1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/Loads.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/LLVMContext.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "instcombine" 26 27 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 28 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 29 30 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 31 /// some part of a constant global variable. This intentionally only accepts 32 /// constant expressions because we can't rewrite arbitrary instructions. 33 static bool pointsToConstantGlobal(Value *V) { 34 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 35 return GV->isConstant(); 36 37 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 38 if (CE->getOpcode() == Instruction::BitCast || 39 CE->getOpcode() == Instruction::AddrSpaceCast || 40 CE->getOpcode() == Instruction::GetElementPtr) 41 return pointsToConstantGlobal(CE->getOperand(0)); 42 } 43 return false; 44 } 45 46 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 47 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 48 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 49 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 50 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 51 /// the alloca, and if the source pointer is a pointer to a constant global, we 52 /// can optimize this. 53 static bool 54 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 55 SmallVectorImpl<Instruction *> &ToDelete) { 56 // We track lifetime intrinsics as we encounter them. If we decide to go 57 // ahead and replace the value with the global, this lets the caller quickly 58 // eliminate the markers. 59 60 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 61 ValuesToInspect.push_back(std::make_pair(V, false)); 62 while (!ValuesToInspect.empty()) { 63 auto ValuePair = ValuesToInspect.pop_back_val(); 64 const bool IsOffset = ValuePair.second; 65 for (auto &U : ValuePair.first->uses()) { 66 Instruction *I = cast<Instruction>(U.getUser()); 67 68 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 69 // Ignore non-volatile loads, they are always ok. 70 if (!LI->isSimple()) return false; 71 continue; 72 } 73 74 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 75 // If uses of the bitcast are ok, we are ok. 76 ValuesToInspect.push_back(std::make_pair(I, IsOffset)); 77 continue; 78 } 79 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 80 // If the GEP has all zero indices, it doesn't offset the pointer. If it 81 // doesn't, it does. 82 ValuesToInspect.push_back( 83 std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices())); 84 continue; 85 } 86 87 if (auto CS = CallSite(I)) { 88 // If this is the function being called then we treat it like a load and 89 // ignore it. 90 if (CS.isCallee(&U)) 91 continue; 92 93 // Inalloca arguments are clobbered by the call. 94 unsigned ArgNo = CS.getArgumentNo(&U); 95 if (CS.isInAllocaArgument(ArgNo)) 96 return false; 97 98 // If this is a readonly/readnone call site, then we know it is just a 99 // load (but one that potentially returns the value itself), so we can 100 // ignore it if we know that the value isn't captured. 101 if (CS.onlyReadsMemory() && 102 (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo))) 103 continue; 104 105 // If this is being passed as a byval argument, the caller is making a 106 // copy, so it is only a read of the alloca. 107 if (CS.isByValArgument(ArgNo)) 108 continue; 109 } 110 111 // Lifetime intrinsics can be handled by the caller. 112 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 113 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 114 II->getIntrinsicID() == Intrinsic::lifetime_end) { 115 assert(II->use_empty() && "Lifetime markers have no result to use!"); 116 ToDelete.push_back(II); 117 continue; 118 } 119 } 120 121 // If this is isn't our memcpy/memmove, reject it as something we can't 122 // handle. 123 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 124 if (!MI) 125 return false; 126 127 // If the transfer is using the alloca as a source of the transfer, then 128 // ignore it since it is a load (unless the transfer is volatile). 129 if (U.getOperandNo() == 1) { 130 if (MI->isVolatile()) return false; 131 continue; 132 } 133 134 // If we already have seen a copy, reject the second one. 135 if (TheCopy) return false; 136 137 // If the pointer has been offset from the start of the alloca, we can't 138 // safely handle this. 139 if (IsOffset) return false; 140 141 // If the memintrinsic isn't using the alloca as the dest, reject it. 142 if (U.getOperandNo() != 0) return false; 143 144 // If the source of the memcpy/move is not a constant global, reject it. 145 if (!pointsToConstantGlobal(MI->getSource())) 146 return false; 147 148 // Otherwise, the transform is safe. Remember the copy instruction. 149 TheCopy = MI; 150 } 151 } 152 return true; 153 } 154 155 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 156 /// modified by a copy from a constant global. If we can prove this, we can 157 /// replace any uses of the alloca with uses of the global directly. 158 static MemTransferInst * 159 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 160 SmallVectorImpl<Instruction *> &ToDelete) { 161 MemTransferInst *TheCopy = nullptr; 162 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 163 return TheCopy; 164 return nullptr; 165 } 166 167 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 168 // Check for array size of 1 (scalar allocation). 169 if (!AI.isArrayAllocation()) { 170 // i32 1 is the canonical array size for scalar allocations. 