1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/IR/ConstantRange.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/MDBuilder.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 using namespace llvm; 26 27 #define DEBUG_TYPE "instcombine" 28 29 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 30 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 31 32 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 33 /// some part of a constant global variable. This intentionally only accepts 34 /// constant expressions because we can't rewrite arbitrary instructions. 35 static bool pointsToConstantGlobal(Value *V) { 36 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 37 return GV->isConstant(); 38 39 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 40 if (CE->getOpcode() == Instruction::BitCast || 41 CE->getOpcode() == Instruction::AddrSpaceCast || 42 CE->getOpcode() == Instruction::GetElementPtr) 43 return pointsToConstantGlobal(CE->getOperand(0)); 44 } 45 return false; 46 } 47 48 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 49 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 50 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 51 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 52 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 53 /// the alloca, and if the source pointer is a pointer to a constant global, we 54 /// can optimize this. 55 static bool 56 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 57 SmallVectorImpl<Instruction *> &ToDelete) { 58 // We track lifetime intrinsics as we encounter them. If we decide to go 59 // ahead and replace the value with the global, this lets the caller quickly 60 // eliminate the markers. 61 62 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 63 ValuesToInspect.emplace_back(V, false); 64 while (!ValuesToInspect.empty()) { 65 auto ValuePair = ValuesToInspect.pop_back_val(); 66 const bool IsOffset = ValuePair.second; 67 for (auto &U : ValuePair.first->uses()) { 68 auto *I = cast<Instruction>(U.getUser()); 69 70 if (auto *LI = dyn_cast<LoadInst>(I)) { 71 // Ignore non-volatile loads, they are always ok. 72 if (!LI->isSimple()) return false; 73 continue; 74 } 75 76 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 77 // If uses of the bitcast are ok, we are ok. 78 ValuesToInspect.emplace_back(I, IsOffset); 79 continue; 80 } 81 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 82 // If the GEP has all zero indices, it doesn't offset the pointer. If it 83 // doesn't, it does. 84 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 85 continue; 86 } 87 88 if (auto CS = CallSite(I)) { 89 // If this is the function being called then we treat it like a load and 90 // ignore it. 91 if (CS.isCallee(&U)) 92 continue; 93 94 unsigned DataOpNo = CS.getDataOperandNo(&U); 95 bool IsArgOperand = CS.isArgOperand(&U); 96 97 // Inalloca arguments are clobbered by the call. 98 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 99 return false; 100 101 // If this is a readonly/readnone call site, then we know it is just a 102 // load (but one that potentially returns the value itself), so we can 103 // ignore it if we know that the value isn't captured. 104 if (CS.onlyReadsMemory() && 105 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 106 continue; 107 108 // If this is being passed as a byval argument, the caller is making a 109 // copy, so it is only a read of the alloca. 110 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 111 continue; 112 } 113 114 // Lifetime intrinsics can be handled by the caller. 115 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 116 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 117 II->getIntrinsicID() == Intrinsic::lifetime_end) { 118 assert(II->use_empty() && "Lifetime markers have no result to use!"); 119 ToDelete.push_back(II); 120 continue; 121 } 122 } 123 124 // If this is isn't our memcpy/memmove, reject it as something we can't 125 // handle. 126 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 127 if (!MI) 128 return false; 129 130 // If the transfer is using the alloca as a source of the transfer, then 131 // ignore it since it is a load (unless the transfer is volatile). 132 if (U.getOperandNo() == 1) { 133 if (MI->isVolatile()) return false; 134 continue; 135 } 136 137 // If we already have seen a copy, reject the second one. 138 if (TheCopy) return false; 139 140 // If the pointer has been offset from the start of the alloca, we can't 141 // safely handle this. 142 if (IsOffset) return false; 143 144 // If the memintrinsic isn't using the alloca as the dest, reject it. 145 if (U.getOperandNo() != 0) return false; 146 147 // If the source of the memcpy/move is not a constant global, reject it. 148 if (!pointsToConstantGlobal(MI->getSource())) 149 return false; 150 151 // Otherwise, the transform is safe. Remember the copy instruction. 152 TheCopy = MI; 153 } 154 } 155 return true; 156 } 157 158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 159 /// modified by a copy from a constant global. If we can prove this, we can 160 /// replace any uses of the alloca with uses of the global directly. 161 static MemTransferInst * 162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 163 SmallVectorImpl<Instruction *> &ToDelete) { 164 MemTransferInst *TheCopy = nullptr; 165 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 166 return TheCopy; 167 return nullptr; 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 171 // Check for array size of 1 (scalar allocation). 172 if (!AI.isArrayAllocation()) { 173 // i32 1 is the canonical array size for scalar allocations. 