout(); 754 auto EltSize = DL.getTypeAllocSize(ET); 755 auto Align = LI.getAlignment(); 756 if (!Align) 757 Align = DL.getABITypeAlignment(T); 758 759 auto *Addr = LI.getPointerOperand(); 760 auto *IdxType = Type::getInt64Ty(T->getContext()); 761 auto *Zero = ConstantInt::get(IdxType, 0); 762 763 Value *V = UndefValue::get(T); 764 uint64_t Offset = 0; 765 for (uint64_t i = 0; i < NumElements; i++) { 766 Value *Indices[2] = { 767 Zero, 768 ConstantInt::get(IdxType, i), 769 }; 770 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 771 Name + ".elt"); 772 auto *L = IC.Builder.CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 773 Name + ".unpack"); 774 AAMDNodes AAMD; 775 LI.getAAMetadata(AAMD); 776 L->setAAMetadata(AAMD); 777 V = IC.Builder.CreateInsertValue(V, L, i); 778 Offset += EltSize; 779 } 780 781 V->setName(Name); 782 return IC.replaceInstUsesWith(LI, V); 783 } 784 785 return nullptr; 786 } 787 788 // If we can determine that all possible objects pointed to by the provided 789 // pointer value are, not only dereferenceable, but also definitively less than 790 // or equal to the provided maximum size, then return true. Otherwise, return 791 // false (constant global values and allocas fall into this category). 792 // 793 // FIXME: This should probably live in ValueTracking (or similar). 794 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 795 const DataLayout &DL) { 796 SmallPtrSet<Value *, 4> Visited; 797 SmallVector<Value *, 4> Worklist(1, V); 798 799 do { 800 Value *P = Worklist.pop_back_val(); 801 P = P->stripPointerCasts(); 802 803 if (!Visited.insert(P).second) 804 continue; 805 806 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 807 Worklist.push_back(SI->getTrueValue()); 808 Worklist.push_back(SI->getFalseValue()); 809 continue; 810 } 811 812 if (PHINode *PN = dyn_cast<PHINode>(P)) { 813 for (Value *IncValue : PN->incoming_values()) 814 Worklist.push_back(IncValue); 815 continue; 816 } 817 818 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 819 if (GA->isInterposable()) 820 return false; 821 Worklist.push_back(GA->getAliasee()); 822 continue; 823 } 824 825 // If we know how big this object is, and it is less than MaxSize, continue 826 // searching. Otherwise, return false. 827 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 828 if (!AI->getAllocatedType()->isSized()) 829 return false; 830 831 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 832 if (!CS) 833 return false; 834 835 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 836 // Make sure that, even if the multiplication below would wrap as an 837 // uint64_t, we still do the right thing. 838 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 839 return false; 840 continue; 841 } 842 843 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 844 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 845 return false; 846 847 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 848 if (InitSize > MaxSize) 849 return false; 850 continue; 851 } 852 853 return false; 854 } while (!Worklist.empty()); 855 856 return true; 857 } 858 859 // If we're indexing into an object of a known size, and the outer index is 860 // not a constant, but having any value but zero would lead to undefined 861 // behavior, replace it with zero. 862 // 863 // For example, if we have: 864 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 865 // ... 866 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 867 // ... = load i32* %arrayidx, align 4 868 // Then we know that we can replace %x in the GEP with i64 0. 869 // 870 // FIXME: We could fold any GEP index to zero that would cause UB if it were 871 // not zero. Currently, we only handle the first such index. Also, we could 872 // also search through non-zero constant indices if we kept track of the 873 // offsets those indices implied. 874 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 875 Instruction *MemI, unsigned &Idx) { 876 if (GEPI->getNumOperands() < 2) 877 return false; 878 879 // Find the first non-zero index of a GEP. If all indices are zero, return 880 // one past the last index. 881 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 882 unsigned I = 1; 883 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 884 Value *V = GEPI->getOperand(I); 885 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 886 if (CI->isZero()) 887 continue; 888 889 break; 890 } 891 892 return I; 893 }; 894 895 // Skip through initial 'zero' indices, and find the corresponding pointer 896 // type. See if the next index is not a constant. 