171 if (AI.getArraySize()->getType()->isIntegerTy(32)) 172 return nullptr; 173 174 // Canonicalize it. 175 Value *V = IC.Builder->getInt32(1); 176 AI.setOperand(0, V); 177 return &AI; 178 } 179 180 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 181 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 182 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 183 AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName()); 184 New->setAlignment(AI.getAlignment()); 185 186 // Scan to the end of the allocation instructions, to skip over a block of 187 // allocas if possible...also skip interleaved debug info 188 // 189 BasicBlock::iterator It(New); 190 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 191 ++It; 192 193 // Now that I is pointing to the first non-allocation-inst in the block, 194 // insert our getelementptr instruction... 195 // 196 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 197 Value *NullIdx = Constant::getNullValue(IdxTy); 198 Value *Idx[2] = {NullIdx, NullIdx}; 199 Instruction *GEP = 200 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 201 IC.InsertNewInstBefore(GEP, *It); 202 203 // Now make everything use the getelementptr instead of the original 204 // allocation. 205 return IC.ReplaceInstUsesWith(AI, GEP); 206 } 207 208 if (isa<UndefValue>(AI.getArraySize())) 209 return IC.ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 210 211 // Ensure that the alloca array size argument has type intptr_t, so that 212 // any casting is exposed early. 213 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 214 if (AI.getArraySize()->getType() != IntPtrTy) { 215 Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false); 216 AI.setOperand(0, V); 217 return &AI; 218 } 219 220 return nullptr; 221 } 222 223 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 224 if (auto *I = simplifyAllocaArraySize(*this, AI)) 225 return I; 226 227 if (AI.getAllocatedType()->isSized()) { 228 // If the alignment is 0 (unspecified), assign it the preferred alignment. 229 if (AI.getAlignment() == 0) 230 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 231 232 // Move all alloca's of zero byte objects to the entry block and merge them 233 // together. Note that we only do this for alloca's, because malloc should 234 // allocate and return a unique pointer, even for a zero byte allocation. 235 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 236 // For a zero sized alloca there is no point in doing an array allocation. 237 // This is helpful if the array size is a complicated expression not used 238 // elsewhere. 239 if (AI.isArrayAllocation()) { 240 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 241 return &AI; 242 } 243 244 // Get the first instruction in the entry block. 245 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 246 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 247 if (FirstInst != &AI) { 248 // If the entry block doesn't start with a zero-size alloca then move 249 // this one to the start of the entry block. There is no problem with 250 // dominance as the array size was forced to a constant earlier already. 251 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 252 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 253 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 254 AI.moveBefore(FirstInst); 255 return &AI; 256 } 257 258 // If the alignment of the entry block alloca is 0 (unspecified), 259 // assign it the preferred alignment. 260 if (EntryAI->getAlignment() == 0) 261 EntryAI->setAlignment( 262 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 263 // Replace this zero-sized alloca with the one at the start of the entry 264 // block after ensuring that the address will be aligned enough for both 265 // types. 266 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 267 AI.getAlignment()); 268 EntryAI->setAlignment(MaxAlign); 269 if (AI.getType() != EntryAI->getType()) 270 return new BitCastInst(EntryAI, AI.getType()); 271 return ReplaceInstUsesWith(AI, EntryAI); 272 } 273 } 274 } 275 276 if (AI.getAlignment()) { 277 // Check to see if this allocation is only modified by a memcpy/memmove from 278 // a constant global whose alignment is equal to or exceeds that of the 279 // allocation. If this is the case, we can change all users to use 280 // the constant global instead. This is commonly produced by the CFE by 281 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 282 // is only subsequently read. 283 SmallVector<Instruction *, 4> ToDelete; 284 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 285 unsigned SourceAlign = getOrEnforceKnownAlignment( 286 Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT); 287 if (AI.getAlignment() <= SourceAlign) { 288 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 289 DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 290 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 291 EraseInstFromFunction(*ToDelete[i]); 292 Constant *TheSrc = cast<Constant>(Copy->getSource()); 293 Constant *Cast 294 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType()); 295 Instruction *NewI = ReplaceInstUsesWith(AI, Cast); 296 EraseInstFromFunction(*Copy); 297 ++NumGlobalCopies; 298 return NewI; 299 } 300 } 301 } 302 303 // At last, use the generic allocation site handler to aggressively remove 304 // unused allocas. 