174 if (AI.getArraySize()->getType()->isIntegerTy(32)) 175 return nullptr; 176 177 // Canonicalize it. 178 Value *V = IC.Builder->getInt32(1); 179 AI.setOperand(0, V); 180 return &AI; 181 } 182 183 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 184 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName()); 187 New->setAlignment(AI.getAlignment()); 188 189 // Scan to the end of the allocation instructions, to skip over a block of 190 // allocas if possible...also skip interleaved debug info 191 // 192 BasicBlock::iterator It(New); 193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 194 ++It; 195 196 // Now that I is pointing to the first non-allocation-inst in the block, 197 // insert our getelementptr instruction... 198 // 199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 200 Value *NullIdx = Constant::getNullValue(IdxTy); 201 Value *Idx[2] = {NullIdx, NullIdx}; 202 Instruction *GEP = 203 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 204 IC.InsertNewInstBefore(GEP, *It); 205 206 // Now make everything use the getelementptr instead of the original 207 // allocation. 208 return IC.replaceInstUsesWith(AI, GEP); 209 } 210 211 if (isa<UndefValue>(AI.getArraySize())) 212 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 213 214 // Ensure that the alloca array size argument has type intptr_t, so that 215 // any casting is exposed early. 216 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 217 if (AI.getArraySize()->getType() != IntPtrTy) { 218 Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false); 219 AI.setOperand(0, V); 220 return &AI; 221 } 222 223 return nullptr; 224 } 225 226 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 227 if (auto *I = simplifyAllocaArraySize(*this, AI)) 228 return I; 229 230 if (AI.getAllocatedType()->isSized()) { 231 // If the alignment is 0 (unspecified), assign it the preferred alignment. 232 if (AI.getAlignment() == 0) 233 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 234 235 // Move all alloca's of zero byte objects to the entry block and merge them 236 // together. Note that we only do this for alloca's, because malloc should 237 // allocate and return a unique pointer, even for a zero byte allocation. 238 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 239 // For a zero sized alloca there is no point in doing an array allocation. 240 // This is helpful if the array size is a complicated expression not used 241 // elsewhere. 242 if (AI.isArrayAllocation()) { 243 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 244 return &AI; 245 } 246 247 // Get the first instruction in the entry block. 248 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 249 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 250 if (FirstInst != &AI) { 251 // If the entry block doesn't start with a zero-size alloca then move 252 // this one to the start of the entry block. There is no problem with 253 // dominance as the array size was forced to a constant earlier already. 254 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 255 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 256 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 257 AI.moveBefore(FirstInst); 258 return &AI; 259 } 260 261 // If the alignment of the entry block alloca is 0 (unspecified), 262 // assign it the preferred alignment. 263 if (EntryAI->getAlignment() == 0) 264 EntryAI->setAlignment( 265 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 266 // Replace this zero-sized alloca with the one at the start of the entry 267 // block after ensuring that the address will be aligned enough for both 268 // types. 269 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 270 AI.getAlignment()); 271 EntryAI->setAlignment(MaxAlign); 272 if (AI.getType() != EntryAI->getType()) 273 return new BitCastInst(EntryAI, AI.getType()); 274 return replaceInstUsesWith(AI, EntryAI); 275 } 276 } 277 } 278 279 if (AI.getAlignment()) { 280 // Check to see if this allocation is only modified by a memcpy/memmove from 281 // a constant global whose alignment is equal to or exceeds that of the 282 // allocation. If this is the case, we can change all users to use 283 // the constant global instead. This is commonly produced by the CFE by 284 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 285 // is only subsequently read. 286 SmallVector<Instruction *, 4> ToDelete; 287 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 288 unsigned SourceAlign = getOrEnforceKnownAlignment( 289 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 290 if (AI.getAlignment() <= SourceAlign) { 291 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 292 DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 293 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 294 eraseInstFromFunction(*ToDelete[i]); 295 Constant *TheSrc = cast<Constant>(Copy->getSource()); 296 Constant *Cast 297 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType()); 298 Instruction *NewI = replaceInstUsesWith(AI, Cast); 299 eraseInstFromFunction(*Copy); 300 ++NumGlobalCopies; 301 return NewI; 302 } 303 } 304 } 305 306 // At last, use the generic allocation site handler to aggressively remove 307 // unused allocas. 308 return visitAllocSite(AI); 309 } 310 311 // Are we allowed to form a atomic load or store of this type? 312 static bool isSupportedAtomicType(Type *Ty) { 313 return Ty->isIntegerTy() || Ty->isPointerTy() || Ty->isFloatingPointTy(); 314 } 315 316 /// \brief Helper to combine a load to a new type. 317 /// 318 /// This just does the work of combining a load to a new type. It handles 319 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 320 /// loaded *value* type. This will convert it to a pointer, cast the operand to 321 /// that pointer type, load it, etc. 322 /// 323 /// Note that this will create all of the instructions with whatever insert 324 /// point the \c InstCombiner currently is using. 