1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
36 
37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
38 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
39 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
41 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
42 /// the alloca, and if the source pointer is a pointer to a constant global, we
43 /// can optimize this.
44 static bool
45 isOnlyCopiedFromConstantMemory(AAResults *AA,
46                                Value *V, MemTransferInst *&TheCopy,
47                                SmallVectorImpl<Instruction *> &ToDelete) {
48   // We track lifetime intrinsics as we encounter them.  If we decide to go
49   // ahead and replace the value with the global, this lets the caller quickly
50   // eliminate the markers.
51 
52   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
53   ValuesToInspect.emplace_back(V, false);
54   while (!ValuesToInspect.empty()) {
55     auto ValuePair = ValuesToInspect.pop_back_val();
56     const bool IsOffset = ValuePair.second;
57     for (auto &U : ValuePair.first->uses()) {
58       auto *I = cast<Instruction>(U.getUser());
59 
60       if (auto *LI = dyn_cast<LoadInst>(I)) {
61         // Ignore non-volatile loads, they are always ok.
62         if (!LI->isSimple()) return false;
63         continue;
64       }
65 
66       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
67         // If uses of the bitcast are ok, we are ok.
68         ValuesToInspect.emplace_back(I, IsOffset);
69         continue;
70       }
71       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
72         // If the GEP has all zero indices, it doesn't offset the pointer. If it
73         // doesn't, it does.
74         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
75         continue;
76       }
77 
78       if (auto *Call = dyn_cast<CallBase>(I)) {
79         // If this is the function being called then we treat it like a load and
80         // ignore it.
81         if (Call->isCallee(&U))
82           continue;
83 
84         unsigned DataOpNo = Call->getDataOperandNo(&U);
85         bool IsArgOperand = Call->isArgOperand(&U);
86 
87         // Inalloca arguments are clobbered by the call.
88         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
89           return false;
90 
91         // If this is a readonly/readnone call site, then we know it is just a
92         // load (but one that potentially returns the value itself), so we can
93         // ignore it if we know that the value isn't captured.
94         if (Call->onlyReadsMemory() &&
95             (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
96           continue;
97 
98         // If this is being passed as a byval argument, the caller is making a
99         // copy, so it is only a read of the alloca.
100         if (IsArgOperand && Call->isByValArgument(DataOpNo))
101           continue;
102       }
103 
104       // Lifetime intrinsics can be handled by the caller.
105       if (I->isLifetimeStartOrEnd()) {
106         assert(I->use_empty() && "Lifetime markers have no result to use!");
107         ToDelete.push_back(I);
108         continue;
109       }
110 
111       // If this is isn't our memcpy/memmove, reject it as something we can't
112       // handle.
113       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
114       if (!MI)
115         return false;
116 
117       // If the transfer is using the alloca as a source of the transfer, then
118       // ignore it since it is a load (unless the transfer is volatile).
119       if (U.getOperandNo() == 1) {
120         if (MI->isVolatile()) return false;
121         continue;
122       }
123 
124       // If we already have seen a copy, reject the second one.
125       if (TheCopy) return false;
126 
127       // If the pointer has been offset from the start of the alloca, we can't
128       // safely handle this.
129       if (IsOffset) return false;
130 
131       // If the memintrinsic isn't using the alloca as the dest, reject it.
132       if (U.getOperandNo() != 0) return false;
133 
134       // If the source of the memcpy/move is not a constant global, reject it.
135       if (!AA->pointsToConstantMemory(MI->getSource()))
136         return false;
137 
138       // Otherwise, the transform is safe.  Remember the copy instruction.
139       TheCopy = MI;
140     }
141   }
142   return true;
143 }
144 
145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
146 /// modified by a copy from a constant global.  If we can prove this, we can
147 /// replace any uses of the alloca with uses of the global directly.
148 static MemTransferInst *
149 isOnlyCopiedFromConstantMemory(AAResults *AA,
150                                AllocaInst *AI,
151                                SmallVectorImpl<Instruction *> &ToDelete) {
152   MemTransferInst *TheCopy = nullptr;
153   if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
154     return TheCopy;
155   return nullptr;
156 }
157 
158 /// Returns true if V is dereferenceable for size of alloca.
159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
160                                            const DataLayout &DL) {
161   if (AI->isArrayAllocation())
162     return false;
163   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
164   if (!AllocaSize)
165     return false;
166   return isDereferenceableAndAlignedPointer(V, AI->getAlign(),
167                                             APInt(64, AllocaSize), DL);
168 }
169 
170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
171                                             AllocaInst &AI) {
172   // Check for array size of 1 (scalar allocation).
173   if (!AI.isArrayAllocation()) {
174     // i32 1 is the canonical array size for scalar allocations.
175     if (AI.getArraySize()->getType()->isIntegerTy(32))
176       return nullptr;
177 
178     // Canonicalize it.
179     return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
180   }
181 
182   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
183   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
184     if (C->getValue().getActiveBits() <= 64) {
185       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
186       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, AI.getAddressSpace(),
187                                                 nullptr, AI.getName());
188       New->setAlignment(AI.getAlign());
189 
190       // Scan to the end of the allocation instructions, to skip over a block of
191       // allocas if possible...also skip interleaved debug info
192       //
193       BasicBlock::iterator It(New);
194       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
195         ++It;
196 
197       // Now that I is pointing to the first non-allocation-inst in the block,
198       // insert our getelementptr instruction...
199       //
200       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
201       Value *NullIdx = Constant::getNullValue(IdxTy);
202       Value *Idx[2] = {NullIdx, NullIdx};
203       Instruction *GEP = GetElementPtrInst::CreateInBounds(
204           NewTy, New, Idx, New->getName() + ".sub");
205       IC.InsertNewInstBefore(GEP, *It);
206 
207       // Now make everything use the getelementptr instead of the original
208       // allocation.
209       return IC.replaceInstUsesWith(AI, GEP);
210     }
211   }
212 
213   if (isa<UndefValue>(AI.getArraySize()))
214     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
215 
216   // Ensure that the alloca array size argument has type intptr_t, so that
217   // any casting is exposed early.
218   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
219   if (AI.getArraySize()->getType() != IntPtrTy) {
220     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
221     return IC.replaceOperand(AI, 0, V);
222   }
223 
224   return nullptr;
225 }
226 
227 namespace {
228 // If I and V are pointers in different address space, it is not allowed to
229 // use replaceAllUsesWith since I and V have different types. A
230 // non-target-specific transformation should not use addrspacecast on V since
231 // the two address space may be disjoint depending on target.
