1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/LLVMContext.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "instcombine" 27 28 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 29 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 30 31 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 32 /// some part of a constant global variable. This intentionally only accepts 33 /// constant expressions because we can't rewrite arbitrary instructions. 34 static bool pointsToConstantGlobal(Value *V) { 35 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 36 return GV->isConstant(); 37 38 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 39 if (CE->getOpcode() == Instruction::BitCast || 40 CE->getOpcode() == Instruction::AddrSpaceCast || 41 CE->getOpcode() == Instruction::GetElementPtr) 42 return pointsToConstantGlobal(CE->getOperand(0)); 43 } 44 return false; 45 } 46 47 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 48 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 49 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 50 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 51 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 52 /// the alloca, and if the source pointer is a pointer to a constant global, we 53 /// can optimize this. 54 static bool 55 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 56 SmallVectorImpl<Instruction *> &ToDelete) { 57 // We track lifetime intrinsics as we encounter them. If we decide to go 58 // ahead and replace the value with the global, this lets the caller quickly 59 // eliminate the markers. 60 61 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 62 ValuesToInspect.push_back(std::make_pair(V, false)); 63 while (!ValuesToInspect.empty()) { 64 auto ValuePair = ValuesToInspect.pop_back_val(); 65 const bool IsOffset = ValuePair.second; 66 for (auto &U : ValuePair.first->uses()) { 67 Instruction *I = cast<Instruction>(U.getUser()); 68 69 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 70 // Ignore non-volatile loads, they are always ok. 71 if (!LI->isSimple()) return false; 72 continue; 73 } 74 75 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 76 // If uses of the bitcast are ok, we are ok. 77 ValuesToInspect.push_back(std::make_pair(I, IsOffset)); 78 continue; 79 } 80 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 81 // If the GEP has all zero indices, it doesn't offset the pointer. If it 82 // doesn't, it does. 83 ValuesToInspect.push_back( 84 std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices())); 85 continue; 86 } 87 88 if (auto CS = CallSite(I)) { 89 // If this is the function being called then we treat it like a load and 90 // ignore it. 91 if (CS.isCallee(&U)) 92 continue; 93 94 unsigned DataOpNo = CS.getDataOperandNo(&U); 95 bool IsArgOperand = CS.isArgOperand(&U); 96 97 // Inalloca arguments are clobbered by the call. 98 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 99 return false; 100 101 // If this is a readonly/readnone call site, then we know it is just a 102 // load (but one that potentially returns the value itself), so we can 103 // ignore it if we know that the value isn't captured. 104 if (CS.onlyReadsMemory() && 105 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 106 continue; 107 108 // If this is being passed as a byval argument, the caller is making a 109 // copy, so it is only a read of the alloca. 110 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 111 continue; 112 } 113 114 // Lifetime intrinsics can be handled by the caller. 115 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 116 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 117 II->getIntrinsicID() == Intrinsic::lifetime_end) { 118 assert(II->use_empty() && "Lifetime markers have no result to use!"); 119 ToDelete.push_back(II); 120 continue; 121 } 122 } 123 124 // If this is isn't our memcpy/memmove, reject it as something we can't 125 // handle. 126 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 127 if (!MI) 128 return false; 129 130 // If the transfer is using the alloca as a source of the transfer, then 131 // ignore it since it is a load (unless the transfer is volatile). 132 if (U.getOperandNo() == 1) { 133 if (MI->isVolatile()) return false; 134 continue; 135 } 136 137 // If we already have seen a copy, reject the second one. 138 if (TheCopy) return false; 139 140 // If the pointer has been offset from the start of the alloca, we can't 141 // safely handle this. 142 if (IsOffset) return false; 143 144 // If the memintrinsic isn't using the alloca as the dest, reject it. 145 if (U.getOperandNo() != 0) return false; 146 147 // If the source of the memcpy/move is not a constant global, reject it. 148 if (!pointsToConstantGlobal(MI->getSource())) 149 return false; 150 151 // Otherwise, the transform is safe. Remember the copy instruction. 152 TheCopy = MI; 153 } 154 } 155 return true; 156 } 157 158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 159 /// modified by a copy from a constant global. If we can prove this, we can 160 /// replace any uses of the alloca with uses of the global directly. 161 static MemTransferInst * 162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 163 SmallVectorImpl<Instruction *> &ToDelete) { 164 MemTransferInst *TheCopy = nullptr; 165 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 166 return TheCopy; 167 return nullptr; 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 171 // Check for array size of 1 (scalar allocation). 172 if (!AI.isArrayAllocation()) { 173 // i32 1 is the canonical array size for scalar allocations. 