325 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 326 const Twine &Suffix = "") { 327 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 328 "can't fold an atomic load to requested type"); 329 330 Value *Ptr = LI.getPointerOperand(); 331 unsigned AS = LI.getPointerAddressSpace(); 332 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 333 LI.getAllMetadata(MD); 334 335 LoadInst *NewLoad = IC.Builder->CreateAlignedLoad( 336 IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)), 337 LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 338 NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope()); 339 MDBuilder MDB(NewLoad->getContext()); 340 for (const auto &MDPair : MD) { 341 unsigned ID = MDPair.first; 342 MDNode *N = MDPair.second; 343 // Note, essentially every kind of metadata should be preserved here! This 344 // routine is supposed to clone a load instruction changing *only its type*. 345 // The only metadata it makes sense to drop is metadata which is invalidated 346 // when the pointer type changes. This should essentially never be the case 347 // in LLVM, but we explicitly switch over only known metadata to be 348 // conservatively correct. If you are adding metadata to LLVM which pertains 349 // to loads, you almost certainly want to add it here. 350 switch (ID) { 351 case LLVMContext::MD_dbg: 352 case LLVMContext::MD_tbaa: 353 case LLVMContext::MD_prof: 354 case LLVMContext::MD_fpmath: 355 case LLVMContext::MD_tbaa_struct: 356 case LLVMContext::MD_invariant_load: 357 case LLVMContext::MD_alias_scope: 358 case LLVMContext::MD_noalias: 359 case LLVMContext::MD_nontemporal: 360 case LLVMContext::MD_mem_parallel_loop_access: 361 // All of these directly apply. 362 NewLoad->setMetadata(ID, N); 363 break; 364 365 case LLVMContext::MD_nonnull: 366 // This only directly applies if the new type is also a pointer. 367 if (NewTy->isPointerTy()) { 368 NewLoad->setMetadata(ID, N); 369 break; 370 } 371 // If it's integral now, translate it to !range metadata. 372 if (NewTy->isIntegerTy()) { 373 auto *ITy = cast<IntegerType>(NewTy); 374 auto *NullInt = ConstantExpr::getPtrToInt( 375 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 376 auto *NonNullInt = 377 ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 378 NewLoad->setMetadata(LLVMContext::MD_range, 379 MDB.createRange(NonNullInt, NullInt)); 380 } 381 break; 382 case LLVMContext::MD_align: 383 case LLVMContext::MD_dereferenceable: 384 case LLVMContext::MD_dereferenceable_or_null: 385 // These only directly apply if the new type is also a pointer. 386 if (NewTy->isPointerTy()) 387 NewLoad->setMetadata(ID, N); 388 break; 389 case LLVMContext::MD_range: 390 // FIXME: It would be nice to propagate this in some way, but the type 391 // conversions make it hard. 392 393 // If it's a pointer now and the range does not contain 0, make it !nonnull. 394 if (NewTy->isPointerTy()) { 395 unsigned BitWidth = IC.getDataLayout().getTypeSizeInBits(NewTy); 396 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 397 MDNode *NN = MDNode::get(LI.getContext(), None); 398 NewLoad->setMetadata(LLVMContext::MD_nonnull, NN); 399 } 400 } 401 break; 402 } 403 } 404 return NewLoad; 405 } 406 407 /// \brief Combine a store to a new type. 408 /// 409 /// Returns the newly created store instruction. 410 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 411 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 412 "can't fold an atomic store of requested type"); 413 414 Value *Ptr = SI.getPointerOperand(); 415 unsigned AS = SI.getPointerAddressSpace(); 416 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 417 SI.getAllMetadata(MD); 418 419 StoreInst *NewStore = IC.Builder->CreateAlignedStore( 420 V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 421 SI.getAlignment(), SI.isVolatile()); 422 NewStore->setAtomic(SI.getOrdering(), SI.getSynchScope()); 423 for (const auto &MDPair : MD) { 424 unsigned ID = MDPair.first; 425 MDNode *N = MDPair.second; 426 // Note, essentially every kind of metadata should be preserved here! This 427 // routine is supposed to clone a store instruction changing *only its 428 // type*. The only metadata it makes sense to drop is metadata which is 429 // invalidated when the pointer type changes. This should essentially 430 // never be the case in LLVM, but we explicitly switch over only known 431 // metadata to be conservatively correct. If you are adding metadata to 432 // LLVM which pertains to stores, you almost certainly want to add it 433 // here. 434 switch (ID) { 435 case LLVMContext::MD_dbg: 436 case LLVMContext::MD_tbaa: 437 case LLVMContext::MD_prof: 438 case LLVMContext::MD_fpmath: 439 case LLVMContext::MD_tbaa_struct: 440 case LLVMContext::MD_alias_scope: 441 case LLVMContext::MD_noalias: 442 case LLVMContext::MD_nontemporal: 443 case LLVMContext::MD_mem_parallel_loop_access: 444 // All of these directly apply. 445 NewStore->setMetadata(ID, N); 446 break; 447 448 case LLVMContext::MD_invariant_load: 449 case LLVMContext::MD_nonnull: 450 case LLVMContext::MD_range: 451 case LLVMContext::MD_align: 452 case LLVMContext::MD_dereferenceable: 453 case LLVMContext::MD_dereferenceable_or_null: 454 // These don't apply for stores. 455 break; 456 } 457 } 458 459 return NewStore; 460 } 461 462 /// \brief Combine loads to match the type of their uses' value after looking 463 /// through intervening bitcasts. 464 /// 465 /// The core idea here is that if the result of a load is used in an operation, 466 /// we should load the type most conducive to that operation. For example, when 467 /// loading an integer and converting that immediately to a pointer, we should 468 /// instead directly load a pointer. 