232 //
233 // This class chases down uses of the old pointer until reaching the load
234 // instructions, then replaces the old pointer in the load instructions with
235 // the new pointer. If during the chasing it sees bitcast or GEP, it will
236 // create new bitcast or GEP with the new pointer and use them in the load
237 // instruction.
238 class PointerReplacer {
239 public:
240   PointerReplacer(InstCombinerImpl &IC) : IC(IC) {}
241 
242   bool collectUsers(Instruction &I);
243   void replacePointer(Instruction &I, Value *V);
244 
245 private:
246   void replace(Instruction *I);
247   Value *getReplacement(Value *I);
248 
249   SmallSetVector<Instruction *, 4> Worklist;
250   MapVector<Value *, Value *> WorkMap;
251   InstCombinerImpl &IC;
252 };
253 } // end anonymous namespace
254 
255 bool PointerReplacer::collectUsers(Instruction &I) {
256   for (auto U : I.users()) {
257     auto *Inst = cast<Instruction>(&*U);
258     if (auto *Load = dyn_cast<LoadInst>(Inst)) {
259       if (Load->isVolatile())
260         return false;
261       Worklist.insert(Load);
262     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
263       Worklist.insert(Inst);
264       if (!collectUsers(*Inst))
265         return false;
266     } else if (auto *MI = dyn_cast<MemTransferInst>(Inst)) {
267       if (MI->isVolatile())
268         return false;
269       Worklist.insert(Inst);
270     } else if (Inst->isLifetimeStartOrEnd()) {
271       continue;
272     } else {
273       LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
274       return false;
275     }
276   }
277 
278   return true;
279 }
280 
281 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); }
282 
283 void PointerReplacer::replace(Instruction *I) {
284   if (getReplacement(I))
285     return;
286 
287   if (auto *LT = dyn_cast<LoadInst>(I)) {
288     auto *V = getReplacement(LT->getPointerOperand());
289     assert(V && "Operand not replaced");
290     auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
291                               LT->getAlign(), LT->getOrdering(),
292                               LT->getSyncScopeID());
293     NewI->takeName(LT);
294     copyMetadataForLoad(*NewI, *LT);
295 
296     IC.InsertNewInstWith(NewI, *LT);
297     IC.replaceInstUsesWith(*LT, NewI);
298     WorkMap[LT] = NewI;
299   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
300     auto *V = getReplacement(GEP->getPointerOperand());
301     assert(V && "Operand not replaced");
302     SmallVector<Value *, 8> Indices;
303     Indices.append(GEP->idx_begin(), GEP->idx_end());
304     auto *NewI = GetElementPtrInst::Create(
305         V->getType()->getPointerElementType(), V, Indices);
306     IC.InsertNewInstWith(NewI, *GEP);
307     NewI->takeName(GEP);
308     WorkMap[GEP] = NewI;
309   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
310     auto *V = getReplacement(BC->getOperand(0));
311     assert(V && "Operand not replaced");
312     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
313                                   V->getType()->getPointerAddressSpace());
314     auto *NewI = new BitCastInst(V, NewT);
315     IC.InsertNewInstWith(NewI, *BC);
316     NewI->takeName(BC);
317     WorkMap[BC] = NewI;
318   } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
319     auto *SrcV = getReplacement(MemCpy->getRawSource());
320     // The pointer may appear in the destination of a copy, but we don't want to
321     // replace it.
322     if (!SrcV) {
323       assert(getReplacement(MemCpy->getRawDest()) &&
324              "destination not in replace list");
325       return;
326     }
327 
328     IC.Builder.SetInsertPoint(MemCpy);
329     auto *NewI = IC.Builder.CreateMemTransferInst(
330         MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(),
331         SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(),
332         MemCpy->isVolatile());
333     AAMDNodes AAMD = MemCpy->getAAMetadata();
334     if (AAMD)
335       NewI->setAAMetadata(AAMD);
336 
337     IC.eraseInstFromFunction(*MemCpy);
338     WorkMap[MemCpy] = NewI;
339   } else {
340     llvm_unreachable("should never reach here");
341   }
342 }
343 
344 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
345 #ifndef NDEBUG
346   auto *PT = cast<PointerType>(I.getType());
347   auto *NT = cast<PointerType>(V->getType());
348   assert(PT != NT &&
349          PT->getPointerElementType() == NT->getPointerElementType() &&
350          "Invalid usage");
351 #endif
352   WorkMap[&I] = V;
353 
354   for (Instruction *Workitem : Worklist)
355     replace(Workitem);
356 }
357 
358 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
359   if (auto *I = simplifyAllocaArraySize(*this, AI))
360     return I;
361 
362   if (AI.getAllocatedType()->isSized()) {
363     // Move all alloca's of zero byte objects to the entry block and merge them
364     // together.  Note that we only do this for alloca's, because malloc should
365     // allocate and return a unique pointer, even for a zero byte allocation.
366     if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
367       // For a zero sized alloca there is no point in doing an array allocation.
368       // This is helpful if the array size is a complicated expression not used
369       // elsewhere.
370       if (AI.isArrayAllocation())
371         return replaceOperand(AI, 0,
372             ConstantInt::get(AI.getArraySize()->getType(), 1));
373 
374       // Get the first instruction in the entry block.
375       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
376       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
377       if (FirstInst != &AI) {
378         // If the entry block doesn't start with a zero-size alloca then move
379         // this one to the start of the entry block.  There is no problem with
380         // dominance as the array size was forced to a constant earlier already.
381         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
382         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
383             DL.getTypeAllocSize(EntryAI->getAllocatedType())
384                     .getKnownMinSize() != 0) {
385           AI.moveBefore(FirstInst);
386           return &AI;
387         }
388 
389         // Replace this zero-sized alloca with the one at the start of the entry
390         // block after ensuring that the address will be aligned enough for both
391         // types.
392         const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
393         EntryAI->setAlignment(MaxAlign);
394         if (AI.getType() != EntryAI->getType())
395           return new BitCastInst(EntryAI, AI.getType());
396         return replaceInstUsesWith(AI, EntryAI);
397       }
398     }
399   }
400 
401   // Check to see if this allocation is only modified by a memcpy/memmove from
402   // a constant whose alignment is equal to or exceeds that of the allocation.
403   // If this is the case, we can change all users to use the constant global
404   // instead.  This is commonly produced by the CFE by constructs like "void
405   // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently
406   // read.