305 return visitAllocSite(AI); 306 } 307 308 /// \brief Helper to combine a load to a new type. 309 /// 310 /// This just does the work of combining a load to a new type. It handles 311 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 312 /// loaded *value* type. This will convert it to a pointer, cast the operand to 313 /// that pointer type, load it, etc. 314 /// 315 /// Note that this will create all of the instructions with whatever insert 316 /// point the \c InstCombiner currently is using. 317 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 318 const Twine &Suffix = "") { 319 Value *Ptr = LI.getPointerOperand(); 320 unsigned AS = LI.getPointerAddressSpace(); 321 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 322 LI.getAllMetadata(MD); 323 324 LoadInst *NewLoad = IC.Builder->CreateAlignedLoad( 325 IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)), 326 LI.getAlignment(), LI.getName() + Suffix); 327 MDBuilder MDB(NewLoad->getContext()); 328 for (const auto &MDPair : MD) { 329 unsigned ID = MDPair.first; 330 MDNode *N = MDPair.second; 331 // Note, essentially every kind of metadata should be preserved here! This 332 // routine is supposed to clone a load instruction changing *only its type*. 333 // The only metadata it makes sense to drop is metadata which is invalidated 334 // when the pointer type changes. This should essentially never be the case 335 // in LLVM, but we explicitly switch over only known metadata to be 336 // conservatively correct. If you are adding metadata to LLVM which pertains 337 // to loads, you almost certainly want to add it here. 338 switch (ID) { 339 case LLVMContext::MD_dbg: 340 case LLVMContext::MD_tbaa: 341 case LLVMContext::MD_prof: 342 case LLVMContext::MD_fpmath: 343 case LLVMContext::MD_tbaa_struct: 344 case LLVMContext::MD_invariant_load: 345 case LLVMContext::MD_alias_scope: 346 case LLVMContext::MD_noalias: 347 case LLVMContext::MD_nontemporal: 348 case LLVMContext::MD_mem_parallel_loop_access: 349 // All of these directly apply. 350 NewLoad->setMetadata(ID, N); 351 break; 352 353 case LLVMContext::MD_nonnull: 354 // This only directly applies if the new type is also a pointer. 355 if (NewTy->isPointerTy()) { 356 NewLoad->setMetadata(ID, N); 357 break; 358 } 359 // If it's integral now, translate it to !range metadata. 360 if (NewTy->isIntegerTy()) { 361 auto *ITy = cast<IntegerType>(NewTy); 362 auto *NullInt = ConstantExpr::getPtrToInt( 363 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 364 auto *NonNullInt = 365 ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 366 NewLoad->setMetadata(LLVMContext::MD_range, 367 MDB.createRange(NonNullInt, NullInt)); 368 } 369 break; 370 case LLVMContext::MD_align: 371 case LLVMContext::MD_dereferenceable: 372 case LLVMContext::MD_dereferenceable_or_null: 373 // These only directly apply if the new type is also a pointer. 374 if (NewTy->isPointerTy()) 375 NewLoad->setMetadata(ID, N); 376 break; 377 case LLVMContext::MD_range: 378 // FIXME: It would be nice to propagate this in some way, but the type 379 // conversions make it hard. If the new type is a pointer, we could 380 // translate it to !nonnull metadata. 381 break; 382 } 383 } 384 return NewLoad; 385 } 386 387 /// \brief Combine a store to a new type. 388 /// 389 /// Returns the newly created store instruction. 390 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 391 Value *Ptr = SI.getPointerOperand(); 392 unsigned AS = SI.getPointerAddressSpace(); 393 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 394 SI.getAllMetadata(MD); 395 396 StoreInst *NewStore = IC.Builder->CreateAlignedStore( 397 V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 398 SI.getAlignment()); 399 for (const auto &MDPair : MD) { 400 unsigned ID = MDPair.first; 401 MDNode *N = MDPair.second; 402 // Note, essentially every kind of metadata should be preserved here! This 403 // routine is supposed to clone a store instruction changing *only its 404 // type*. The only metadata it makes sense to drop is metadata which is 405 // invalidated when the pointer type changes. This should essentially 406 // never be the case in LLVM, but we explicitly switch over only known 407 // metadata to be conservatively correct. If you are adding metadata to 408 // LLVM which pertains to stores, you almost certainly want to add it 409 // here. 410 switch (ID) { 411 case LLVMContext::MD_dbg: 412 case LLVMContext::MD_tbaa: 413 case LLVMContext::MD_prof: 414 case LLVMContext::MD_fpmath: 415 case LLVMContext::MD_tbaa_struct: 416 case LLVMContext::MD_alias_scope: 417 case LLVMContext::MD_noalias: 418 case LLVMContext::MD_nontemporal: 419 case LLVMContext::MD_mem_parallel_loop_access: 420 // All of these directly apply. 421 NewStore->setMetadata(ID, N); 422 break; 423 424 case LLVMContext::MD_invariant_load: 425 case LLVMContext::MD_nonnull: 426 case LLVMContext::MD_range: 427 case LLVMContext::MD_align: 428 case LLVMContext::MD_dereferenceable: 429 case LLVMContext::MD_dereferenceable_or_null: 430 // These don't apply for stores. 431 break; 432 } 433 } 434 435 return NewStore; 436 } 437 438 /// \brief Combine loads to match the type of value their uses after looking 439 /// through intervening bitcasts. 440 /// 441 /// The core idea here is that if the result of a load is used in an operation, 442 /// we should load the type most conducive to that operation. For example, when 443 /// loading an integer and converting that immediately to a pointer, we should 444 /// instead directly load a pointer. 445 /// 446 /// However, this routine must never change the width of a load or the number of 447 /// loads as that would introduce a semantic change. This combine is expected to 448 /// be a semantic no-op which just allows loads to more closely model the types 449 /// of their consuming operations. 