469 /// 470 /// However, this routine must never change the width of a load or the number of 471 /// loads as that would introduce a semantic change. This combine is expected to 472 /// be a semantic no-op which just allows loads to more closely model the types 473 /// of their consuming operations. 474 /// 475 /// Currently, we also refuse to change the precise type used for an atomic load 476 /// or a volatile load. This is debatable, and might be reasonable to change 477 /// later. However, it is risky in case some backend or other part of LLVM is 478 /// relying on the exact type loaded to select appropriate atomic operations. 479 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 480 // FIXME: We could probably with some care handle both volatile and ordered 481 // atomic loads here but it isn't clear that this is important. 482 if (!LI.isUnordered()) 483 return nullptr; 484 485 if (LI.use_empty()) 486 return nullptr; 487 488 // swifterror values can't be bitcasted. 489 if (LI.getPointerOperand()->isSwiftError()) 490 return nullptr; 491 492 Type *Ty = LI.getType(); 493 const DataLayout &DL = IC.getDataLayout(); 494 495 // Try to canonicalize loads which are only ever stored to operate over 496 // integers instead of any other type. We only do this when the loaded type 497 // is sized and has a size exactly the same as its store size and the store 498 // size is a legal integer type. 499 if (!Ty->isIntegerTy() && Ty->isSized() && 500 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 501 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) && 502 !DL.isNonIntegralPointerType(Ty)) { 503 if (all_of(LI.users(), [&LI](User *U) { 504 auto *SI = dyn_cast<StoreInst>(U); 505 return SI && SI->getPointerOperand() != &LI && 506 !SI->getPointerOperand()->isSwiftError(); 507 })) { 508 LoadInst *NewLoad = combineLoadToNewType( 509 IC, LI, 510 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 511 // Replace all the stores with stores of the newly loaded value. 512 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 513 auto *SI = cast<StoreInst>(*UI++); 514 IC.Builder->SetInsertPoint(SI); 515 combineStoreToNewValue(IC, *SI, NewLoad); 516 IC.eraseInstFromFunction(*SI); 517 } 518 assert(LI.use_empty() && "Failed to remove all users of the load!"); 519 // Return the old load so the combiner can delete it safely. 520 return &LI; 521 } 522 } 523 524 // Fold away bit casts of the loaded value by loading the desired type. 525 // We can do this for BitCastInsts as well as casts from and to pointer types, 526 // as long as those are noops (i.e., the source or dest type have the same 527 // bitwidth as the target's pointers). 528 if (LI.hasOneUse()) 529 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 530 if (CI->isNoopCast(DL)) 531 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 532 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 533 CI->replaceAllUsesWith(NewLoad); 534 IC.eraseInstFromFunction(*CI); 535 return &LI; 536 } 537 538 // FIXME: We should also canonicalize loads of vectors when their elements are 539 // cast to other types. 540 return nullptr; 541 } 542 543 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 544 // FIXME: We could probably with some care handle both volatile and atomic 545 // stores here but it isn't clear that this is important. 546 if (!LI.isSimple()) 547 return nullptr; 548 549 Type *T = LI.getType(); 550 if (!T->isAggregateType()) 551 return nullptr; 552 553 StringRef Name = LI.getName(); 554 assert(LI.getAlignment() && "Alignment must be set at this point"); 555 556 if (auto *ST = dyn_cast<StructType>(T)) { 557 // If the struct only have one element, we unpack. 558 auto NumElements = ST->getNumElements(); 559 if (NumElements == 1) { 560 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 561 ".unpack"); 562 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 563 UndefValue::get(T), NewLoad, 0, Name)); 564 } 565 566 // We don't want to break loads with padding here as we'd loose 567 // the knowledge that padding exists for the rest of the pipeline. 568 const DataLayout &DL = IC.getDataLayout(); 569 auto *SL = DL.getStructLayout(ST); 570 if (SL->hasPadding()) 571 return nullptr; 572 573 auto Align = LI.getAlignment(); 574 if (!Align) 575 Align = DL.getABITypeAlignment(ST); 576 577 auto *Addr = LI.getPointerOperand(); 578 auto *IdxType = Type::getInt32Ty(T->getContext()); 579 auto *Zero = ConstantInt::get(IdxType, 0); 580 581 Value *V = UndefValue::get(T); 582 for (unsigned i = 0; i < NumElements; i++) { 583 Value *Indices[2] = { 584 Zero, 585 ConstantInt::get(IdxType, i), 586 }; 587 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 588 Name + ".elt"); 589 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 590 auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 591 V = IC.Builder->CreateInsertValue(V, L, i); 592 } 593 594 V->setName(Name); 595 return IC.replaceInstUsesWith(LI, V); 596 } 597 598 if (auto *AT = dyn_cast<ArrayType>(T)) { 599 auto *ET = AT->getElementType(); 600 auto NumElements = AT->getNumElements(); 601 if (NumElements == 1) { 602 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 603 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 604 UndefValue::get(T), NewLoad, 0, Name)); 605 } 606 607 // Bail out if the array is too large. Ideally we would like to optimize 608 // arrays of arbitrary size but this has a terrible impact on compile time. 609 // The threshold here is chosen arbitrarily, maybe needs a little bit of 610 // tuning. 