897 Idx = FirstNZIdx(GEPI); 898 if (Idx == GEPI->getNumOperands()) 899 return false; 900 if (isa<Constant>(GEPI->getOperand(Idx))) 901 return false; 902 903 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 904 Type *AllocTy = 905 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 906 if (!AllocTy || !AllocTy->isSized()) 907 return false; 908 const DataLayout &DL = IC.getDataLayout(); 909 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 910 911 // If there are more indices after the one we might replace with a zero, make 912 // sure they're all non-negative. If any of them are negative, the overall 913 // address being computed might be before the base address determined by the 914 // first non-zero index. 915 auto IsAllNonNegative = [&]() { 916 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 917 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 918 if (Known.isNonNegative()) 919 continue; 920 return false; 921 } 922 923 return true; 924 }; 925 926 // FIXME: If the GEP is not inbounds, and there are extra indices after the 927 // one we'll replace, those could cause the address computation to wrap 928 // (rendering the IsAllNonNegative() check below insufficient). We can do 929 // better, ignoring zero indices (and other indices we can prove small 930 // enough not to wrap). 931 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 932 return false; 933 934 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 935 // also known to be dereferenceable. 936 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 937 IsAllNonNegative(); 938 } 939 940 // If we're indexing into an object with a variable index for the memory 941 // access, but the object has only one element, we can assume that the index 942 // will always be zero. If we replace the GEP, return it. 943 template <typename T> 944 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 945 T &MemI) { 946 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 947 unsigned Idx; 948 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 949 Instruction *NewGEPI = GEPI->clone(); 950 NewGEPI->setOperand(Idx, 951 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 952 NewGEPI->insertBefore(GEPI); 953 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 954 return NewGEPI; 955 } 956 } 957 958 return nullptr; 959 } 960 961 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 962 if (SI.getPointerAddressSpace() != 0) 963 return false; 964 965 auto *Ptr = SI.getPointerOperand(); 966 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 967 Ptr = GEPI->getOperand(0); 968 return isa<ConstantPointerNull>(Ptr); 969 } 970 971 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 972 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 973 const Value *GEPI0 = GEPI->getOperand(0); 974 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0) 975 return true; 976 } 977 if (isa<UndefValue>(Op) || 978 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) 979 return true; 980 return false; 981 } 982 983 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 984 Value *Op = LI.getOperand(0); 985 986 // Try to canonicalize the loaded type. 987 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 988 return Res; 989 990 // Attempt to improve the alignment. 991 unsigned KnownAlign = getOrEnforceKnownAlignment( 992 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 993 unsigned LoadAlign = LI.getAlignment(); 994 unsigned EffectiveLoadAlign = 995 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 996 997 if (KnownAlign > EffectiveLoadAlign) 998 LI.setAlignment(KnownAlign); 999 else if (LoadAlign == 0) 1000 LI.setAlignment(EffectiveLoadAlign); 1001 1002 // Replace GEP indices if possible. 1003 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 1004 Worklist.Add(NewGEPI); 1005 return &LI; 1006 } 1007 1008 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 1009 return Res; 1010 1011 // Do really simple store-to-load forwarding and load CSE, to catch cases 1012 // where there are several consecutive memory accesses to the same location, 1013 // separated by a few arithmetic operations. 1014 BasicBlock::iterator BBI(LI); 1015 bool IsLoadCSE = false; 1016 if (Value *AvailableVal = FindAvailableLoadedValue( 1017 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1018 if (IsLoadCSE) 1019 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI); 1020 1021 return replaceInstUsesWith( 1022 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 1023 LI.getName() + ".cast")); 1024 } 1025 1026 // None of the following transforms are legal for volatile/ordered atomic 1027 // loads. Most of them do apply for unordered atomics. 