407   SmallVector<Instruction *, 4> ToDelete;
408   if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
409     Value *TheSrc = Copy->getSource();
410     Align AllocaAlign = AI.getAlign();
411     Align SourceAlign = getOrEnforceKnownAlignment(
412       TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
413     if (AllocaAlign <= SourceAlign &&
414         isDereferenceableForAllocaSize(TheSrc, &AI, DL) &&
415         !isa<Instruction>(TheSrc)) {
416       // FIXME: Can we sink instructions without violating dominance when TheSrc
417       // is an instruction instead of a constant or argument?
418       LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
419       LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
420       unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
421       auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace);
422       if (AI.getType()->getAddressSpace() == SrcAddrSpace) {
423         for (Instruction *Delete : ToDelete)
424           eraseInstFromFunction(*Delete);
425 
426         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
427         Instruction *NewI = replaceInstUsesWith(AI, Cast);
428         eraseInstFromFunction(*Copy);
429         ++NumGlobalCopies;
430         return NewI;
431       }
432 
433       PointerReplacer PtrReplacer(*this);
434       if (PtrReplacer.collectUsers(AI)) {
435         for (Instruction *Delete : ToDelete)
436           eraseInstFromFunction(*Delete);
437 
438         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
439         PtrReplacer.replacePointer(AI, Cast);
440         ++NumGlobalCopies;
441       }
442     }
443   }
444 
445   // At last, use the generic allocation site handler to aggressively remove
446   // unused allocas.
447   return visitAllocSite(AI);
448 }
449 
450 // Are we allowed to form a atomic load or store of this type?
451 static bool isSupportedAtomicType(Type *Ty) {
452   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
453 }
454 
455 /// Helper to combine a load to a new type.
456 ///
457 /// This just does the work of combining a load to a new type. It handles
458 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
459 /// loaded *value* type. This will convert it to a pointer, cast the operand to
460 /// that pointer type, load it, etc.
461 ///
462 /// Note that this will create all of the instructions with whatever insert
463 /// point the \c InstCombinerImpl currently is using.
464 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
465                                                  const Twine &Suffix) {
466   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
467          "can't fold an atomic load to requested type");
468 
469   Value *Ptr = LI.getPointerOperand();
470   unsigned AS = LI.getPointerAddressSpace();
471   Type *NewPtrTy = NewTy->getPointerTo(AS);
472   Value *NewPtr = nullptr;
473   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
474         NewPtr->getType() == NewPtrTy))
475     NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy);
476 
477   LoadInst *NewLoad = Builder.CreateAlignedLoad(
478       NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix);
479   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
480   copyMetadataForLoad(*NewLoad, LI);
481   return NewLoad;
482 }
483 
484 /// Combine a store to a new type.
485 ///
486 /// Returns the newly created store instruction.
487 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
488                                          Value *V) {
489   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
490          "can't fold an atomic store of requested type");
491 
492   Value *Ptr = SI.getPointerOperand();
493   unsigned AS = SI.getPointerAddressSpace();
494   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
495   SI.getAllMetadata(MD);
496 
497   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
498       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
499       SI.getAlign(), SI.isVolatile());
500   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
501   for (const auto &MDPair : MD) {
502     unsigned ID = MDPair.first;
503     MDNode *N = MDPair.second;
504     // Note, essentially every kind of metadata should be preserved here! This
505     // routine is supposed to clone a store instruction changing *only its
506     // type*. The only metadata it makes sense to drop is metadata which is
507     // invalidated when the pointer type changes. This should essentially
508     // never be the case in LLVM, but we explicitly switch over only known
509     // metadata to be conservatively correct. If you are adding metadata to
510     // LLVM which pertains to stores, you almost certainly want to add it
511     // here.
512     switch (ID) {
513     case LLVMContext::MD_dbg:
514     case LLVMContext::MD_tbaa:
515     case LLVMContext::MD_prof:
516     case LLVMContext::MD_fpmath:
517     case LLVMContext::MD_tbaa_struct:
518     case LLVMContext::MD_alias_scope:
519     case LLVMContext::MD_noalias:
520     case LLVMContext::MD_nontemporal:
521     case LLVMContext::MD_mem_parallel_loop_access:
522     case LLVMContext::MD_access_group:
523       // All of these directly apply.
524       NewStore->setMetadata(ID, N);
525       break;
526     case LLVMContext::MD_invariant_load:
527     case LLVMContext::MD_nonnull:
528     case LLVMContext::MD_noundef:
529     case LLVMContext::MD_range:
530     case LLVMContext::MD_align:
531     case LLVMContext::MD_dereferenceable:
532     case LLVMContext::MD_dereferenceable_or_null:
533       // These don't apply for stores.
534       break;
535     }
536   }
537 
538   return NewStore;
539 }
540 
541 /// Returns true if instruction represent minmax pattern like:
542 ///   select ((cmp load V1, load V2), V1, V2).
543 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
544   assert(V->getType()->isPointerTy() && "Expected pointer type.");
545   // Ignore possible ty* to ixx* bitcast.
546   V = InstCombiner::peekThroughBitcast(V);
547   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
548   // pattern.
549   CmpInst::Predicate Pred;
550   Instruction *L1;
551   Instruction *L2;
552   Value *LHS;
553   Value *RHS;
554   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
555                          m_Value(LHS), m_Value(RHS))))
556     return false;
557   LoadTy = L1->getType();
558   return (match(L1, m_Load(m_Specific(LHS))) &&
559           match(L2, m_Load(m_Specific(RHS)))) ||
560          (match(L1, m_Load(m_Specific(RHS))) &&
561           match(L2, m_Load(m_Specific(LHS))));
562 }
563 
564 /// Combine loads to match the type of their uses' value after looking
565 /// through intervening bitcasts.
566 ///
567 /// The core idea here is that if the result of a load is used in an operation,
568 /// we should load the type most conducive to that operation. For example, when
569 /// loading an integer and converting that immediately to a pointer, we should
570 /// instead directly load a pointer.
571 ///
572 /// However, this routine must never change the width of a load or the number of
573 /// loads as that would introduce a semantic change. This combine is expected to
574 /// be a semantic no-op which just allows loads to more closely model the types
575 /// of their consuming operations.
576 ///
577 /// Currently, we also refuse to change the precise type used for an atomic load
578 /// or a volatile load. This is debatable, and might be reasonable to change
579 /// later. However, it is risky in case some backend or other part of LLVM is
580 /// relying on the exact type loaded to select appropriate atomic operations.
581 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
582                                                LoadInst &LI) {
583   // FIXME: We could probably with some care handle both volatile and ordered
584   // atomic loads here but it isn't clear that this is important.