611 if (NumElements > 1024) 612 return nullptr; 613 614 const DataLayout &DL = IC.getDataLayout(); 615 auto EltSize = DL.getTypeAllocSize(ET); 616 auto Align = LI.getAlignment(); 617 if (!Align) 618 Align = DL.getABITypeAlignment(T); 619 620 auto *Addr = LI.getPointerOperand(); 621 auto *IdxType = Type::getInt64Ty(T->getContext()); 622 auto *Zero = ConstantInt::get(IdxType, 0); 623 624 Value *V = UndefValue::get(T); 625 uint64_t Offset = 0; 626 for (uint64_t i = 0; i < NumElements; i++) { 627 Value *Indices[2] = { 628 Zero, 629 ConstantInt::get(IdxType, i), 630 }; 631 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 632 Name + ".elt"); 633 auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 634 Name + ".unpack"); 635 V = IC.Builder->CreateInsertValue(V, L, i); 636 Offset += EltSize; 637 } 638 639 V->setName(Name); 640 return IC.replaceInstUsesWith(LI, V); 641 } 642 643 return nullptr; 644 } 645 646 // If we can determine that all possible objects pointed to by the provided 647 // pointer value are, not only dereferenceable, but also definitively less than 648 // or equal to the provided maximum size, then return true. Otherwise, return 649 // false (constant global values and allocas fall into this category). 650 // 651 // FIXME: This should probably live in ValueTracking (or similar). 652 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 653 const DataLayout &DL) { 654 SmallPtrSet<Value *, 4> Visited; 655 SmallVector<Value *, 4> Worklist(1, V); 656 657 do { 658 Value *P = Worklist.pop_back_val(); 659 P = P->stripPointerCasts(); 660 661 if (!Visited.insert(P).second) 662 continue; 663 664 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 665 Worklist.push_back(SI->getTrueValue()); 666 Worklist.push_back(SI->getFalseValue()); 667 continue; 668 } 669 670 if (PHINode *PN = dyn_cast<PHINode>(P)) { 671 for (Value *IncValue : PN->incoming_values()) 672 Worklist.push_back(IncValue); 673 continue; 674 } 675 676 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 677 if (GA->isInterposable()) 678 return false; 679 Worklist.push_back(GA->getAliasee()); 680 continue; 681 } 682 683 // If we know how big this object is, and it is less than MaxSize, continue 684 // searching. Otherwise, return false. 685 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 686 if (!AI->getAllocatedType()->isSized()) 687 return false; 688 689 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 690 if (!CS) 691 return false; 692 693 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 694 // Make sure that, even if the multiplication below would wrap as an 695 // uint64_t, we still do the right thing. 696 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 697 return false; 698 continue; 699 } 700 701 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 702 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 703 return false; 704 705 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 706 if (InitSize > MaxSize) 707 return false; 708 continue; 709 } 710 711 return false; 712 } while (!Worklist.empty()); 713 714 return true; 715 } 716 717 // If we're indexing into an object of a known size, and the outer index is 718 // not a constant, but having any value but zero would lead to undefined 719 // behavior, replace it with zero. 720 // 721 // For example, if we have: 722 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 723 // ... 724 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 725 // ... = load i32* %arrayidx, align 4 726 // Then we know that we can replace %x in the GEP with i64 0. 727 // 728 // FIXME: We could fold any GEP index to zero that would cause UB if it were 729 // not zero. Currently, we only handle the first such index. Also, we could 730 // also search through non-zero constant indices if we kept track of the 731 // offsets those indices implied. 732 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 733 Instruction *MemI, unsigned &Idx) { 734 if (GEPI->getNumOperands() < 2) 735 return false; 736 737 // Find the first non-zero index of a GEP. If all indices are zero, return 738 // one past the last index. 739 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 740 unsigned I = 1; 741 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 742 Value *V = GEPI->getOperand(I); 743 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 744 if (CI->isZero()) 745 continue; 746 747 break; 748 } 749 750 return I; 751 }; 752 753 // Skip through initial 'zero' indices, and find the corresponding pointer 754 // type. See if the next index is not a constant. 755 Idx = FirstNZIdx(GEPI); 756 if (Idx == GEPI->getNumOperands()) 757 return false; 758 if (isa<Constant>(GEPI->getOperand(Idx))) 759 return false; 760 761 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 762 Type *AllocTy = 763 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 764 if (!AllocTy || !AllocTy->isSized()) 765 return false; 766 const DataLayout &DL = IC.getDataLayout(); 767 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 768 769 // If there are more indices after the one we might replace with a zero, make 770 // sure they're all non-negative. If any of them are negative, the overall 771 // address being computed might be before the base address determined by the 772 // first non-zero index. 773 auto IsAllNonNegative = [&]() { 774 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 775 bool KnownNonNegative, KnownNegative; 776 IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative, 777 KnownNegative, 0, MemI); 778 if (KnownNonNegative) 779 continue; 780 return false; 781 } 782 783 return true; 784 }; 785 786 // FIXME: If the GEP is not inbounds, and there are extra indices after the 787 // one we'll replace, those could cause the address computation to wrap 788 // (rendering the IsAllNonNegative() check below insufficient). We can do 789 // better, ignoring zero indices (and other indices we can prove small 790 // enough not to wrap). 