174 if (AI.getArraySize()->getType()->isIntegerTy(32)) 175 return nullptr; 176 177 // Canonicalize it. 178 Value *V = IC.Builder->getInt32(1); 179 AI.setOperand(0, V); 180 return &AI; 181 } 182 183 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 184 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName()); 187 New->setAlignment(AI.getAlignment()); 188 189 // Scan to the end of the allocation instructions, to skip over a block of 190 // allocas if possible...also skip interleaved debug info 191 // 192 BasicBlock::iterator It(New); 193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 194 ++It; 195 196 // Now that I is pointing to the first non-allocation-inst in the block, 197 // insert our getelementptr instruction... 198 // 199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 200 Value *NullIdx = Constant::getNullValue(IdxTy); 201 Value *Idx[2] = {NullIdx, NullIdx}; 202 Instruction *GEP = 203 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 204 IC.InsertNewInstBefore(GEP, *It); 205 206 // Now make everything use the getelementptr instead of the original 207 // allocation. 208 return IC.ReplaceInstUsesWith(AI, GEP); 209 } 210 211 if (isa<UndefValue>(AI.getArraySize())) 212 return IC.ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 213 214 // Ensure that the alloca array size argument has type intptr_t, so that 215 // any casting is exposed early. 216 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 217 if (AI.getArraySize()->getType() != IntPtrTy) { 218 Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false); 219 AI.setOperand(0, V); 220 return &AI; 221 } 222 223 return nullptr; 224 } 225 226 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 227 if (auto *I = simplifyAllocaArraySize(*this, AI)) 228 return I; 229 230 if (AI.getAllocatedType()->isSized()) { 231 // If the alignment is 0 (unspecified), assign it the preferred alignment. 232 if (AI.getAlignment() == 0) 233 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 234 235 // Move all alloca's of zero byte objects to the entry block and merge them 236 // together. Note that we only do this for alloca's, because malloc should 237 // allocate and return a unique pointer, even for a zero byte allocation. 238 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 239 // For a zero sized alloca there is no point in doing an array allocation. 240 // This is helpful if the array size is a complicated expression not used 241 // elsewhere. 242 if (AI.isArrayAllocation()) { 243 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 244 return &AI; 245 } 246 247 // Get the first instruction in the entry block. 248 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 249 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 250 if (FirstInst != &AI) { 251 // If the entry block doesn't start with a zero-size alloca then move 252 // this one to the start of the entry block. There is no problem with 253 // dominance as the array size was forced to a constant earlier already. 254 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 255 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 256 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 257 AI.moveBefore(FirstInst); 258 return &AI; 259 } 260 261 // If the alignment of the entry block alloca is 0 (unspecified), 262 // assign it the preferred alignment. 263 if (EntryAI->getAlignment() == 0) 264 EntryAI->setAlignment( 265 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 266 // Replace this zero-sized alloca with the one at the start of the entry 267 // block after ensuring that the address will be aligned enough for both 268 // types. 269 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 270 AI.getAlignment()); 271 EntryAI->setAlignment(MaxAlign); 272 if (AI.getType() != EntryAI->getType()) 273 return new BitCastInst(EntryAI, AI.getType()); 274 return ReplaceInstUsesWith(AI, EntryAI); 275 } 276 } 277 } 278 279 if (AI.getAlignment()) { 280 // Check to see if this allocation is only modified by a memcpy/memmove from 281 // a constant global whose alignment is equal to or exceeds that of the 282 // allocation. If this is the case, we can change all users to use 283 // the constant global instead. This is commonly produced by the CFE by 284 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 285 // is only subsequently read. 286 SmallVector<Instruction *, 4> ToDelete; 287 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 288 unsigned SourceAlign = getOrEnforceKnownAlignment( 289 Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT); 290 if (AI.getAlignment() <= SourceAlign) { 291 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 292 DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 293 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 294 EraseInstFromFunction(*ToDelete[i]); 295 Constant *TheSrc = cast<Constant>(Copy->getSource()); 296 Constant *Cast 297 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType()); 298 Instruction *NewI = ReplaceInstUsesWith(AI, Cast); 299 EraseInstFromFunction(*Copy); 300 ++NumGlobalCopies; 301 return NewI; 302 } 303 } 304 } 305 306 // At last, use the generic allocation site handler to aggressively remove 307 // unused allocas. 308 return visitAllocSite(AI); 309 } 310 311 /// \brief Helper to combine a load to a new type. 312 /// 313 /// This just does the work of combining a load to a new type. It handles 314 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 315 /// loaded *value* type. This will convert it to a pointer, cast the operand to 316 /// that pointer type, load it, etc. 317 /// 318 /// Note that this will create all of the instructions with whatever insert 319 /// point the \c InstCombiner currently is using. 