1028 if (!LI.isUnordered()) return nullptr; 1029 1030 // load(gep null, ...) -> unreachable 1031 // load null/undef -> unreachable 1032 // TODO: Consider a target hook for valid address spaces for this xforms. 1033 if (canSimplifyNullLoadOrGEP(LI, Op)) { 1034 // Insert a new store to null instruction before the load to indicate 1035 // that this code is not reachable. We do this instead of inserting 1036 // an unreachable instruction directly because we cannot modify the 1037 // CFG. 1038 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 1039 Constant::getNullValue(Op->getType()), &LI); 1040 SI->setDebugLoc(LI.getDebugLoc()); 1041 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 1042 } 1043 1044 if (Op->hasOneUse()) { 1045 // Change select and PHI nodes to select values instead of addresses: this 1046 // helps alias analysis out a lot, allows many others simplifications, and 1047 // exposes redundancy in the code. 1048 // 1049 // Note that we cannot do the transformation unless we know that the 1050 // introduced loads cannot trap! Something like this is valid as long as 1051 // the condition is always false: load (select bool %C, int* null, int* %G), 1052 // but it would not be valid if we transformed it to load from null 1053 // unconditionally. 1054 // 1055 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1056 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1057 unsigned Align = LI.getAlignment(); 1058 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && 1059 isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { 1060 LoadInst *V1 = Builder.CreateLoad(SI->getOperand(1), 1061 SI->getOperand(1)->getName()+".val"); 1062 LoadInst *V2 = Builder.CreateLoad(SI->getOperand(2), 1063 SI->getOperand(2)->getName()+".val"); 1064 assert(LI.isUnordered() && "implied by above"); 1065 V1->setAlignment(Align); 1066 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1067 V2->setAlignment(Align); 1068 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1069 return SelectInst::Create(SI->getCondition(), V1, V2); 1070 } 1071 1072 // load (select (cond, null, P)) -> load P 1073 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1074 LI.getPointerAddressSpace() == 0) { 1075 LI.setOperand(0, SI->getOperand(2)); 1076 return &LI; 1077 } 1078 1079 // load (select (cond, P, null)) -> load P 1080 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1081 LI.getPointerAddressSpace() == 0) { 1082 LI.setOperand(0, SI->getOperand(1)); 1083 return &LI; 1084 } 1085 } 1086 } 1087 return nullptr; 1088 } 1089 1090 /// \brief Look for extractelement/insertvalue sequence that acts like a bitcast. 1091 /// 1092 /// \returns underlying value that was "cast", or nullptr otherwise. 1093 /// 1094 /// For example, if we have: 1095 /// 1096 /// %E0 = extractelement <2 x double> %U, i32 0 1097 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1098 /// %E1 = extractelement <2 x double> %U, i32 1 1099 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1100 /// 1101 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1102 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1103 /// Note that %U may contain non-undef values where %V1 has undef. 1104 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1105 Value *U = nullptr; 1106 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1107 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1108 if (!E) 1109 return nullptr; 1110 auto *W = E->getVectorOperand(); 1111 if (!U) 1112 U = W; 1113 else if (U != W) 1114 return nullptr; 1115 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1116 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1117 return nullptr; 1118 V = IV->getAggregateOperand(); 1119 } 1120 if (!isa<UndefValue>(V) ||!U) 1121 return nullptr; 1122 1123 auto *UT = cast<VectorType>(U->getType()); 1124 auto *VT = V->getType(); 1125 // Check that types UT and VT are bitwise isomorphic. 1126 const auto &DL = IC.getDataLayout(); 1127 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1128 return nullptr; 1129 } 1130 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1131 if (AT->getNumElements() != UT->getNumElements()) 1132 return nullptr; 1133 } else { 1134 auto *ST = cast<StructType>(VT); 1135 if (ST->getNumElements() != UT->getNumElements()) 1136 return nullptr; 1137 for (const auto *EltT : ST->elements()) { 1138 if (EltT != UT->getElementType()) 1139 return nullptr; 1140 } 1141 } 1142 return U; 1143 } 1144 1145 /// \brief Combine stores to match the type of value being stored. 