791 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 792 return false; 793 794 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 795 // also known to be dereferenceable. 796 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 797 IsAllNonNegative(); 798 } 799 800 // If we're indexing into an object with a variable index for the memory 801 // access, but the object has only one element, we can assume that the index 802 // will always be zero. If we replace the GEP, return it. 803 template <typename T> 804 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 805 T &MemI) { 806 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 807 unsigned Idx; 808 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 809 Instruction *NewGEPI = GEPI->clone(); 810 NewGEPI->setOperand(Idx, 811 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 812 NewGEPI->insertBefore(GEPI); 813 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 814 return NewGEPI; 815 } 816 } 817 818 return nullptr; 819 } 820 821 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 822 Value *Op = LI.getOperand(0); 823 824 // Try to canonicalize the loaded type. 825 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 826 return Res; 827 828 // Attempt to improve the alignment. 829 unsigned KnownAlign = getOrEnforceKnownAlignment( 830 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 831 unsigned LoadAlign = LI.getAlignment(); 832 unsigned EffectiveLoadAlign = 833 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 834 835 if (KnownAlign > EffectiveLoadAlign) 836 LI.setAlignment(KnownAlign); 837 else if (LoadAlign == 0) 838 LI.setAlignment(EffectiveLoadAlign); 839 840 // Replace GEP indices if possible. 841 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 842 Worklist.Add(NewGEPI); 843 return &LI; 844 } 845 846 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 847 return Res; 848 849 // Do really simple store-to-load forwarding and load CSE, to catch cases 850 // where there are several consecutive memory accesses to the same location, 851 // separated by a few arithmetic operations. 852 BasicBlock::iterator BBI(LI); 853 bool IsLoadCSE = false; 854 if (Value *AvailableVal = FindAvailableLoadedValue( 855 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 856 if (IsLoadCSE) 857 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI); 858 859 return replaceInstUsesWith( 860 LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(), 861 LI.getName() + ".cast")); 862 } 863 864 // None of the following transforms are legal for volatile/ordered atomic 865 // loads. Most of them do apply for unordered atomics. 866 if (!LI.isUnordered()) return nullptr; 867 868 // load(gep null, ...) -> unreachable 869 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 870 const Value *GEPI0 = GEPI->getOperand(0); 871 // TODO: Consider a target hook for valid address spaces for this xform. 872 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ 873 // Insert a new store to null instruction before the load to indicate 874 // that this code is not reachable. We do this instead of inserting 875 // an unreachable instruction directly because we cannot modify the 876 // CFG. 877 new StoreInst(UndefValue::get(LI.getType()), 878 Constant::getNullValue(Op->getType()), &LI); 879 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 880 } 881 } 882 883 // load null/undef -> unreachable 884 // TODO: Consider a target hook for valid address spaces for this xform. 885 if (isa<UndefValue>(Op) || 886 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { 887 // Insert a new store to null instruction before the load to indicate that 888 // this code is not reachable. We do this instead of inserting an 889 // unreachable instruction directly because we cannot modify the CFG. 890 new StoreInst(UndefValue::get(LI.getType()), 891 Constant::getNullValue(Op->getType()), &LI); 892 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 893 } 894 895 if (Op->hasOneUse()) { 896 // Change select and PHI nodes to select values instead of addresses: this 897 // helps alias analysis out a lot, allows many others simplifications, and 898 // exposes redundancy in the code. 899 // 900 // Note that we cannot do the transformation unless we know that the 901 // introduced loads cannot trap! Something like this is valid as long as 902 // the condition is always false: load (select bool %C, int* null, int* %G), 903 // but it would not be valid if we transformed it to load from null 904 // unconditionally. 905 // 906 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 907 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 908 unsigned Align = LI.getAlignment(); 909 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && 910 isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { 911 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), 912 SI->getOperand(1)->getName()+".val"); 913 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), 914 SI->getOperand(2)->getName()+".val"); 915 assert(LI.isUnordered() && "implied by above"); 916 V1->setAlignment(Align); 917 V1->setAtomic(LI.getOrdering(), LI.getSynchScope()); 918 V2->setAlignment(Align); 919 V2->setAtomic(LI.getOrdering(), LI.getSynchScope()); 920 return SelectInst::Create(SI->getCondition(), V1, V2); 921 } 922 923 // load (select (cond, null, P)) -> load P 924 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 925 LI.getPointerAddressSpace() == 0) { 926 LI.setOperand(0, SI->getOperand(2)); 927 return &LI; 928 } 929 930 // load (select (cond, P, null)) -> load P 931 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 932 LI.getPointerAddressSpace() == 0) { 933 LI.setOperand(0, SI->getOperand(1)); 934 return &LI; 935 } 936 } 937 } 938 return nullptr; 939 } 940 941 /// \brief Look for extractelement/insertvalue sequence that acts like a bitcast. 