320 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 321 const Twine &Suffix = "") { 322 Value *Ptr = LI.getPointerOperand(); 323 unsigned AS = LI.getPointerAddressSpace(); 324 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 325 LI.getAllMetadata(MD); 326 327 LoadInst *NewLoad = IC.Builder->CreateAlignedLoad( 328 IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)), 329 LI.getAlignment(), LI.getName() + Suffix); 330 MDBuilder MDB(NewLoad->getContext()); 331 for (const auto &MDPair : MD) { 332 unsigned ID = MDPair.first; 333 MDNode *N = MDPair.second; 334 // Note, essentially every kind of metadata should be preserved here! This 335 // routine is supposed to clone a load instruction changing *only its type*. 336 // The only metadata it makes sense to drop is metadata which is invalidated 337 // when the pointer type changes. This should essentially never be the case 338 // in LLVM, but we explicitly switch over only known metadata to be 339 // conservatively correct. If you are adding metadata to LLVM which pertains 340 // to loads, you almost certainly want to add it here. 341 switch (ID) { 342 case LLVMContext::MD_dbg: 343 case LLVMContext::MD_tbaa: 344 case LLVMContext::MD_prof: 345 case LLVMContext::MD_fpmath: 346 case LLVMContext::MD_tbaa_struct: 347 case LLVMContext::MD_invariant_load: 348 case LLVMContext::MD_alias_scope: 349 case LLVMContext::MD_noalias: 350 case LLVMContext::MD_nontemporal: 351 case LLVMContext::MD_mem_parallel_loop_access: 352 // All of these directly apply. 353 NewLoad->setMetadata(ID, N); 354 break; 355 356 case LLVMContext::MD_nonnull: 357 // This only directly applies if the new type is also a pointer. 358 if (NewTy->isPointerTy()) { 359 NewLoad->setMetadata(ID, N); 360 break; 361 } 362 // If it's integral now, translate it to !range metadata. 363 if (NewTy->isIntegerTy()) { 364 auto *ITy = cast<IntegerType>(NewTy); 365 auto *NullInt = ConstantExpr::getPtrToInt( 366 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 367 auto *NonNullInt = 368 ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 369 NewLoad->setMetadata(LLVMContext::MD_range, 370 MDB.createRange(NonNullInt, NullInt)); 371 } 372 break; 373 case LLVMContext::MD_align: 374 case LLVMContext::MD_dereferenceable: 375 case LLVMContext::MD_dereferenceable_or_null: 376 // These only directly apply if the new type is also a pointer. 377 if (NewTy->isPointerTy()) 378 NewLoad->setMetadata(ID, N); 379 break; 380 case LLVMContext::MD_range: 381 // FIXME: It would be nice to propagate this in some way, but the type 382 // conversions make it hard. If the new type is a pointer, we could 383 // translate it to !nonnull metadata. 384 break; 385 } 386 } 387 return NewLoad; 388 } 389 390 /// \brief Combine a store to a new type. 391 /// 392 /// Returns the newly created store instruction. 393 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 394 Value *Ptr = SI.getPointerOperand(); 395 unsigned AS = SI.getPointerAddressSpace(); 396 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 397 SI.getAllMetadata(MD); 398 399 StoreInst *NewStore = IC.Builder->CreateAlignedStore( 400 V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 401 SI.getAlignment()); 402 for (const auto &MDPair : MD) { 403 unsigned ID = MDPair.first; 404 MDNode *N = MDPair.second; 405 // Note, essentially every kind of metadata should be preserved here! This 406 // routine is supposed to clone a store instruction changing *only its 407 // type*. The only metadata it makes sense to drop is metadata which is 408 // invalidated when the pointer type changes. This should essentially 409 // never be the case in LLVM, but we explicitly switch over only known 410 // metadata to be conservatively correct. If you are adding metadata to 411 // LLVM which pertains to stores, you almost certainly want to add it 412 // here. 413 switch (ID) { 414 case LLVMContext::MD_dbg: 415 case LLVMContext::MD_tbaa: 416 case LLVMContext::MD_prof: 417 case LLVMContext::MD_fpmath: 418 case LLVMContext::MD_tbaa_struct: 419 case LLVMContext::MD_alias_scope: 420 case LLVMContext::MD_noalias: 421 case LLVMContext::MD_nontemporal: 422 case LLVMContext::MD_mem_parallel_loop_access: 423 // All of these directly apply. 424 NewStore->setMetadata(ID, N); 425 break; 426 427 case LLVMContext::MD_invariant_load: 428 case LLVMContext::MD_nonnull: 429 case LLVMContext::MD_range: 430 case LLVMContext::MD_align: 431 case LLVMContext::MD_dereferenceable: 432 case LLVMContext::MD_dereferenceable_or_null: 433 // These don't apply for stores. 434 break; 435 } 436 } 437 438 return NewStore; 439 } 440 441 /// \brief Combine loads to match the type of value their uses after looking 442 /// through intervening bitcasts. 443 /// 444 /// The core idea here is that if the result of a load is used in an operation, 445 /// we should load the type most conducive to that operation. For example, when 446 /// loading an integer and converting that immediately to a pointer, we should 447 /// instead directly load a pointer. 448 /// 449 /// However, this routine must never change the width of a load or the number of 450 /// loads as that would introduce a semantic change. This combine is expected to 451 /// be a semantic no-op which just allows loads to more closely model the types 452 /// of their consuming operations. 453 /// 454 /// Currently, we also refuse to change the precise type used for an atomic load 455 /// or a volatile load. This is debatable, and might be reasonable to change 456 /// later. However, it is risky in case some backend or other part of LLVM is 457 /// relying on the exact type loaded to select appropriate atomic operations. 458 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 459 // FIXME: We could probably with some care handle both volatile and atomic 460 // loads here but it isn't clear that this is important. 