585   if (!LI.isUnordered())
586     return nullptr;
587 
588   if (LI.use_empty())
589     return nullptr;
590 
591   // swifterror values can't be bitcasted.
592   if (LI.getPointerOperand()->isSwiftError())
593     return nullptr;
594 
595   const DataLayout &DL = IC.getDataLayout();
596 
597   // Fold away bit casts of the loaded value by loading the desired type.
598   // Note that we should not do this for pointer<->integer casts,
599   // because that would result in type punning.
600   if (LI.hasOneUse()) {
601     // Don't transform when the type is x86_amx, it makes the pass that lower
602     // x86_amx type happy.
603     if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
604       assert(!LI.getType()->isX86_AMXTy() &&
605              "load from x86_amx* should not happen!");
606       if (BC->getType()->isX86_AMXTy())
607         return nullptr;
608     }
609 
610     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
611       if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() ==
612                                     CI->getDestTy()->isPtrOrPtrVectorTy())
613         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
614           LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
615           CI->replaceAllUsesWith(NewLoad);
616           IC.eraseInstFromFunction(*CI);
617           return &LI;
618         }
619   }
620 
621   // FIXME: We should also canonicalize loads of vectors when their elements are
622   // cast to other types.
623   return nullptr;
624 }
625 
626 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
627   // FIXME: We could probably with some care handle both volatile and atomic
628   // stores here but it isn't clear that this is important.
629   if (!LI.isSimple())
630     return nullptr;
631 
632   Type *T = LI.getType();
633   if (!T->isAggregateType())
634     return nullptr;
635 
636   StringRef Name = LI.getName();
637 
638   if (auto *ST = dyn_cast<StructType>(T)) {
639     // If the struct only have one element, we unpack.
640     auto NumElements = ST->getNumElements();
641     if (NumElements == 1) {
642       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
643                                                   ".unpack");
644       NewLoad->setAAMetadata(LI.getAAMetadata());
645       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
646         UndefValue::get(T), NewLoad, 0, Name));
647     }
648 
649     // We don't want to break loads with padding here as we'd loose
650     // the knowledge that padding exists for the rest of the pipeline.
651     const DataLayout &DL = IC.getDataLayout();
652     auto *SL = DL.getStructLayout(ST);
653     if (SL->hasPadding())
654       return nullptr;
655 
656     const auto Align = LI.getAlign();
657     auto *Addr = LI.getPointerOperand();
658     auto *IdxType = Type::getInt32Ty(T->getContext());
659     auto *Zero = ConstantInt::get(IdxType, 0);
660 
661     Value *V = UndefValue::get(T);
662     for (unsigned i = 0; i < NumElements; i++) {
663       Value *Indices[2] = {
664         Zero,
665         ConstantInt::get(IdxType, i),
666       };
667       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
668                                                Name + ".elt");
669       auto *L = IC.Builder.CreateAlignedLoad(
670           ST->getElementType(i), Ptr,
671           commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
672       // Propagate AA metadata. It'll still be valid on the narrowed load.
673       L->setAAMetadata(LI.getAAMetadata());
674       V = IC.Builder.CreateInsertValue(V, L, i);
675     }
676 
677     V->setName(Name);
678     return IC.replaceInstUsesWith(LI, V);
679   }
680 
681   if (auto *AT = dyn_cast<ArrayType>(T)) {
682     auto *ET = AT->getElementType();
683     auto NumElements = AT->getNumElements();
684     if (NumElements == 1) {
685       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
686       NewLoad->setAAMetadata(LI.getAAMetadata());
687       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
688         UndefValue::get(T), NewLoad, 0, Name));
689     }
690 
691     // Bail out if the array is too large. Ideally we would like to optimize
692     // arrays of arbitrary size but this has a terrible impact on compile time.
693     // The threshold here is chosen arbitrarily, maybe needs a little bit of
694     // tuning.
695     if (NumElements > IC.MaxArraySizeForCombine)
696       return nullptr;
697 
698     const DataLayout &DL = IC.getDataLayout();
699     auto EltSize = DL.getTypeAllocSize(ET);
700     const auto Align = LI.getAlign();
701 
702     auto *Addr = LI.getPointerOperand();
703     auto *IdxType = Type::getInt64Ty(T->getContext());
704     auto *Zero = ConstantInt::get(IdxType, 0);
705 
706     Value *V = UndefValue::get(T);
707     uint64_t Offset = 0;
708     for (uint64_t i = 0; i < NumElements; i++) {
709       Value *Indices[2] = {
710         Zero,
711         ConstantInt::get(IdxType, i),
712       };
713       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
714                                                Name + ".elt");
715       auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
716                                              commonAlignment(Align, Offset),
717                                              Name + ".unpack");
718       L->setAAMetadata(LI.getAAMetadata());
719       V = IC.Builder.CreateInsertValue(V, L, i);
720       Offset += EltSize;
721     }
722 
723     V->setName(Name);
724     return IC.replaceInstUsesWith(LI, V);
725   }
726 
727   return nullptr;
728 }
729 
730 // If we can determine that all possible objects pointed to by the provided
731 // pointer value are, not only dereferenceable, but also definitively less than
732 // or equal to the provided maximum size, then return true. Otherwise, return
733 // false (constant global values and allocas fall into this category).
734 //
735 // FIXME: This should probably live in ValueTracking (or similar).
736 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
737                                      const DataLayout &DL) {
738   SmallPtrSet<Value *, 4> Visited;
739   SmallVector<Value *, 4> Worklist(1, V);
740 
741   do {
742     Value *P = Worklist.pop_back_val();
743     P = P->stripPointerCasts();
744 
745     if (!Visited.insert(P).second)
746       continue;
747 
748     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
749       Worklist.push_back(SI->getTrueValue());
750       Worklist.push_back(SI->getFalseValue());
751       continue;
752     }
753 
754     if (PHINode *PN = dyn_cast<PHINode>(P)) {
755       append_range(Worklist, PN->incoming_values());
756       continue;
757     }
758 
759     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
760       if (GA->isInterposable())
761         return false;
762       Worklist.push_back(GA->getAliasee());
763       continue;
764     }
765 
766     // If we know how big this object is, and it is less than MaxSize, continue
767     // searching. Otherwise, return false.
768     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
769       if (!AI->getAllocatedType()->isSized())
770         return false;
771 
772       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
773       if (!CS)
774         return false;
775 
776       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
777       // Make sure that, even if the multiplication below would wrap as an
778       // uint64_t, we still do the right thing.