450 /// 451 /// Currently, we also refuse to change the precise type used for an atomic load 452 /// or a volatile load. This is debatable, and might be reasonable to change 453 /// later. However, it is risky in case some backend or other part of LLVM is 454 /// relying on the exact type loaded to select appropriate atomic operations. 455 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 456 // FIXME: We could probably with some care handle both volatile and atomic 457 // loads here but it isn't clear that this is important. 458 if (!LI.isSimple()) 459 return nullptr; 460 461 if (LI.use_empty()) 462 return nullptr; 463 464 Type *Ty = LI.getType(); 465 const DataLayout &DL = IC.getDataLayout(); 466 467 // Try to canonicalize loads which are only ever stored to operate over 468 // integers instead of any other type. We only do this when the loaded type 469 // is sized and has a size exactly the same as its store size and the store 470 // size is a legal integer type. 471 if (!Ty->isIntegerTy() && Ty->isSized() && 472 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 473 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) { 474 if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) { 475 auto *SI = dyn_cast<StoreInst>(U); 476 return SI && SI->getPointerOperand() != &LI; 477 })) { 478 LoadInst *NewLoad = combineLoadToNewType( 479 IC, LI, 480 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 481 // Replace all the stores with stores of the newly loaded value. 482 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 483 auto *SI = cast<StoreInst>(*UI++); 484 IC.Builder->SetInsertPoint(SI); 485 combineStoreToNewValue(IC, *SI, NewLoad); 486 IC.EraseInstFromFunction(*SI); 487 } 488 assert(LI.use_empty() && "Failed to remove all users of the load!"); 489 // Return the old load so the combiner can delete it safely. 490 return &LI; 491 } 492 } 493 494 // Fold away bit casts of the loaded value by loading the desired type. 495 // We can do this for BitCastInsts as well as casts from and to pointer types, 496 // as long as those are noops (i.e., the source or dest type have the same 497 // bitwidth as the target's pointers). 498 if (LI.hasOneUse()) 499 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) { 500 if (CI->isNoopCast(DL)) { 501 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 502 CI->replaceAllUsesWith(NewLoad); 503 IC.EraseInstFromFunction(*CI); 504 return &LI; 505 } 506 } 507 508 // FIXME: We should also canonicalize loads of vectors when their elements are 509 // cast to other types. 510 return nullptr; 511 } 512 513 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 514 // FIXME: We could probably with some care handle both volatile and atomic 515 // stores here but it isn't clear that this is important. 516 if (!LI.isSimple()) 517 return nullptr; 518 519 Type *T = LI.getType(); 520 if (!T->isAggregateType()) 521 return nullptr; 522 523 assert(LI.getAlignment() && "Alignment must be set at this point"); 524 525 if (auto *ST = dyn_cast<StructType>(T)) { 526 // If the struct only have one element, we unpack. 527 if (ST->getNumElements() == 1) { 528 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 529 ".unpack"); 530 return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 531 UndefValue::get(T), NewLoad, 0, LI.getName())); 532 } 533 } 534 535 if (auto *AT = dyn_cast<ArrayType>(T)) { 536 // If the array only have one element, we unpack. 537 if (AT->getNumElements() == 1) { 538 LoadInst *NewLoad = combineLoadToNewType(IC, LI, AT->getElementType(), 539 ".unpack"); 540 return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 541 UndefValue::get(T), NewLoad, 0, LI.getName())); 542 } 543 } 544 545 return nullptr; 546 } 547 548 // If we can determine that all possible objects pointed to by the provided 549 // pointer value are, not only dereferenceable, but also definitively less than 550 // or equal to the provided maximum size, then return true. Otherwise, return 551 // false (constant global values and allocas fall into this category). 552 // 553 // FIXME: This should probably live in ValueTracking (or similar). 554 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 555 const DataLayout &DL) { 556 SmallPtrSet<Value *, 4> Visited; 557 SmallVector<Value *, 4> Worklist(1, V); 558 559 do { 560 Value *P = Worklist.pop_back_val(); 561 P = P->stripPointerCasts(); 562 563 if (!Visited.insert(P).second) 564 continue; 565 566 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 567 Worklist.push_back(SI->getTrueValue()); 568 Worklist.push_back(SI->getFalseValue()); 569 continue; 570 } 571 572 if (PHINode *PN = dyn_cast<PHINode>(P)) { 573 for (Value *IncValue : PN->incoming_values()) 574 Worklist.push_back(IncValue); 575 continue; 576 } 577 578 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 579 if (GA->mayBeOverridden()) 580 return false; 581 Worklist.push_back(GA->getAliasee()); 582 continue; 583 } 584 585 // If we know how big this object is, and it is less than MaxSize, continue 586 // searching. Otherwise, return false. 587 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 588 if (!AI->getAllocatedType()->isSized()) 589 return false; 590 591 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 592 if (!CS) 593 return false; 594 595 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 596 // Make sure that, even if the multiplication below would wrap as an 597 // uint64_t, we still do the right thing. 