1146 /// 1147 /// The core idea here is that the memory does not have any intrinsic type and 1148 /// where we can we should match the type of a store to the type of value being 1149 /// stored. 1150 /// 1151 /// However, this routine must never change the width of a store or the number of 1152 /// stores as that would introduce a semantic change. This combine is expected to 1153 /// be a semantic no-op which just allows stores to more closely model the types 1154 /// of their incoming values. 1155 /// 1156 /// Currently, we also refuse to change the precise type used for an atomic or 1157 /// volatile store. This is debatable, and might be reasonable to change later. 1158 /// However, it is risky in case some backend or other part of LLVM is relying 1159 /// on the exact type stored to select appropriate atomic operations. 1160 /// 1161 /// \returns true if the store was successfully combined away. This indicates 1162 /// the caller must erase the store instruction. We have to let the caller erase 1163 /// the store instruction as otherwise there is no way to signal whether it was 1164 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1165 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1166 // FIXME: We could probably with some care handle both volatile and ordered 1167 // atomic stores here but it isn't clear that this is important. 1168 if (!SI.isUnordered()) 1169 return false; 1170 1171 // swifterror values can't be bitcasted. 1172 if (SI.getPointerOperand()->isSwiftError()) 1173 return false; 1174 1175 Value *V = SI.getValueOperand(); 1176 1177 // Fold away bit casts of the stored value by storing the original type. 1178 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1179 V = BC->getOperand(0); 1180 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1181 combineStoreToNewValue(IC, SI, V); 1182 return true; 1183 } 1184 } 1185 1186 if (Value *U = likeBitCastFromVector(IC, V)) 1187 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1188 combineStoreToNewValue(IC, SI, U); 1189 return true; 1190 } 1191 1192 // FIXME: We should also canonicalize stores of vectors when their elements 1193 // are cast to other types. 1194 return false; 1195 } 1196 1197 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1198 // FIXME: We could probably with some care handle both volatile and atomic 1199 // stores here but it isn't clear that this is important. 1200 if (!SI.isSimple()) 1201 return false; 1202 1203 Value *V = SI.getValueOperand(); 1204 Type *T = V->getType(); 1205 1206 if (!T->isAggregateType()) 1207 return false; 1208 1209 if (auto *ST = dyn_cast<StructType>(T)) { 1210 // If the struct only have one element, we unpack. 1211 unsigned Count = ST->getNumElements(); 1212 if (Count == 1) { 1213 V = IC.Builder.CreateExtractValue(V, 0); 1214 combineStoreToNewValue(IC, SI, V); 1215 return true; 1216 } 1217 1218 // We don't want to break loads with padding here as we'd loose 1219 // the knowledge that padding exists for the rest of the pipeline. 1220 const DataLayout &DL = IC.getDataLayout(); 1221 auto *SL = DL.getStructLayout(ST); 1222 if (SL->hasPadding()) 1223 return false; 1224 1225 auto Align = SI.getAlignment(); 1226 if (!Align) 1227 Align = DL.getABITypeAlignment(ST); 1228 1229 SmallString<16> EltName = V->getName(); 1230 EltName += ".elt"; 1231 auto *Addr = SI.getPointerOperand(); 1232 SmallString<16> AddrName = Addr->getName(); 1233 AddrName += ".repack"; 1234 1235 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1236 auto *Zero = ConstantInt::get(IdxType, 0); 1237 for (unsigned i = 0; i < Count; i++) { 1238 Value *Indices[2] = { 1239 Zero, 1240 ConstantInt::get(IdxType, i), 1241 }; 1242 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1243 AddrName); 1244 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1245 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1246 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1247 AAMDNodes AAMD; 1248 SI.getAAMetadata(AAMD); 1249 NS->setAAMetadata(AAMD); 1250 } 1251 1252 return true; 1253 } 1254 1255 if (auto *AT = dyn_cast<ArrayType>(T)) { 1256 // If the array only have one element, we unpack. 