942 /// 943 /// \returns underlying value that was "cast", or nullptr otherwise. 944 /// 945 /// For example, if we have: 946 /// 947 /// %E0 = extractelement <2 x double> %U, i32 0 948 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 949 /// %E1 = extractelement <2 x double> %U, i32 1 950 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 951 /// 952 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 953 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 954 /// Note that %U may contain non-undef values where %V1 has undef. 955 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 956 Value *U = nullptr; 957 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 958 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 959 if (!E) 960 return nullptr; 961 auto *W = E->getVectorOperand(); 962 if (!U) 963 U = W; 964 else if (U != W) 965 return nullptr; 966 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 967 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 968 return nullptr; 969 V = IV->getAggregateOperand(); 970 } 971 if (!isa<UndefValue>(V) ||!U) 972 return nullptr; 973 974 auto *UT = cast<VectorType>(U->getType()); 975 auto *VT = V->getType(); 976 // Check that types UT and VT are bitwise isomorphic. 977 const auto &DL = IC.getDataLayout(); 978 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 979 return nullptr; 980 } 981 if (auto *AT = dyn_cast<ArrayType>(VT)) { 982 if (AT->getNumElements() != UT->getNumElements()) 983 return nullptr; 984 } else { 985 auto *ST = cast<StructType>(VT); 986 if (ST->getNumElements() != UT->getNumElements()) 987 return nullptr; 988 for (const auto *EltT : ST->elements()) { 989 if (EltT != UT->getElementType()) 990 return nullptr; 991 } 992 } 993 return U; 994 } 995 996 /// \brief Combine stores to match the type of value being stored. 997 /// 998 /// The core idea here is that the memory does not have any intrinsic type and 999 /// where we can we should match the type of a store to the type of value being 1000 /// stored. 1001 /// 1002 /// However, this routine must never change the width of a store or the number of 1003 /// stores as that would introduce a semantic change. This combine is expected to 1004 /// be a semantic no-op which just allows stores to more closely model the types 1005 /// of their incoming values. 1006 /// 1007 /// Currently, we also refuse to change the precise type used for an atomic or 1008 /// volatile store. This is debatable, and might be reasonable to change later. 1009 /// However, it is risky in case some backend or other part of LLVM is relying 1010 /// on the exact type stored to select appropriate atomic operations. 1011 /// 1012 /// \returns true if the store was successfully combined away. This indicates 1013 /// the caller must erase the store instruction. We have to let the caller erase 1014 /// the store instruction as otherwise there is no way to signal whether it was 1015 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1016 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1017 // FIXME: We could probably with some care handle both volatile and ordered 1018 // atomic stores here but it isn't clear that this is important. 1019 if (!SI.isUnordered()) 1020 return false; 1021 1022 // swifterror values can't be bitcasted. 1023 if (SI.getPointerOperand()->isSwiftError()) 1024 return false; 1025 1026 Value *V = SI.getValueOperand(); 1027 1028 // Fold away bit casts of the stored value by storing the original type. 1029 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1030 V = BC->getOperand(0); 1031 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1032 combineStoreToNewValue(IC, SI, V); 1033 return true; 1034 } 1035 } 1036 1037 if (Value *U = likeBitCastFromVector(IC, V)) 1038 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1039 combineStoreToNewValue(IC, SI, U); 1040 return true; 1041 } 1042 1043 // FIXME: We should also canonicalize stores of vectors when their elements 1044 // are cast to other types. 1045 return false; 1046 } 1047 1048 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1049 // FIXME: We could probably with some care handle both volatile and atomic 1050 // stores here but it isn't clear that this is important. 1051 if (!SI.isSimple()) 1052 return false; 1053 1054 Value *V = SI.getValueOperand(); 1055 Type *T = V->getType(); 1056 1057 if (!T->isAggregateType()) 1058 return false; 1059 1060 if (auto *ST = dyn_cast<StructType>(T)) { 1061 // If the struct only have one element, we unpack. 1062 unsigned Count = ST->getNumElements(); 1063 if (Count == 1) { 1064 V = IC.Builder->CreateExtractValue(V, 0); 1065 combineStoreToNewValue(IC, SI, V); 1066 return true; 1067 } 1068 1069 // We don't want to break loads with padding here as we'd loose 1070 // the knowledge that padding exists for the rest of the pipeline. 1071 const DataLayout &DL = IC.getDataLayout(); 1072 auto *SL = DL.getStructLayout(ST); 1073 if (SL->hasPadding()) 1074 return false; 1075 1076 auto Align = SI.getAlignment(); 1077 if (!Align) 1078 Align = DL.getABITypeAlignment(ST); 1079 1080 SmallString<16> EltName = V->getName(); 1081 EltName += ".elt"; 1082 auto *Addr = SI.getPointerOperand(); 1083 SmallString<16> AddrName = Addr->getName(); 1084 AddrName += ".repack"; 1085 1086 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1087 auto *Zero = ConstantInt::get(IdxType, 0); 1088 for (unsigned i = 0; i < Count; i++) { 1089 Value *Indices[2] = { 1090 Zero, 1091 ConstantInt::get(IdxType, i), 1092 }; 1093 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1094 AddrName); 1095 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1096 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1097 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1098 } 1099 1100 return true; 1101 } 1102 1103 if (auto *AT = dyn_cast<ArrayType>(T)) { 1104 // If the array only have one element, we unpack. 