598 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 599 return false; 600 continue; 601 } 602 603 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 604 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 605 return false; 606 607 uint64_t InitSize = DL.getTypeAllocSize(GV->getType()->getElementType()); 608 if (InitSize > MaxSize) 609 return false; 610 continue; 611 } 612 613 return false; 614 } while (!Worklist.empty()); 615 616 return true; 617 } 618 619 // If we're indexing into an object of a known size, and the outer index is 620 // not a constant, but having any value but zero would lead to undefined 621 // behavior, replace it with zero. 622 // 623 // For example, if we have: 624 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 625 // ... 626 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 627 // ... = load i32* %arrayidx, align 4 628 // Then we know that we can replace %x in the GEP with i64 0. 629 // 630 // FIXME: We could fold any GEP index to zero that would cause UB if it were 631 // not zero. Currently, we only handle the first such index. Also, we could 632 // also search through non-zero constant indices if we kept track of the 633 // offsets those indices implied. 634 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 635 Instruction *MemI, unsigned &Idx) { 636 if (GEPI->getNumOperands() < 2) 637 return false; 638 639 // Find the first non-zero index of a GEP. If all indices are zero, return 640 // one past the last index. 641 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 642 unsigned I = 1; 643 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 644 Value *V = GEPI->getOperand(I); 645 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 646 if (CI->isZero()) 647 continue; 648 649 break; 650 } 651 652 return I; 653 }; 654 655 // Skip through initial 'zero' indices, and find the corresponding pointer 656 // type. See if the next index is not a constant. 657 Idx = FirstNZIdx(GEPI); 658 if (Idx == GEPI->getNumOperands()) 659 return false; 660 if (isa<Constant>(GEPI->getOperand(Idx))) 661 return false; 662 663 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 664 Type *AllocTy = GetElementPtrInst::getIndexedType( 665 cast<PointerType>(GEPI->getOperand(0)->getType()->getScalarType()) 666 ->getElementType(), 667 Ops); 668 if (!AllocTy || !AllocTy->isSized()) 669 return false; 670 const DataLayout &DL = IC.getDataLayout(); 671 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 672 673 // If there are more indices after the one we might replace with a zero, make 674 // sure they're all non-negative. If any of them are negative, the overall 675 // address being computed might be before the base address determined by the 676 // first non-zero index. 677 auto IsAllNonNegative = [&]() { 678 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 679 bool KnownNonNegative, KnownNegative; 680 IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative, 681 KnownNegative, 0, MemI); 682 if (KnownNonNegative) 683 continue; 684 return false; 685 } 686 687 return true; 688 }; 689 690 // FIXME: If the GEP is not inbounds, and there are extra indices after the 691 // one we'll replace, those could cause the address computation to wrap 692 // (rendering the IsAllNonNegative() check below insufficient). We can do 693 // better, ignoring zero indices (and other indices we can prove small 694 // enough not to wrap). 695 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 696 return false; 697 698 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 699 // also known to be dereferenceable. 700 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 701 IsAllNonNegative(); 702 } 703 704 // If we're indexing into an object with a variable index for the memory 705 // access, but the object has only one element, we can assume that the index 706 // will always be zero. If we replace the GEP, return it. 707 template <typename T> 708 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 709 T &MemI) { 710 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 711 unsigned Idx; 712 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 713 Instruction *NewGEPI = GEPI->clone(); 714 NewGEPI->setOperand(Idx, 715 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 716 NewGEPI->insertBefore(GEPI); 717 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 718 return NewGEPI; 719 } 720 } 721 722 return nullptr; 723 } 724 725 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 726 Value *Op = LI.getOperand(0); 727 728 // Try to canonicalize the loaded type. 729 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 730 return Res; 731 732 // Attempt to improve the alignment. 733 unsigned KnownAlign = getOrEnforceKnownAlignment( 734 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT); 735 unsigned LoadAlign = LI.getAlignment(); 736 unsigned EffectiveLoadAlign = 737 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 738 739 if (KnownAlign > EffectiveLoadAlign) 740 LI.setAlignment(KnownAlign); 741 else if (LoadAlign == 0) 742 LI.setAlignment(EffectiveLoadAlign); 743 744 // Replace GEP indices if possible. 745 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 746 Worklist.Add(NewGEPI); 747 return &LI; 748 } 749 750 // None of the following transforms are legal for volatile/atomic loads. 751 // FIXME: Some of it is okay for atomic loads; needs refactoring. 752 if (!LI.isSimple()) return nullptr; 753 754 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 755 return Res; 756 757 // Do really simple store-to-load forwarding and load CSE, to catch cases 758 // where there are several consecutive memory accesses to the same location, 759 // separated by a few arithmetic operations. 