461 if (!LI.isSimple()) 462 return nullptr; 463 464 if (LI.use_empty()) 465 return nullptr; 466 467 Type *Ty = LI.getType(); 468 const DataLayout &DL = IC.getDataLayout(); 469 470 // Try to canonicalize loads which are only ever stored to operate over 471 // integers instead of any other type. We only do this when the loaded type 472 // is sized and has a size exactly the same as its store size and the store 473 // size is a legal integer type. 474 if (!Ty->isIntegerTy() && Ty->isSized() && 475 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 476 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) { 477 if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) { 478 auto *SI = dyn_cast<StoreInst>(U); 479 return SI && SI->getPointerOperand() != &LI; 480 })) { 481 LoadInst *NewLoad = combineLoadToNewType( 482 IC, LI, 483 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 484 // Replace all the stores with stores of the newly loaded value. 485 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 486 auto *SI = cast<StoreInst>(*UI++); 487 IC.Builder->SetInsertPoint(SI); 488 combineStoreToNewValue(IC, *SI, NewLoad); 489 IC.EraseInstFromFunction(*SI); 490 } 491 assert(LI.use_empty() && "Failed to remove all users of the load!"); 492 // Return the old load so the combiner can delete it safely. 493 return &LI; 494 } 495 } 496 497 // Fold away bit casts of the loaded value by loading the desired type. 498 // We can do this for BitCastInsts as well as casts from and to pointer types, 499 // as long as those are noops (i.e., the source or dest type have the same 500 // bitwidth as the target's pointers). 501 if (LI.hasOneUse()) 502 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) { 503 if (CI->isNoopCast(DL)) { 504 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 505 CI->replaceAllUsesWith(NewLoad); 506 IC.EraseInstFromFunction(*CI); 507 return &LI; 508 } 509 } 510 511 // FIXME: We should also canonicalize loads of vectors when their elements are 512 // cast to other types. 513 return nullptr; 514 } 515 516 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 517 // FIXME: We could probably with some care handle both volatile and atomic 518 // stores here but it isn't clear that this is important. 519 if (!LI.isSimple()) 520 return nullptr; 521 522 Type *T = LI.getType(); 523 if (!T->isAggregateType()) 524 return nullptr; 525 526 assert(LI.getAlignment() && "Alignment must be set at this point"); 527 528 if (auto *ST = dyn_cast<StructType>(T)) { 529 // If the struct only have one element, we unpack. 530 unsigned Count = ST->getNumElements(); 531 if (Count == 1) { 532 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 533 ".unpack"); 534 return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 535 UndefValue::get(T), NewLoad, 0, LI.getName())); 536 } 537 538 // We don't want to break loads with padding here as we'd loose 539 // the knowledge that padding exists for the rest of the pipeline. 540 const DataLayout &DL = IC.getDataLayout(); 541 auto *SL = DL.getStructLayout(ST); 542 if (SL->hasPadding()) 543 return nullptr; 544 545 auto Name = LI.getName(); 546 SmallString<16> LoadName = Name; 547 LoadName += ".unpack"; 548 SmallString<16> EltName = Name; 549 EltName += ".elt"; 550 auto *Addr = LI.getPointerOperand(); 551 Value *V = UndefValue::get(T); 552 auto *IdxType = Type::getInt32Ty(ST->getContext()); 553 auto *Zero = ConstantInt::get(IdxType, 0); 554 for (unsigned i = 0; i < Count; i++) { 555 Value *Indices[2] = { 556 Zero, 557 ConstantInt::get(IdxType, i), 558 }; 559 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), EltName); 560 auto *L = IC.Builder->CreateLoad(ST->getTypeAtIndex(i), Ptr, LoadName); 561 V = IC.Builder->CreateInsertValue(V, L, i); 562 } 563 564 V->setName(Name); 565 return IC.ReplaceInstUsesWith(LI, V); 566 } 567 568 if (auto *AT = dyn_cast<ArrayType>(T)) { 569 // If the array only have one element, we unpack. 570 if (AT->getNumElements() == 1) { 571 LoadInst *NewLoad = combineLoadToNewType(IC, LI, AT->getElementType(), 572 ".unpack"); 573 return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 574 UndefValue::get(T), NewLoad, 0, LI.getName())); 575 } 576 } 577 578 return nullptr; 579 } 580 581 // If we can determine that all possible objects pointed to by the provided 582 // pointer value are, not only dereferenceable, but also definitively less than 583 // or equal to the provided maximum size, then return true. Otherwise, return 584 // false (constant global values and allocas fall into this category). 585 // 586 // FIXME: This should probably live in ValueTracking (or similar). 587 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 588 const DataLayout &DL) { 589 SmallPtrSet<Value *, 4> Visited; 590 SmallVector<Value *, 4> Worklist(1, V); 591 592 do { 593 Value *P = Worklist.pop_back_val(); 594 P = P->stripPointerCasts(); 595 596 if (!Visited.insert(P).second) 597 continue; 598 599 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 600 Worklist.push_back(SI->getTrueValue()); 601 Worklist.push_back(SI->getFalseValue()); 602 continue; 603 } 604 605 if (PHINode *PN = dyn_cast<PHINode>(P)) { 606 for (Value *IncValue : PN->incoming_values()) 607 Worklist.push_back(IncValue); 608 continue; 609 } 610 611 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 612 if (GA->mayBeOverridden()) 613 return false; 614 Worklist.push_back(GA->getAliasee()); 615 continue; 616 } 617 618 // If we know how big this object is, and it is less than MaxSize, continue 619 // searching. Otherwise, return false. 620 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 621 if (!AI->getAllocatedType()->isSized()) 622 return false; 623 624 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 625 if (!CS) 626 return false; 627 628 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 629 // Make sure that, even if the multiplication below would wrap as an 630 // uint64_t, we still do the right thing. 