1257 auto NumElements = AT->getNumElements(); 1258 if (NumElements == 1) { 1259 V = IC.Builder.CreateExtractValue(V, 0); 1260 combineStoreToNewValue(IC, SI, V); 1261 return true; 1262 } 1263 1264 // Bail out if the array is too large. Ideally we would like to optimize 1265 // arrays of arbitrary size but this has a terrible impact on compile time. 1266 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1267 // tuning. 1268 if (NumElements > IC.MaxArraySizeForCombine) 1269 return false; 1270 1271 const DataLayout &DL = IC.getDataLayout(); 1272 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1273 auto Align = SI.getAlignment(); 1274 if (!Align) 1275 Align = DL.getABITypeAlignment(T); 1276 1277 SmallString<16> EltName = V->getName(); 1278 EltName += ".elt"; 1279 auto *Addr = SI.getPointerOperand(); 1280 SmallString<16> AddrName = Addr->getName(); 1281 AddrName += ".repack"; 1282 1283 auto *IdxType = Type::getInt64Ty(T->getContext()); 1284 auto *Zero = ConstantInt::get(IdxType, 0); 1285 1286 uint64_t Offset = 0; 1287 for (uint64_t i = 0; i < NumElements; i++) { 1288 Value *Indices[2] = { 1289 Zero, 1290 ConstantInt::get(IdxType, i), 1291 }; 1292 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1293 AddrName); 1294 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1295 auto EltAlign = MinAlign(Align, Offset); 1296 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1297 AAMDNodes AAMD; 1298 SI.getAAMetadata(AAMD); 1299 NS->setAAMetadata(AAMD); 1300 Offset += EltSize; 1301 } 1302 1303 return true; 1304 } 1305 1306 return false; 1307 } 1308 1309 /// equivalentAddressValues - Test if A and B will obviously have the same 1310 /// value. This includes recognizing that %t0 and %t1 will have the same 1311 /// value in code like this: 1312 /// %t0 = getelementptr \@a, 0, 3 1313 /// store i32 0, i32* %t0 1314 /// %t1 = getelementptr \@a, 0, 3 1315 /// %t2 = load i32* %t1 1316 /// 1317 static bool equivalentAddressValues(Value *A, Value *B) { 1318 // Test if the values are trivially equivalent. 1319 if (A == B) return true; 1320 1321 // Test if the values come form identical arithmetic instructions. 1322 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1323 // its only used to compare two uses within the same basic block, which 1324 // means that they'll always either have the same value or one of them 1325 // will have an undefined value. 1326 if (isa<BinaryOperator>(A) || 1327 isa<CastInst>(A) || 1328 isa<PHINode>(A) || 1329 isa<GetElementPtrInst>(A)) 1330 if (Instruction *BI = dyn_cast<Instruction>(B)) 1331 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1332 return true; 1333 1334 // Otherwise they may not be equivalent. 1335 return false; 1336 } 1337 1338 /// Converts store (bitcast (load (bitcast (select ...)))) to 1339 /// store (load (select ...)), where select is minmax: 1340 /// select ((cmp load V1, load V2), V1, V2). 1341 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC, 1342 StoreInst &SI) { 1343 // bitcast? 1344 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1345 return false; 1346 // load? integer? 1347 Value *LoadAddr; 1348 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1349 return false; 1350 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1351 if (!LI->getType()->isIntegerTy()) 1352 return false; 1353 if (!isMinMaxWithLoads(LoadAddr)) 1354 return false; 1355 1356 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1357 auto *SI = dyn_cast<StoreInst>(U); 1358 return SI && SI->getPointerOperand() != LI && 1359 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && 1360 !SI->getPointerOperand()->isSwiftError(); 1361 })) 1362 return false; 1363 1364 IC.Builder.SetInsertPoint(LI); 1365 LoadInst *NewLI = combineLoadToNewType( 1366 IC, *LI, LoadAddr->getType()->getPointerElementType()); 1367 // Replace all the stores with stores of the newly loaded value. 1368 for (auto *UI : LI->users()) { 1369 auto *USI = cast<StoreInst>(UI); 1370 IC.Builder.SetInsertPoint(USI); 1371 combineStoreToNewValue(IC, *USI, NewLI); 1372 } 1373 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1374 IC.eraseInstFromFunction(*LI); 1375 return true; 1376 } 1377 1378 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1379 Value *Val = SI.getOperand(0); 1380 Value *Ptr = SI.getOperand(1); 1381 1382 // Try to canonicalize the stored type. 1383 if (combineStoreToValueType(*this, SI)) 1384 return eraseInstFromFunction(SI); 1385 1386 // Attempt to improve the alignment. 