760 BasicBlock::iterator BBI(LI); 761 AAMDNodes AATags; 762 if (Value *AvailableVal = 763 FindAvailableLoadedValue(Op, LI.getParent(), BBI, 764 DefMaxInstsToScan, AA, &AATags)) { 765 if (LoadInst *NLI = dyn_cast<LoadInst>(AvailableVal)) { 766 unsigned KnownIDs[] = { 767 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 768 LLVMContext::MD_noalias, LLVMContext::MD_range, 769 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 770 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 771 LLVMContext::MD_dereferenceable, 772 LLVMContext::MD_dereferenceable_or_null}; 773 combineMetadata(NLI, &LI, KnownIDs); 774 }; 775 776 return ReplaceInstUsesWith( 777 LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(), 778 LI.getName() + ".cast")); 779 } 780 781 // load(gep null, ...) -> unreachable 782 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 783 const Value *GEPI0 = GEPI->getOperand(0); 784 // TODO: Consider a target hook for valid address spaces for this xform. 785 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ 786 // Insert a new store to null instruction before the load to indicate 787 // that this code is not reachable. We do this instead of inserting 788 // an unreachable instruction directly because we cannot modify the 789 // CFG. 790 new StoreInst(UndefValue::get(LI.getType()), 791 Constant::getNullValue(Op->getType()), &LI); 792 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); 793 } 794 } 795 796 // load null/undef -> unreachable 797 // TODO: Consider a target hook for valid address spaces for this xform. 798 if (isa<UndefValue>(Op) || 799 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { 800 // Insert a new store to null instruction before the load to indicate that 801 // this code is not reachable. We do this instead of inserting an 802 // unreachable instruction directly because we cannot modify the CFG. 803 new StoreInst(UndefValue::get(LI.getType()), 804 Constant::getNullValue(Op->getType()), &LI); 805 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); 806 } 807 808 if (Op->hasOneUse()) { 809 // Change select and PHI nodes to select values instead of addresses: this 810 // helps alias analysis out a lot, allows many others simplifications, and 811 // exposes redundancy in the code. 812 // 813 // Note that we cannot do the transformation unless we know that the 814 // introduced loads cannot trap! Something like this is valid as long as 815 // the condition is always false: load (select bool %C, int* null, int* %G), 816 // but it would not be valid if we transformed it to load from null 817 // unconditionally. 818 // 819 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 820 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 821 unsigned Align = LI.getAlignment(); 822 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align) && 823 isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align)) { 824 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), 825 SI->getOperand(1)->getName()+".val"); 826 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), 827 SI->getOperand(2)->getName()+".val"); 828 V1->setAlignment(Align); 829 V2->setAlignment(Align); 830 return SelectInst::Create(SI->getCondition(), V1, V2); 831 } 832 833 // load (select (cond, null, P)) -> load P 834 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 835 LI.getPointerAddressSpace() == 0) { 836 LI.setOperand(0, SI->getOperand(2)); 837 return &LI; 838 } 839 840 // load (select (cond, P, null)) -> load P 841 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 842 LI.getPointerAddressSpace() == 0) { 843 LI.setOperand(0, SI->getOperand(1)); 844 return &LI; 845 } 846 } 847 } 848 return nullptr; 849 } 850 851 /// \brief Combine stores to match the type of value being stored. 852 /// 853 /// The core idea here is that the memory does not have any intrinsic type and 854 /// where we can we should match the type of a store to the type of value being 855 /// stored. 856 /// 857 /// However, this routine must never change the width of a store or the number of 858 /// stores as that would introduce a semantic change. This combine is expected to 859 /// be a semantic no-op which just allows stores to more closely model the types 860 /// of their incoming values. 861 /// 862 /// Currently, we also refuse to change the precise type used for an atomic or 863 /// volatile store. This is debatable, and might be reasonable to change later. 864 /// However, it is risky in case some backend or other part of LLVM is relying 865 /// on the exact type stored to select appropriate atomic operations. 866 /// 867 /// \returns true if the store was successfully combined away. This indicates 868 /// the caller must erase the store instruction. We have to let the caller erase 869 /// the store instruction as otherwise there is no way to signal whether it was 870 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 871 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 872 // FIXME: We could probably with some care handle both volatile and atomic 873 // stores here but it isn't clear that this is important. 874 if (!SI.isSimple()) 875 return false; 876 877 Value *V = SI.getValueOperand(); 878 879 // Fold away bit casts of the stored value by storing the original type. 880 if (auto *BC = dyn_cast<BitCastInst>(V)) { 881 V = BC->getOperand(0); 882 combineStoreToNewValue(IC, SI, V); 883 return true; 884 } 885 886 // FIXME: We should also canonicalize loads of vectors when their elements are 887 // cast to other types. 