631 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 632 return false; 633 continue; 634 } 635 636 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 637 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 638 return false; 639 640 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 641 if (InitSize > MaxSize) 642 return false; 643 continue; 644 } 645 646 return false; 647 } while (!Worklist.empty()); 648 649 return true; 650 } 651 652 // If we're indexing into an object of a known size, and the outer index is 653 // not a constant, but having any value but zero would lead to undefined 654 // behavior, replace it with zero. 655 // 656 // For example, if we have: 657 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 658 // ... 659 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 660 // ... = load i32* %arrayidx, align 4 661 // Then we know that we can replace %x in the GEP with i64 0. 662 // 663 // FIXME: We could fold any GEP index to zero that would cause UB if it were 664 // not zero. Currently, we only handle the first such index. Also, we could 665 // also search through non-zero constant indices if we kept track of the 666 // offsets those indices implied. 667 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 668 Instruction *MemI, unsigned &Idx) { 669 if (GEPI->getNumOperands() < 2) 670 return false; 671 672 // Find the first non-zero index of a GEP. If all indices are zero, return 673 // one past the last index. 674 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 675 unsigned I = 1; 676 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 677 Value *V = GEPI->getOperand(I); 678 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 679 if (CI->isZero()) 680 continue; 681 682 break; 683 } 684 685 return I; 686 }; 687 688 // Skip through initial 'zero' indices, and find the corresponding pointer 689 // type. See if the next index is not a constant. 690 Idx = FirstNZIdx(GEPI); 691 if (Idx == GEPI->getNumOperands()) 692 return false; 693 if (isa<Constant>(GEPI->getOperand(Idx))) 694 return false; 695 696 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 697 Type *AllocTy = 698 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 699 if (!AllocTy || !AllocTy->isSized()) 700 return false; 701 const DataLayout &DL = IC.getDataLayout(); 702 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 703 704 // If there are more indices after the one we might replace with a zero, make 705 // sure they're all non-negative. If any of them are negative, the overall 706 // address being computed might be before the base address determined by the 707 // first non-zero index. 708 auto IsAllNonNegative = [&]() { 709 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 710 bool KnownNonNegative, KnownNegative; 711 IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative, 712 KnownNegative, 0, MemI); 713 if (KnownNonNegative) 714 continue; 715 return false; 716 } 717 718 return true; 719 }; 720 721 // FIXME: If the GEP is not inbounds, and there are extra indices after the 722 // one we'll replace, those could cause the address computation to wrap 723 // (rendering the IsAllNonNegative() check below insufficient). We can do 724 // better, ignoring zero indices (and other indices we can prove small 725 // enough not to wrap). 726 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 727 return false; 728 729 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 730 // also known to be dereferenceable. 731 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 732 IsAllNonNegative(); 733 } 734 735 // If we're indexing into an object with a variable index for the memory 736 // access, but the object has only one element, we can assume that the index 737 // will always be zero. If we replace the GEP, return it. 738 template <typename T> 739 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 740 T &MemI) { 741 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 742 unsigned Idx; 743 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 744 Instruction *NewGEPI = GEPI->clone(); 745 NewGEPI->setOperand(Idx, 746 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 747 NewGEPI->insertBefore(GEPI); 748 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 749 return NewGEPI; 750 } 751 } 752 753 return nullptr; 754 } 755 756 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 757 Value *Op = LI.getOperand(0); 758 759 // Try to canonicalize the loaded type. 760 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 761 return Res; 762 763 // Attempt to improve the alignment. 764 unsigned KnownAlign = getOrEnforceKnownAlignment( 765 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT); 766 unsigned LoadAlign = LI.getAlignment(); 767 unsigned EffectiveLoadAlign = 768 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 769 770 if (KnownAlign > EffectiveLoadAlign) 771 LI.setAlignment(KnownAlign); 772 else if (LoadAlign == 0) 773 LI.setAlignment(EffectiveLoadAlign); 774 775 // Replace GEP indices if possible. 776 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 777 Worklist.Add(NewGEPI); 778 return &LI; 779 } 780 781 // None of the following transforms are legal for volatile/atomic loads. 782 // FIXME: Some of it is okay for atomic loads; needs refactoring. 783 if (!LI.isSimple()) return nullptr; 784 785 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 786 return Res; 787 788 // Do really simple store-to-load forwarding and load CSE, to catch cases 789 // where there are several consecutive memory accesses to the same location, 790 // separated by a few arithmetic operations. 