779       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
780         return false;
781       continue;
782     }
783 
784     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
785       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
786         return false;
787 
788       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
789       if (InitSize > MaxSize)
790         return false;
791       continue;
792     }
793 
794     return false;
795   } while (!Worklist.empty());
796 
797   return true;
798 }
799 
800 // If we're indexing into an object of a known size, and the outer index is
801 // not a constant, but having any value but zero would lead to undefined
802 // behavior, replace it with zero.
803 //
804 // For example, if we have:
805 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
806 // ...
807 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
808 // ... = load i32* %arrayidx, align 4
809 // Then we know that we can replace %x in the GEP with i64 0.
810 //
811 // FIXME: We could fold any GEP index to zero that would cause UB if it were
812 // not zero. Currently, we only handle the first such index. Also, we could
813 // also search through non-zero constant indices if we kept track of the
814 // offsets those indices implied.
815 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
816                                      GetElementPtrInst *GEPI, Instruction *MemI,
817                                      unsigned &Idx) {
818   if (GEPI->getNumOperands() < 2)
819     return false;
820 
821   // Find the first non-zero index of a GEP. If all indices are zero, return
822   // one past the last index.
823   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
824     unsigned I = 1;
825     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
826       Value *V = GEPI->getOperand(I);
827       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
828         if (CI->isZero())
829           continue;
830 
831       break;
832     }
833 
834     return I;
835   };
836 
837   // Skip through initial 'zero' indices, and find the corresponding pointer
838   // type. See if the next index is not a constant.
839   Idx = FirstNZIdx(GEPI);
840   if (Idx == GEPI->getNumOperands())
841     return false;
842   if (isa<Constant>(GEPI->getOperand(Idx)))
843     return false;
844 
845   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
846   Type *SourceElementType = GEPI->getSourceElementType();
847   // Size information about scalable vectors is not available, so we cannot
848   // deduce whether indexing at n is undefined behaviour or not. Bail out.
849   if (isa<ScalableVectorType>(SourceElementType))
850     return false;
851 
852   Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops);
853   if (!AllocTy || !AllocTy->isSized())
854     return false;
855   const DataLayout &DL = IC.getDataLayout();
856   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize();
857 
858   // If there are more indices after the one we might replace with a zero, make
859   // sure they're all non-negative. If any of them are negative, the overall
860   // address being computed might be before the base address determined by the
861   // first non-zero index.
862   auto IsAllNonNegative = [&]() {
863     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
864       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
865       if (Known.isNonNegative())
866         continue;
867       return false;
868     }
869 
870     return true;
871   };
872 
873   // FIXME: If the GEP is not inbounds, and there are extra indices after the
874   // one we'll replace, those could cause the address computation to wrap
875   // (rendering the IsAllNonNegative() check below insufficient). We can do
876   // better, ignoring zero indices (and other indices we can prove small
877   // enough not to wrap).
878   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
879     return false;
880 
881   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
882   // also known to be dereferenceable.
883   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
884          IsAllNonNegative();
885 }
886 
887 // If we're indexing into an object with a variable index for the memory
888 // access, but the object has only one element, we can assume that the index
889 // will always be zero. If we replace the GEP, return it.
890 template <typename T>
891 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
892                                           T &MemI) {
893   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
894     unsigned Idx;
895     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
896       Instruction *NewGEPI = GEPI->clone();
897       NewGEPI->setOperand(Idx,
898         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
899       NewGEPI->insertBefore(GEPI);
900       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
901       return NewGEPI;
902     }
903   }
904 
905   return nullptr;
906 }
907 
908 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
909   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
910     return false;
911 
912   auto *Ptr = SI.getPointerOperand();
913   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
914     Ptr = GEPI->getOperand(0);
915   return (isa<ConstantPointerNull>(Ptr) &&
916           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
917 }
918 
919 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
920   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
921     const Value *GEPI0 = GEPI->getOperand(0);
922     if (isa<ConstantPointerNull>(GEPI0) &&
923         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
924       return true;
925   }
926   if (isa<UndefValue>(Op) ||
927       (isa<ConstantPointerNull>(Op) &&
928        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
929     return true;
930   return false;
931 }
932 
933 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
934   Value *Op = LI.getOperand(0);
935 
936   // Try to canonicalize the loaded type.
937   if (Instruction *Res = combineLoadToOperationType(*this, LI))
938     return Res;
939 
940   // Attempt to improve the alignment.
941   Align KnownAlign = getOrEnforceKnownAlignment(
942       Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
943   if (KnownAlign > LI.getAlign())
944     LI.setAlignment(KnownAlign);
945 
946   // Replace GEP indices if possible.
947   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
948       Worklist.push(NewGEPI);
949       return &LI;
950   }
951 
952   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
953     return Res;
954 
955   // Do really simple store-to-load forwarding and load CSE, to catch cases
956   // where there are several consecutive memory accesses to the same location,
957   // separated by a few arithmetic operations.
958   bool IsLoadCSE = false;
959   if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) {
960     if (IsLoadCSE)
961       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
962 
963     return replaceInstUsesWith(
964         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
965                                            LI.getName() + ".cast"));
966   }
967 
968   // None of the following transforms are legal for volatile/ordered atomic
969   // loads.  Most of them do apply for unordered atomics.
970   if (!LI.isUnordered()) return nullptr;
971 
972   // load(gep null, ...) -> unreachable
973   // load null/undef -> unreachable
974   // TODO: Consider a target hook for valid address spaces for this xforms.
975   if (canSimplifyNullLoadOrGEP(LI, Op)) {
976     // Insert a new store to null instruction before the load to indicate
977     // that this code is not reachable.  We do this instead of inserting
978     // an unreachable instruction directly because we cannot modify the
979     // CFG.
980     StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()),
981                                   Constant::getNullValue(Op->getType()), &LI);
982     SI->setDebugLoc(LI.getDebugLoc());
983     return replaceInstUsesWith(LI, PoisonValue::get(LI.getType()));
984   }
985 
986   if (Op->hasOneUse()) {
987     // Change select and PHI nodes to select values instead of addresses: this
988     // helps alias analysis out a lot, allows many others simplifications, and
989     // exposes redundancy in the code.
990     //
991     // Note that we cannot do the transformation unless we know that the
992     // introduced loads cannot trap!  Something like this is valid as long as
993     // the condition is always false: load (select bool %C, int* null, int* %G),
994     // but it would not be valid if we transformed it to load from null
995     // unconditionally.