888 return false; 889 } 890 891 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 892 // FIXME: We could probably with some care handle both volatile and atomic 893 // stores here but it isn't clear that this is important. 894 if (!SI.isSimple()) 895 return false; 896 897 Value *V = SI.getValueOperand(); 898 Type *T = V->getType(); 899 900 if (!T->isAggregateType()) 901 return false; 902 903 if (auto *ST = dyn_cast<StructType>(T)) { 904 // If the struct only have one element, we unpack. 905 if (ST->getNumElements() == 1) { 906 V = IC.Builder->CreateExtractValue(V, 0); 907 combineStoreToNewValue(IC, SI, V); 908 return true; 909 } 910 } 911 912 if (auto *AT = dyn_cast<ArrayType>(T)) { 913 // If the array only have one element, we unpack. 914 if (AT->getNumElements() == 1) { 915 V = IC.Builder->CreateExtractValue(V, 0); 916 combineStoreToNewValue(IC, SI, V); 917 return true; 918 } 919 } 920 921 return false; 922 } 923 924 /// equivalentAddressValues - Test if A and B will obviously have the same 925 /// value. This includes recognizing that %t0 and %t1 will have the same 926 /// value in code like this: 927 /// %t0 = getelementptr \@a, 0, 3 928 /// store i32 0, i32* %t0 929 /// %t1 = getelementptr \@a, 0, 3 930 /// %t2 = load i32* %t1 931 /// 932 static bool equivalentAddressValues(Value *A, Value *B) { 933 // Test if the values are trivially equivalent. 934 if (A == B) return true; 935 936 // Test if the values come form identical arithmetic instructions. 937 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 938 // its only used to compare two uses within the same basic block, which 939 // means that they'll always either have the same value or one of them 940 // will have an undefined value. 941 if (isa<BinaryOperator>(A) || 942 isa<CastInst>(A) || 943 isa<PHINode>(A) || 944 isa<GetElementPtrInst>(A)) 945 if (Instruction *BI = dyn_cast<Instruction>(B)) 946 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 947 return true; 948 949 // Otherwise they may not be equivalent. 950 return false; 951 } 952 953 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 954 Value *Val = SI.getOperand(0); 955 Value *Ptr = SI.getOperand(1); 956 957 // Try to canonicalize the stored type. 958 if (combineStoreToValueType(*this, SI)) 959 return EraseInstFromFunction(SI); 960 961 // Attempt to improve the alignment. 962 unsigned KnownAlign = getOrEnforceKnownAlignment( 963 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT); 964 unsigned StoreAlign = SI.getAlignment(); 965 unsigned EffectiveStoreAlign = 966 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 967 968 if (KnownAlign > EffectiveStoreAlign) 969 SI.setAlignment(KnownAlign); 970 else if (StoreAlign == 0) 971 SI.setAlignment(EffectiveStoreAlign); 972 973 // Try to canonicalize the stored type. 974 if (unpackStoreToAggregate(*this, SI)) 975 return EraseInstFromFunction(SI); 976 977 // Replace GEP indices if possible. 978 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 979 Worklist.Add(NewGEPI); 980 return &SI; 981 } 982 983 // Don't hack volatile/atomic stores. 984 // FIXME: Some bits are legal for atomic stores; needs refactoring. 985 if (!SI.isSimple()) return nullptr; 986 987 // If the RHS is an alloca with a single use, zapify the store, making the 988 // alloca dead. 989 if (Ptr->hasOneUse()) { 990 if (isa<AllocaInst>(Ptr)) 991 return EraseInstFromFunction(SI); 992 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 993 if (isa<AllocaInst>(GEP->getOperand(0))) { 994 if (GEP->getOperand(0)->hasOneUse()) 995 return EraseInstFromFunction(SI); 996 } 997 } 998 } 999 1000 // Do really simple DSE, to catch cases where there are several consecutive 1001 // stores to the same location, separated by a few arithmetic operations. This 1002 // situation often occurs with bitfield accesses. 1003 BasicBlock::iterator BBI(SI); 1004 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1005 --ScanInsts) { 1006 --BBI; 1007 // Don't count debug info directives, lest they affect codegen, 1008 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1009 if (isa<DbgInfoIntrinsic>(BBI) || 1010 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1011 ScanInsts++; 1012 continue; 1013 } 1014 1015 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1016 // Prev store isn't volatile, and stores to the same location? 1017 if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1), 1018 SI.getOperand(1))) { 1019 ++NumDeadStore; 1020 ++BBI; 1021 EraseInstFromFunction(*PrevSI); 1022 continue; 1023 } 1024 break; 1025 } 1026 1027 // If this is a load, we have to stop. However, if the loaded value is from 1028 // the pointer we're loading and is producing the pointer we're storing, 1029 // then *this* store is dead (X = load P; store X -> P). 1030 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1031 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) && 1032 LI->isSimple()) 1033 return EraseInstFromFunction(SI); 1034 1035 // Otherwise, this is a load from some other location. Stores before it 1036 // may not be dead. 1037 break; 1038 } 1039 1040 // Don't skip over loads or things that can modify memory. 1041 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) 1042 break; 1043 } 1044 1045 // store X, null -> turns into 'unreachable' in SimplifyCFG 1046 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { 1047 if (!isa<UndefValue>(Val)) { 1048 SI.setOperand(0, UndefValue::get(Val->getType())); 1049 if (Instruction *U = dyn_cast<Instruction>(Val)) 1050 Worklist.Add(U); // Dropped a use. 1051 } 1052 return nullptr; // Do not modify these! 