791 BasicBlock::iterator BBI(LI); 792 AAMDNodes AATags; 793 if (Value *AvailableVal = 794 FindAvailableLoadedValue(&LI, LI.getParent(), BBI, 795 DefMaxInstsToScan, AA, &AATags)) { 796 if (LoadInst *NLI = dyn_cast<LoadInst>(AvailableVal)) { 797 unsigned KnownIDs[] = { 798 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 799 LLVMContext::MD_noalias, LLVMContext::MD_range, 800 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 801 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 802 LLVMContext::MD_dereferenceable, 803 LLVMContext::MD_dereferenceable_or_null}; 804 combineMetadata(NLI, &LI, KnownIDs); 805 }; 806 807 return ReplaceInstUsesWith( 808 LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(), 809 LI.getName() + ".cast")); 810 } 811 812 // load(gep null, ...) -> unreachable 813 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 814 const Value *GEPI0 = GEPI->getOperand(0); 815 // TODO: Consider a target hook for valid address spaces for this xform. 816 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ 817 // Insert a new store to null instruction before the load to indicate 818 // that this code is not reachable. We do this instead of inserting 819 // an unreachable instruction directly because we cannot modify the 820 // CFG. 821 new StoreInst(UndefValue::get(LI.getType()), 822 Constant::getNullValue(Op->getType()), &LI); 823 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); 824 } 825 } 826 827 // load null/undef -> unreachable 828 // TODO: Consider a target hook for valid address spaces for this xform. 829 if (isa<UndefValue>(Op) || 830 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { 831 // Insert a new store to null instruction before the load to indicate that 832 // this code is not reachable. We do this instead of inserting an 833 // unreachable instruction directly because we cannot modify the CFG. 834 new StoreInst(UndefValue::get(LI.getType()), 835 Constant::getNullValue(Op->getType()), &LI); 836 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); 837 } 838 839 if (Op->hasOneUse()) { 840 // Change select and PHI nodes to select values instead of addresses: this 841 // helps alias analysis out a lot, allows many others simplifications, and 842 // exposes redundancy in the code. 843 // 844 // Note that we cannot do the transformation unless we know that the 845 // introduced loads cannot trap! Something like this is valid as long as 846 // the condition is always false: load (select bool %C, int* null, int* %G), 847 // but it would not be valid if we transformed it to load from null 848 // unconditionally. 849 // 850 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 851 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 852 unsigned Align = LI.getAlignment(); 853 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, SI) && 854 isSafeToLoadUnconditionally(SI->getOperand(2), Align, SI)) { 855 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), 856 SI->getOperand(1)->getName()+".val"); 857 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), 858 SI->getOperand(2)->getName()+".val"); 859 V1->setAlignment(Align); 860 V2->setAlignment(Align); 861 return SelectInst::Create(SI->getCondition(), V1, V2); 862 } 863 864 // load (select (cond, null, P)) -> load P 865 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 866 LI.getPointerAddressSpace() == 0) { 867 LI.setOperand(0, SI->getOperand(2)); 868 return &LI; 869 } 870 871 // load (select (cond, P, null)) -> load P 872 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 873 LI.getPointerAddressSpace() == 0) { 874 LI.setOperand(0, SI->getOperand(1)); 875 return &LI; 876 } 877 } 878 } 879 return nullptr; 880 } 881 882 /// \brief Combine stores to match the type of value being stored. 883 /// 884 /// The core idea here is that the memory does not have any intrinsic type and 885 /// where we can we should match the type of a store to the type of value being 886 /// stored. 887 /// 888 /// However, this routine must never change the width of a store or the number of 889 /// stores as that would introduce a semantic change. This combine is expected to 890 /// be a semantic no-op which just allows stores to more closely model the types 891 /// of their incoming values. 892 /// 893 /// Currently, we also refuse to change the precise type used for an atomic or 894 /// volatile store. This is debatable, and might be reasonable to change later. 895 /// However, it is risky in case some backend or other part of LLVM is relying 896 /// on the exact type stored to select appropriate atomic operations. 897 /// 898 /// \returns true if the store was successfully combined away. This indicates 899 /// the caller must erase the store instruction. We have to let the caller erase 900 /// the store instruction as otherwise there is no way to signal whether it was 901 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 902 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 903 // FIXME: We could probably with some care handle both volatile and atomic 904 // stores here but it isn't clear that this is important. 905 if (!SI.isSimple()) 906 return false; 907 908 Value *V = SI.getValueOperand(); 909 910 // Fold away bit casts of the stored value by storing the original type. 911 if (auto *BC = dyn_cast<BitCastInst>(V)) { 912 V = BC->getOperand(0); 913 combineStoreToNewValue(IC, SI, V); 914 return true; 915 } 916 917 // FIXME: We should also canonicalize loads of vectors when their elements are 918 // cast to other types. 919 return false; 920 } 921 922 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 923 // FIXME: We could probably with some care handle both volatile and atomic 924 // stores here but it isn't clear that this is important. 925 if (!SI.isSimple()) 926 return false; 927 928 Value *V = SI.getValueOperand(); 929 Type *T = V->getType(); 930 931 if (!T->isAggregateType()) 932 return false; 933 934 if (auto *ST = dyn_cast<StructType>(T)) { 935 // If the struct only have one element, we unpack. 