996     //
997     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
998       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
999       Align Alignment = LI.getAlign();
1000       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1001                                       Alignment, DL, SI) &&
1002           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1003                                       Alignment, DL, SI)) {
1004         LoadInst *V1 =
1005             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1006                                SI->getOperand(1)->getName() + ".val");
1007         LoadInst *V2 =
1008             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1009                                SI->getOperand(2)->getName() + ".val");
1010         assert(LI.isUnordered() && "implied by above");
1011         V1->setAlignment(Alignment);
1012         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1013         V2->setAlignment(Alignment);
1014         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1015         return SelectInst::Create(SI->getCondition(), V1, V2);
1016       }
1017 
1018       // load (select (cond, null, P)) -> load P
1019       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1020           !NullPointerIsDefined(SI->getFunction(),
1021                                 LI.getPointerAddressSpace()))
1022         return replaceOperand(LI, 0, SI->getOperand(2));
1023 
1024       // load (select (cond, P, null)) -> load P
1025       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1026           !NullPointerIsDefined(SI->getFunction(),
1027                                 LI.getPointerAddressSpace()))
1028         return replaceOperand(LI, 0, SI->getOperand(1));
1029     }
1030   }
1031   return nullptr;
1032 }
1033 
1034 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1035 ///
1036 /// \returns underlying value that was "cast", or nullptr otherwise.
1037 ///
1038 /// For example, if we have:
1039 ///
1040 ///     %E0 = extractelement <2 x double> %U, i32 0
1041 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1042 ///     %E1 = extractelement <2 x double> %U, i32 1
1043 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1044 ///
1045 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1046 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1047 /// Note that %U may contain non-undef values where %V1 has undef.
1048 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
1049   Value *U = nullptr;
1050   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1051     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1052     if (!E)
1053       return nullptr;
1054     auto *W = E->getVectorOperand();
1055     if (!U)
1056       U = W;
1057     else if (U != W)
1058       return nullptr;
1059     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1060     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1061       return nullptr;
1062     V = IV->getAggregateOperand();
1063   }
1064   if (!match(V, m_Undef()) || !U)
1065     return nullptr;
1066 
1067   auto *UT = cast<VectorType>(U->getType());
1068   auto *VT = V->getType();
1069   // Check that types UT and VT are bitwise isomorphic.
1070   const auto &DL = IC.getDataLayout();
1071   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1072     return nullptr;
1073   }
1074   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1075     if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1076       return nullptr;
1077   } else {
1078     auto *ST = cast<StructType>(VT);
1079     if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1080       return nullptr;
1081     for (const auto *EltT : ST->elements()) {
1082       if (EltT != UT->getElementType())
1083         return nullptr;
1084     }
1085   }
1086   return U;
1087 }
1088 
1089 /// Combine stores to match the type of value being stored.
1090 ///
1091 /// The core idea here is that the memory does not have any intrinsic type and
1092 /// where we can we should match the type of a store to the type of value being
1093 /// stored.
1094 ///
1095 /// However, this routine must never change the width of a store or the number of
1096 /// stores as that would introduce a semantic change. This combine is expected to
1097 /// be a semantic no-op which just allows stores to more closely model the types
1098 /// of their incoming values.
1099 ///
1100 /// Currently, we also refuse to change the precise type used for an atomic or
1101 /// volatile store. This is debatable, and might be reasonable to change later.
1102 /// However, it is risky in case some backend or other part of LLVM is relying
1103 /// on the exact type stored to select appropriate atomic operations.
1104 ///
1105 /// \returns true if the store was successfully combined away. This indicates
1106 /// the caller must erase the store instruction. We have to let the caller erase
1107 /// the store instruction as otherwise there is no way to signal whether it was
1108 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1109 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
1110   // FIXME: We could probably with some care handle both volatile and ordered
1111   // atomic stores here but it isn't clear that this is important.
1112   if (!SI.isUnordered())
1113     return false;
1114 
1115   // swifterror values can't be bitcasted.
1116   if (SI.getPointerOperand()->isSwiftError())
1117     return false;
1118 
1119   Value *V = SI.getValueOperand();
1120 
1121   // Fold away bit casts of the stored value by storing the original type.
1122   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1123     assert(!BC->getType()->isX86_AMXTy() &&
1124            "store to x86_amx* should not happen!");
1125     V = BC->getOperand(0);
1126     // Don't transform when the type is x86_amx, it makes the pass that lower
1127     // x86_amx type happy.
1128     if (V->getType()->isX86_AMXTy())
1129       return false;
1130     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1131       combineStoreToNewValue(IC, SI, V);
1132       return true;
1133     }
1134   }
1135 
1136   if (Value *U = likeBitCastFromVector(IC, V))
1137     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1138       combineStoreToNewValue(IC, SI, U);
1139       return true;
1140     }
1141 
1142   // FIXME: We should also canonicalize stores of vectors when their elements
1143   // are cast to other types.
1144   return false;
1145 }
1146 
1147 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
1148   // FIXME: We could probably with some care handle both volatile and atomic
1149   // stores here but it isn't clear that this is important.
1150   if (!SI.isSimple())
1151     return false;
1152 
1153   Value *V = SI.getValueOperand();
1154   Type *T = V->getType();
1155 
1156   if (!T->isAggregateType())
1157     return false;
1158 
1159   if (auto *ST = dyn_cast<StructType>(T)) {
1160     // If the struct only have one element, we unpack.
1161     unsigned Count = ST->getNumElements();
1162     if (Count == 1) {
1163       V = IC.Builder.CreateExtractValue(V, 0);
1164       combineStoreToNewValue(IC, SI, V);
1165       return true;
1166     }
1167 
1168     // We don't want to break loads with padding here as we'd loose
1169     // the knowledge that padding exists for the rest of the pipeline.
1170     const DataLayout &DL = IC.getDataLayout();
1171     auto *SL = DL.getStructLayout(ST);
1172     if (SL->hasPadding())
1173       return false;
1174 
1175     const auto Align = SI.getAlign();
1176 
1177     SmallString<16> EltName = V->getName();
1178     EltName += ".elt";
1179     auto *Addr = SI.getPointerOperand();
1180     SmallString<16> AddrName = Addr->getName();
1181     AddrName += ".repack";
1182 
1183     auto *IdxType = Type::getInt32Ty(ST->getContext());
1184     auto *Zero = ConstantInt::get(IdxType, 0);
1185     for (unsigned i = 0; i < Count; i++) {
1186       Value *Indices[2] = {
1187         Zero,
1188         ConstantInt::get(IdxType, i),
1189       };
1190       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1191                                                AddrName);
1192       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1193       auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1194       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1195       NS->setAAMetadata(SI.getAAMetadata());
1196     }
1197 
1198     return true;
1199   }
1200 
1201   if (auto *AT = dyn_cast<ArrayType>(T)) {
1202     // If the array only have one element, we unpack.