1387 unsigned KnownAlign = getOrEnforceKnownAlignment( 1388 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1389 unsigned StoreAlign = SI.getAlignment(); 1390 unsigned EffectiveStoreAlign = 1391 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1392 1393 if (KnownAlign > EffectiveStoreAlign) 1394 SI.setAlignment(KnownAlign); 1395 else if (StoreAlign == 0) 1396 SI.setAlignment(EffectiveStoreAlign); 1397 1398 // Try to canonicalize the stored type. 1399 if (unpackStoreToAggregate(*this, SI)) 1400 return eraseInstFromFunction(SI); 1401 1402 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1403 return eraseInstFromFunction(SI); 1404 1405 // Replace GEP indices if possible. 1406 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1407 Worklist.Add(NewGEPI); 1408 return &SI; 1409 } 1410 1411 // Don't hack volatile/ordered stores. 1412 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1413 if (!SI.isUnordered()) return nullptr; 1414 1415 // If the RHS is an alloca with a single use, zapify the store, making the 1416 // alloca dead. 1417 if (Ptr->hasOneUse()) { 1418 if (isa<AllocaInst>(Ptr)) 1419 return eraseInstFromFunction(SI); 1420 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1421 if (isa<AllocaInst>(GEP->getOperand(0))) { 1422 if (GEP->getOperand(0)->hasOneUse()) 1423 return eraseInstFromFunction(SI); 1424 } 1425 } 1426 } 1427 1428 // Do really simple DSE, to catch cases where there are several consecutive 1429 // stores to the same location, separated by a few arithmetic operations. This 1430 // situation often occurs with bitfield accesses. 1431 BasicBlock::iterator BBI(SI); 1432 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1433 --ScanInsts) { 1434 --BBI; 1435 // Don't count debug info directives, lest they affect codegen, 1436 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1437 if (isa<DbgInfoIntrinsic>(BBI) || 1438 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1439 ScanInsts++; 1440 continue; 1441 } 1442 1443 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1444 // Prev store isn't volatile, and stores to the same location? 1445 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1446 SI.getOperand(1))) { 1447 ++NumDeadStore; 1448 ++BBI; 1449 eraseInstFromFunction(*PrevSI); 1450 continue; 1451 } 1452 break; 1453 } 1454 1455 // If this is a load, we have to stop. However, if the loaded value is from 1456 // the pointer we're loading and is producing the pointer we're storing, 1457 // then *this* store is dead (X = load P; store X -> P). 1458 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1459 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1460 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1461 return eraseInstFromFunction(SI); 1462 } 1463 1464 // Otherwise, this is a load from some other location. Stores before it 1465 // may not be dead. 1466 break; 1467 } 1468 1469 // Don't skip over loads, throws or things that can modify memory. 1470 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1471 break; 1472 } 1473 1474 // store X, null -> turns into 'unreachable' in SimplifyCFG 1475 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1476 if (canSimplifyNullStoreOrGEP(SI)) { 1477 if (!isa<UndefValue>(Val)) { 1478 SI.setOperand(0, UndefValue::get(Val->getType())); 1479 if (Instruction *U = dyn_cast<Instruction>(Val)) 1480 Worklist.Add(U); // Dropped a use. 1481 } 1482 return nullptr; // Do not modify these! 1483 } 1484 1485 // store undef, Ptr -> noop 1486 if (isa<UndefValue>(Val)) 1487 return eraseInstFromFunction(SI); 1488 1489 // If this store is the last instruction in the basic block (possibly 1490 // excepting debug info instructions), and if the block ends with an 1491 // unconditional branch, try to move it to the successor block. 1492 BBI = SI.getIterator(); 1493 do { 1494 ++BBI; 1495 } while (isa<DbgInfoIntrinsic>(BBI) || 1496 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1497 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1498 if (BI->isUnconditional()) 1499 if (SimplifyStoreAtEndOfBlock(SI)) 1500 return nullptr; // xform done! 1501 1502 return nullptr; 1503 } 1504 1505 /// SimplifyStoreAtEndOfBlock - Turn things like: 1506 /// if () { *P = v1; } else { *P = v2 } 1507 /// into a phi node with a store in the successor. 1508 /// 1509 /// Simplify things like: 1510 /// *P = v1; if () { *P = v2; } 1511 /// into a phi node with a store in the successor. 1512 /// 1513 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1514 assert(SI.isUnordered() && 1515 "this code has not been auditted for volatile or ordered store case"); 1516 1517 BasicBlock *StoreBB = SI.getParent(); 1518 1519 // Check to see if the successor block has exactly two incoming edges. If 1520 // so, see if the other predecessor contains a store to the same location. 