936 unsigned Count = ST->getNumElements(); 937 if (Count == 1) { 938 V = IC.Builder->CreateExtractValue(V, 0); 939 combineStoreToNewValue(IC, SI, V); 940 return true; 941 } 942 943 // We don't want to break loads with padding here as we'd loose 944 // the knowledge that padding exists for the rest of the pipeline. 945 const DataLayout &DL = IC.getDataLayout(); 946 auto *SL = DL.getStructLayout(ST); 947 if (SL->hasPadding()) 948 return false; 949 950 SmallString<16> EltName = V->getName(); 951 EltName += ".elt"; 952 auto *Addr = SI.getPointerOperand(); 953 SmallString<16> AddrName = Addr->getName(); 954 AddrName += ".repack"; 955 auto *IdxType = Type::getInt32Ty(ST->getContext()); 956 auto *Zero = ConstantInt::get(IdxType, 0); 957 for (unsigned i = 0; i < Count; i++) { 958 Value *Indices[2] = { 959 Zero, 960 ConstantInt::get(IdxType, i), 961 }; 962 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), AddrName); 963 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 964 IC.Builder->CreateStore(Val, Ptr); 965 } 966 967 return true; 968 } 969 970 if (auto *AT = dyn_cast<ArrayType>(T)) { 971 // If the array only have one element, we unpack. 972 if (AT->getNumElements() == 1) { 973 V = IC.Builder->CreateExtractValue(V, 0); 974 combineStoreToNewValue(IC, SI, V); 975 return true; 976 } 977 } 978 979 return false; 980 } 981 982 /// equivalentAddressValues - Test if A and B will obviously have the same 983 /// value. This includes recognizing that %t0 and %t1 will have the same 984 /// value in code like this: 985 /// %t0 = getelementptr \@a, 0, 3 986 /// store i32 0, i32* %t0 987 /// %t1 = getelementptr \@a, 0, 3 988 /// %t2 = load i32* %t1 989 /// 990 static bool equivalentAddressValues(Value *A, Value *B) { 991 // Test if the values are trivially equivalent. 992 if (A == B) return true; 993 994 // Test if the values come form identical arithmetic instructions. 995 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 996 // its only used to compare two uses within the same basic block, which 997 // means that they'll always either have the same value or one of them 998 // will have an undefined value. 999 if (isa<BinaryOperator>(A) || 1000 isa<CastInst>(A) || 1001 isa<PHINode>(A) || 1002 isa<GetElementPtrInst>(A)) 1003 if (Instruction *BI = dyn_cast<Instruction>(B)) 1004 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1005 return true; 1006 1007 // Otherwise they may not be equivalent. 1008 return false; 1009 } 1010 1011 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1012 Value *Val = SI.getOperand(0); 1013 Value *Ptr = SI.getOperand(1); 1014 1015 // Try to canonicalize the stored type. 1016 if (combineStoreToValueType(*this, SI)) 1017 return EraseInstFromFunction(SI); 1018 1019 // Attempt to improve the alignment. 1020 unsigned KnownAlign = getOrEnforceKnownAlignment( 1021 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT); 1022 unsigned StoreAlign = SI.getAlignment(); 1023 unsigned EffectiveStoreAlign = 1024 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1025 1026 if (KnownAlign > EffectiveStoreAlign) 1027 SI.setAlignment(KnownAlign); 1028 else if (StoreAlign == 0) 1029 SI.setAlignment(EffectiveStoreAlign); 1030 1031 // Try to canonicalize the stored type. 1032 if (unpackStoreToAggregate(*this, SI)) 1033 return EraseInstFromFunction(SI); 1034 1035 // Replace GEP indices if possible. 1036 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1037 Worklist.Add(NewGEPI); 1038 return &SI; 1039 } 1040 1041 // Don't hack volatile/ordered stores. 1042 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1043 if (!SI.isUnordered()) return nullptr; 1044 1045 // If the RHS is an alloca with a single use, zapify the store, making the 1046 // alloca dead. 1047 if (Ptr->hasOneUse()) { 1048 if (isa<AllocaInst>(Ptr)) 1049 return EraseInstFromFunction(SI); 1050 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1051 if (isa<AllocaInst>(GEP->getOperand(0))) { 1052 if (GEP->getOperand(0)->hasOneUse()) 1053 return EraseInstFromFunction(SI); 1054 } 1055 } 1056 } 1057 1058 // Do really simple DSE, to catch cases where there are several consecutive 1059 // stores to the same location, separated by a few arithmetic operations. This 1060 // situation often occurs with bitfield accesses. 1061 BasicBlock::iterator BBI(SI); 1062 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1063 --ScanInsts) { 1064 --BBI; 1065 // Don't count debug info directives, lest they affect codegen, 1066 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1067 if (isa<DbgInfoIntrinsic>(BBI) || 1068 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1069 ScanInsts++; 1070 continue; 1071 } 1072 1073 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1074 // Prev store isn't volatile, and stores to the same location? 1075 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1076 SI.getOperand(1))) { 1077 ++NumDeadStore; 1078 ++BBI; 1079 EraseInstFromFunction(*PrevSI); 1080 continue; 1081 } 1082 break; 1083 } 1084 1085 // If this is a load, we have to stop. However, if the loaded value is from 1086 // the pointer we're loading and is producing the pointer we're storing, 1087 // then *this* store is dead (X = load P; store X -> P). 1088 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1089 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1090 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1091 return EraseInstFromFunction(SI); 1092 } 1093 1094 // Otherwise, this is a load from some other location. Stores before it 1095 // may not be dead. 1096 break; 1097 } 1098 1099 // Don't skip over loads or things that can modify memory. 1100 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) 1101 break; 1102 } 1103 1104 // store X, null -> turns into 'unreachable' in SimplifyCFG 1105 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { 1106 if (!isa<UndefValue>(Val)) { 1107 SI.setOperand(0, UndefValue::get(Val->getType())); 1108 if (Instruction *U = dyn_cast<Instruction>(Val)) 1109 Worklist.Add(U); // Dropped a use. 1110 } 1111 return nullptr; // Do not modify these! 