1203     auto NumElements = AT->getNumElements();
1204     if (NumElements == 1) {
1205       V = IC.Builder.CreateExtractValue(V, 0);
1206       combineStoreToNewValue(IC, SI, V);
1207       return true;
1208     }
1209 
1210     // Bail out if the array is too large. Ideally we would like to optimize
1211     // arrays of arbitrary size but this has a terrible impact on compile time.
1212     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1213     // tuning.
1214     if (NumElements > IC.MaxArraySizeForCombine)
1215       return false;
1216 
1217     const DataLayout &DL = IC.getDataLayout();
1218     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1219     const auto Align = SI.getAlign();
1220 
1221     SmallString<16> EltName = V->getName();
1222     EltName += ".elt";
1223     auto *Addr = SI.getPointerOperand();
1224     SmallString<16> AddrName = Addr->getName();
1225     AddrName += ".repack";
1226 
1227     auto *IdxType = Type::getInt64Ty(T->getContext());
1228     auto *Zero = ConstantInt::get(IdxType, 0);
1229 
1230     uint64_t Offset = 0;
1231     for (uint64_t i = 0; i < NumElements; i++) {
1232       Value *Indices[2] = {
1233         Zero,
1234         ConstantInt::get(IdxType, i),
1235       };
1236       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1237                                                AddrName);
1238       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1239       auto EltAlign = commonAlignment(Align, Offset);
1240       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1241       NS->setAAMetadata(SI.getAAMetadata());
1242       Offset += EltSize;
1243     }
1244 
1245     return true;
1246   }
1247 
1248   return false;
1249 }
1250 
1251 /// equivalentAddressValues - Test if A and B will obviously have the same
1252 /// value. This includes recognizing that %t0 and %t1 will have the same
1253 /// value in code like this:
1254 ///   %t0 = getelementptr \@a, 0, 3
1255 ///   store i32 0, i32* %t0
1256 ///   %t1 = getelementptr \@a, 0, 3
1257 ///   %t2 = load i32* %t1
1258 ///
1259 static bool equivalentAddressValues(Value *A, Value *B) {
1260   // Test if the values are trivially equivalent.
1261   if (A == B) return true;
1262 
1263   // Test if the values come form identical arithmetic instructions.
1264   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1265   // its only used to compare two uses within the same basic block, which
1266   // means that they'll always either have the same value or one of them
1267   // will have an undefined value.
1268   if (isa<BinaryOperator>(A) ||
1269       isa<CastInst>(A) ||
1270       isa<PHINode>(A) ||
1271       isa<GetElementPtrInst>(A))
1272     if (Instruction *BI = dyn_cast<Instruction>(B))
1273       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1274         return true;
1275 
1276   // Otherwise they may not be equivalent.
1277   return false;
1278 }
1279 
1280 /// Converts store (bitcast (load (bitcast (select ...)))) to
1281 /// store (load (select ...)), where select is minmax:
1282 /// select ((cmp load V1, load V2), V1, V2).
1283 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC,
1284                                                 StoreInst &SI) {
1285   // bitcast?
1286   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1287     return false;
1288   // load? integer?
1289   Value *LoadAddr;
1290   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1291     return false;
1292   auto *LI = cast<LoadInst>(SI.getValueOperand());
1293   if (!LI->getType()->isIntegerTy())
1294     return false;
1295   Type *CmpLoadTy;
1296   if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
1297     return false;
1298 
1299   // Make sure the type would actually change.
1300   // This condition can be hit with chains of bitcasts.
1301   if (LI->getType() == CmpLoadTy)
1302     return false;
1303 
1304   // Make sure we're not changing the size of the load/store.
1305   const auto &DL = IC.getDataLayout();
1306   if (DL.getTypeStoreSizeInBits(LI->getType()) !=
1307       DL.getTypeStoreSizeInBits(CmpLoadTy))
1308     return false;
1309 
1310   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1311         auto *SI = dyn_cast<StoreInst>(U);
1312         return SI && SI->getPointerOperand() != LI &&
1313                InstCombiner::peekThroughBitcast(SI->getPointerOperand()) !=
1314                    LoadAddr &&
1315                !SI->getPointerOperand()->isSwiftError();
1316       }))
1317     return false;
1318 
1319   IC.Builder.SetInsertPoint(LI);
1320   LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
1321   // Replace all the stores with stores of the newly loaded value.
1322   for (auto *UI : LI->users()) {
1323     auto *USI = cast<StoreInst>(UI);
1324     IC.Builder.SetInsertPoint(USI);
1325     combineStoreToNewValue(IC, *USI, NewLI);
1326   }
1327   IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
1328   IC.eraseInstFromFunction(*LI);
1329   return true;
1330 }
1331 
1332 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
1333   Value *Val = SI.getOperand(0);
1334   Value *Ptr = SI.getOperand(1);
1335 
1336   // Try to canonicalize the stored type.
1337   if (combineStoreToValueType(*this, SI))
1338     return eraseInstFromFunction(SI);
1339 
1340   // Attempt to improve the alignment.
1341   const Align KnownAlign = getOrEnforceKnownAlignment(
1342       Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
1343   if (KnownAlign > SI.getAlign())
1344     SI.setAlignment(KnownAlign);
1345 
1346   // Try to canonicalize the stored type.
1347   if (unpackStoreToAggregate(*this, SI))
1348     return eraseInstFromFunction(SI);
1349 
1350   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1351     return eraseInstFromFunction(SI);
1352 
1353   // Replace GEP indices if possible.
1354   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1355       Worklist.push(NewGEPI);
1356       return &SI;
1357   }
1358 
1359   // Don't hack volatile/ordered stores.
1360   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1361   if (!SI.isUnordered()) return nullptr;
1362 
1363   // If the RHS is an alloca with a single use, zapify the store, making the
1364   // alloca dead.
1365   if (Ptr->hasOneUse()) {
1366     if (isa<AllocaInst>(Ptr))
1367       return eraseInstFromFunction(SI);
1368     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1369       if (isa<AllocaInst>(GEP->getOperand(0))) {
1370         if (GEP->getOperand(0)->hasOneUse())
1371           return eraseInstFromFunction(SI);
1372       }
1373     }
1374   }
1375 
1376   // If we have a store to a location which is known constant, we can conclude
1377   // that the store must be storing the constant value (else the memory
1378   // wouldn't be constant), and this must be a noop.