1521 // if so, insert a PHI node (if needed) and move the stores down. 1522 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1523 1524 // Determine whether Dest has exactly two predecessors and, if so, compute 1525 // the other predecessor. 1526 pred_iterator PI = pred_begin(DestBB); 1527 BasicBlock *P = *PI; 1528 BasicBlock *OtherBB = nullptr; 1529 1530 if (P != StoreBB) 1531 OtherBB = P; 1532 1533 if (++PI == pred_end(DestBB)) 1534 return false; 1535 1536 P = *PI; 1537 if (P != StoreBB) { 1538 if (OtherBB) 1539 return false; 1540 OtherBB = P; 1541 } 1542 if (++PI != pred_end(DestBB)) 1543 return false; 1544 1545 // Bail out if all the relevant blocks aren't distinct (this can happen, 1546 // for example, if SI is in an infinite loop) 1547 if (StoreBB == DestBB || OtherBB == DestBB) 1548 return false; 1549 1550 // Verify that the other block ends in a branch and is not otherwise empty. 1551 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1552 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1553 if (!OtherBr || BBI == OtherBB->begin()) 1554 return false; 1555 1556 // If the other block ends in an unconditional branch, check for the 'if then 1557 // else' case. there is an instruction before the branch. 1558 StoreInst *OtherStore = nullptr; 1559 if (OtherBr->isUnconditional()) { 1560 --BBI; 1561 // Skip over debugging info. 1562 while (isa<DbgInfoIntrinsic>(BBI) || 1563 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1564 if (BBI==OtherBB->begin()) 1565 return false; 1566 --BBI; 1567 } 1568 // If this isn't a store, isn't a store to the same location, or is not the 1569 // right kind of store, bail out. 1570 OtherStore = dyn_cast<StoreInst>(BBI); 1571 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1572 !SI.isSameOperationAs(OtherStore)) 1573 return false; 1574 } else { 1575 // Otherwise, the other block ended with a conditional branch. If one of the 1576 // destinations is StoreBB, then we have the if/then case. 1577 if (OtherBr->getSuccessor(0) != StoreBB && 1578 OtherBr->getSuccessor(1) != StoreBB) 1579 return false; 1580 1581 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1582 // if/then triangle. See if there is a store to the same ptr as SI that 1583 // lives in OtherBB. 1584 for (;; --BBI) { 1585 // Check to see if we find the matching store. 1586 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1587 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1588 !SI.isSameOperationAs(OtherStore)) 1589 return false; 1590 break; 1591 } 1592 // If we find something that may be using or overwriting the stored 1593 // value, or if we run out of instructions, we can't do the xform. 1594 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1595 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1596 return false; 1597 } 1598 1599 // In order to eliminate the store in OtherBr, we have to 1600 // make sure nothing reads or overwrites the stored value in 1601 // StoreBB. 1602 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1603 // FIXME: This should really be AA driven. 1604 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1605 return false; 1606 } 1607 } 1608 1609 // Insert a PHI node now if we need it. 1610 Value *MergedVal = OtherStore->getOperand(0); 1611 if (MergedVal != SI.getOperand(0)) { 1612 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1613 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1614 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1615 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1616 } 1617 1618 // Advance to a place where it is safe to insert the new store and 1619 // insert it. 1620 BBI = DestBB->getFirstInsertionPt(); 1621 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1622 SI.isVolatile(), 1623 SI.getAlignment(), 1624 SI.getOrdering(), 1625 SI.getSyncScopeID()); 1626 InsertNewInstBefore(NewSI, *BBI); 1627 // The debug locations of the original instructions might differ; merge them. 1628 NewSI->applyMergedLocation(SI.getDebugLoc(), OtherStore->getDebugLoc()); 1629 1630 // If the two stores had AA tags, merge them. 1631 AAMDNodes AATags; 1632 SI.getAAMetadata(AATags); 1633 if (AATags) { 1634 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1635 NewSI->setAAMetadata(AATags); 1636 } 1637 1638 // Nuke the old stores. 1639 eraseInstFromFunction(SI); 1640 eraseInstFromFunction(*OtherStore); 1641 return true; 1642 } 1643