1053 } 1054 1055 // store undef, Ptr -> noop 1056 if (isa<UndefValue>(Val)) 1057 return EraseInstFromFunction(SI); 1058 1059 // If this store is the last instruction in the basic block (possibly 1060 // excepting debug info instructions), and if the block ends with an 1061 // unconditional branch, try to move it to the successor block. 1062 BBI = SI.getIterator(); 1063 do { 1064 ++BBI; 1065 } while (isa<DbgInfoIntrinsic>(BBI) || 1066 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1067 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1068 if (BI->isUnconditional()) 1069 if (SimplifyStoreAtEndOfBlock(SI)) 1070 return nullptr; // xform done! 1071 1072 return nullptr; 1073 } 1074 1075 /// SimplifyStoreAtEndOfBlock - Turn things like: 1076 /// if () { *P = v1; } else { *P = v2 } 1077 /// into a phi node with a store in the successor. 1078 /// 1079 /// Simplify things like: 1080 /// *P = v1; if () { *P = v2; } 1081 /// into a phi node with a store in the successor. 1082 /// 1083 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1084 BasicBlock *StoreBB = SI.getParent(); 1085 1086 // Check to see if the successor block has exactly two incoming edges. If 1087 // so, see if the other predecessor contains a store to the same location. 1088 // if so, insert a PHI node (if needed) and move the stores down. 1089 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1090 1091 // Determine whether Dest has exactly two predecessors and, if so, compute 1092 // the other predecessor. 1093 pred_iterator PI = pred_begin(DestBB); 1094 BasicBlock *P = *PI; 1095 BasicBlock *OtherBB = nullptr; 1096 1097 if (P != StoreBB) 1098 OtherBB = P; 1099 1100 if (++PI == pred_end(DestBB)) 1101 return false; 1102 1103 P = *PI; 1104 if (P != StoreBB) { 1105 if (OtherBB) 1106 return false; 1107 OtherBB = P; 1108 } 1109 if (++PI != pred_end(DestBB)) 1110 return false; 1111 1112 // Bail out if all the relevant blocks aren't distinct (this can happen, 1113 // for example, if SI is in an infinite loop) 1114 if (StoreBB == DestBB || OtherBB == DestBB) 1115 return false; 1116 1117 // Verify that the other block ends in a branch and is not otherwise empty. 1118 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1119 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1120 if (!OtherBr || BBI == OtherBB->begin()) 1121 return false; 1122 1123 // If the other block ends in an unconditional branch, check for the 'if then 1124 // else' case. there is an instruction before the branch. 1125 StoreInst *OtherStore = nullptr; 1126 if (OtherBr->isUnconditional()) { 1127 --BBI; 1128 // Skip over debugging info. 1129 while (isa<DbgInfoIntrinsic>(BBI) || 1130 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1131 if (BBI==OtherBB->begin()) 1132 return false; 1133 --BBI; 1134 } 1135 // If this isn't a store, isn't a store to the same location, or is not the 1136 // right kind of store, bail out. 1137 OtherStore = dyn_cast<StoreInst>(BBI); 1138 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1139 !SI.isSameOperationAs(OtherStore)) 1140 return false; 1141 } else { 1142 // Otherwise, the other block ended with a conditional branch. If one of the 1143 // destinations is StoreBB, then we have the if/then case. 1144 if (OtherBr->getSuccessor(0) != StoreBB && 1145 OtherBr->getSuccessor(1) != StoreBB) 1146 return false; 1147 1148 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1149 // if/then triangle. See if there is a store to the same ptr as SI that 1150 // lives in OtherBB. 1151 for (;; --BBI) { 1152 // Check to see if we find the matching store. 1153 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1154 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1155 !SI.isSameOperationAs(OtherStore)) 1156 return false; 1157 break; 1158 } 1159 // If we find something that may be using or overwriting the stored 1160 // value, or if we run out of instructions, we can't do the xform. 1161 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || 1162 BBI == OtherBB->begin()) 1163 return false; 1164 } 1165 1166 // In order to eliminate the store in OtherBr, we have to 1167 // make sure nothing reads or overwrites the stored value in 1168 // StoreBB. 1169 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1170 // FIXME: This should really be AA driven. 1171 if (I->mayReadFromMemory() || I->mayWriteToMemory()) 1172 return false; 1173 } 1174 } 1175 1176 // Insert a PHI node now if we need it. 1177 Value *MergedVal = OtherStore->getOperand(0); 1178 if (MergedVal != SI.getOperand(0)) { 1179 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1180 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1181 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1182 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1183 } 1184 1185 // Advance to a place where it is safe to insert the new store and 1186 // insert it. 1187 BBI = DestBB->getFirstInsertionPt(); 1188 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1189 SI.isVolatile(), 1190 SI.getAlignment(), 1191 SI.getOrdering(), 1192 SI.getSynchScope()); 1193 InsertNewInstBefore(NewSI, *BBI); 1194 NewSI->setDebugLoc(OtherStore->getDebugLoc()); 1195 1196 // If the two stores had AA tags, merge them. 1197 AAMDNodes AATags; 1198 SI.getAAMetadata(AATags); 1199 if (AATags) { 1200 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1201 NewSI->setAAMetadata(AATags); 1202 } 1203 1204 // Nuke the old stores. 1205 EraseInstFromFunction(SI); 1206 EraseInstFromFunction(*OtherStore); 1207 return true; 1208 } 1209