1379   if (AA->pointsToConstantMemory(Ptr))
1380     return eraseInstFromFunction(SI);
1381 
1382   // Do really simple DSE, to catch cases where there are several consecutive
1383   // stores to the same location, separated by a few arithmetic operations. This
1384   // situation often occurs with bitfield accesses.
1385   BasicBlock::iterator BBI(SI);
1386   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1387        --ScanInsts) {
1388     --BBI;
1389     // Don't count debug info directives, lest they affect codegen,
1390     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1391     if (BBI->isDebugOrPseudoInst() ||
1392         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1393       ScanInsts++;
1394       continue;
1395     }
1396 
1397     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1398       // Prev store isn't volatile, and stores to the same location?
1399       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1400                                                         SI.getOperand(1))) {
1401         ++NumDeadStore;
1402         // Manually add back the original store to the worklist now, so it will
1403         // be processed after the operands of the removed store, as this may
1404         // expose additional DSE opportunities.
1405         Worklist.push(&SI);
1406         eraseInstFromFunction(*PrevSI);
1407         return nullptr;
1408       }
1409       break;
1410     }
1411 
1412     // If this is a load, we have to stop.  However, if the loaded value is from
1413     // the pointer we're loading and is producing the pointer we're storing,
1414     // then *this* store is dead (X = load P; store X -> P).
1415     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1416       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1417         assert(SI.isUnordered() && "can't eliminate ordering operation");
1418         return eraseInstFromFunction(SI);
1419       }
1420 
1421       // Otherwise, this is a load from some other location.  Stores before it
1422       // may not be dead.
1423       break;
1424     }
1425 
1426     // Don't skip over loads, throws or things that can modify memory.
1427     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1428       break;
1429   }
1430 
1431   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1432   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1433   if (canSimplifyNullStoreOrGEP(SI)) {
1434     if (!isa<PoisonValue>(Val))
1435       return replaceOperand(SI, 0, PoisonValue::get(Val->getType()));
1436     return nullptr;  // Do not modify these!
1437   }
1438 
1439   // store undef, Ptr -> noop
1440   if (isa<UndefValue>(Val))
1441     return eraseInstFromFunction(SI);
1442 
1443   return nullptr;
1444 }
1445 
1446 /// Try to transform:
1447 ///   if () { *P = v1; } else { *P = v2 }
1448 /// or:
1449 ///   *P = v1; if () { *P = v2; }
1450 /// into a phi node with a store in the successor.
1451 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
1452   if (!SI.isUnordered())
1453     return false; // This code has not been audited for volatile/ordered case.
1454 
1455   // Check if the successor block has exactly 2 incoming edges.
1456   BasicBlock *StoreBB = SI.getParent();
1457   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1458   if (!DestBB->hasNPredecessors(2))
1459     return false;
1460 
1461   // Capture the other block (the block that doesn't contain our store).
1462   pred_iterator PredIter = pred_begin(DestBB);
1463   if (*PredIter == StoreBB)
1464     ++PredIter;
1465   BasicBlock *OtherBB = *PredIter;
1466 
1467   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1468   // for example, if SI is in an infinite loop.
1469   if (StoreBB == DestBB || OtherBB == DestBB)
1470     return false;
1471 
1472   // Verify that the other block ends in a branch and is not otherwise empty.
1473   BasicBlock::iterator BBI(OtherBB->getTerminator());
1474   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1475   if (!OtherBr || BBI == OtherBB->begin())
1476     return false;
1477 
1478   // If the other block ends in an unconditional branch, check for the 'if then
1479   // else' case. There is an instruction before the branch.
1480   StoreInst *OtherStore = nullptr;
1481   if (OtherBr->isUnconditional()) {
1482     --BBI;
1483     // Skip over debugging info and pseudo probes.
1484     while (BBI->isDebugOrPseudoInst() ||
1485            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1486       if (BBI==OtherBB->begin())
1487         return false;
1488       --BBI;
1489     }
1490     // If this isn't a store, isn't a store to the same location, or is not the
1491     // right kind of store, bail out.
1492     OtherStore = dyn_cast<StoreInst>(BBI);
1493     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1494         !SI.isSameOperationAs(OtherStore))
1495       return false;
1496   } else {
1497     // Otherwise, the other block ended with a conditional branch. If one of the
1498     // destinations is StoreBB, then we have the if/then case.
1499     if (OtherBr->getSuccessor(0) != StoreBB &&
1500         OtherBr->getSuccessor(1) != StoreBB)
1501       return false;
1502 
1503     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1504     // if/then triangle. See if there is a store to the same ptr as SI that
1505     // lives in OtherBB.
1506     for (;; --BBI) {
1507       // Check to see if we find the matching store.
1508       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1509         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1510             !SI.isSameOperationAs(OtherStore))
1511           return false;
1512         break;
1513       }
1514       // If we find something that may be using or overwriting the stored
1515       // value, or if we run out of instructions, we can't do the transform.
1516       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1517           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1518         return false;
1519     }
1520 
1521     // In order to eliminate the store in OtherBr, we have to make sure nothing
1522     // reads or overwrites the stored value in StoreBB.
1523     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1524       // FIXME: This should really be AA driven.
1525       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1526         return false;
1527     }
1528   }
1529 
1530   // Insert a PHI node now if we need it.
1531   Value *MergedVal = OtherStore->getOperand(0);
1532   // The debug locations of the original instructions might differ. Merge them.
1533   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1534                                                      OtherStore->getDebugLoc());
1535   if (MergedVal != SI.getOperand(0)) {
1536     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1537     PN->addIncoming(SI.getOperand(0), SI.getParent());
1538     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1539     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1540     PN->setDebugLoc(MergedLoc);
1541   }
1542 
1543   // Advance to a place where it is safe to insert the new store and insert it.
1544   BBI = DestBB->getFirstInsertionPt();
1545   StoreInst *NewSI =
1546       new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
1547                     SI.getOrdering(), SI.getSyncScopeID());
1548   InsertNewInstBefore(NewSI, *BBI);
1549   NewSI->setDebugLoc(MergedLoc);
1550 
1551   // If the two stores had AA tags, merge them.
1552   AAMDNodes AATags = SI.getAAMetadata();
1553   if (AATags)
1554     NewSI->setAAMetadata(AATags.merge(OtherStore->getAAMetadata()));
1555 
1556   // Nuke the old stores.
1557   eraseInstFromFunction(SI);
1558   eraseInstFromFunction(*OtherStore);
1559   return true;
1560 }
1561