1112 } 1113 1114 // store undef, Ptr -> noop 1115 if (isa<UndefValue>(Val)) 1116 return EraseInstFromFunction(SI); 1117 1118 // The code below needs to be audited and adjusted for unordered atomics 1119 if (!SI.isSimple()) 1120 return nullptr; 1121 1122 // If this store is the last instruction in the basic block (possibly 1123 // excepting debug info instructions), and if the block ends with an 1124 // unconditional branch, try to move it to the successor block. 1125 BBI = SI.getIterator(); 1126 do { 1127 ++BBI; 1128 } while (isa<DbgInfoIntrinsic>(BBI) || 1129 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1130 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1131 if (BI->isUnconditional()) 1132 if (SimplifyStoreAtEndOfBlock(SI)) 1133 return nullptr; // xform done! 1134 1135 return nullptr; 1136 } 1137 1138 /// SimplifyStoreAtEndOfBlock - Turn things like: 1139 /// if () { *P = v1; } else { *P = v2 } 1140 /// into a phi node with a store in the successor. 1141 /// 1142 /// Simplify things like: 1143 /// *P = v1; if () { *P = v2; } 1144 /// into a phi node with a store in the successor. 1145 /// 1146 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1147 BasicBlock *StoreBB = SI.getParent(); 1148 1149 // Check to see if the successor block has exactly two incoming edges. If 1150 // so, see if the other predecessor contains a store to the same location. 1151 // if so, insert a PHI node (if needed) and move the stores down. 1152 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1153 1154 // Determine whether Dest has exactly two predecessors and, if so, compute 1155 // the other predecessor. 1156 pred_iterator PI = pred_begin(DestBB); 1157 BasicBlock *P = *PI; 1158 BasicBlock *OtherBB = nullptr; 1159 1160 if (P != StoreBB) 1161 OtherBB = P; 1162 1163 if (++PI == pred_end(DestBB)) 1164 return false; 1165 1166 P = *PI; 1167 if (P != StoreBB) { 1168 if (OtherBB) 1169 return false; 1170 OtherBB = P; 1171 } 1172 if (++PI != pred_end(DestBB)) 1173 return false; 1174 1175 // Bail out if all the relevant blocks aren't distinct (this can happen, 1176 // for example, if SI is in an infinite loop) 1177 if (StoreBB == DestBB || OtherBB == DestBB) 1178 return false; 1179 1180 // Verify that the other block ends in a branch and is not otherwise empty. 1181 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1182 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1183 if (!OtherBr || BBI == OtherBB->begin()) 1184 return false; 1185 1186 // If the other block ends in an unconditional branch, check for the 'if then 1187 // else' case. there is an instruction before the branch. 1188 StoreInst *OtherStore = nullptr; 1189 if (OtherBr->isUnconditional()) { 1190 --BBI; 1191 // Skip over debugging info. 1192 while (isa<DbgInfoIntrinsic>(BBI) || 1193 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1194 if (BBI==OtherBB->begin()) 1195 return false; 1196 --BBI; 1197 } 1198 // If this isn't a store, isn't a store to the same location, or is not the 1199 // right kind of store, bail out. 1200 OtherStore = dyn_cast<StoreInst>(BBI); 1201 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1202 !SI.isSameOperationAs(OtherStore)) 1203 return false; 1204 } else { 1205 // Otherwise, the other block ended with a conditional branch. If one of the 1206 // destinations is StoreBB, then we have the if/then case. 1207 if (OtherBr->getSuccessor(0) != StoreBB && 1208 OtherBr->getSuccessor(1) != StoreBB) 1209 return false; 1210 1211 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1212 // if/then triangle. See if there is a store to the same ptr as SI that 1213 // lives in OtherBB. 1214 for (;; --BBI) { 1215 // Check to see if we find the matching store. 1216 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1217 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1218 !SI.isSameOperationAs(OtherStore)) 1219 return false; 1220 break; 1221 } 1222 // If we find something that may be using or overwriting the stored 1223 // value, or if we run out of instructions, we can't do the xform. 1224 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || 1225 BBI == OtherBB->begin()) 1226 return false; 1227 } 1228 1229 // In order to eliminate the store in OtherBr, we have to 1230 // make sure nothing reads or overwrites the stored value in 1231 // StoreBB. 1232 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1233 // FIXME: This should really be AA driven. 1234 if (I->mayReadFromMemory() || I->mayWriteToMemory()) 1235 return false; 1236 } 1237 } 1238 1239 // Insert a PHI node now if we need it. 1240 Value *MergedVal = OtherStore->getOperand(0); 1241 if (MergedVal != SI.getOperand(0)) { 1242 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1243 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1244 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1245 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1246 } 1247 1248 // Advance to a place where it is safe to insert the new store and 1249 // insert it. 1250 BBI = DestBB->getFirstInsertionPt(); 1251 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1252 SI.isVolatile(), 1253 SI.getAlignment(), 1254 SI.getOrdering(), 1255 SI.getSynchScope()); 1256 InsertNewInstBefore(NewSI, *BBI); 1257 NewSI->setDebugLoc(OtherStore->getDebugLoc()); 1258 1259 // If the two stores had AA tags, merge them. 1260 AAMDNodes AATags; 1261 SI.getAAMetadata(AATags); 1262 if (AATags) { 1263 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1264 NewSI->setAAMetadata(AATags); 1265 } 1266 1267 // Nuke the old stores. 1268 EraseInstFromFunction(SI); 1269 EraseInstFromFunction(*OtherStore); 1270 return true; 1271 } 1272