1105 auto NumElements = AT->getNumElements(); 1106 if (NumElements == 1) { 1107 V = IC.Builder->CreateExtractValue(V, 0); 1108 combineStoreToNewValue(IC, SI, V); 1109 return true; 1110 } 1111 1112 // Bail out if the array is too large. Ideally we would like to optimize 1113 // arrays of arbitrary size but this has a terrible impact on compile time. 1114 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1115 // tuning. 1116 if (NumElements > 1024) 1117 return false; 1118 1119 const DataLayout &DL = IC.getDataLayout(); 1120 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1121 auto Align = SI.getAlignment(); 1122 if (!Align) 1123 Align = DL.getABITypeAlignment(T); 1124 1125 SmallString<16> EltName = V->getName(); 1126 EltName += ".elt"; 1127 auto *Addr = SI.getPointerOperand(); 1128 SmallString<16> AddrName = Addr->getName(); 1129 AddrName += ".repack"; 1130 1131 auto *IdxType = Type::getInt64Ty(T->getContext()); 1132 auto *Zero = ConstantInt::get(IdxType, 0); 1133 1134 uint64_t Offset = 0; 1135 for (uint64_t i = 0; i < NumElements; i++) { 1136 Value *Indices[2] = { 1137 Zero, 1138 ConstantInt::get(IdxType, i), 1139 }; 1140 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1141 AddrName); 1142 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1143 auto EltAlign = MinAlign(Align, Offset); 1144 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1145 Offset += EltSize; 1146 } 1147 1148 return true; 1149 } 1150 1151 return false; 1152 } 1153 1154 /// equivalentAddressValues - Test if A and B will obviously have the same 1155 /// value. This includes recognizing that %t0 and %t1 will have the same 1156 /// value in code like this: 1157 /// %t0 = getelementptr \@a, 0, 3 1158 /// store i32 0, i32* %t0 1159 /// %t1 = getelementptr \@a, 0, 3 1160 /// %t2 = load i32* %t1 1161 /// 1162 static bool equivalentAddressValues(Value *A, Value *B) { 1163 // Test if the values are trivially equivalent. 1164 if (A == B) return true; 1165 1166 // Test if the values come form identical arithmetic instructions. 1167 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1168 // its only used to compare two uses within the same basic block, which 1169 // means that they'll always either have the same value or one of them 1170 // will have an undefined value. 1171 if (isa<BinaryOperator>(A) || 1172 isa<CastInst>(A) || 1173 isa<PHINode>(A) || 1174 isa<GetElementPtrInst>(A)) 1175 if (Instruction *BI = dyn_cast<Instruction>(B)) 1176 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1177 return true; 1178 1179 // Otherwise they may not be equivalent. 1180 return false; 1181 } 1182 1183 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1184 Value *Val = SI.getOperand(0); 1185 Value *Ptr = SI.getOperand(1); 1186 1187 // Try to canonicalize the stored type. 1188 if (combineStoreToValueType(*this, SI)) 1189 return eraseInstFromFunction(SI); 1190 1191 // Attempt to improve the alignment. 1192 unsigned KnownAlign = getOrEnforceKnownAlignment( 1193 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1194 unsigned StoreAlign = SI.getAlignment(); 1195 unsigned EffectiveStoreAlign = 1196 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1197 1198 if (KnownAlign > EffectiveStoreAlign) 1199 SI.setAlignment(KnownAlign); 1200 else if (StoreAlign == 0) 1201 SI.setAlignment(EffectiveStoreAlign); 1202 1203 // Try to canonicalize the stored type. 1204 if (unpackStoreToAggregate(*this, SI)) 1205 return eraseInstFromFunction(SI); 1206 1207 // Replace GEP indices if possible. 1208 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1209 Worklist.Add(NewGEPI); 1210 return &SI; 1211 } 1212 1213 // Don't hack volatile/ordered stores. 1214 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1215 if (!SI.isUnordered()) return nullptr; 1216 1217 // If the RHS is an alloca with a single use, zapify the store, making the 1218 // alloca dead. 1219 if (Ptr->hasOneUse()) { 1220 if (isa<AllocaInst>(Ptr)) 1221 return eraseInstFromFunction(SI); 1222 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1223 if (isa<AllocaInst>(GEP->getOperand(0))) { 1224 if (GEP->getOperand(0)->hasOneUse()) 1225 return eraseInstFromFunction(SI); 1226 } 1227 } 1228 } 1229 1230 // Do really simple DSE, to catch cases where there are several consecutive 1231 // stores to the same location, separated by a few arithmetic operations. This 1232 // situation often occurs with bitfield accesses. 1233 BasicBlock::iterator BBI(SI); 1234 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1235 --ScanInsts) { 1236 --BBI; 1237 // Don't count debug info directives, lest they affect codegen, 1238 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1239 if (isa<DbgInfoIntrinsic>(BBI) || 1240 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1241 ScanInsts++; 1242 continue; 1243 } 1244 1245 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1246 // Prev store isn't volatile, and stores to the same location? 1247 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1248 SI.getOperand(1))) { 1249 ++NumDeadStore; 1250 ++BBI; 1251 eraseInstFromFunction(*PrevSI); 1252 continue; 1253 } 1254 break; 1255 } 1256 1257 // If this is a load, we have to stop. However, if the loaded value is from 1258 // the pointer we're loading and is producing the pointer we're storing, 1259 // then *this* store is dead (X = load P; store X -> P). 1260 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1261 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1262 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1263 return eraseInstFromFunction(SI); 1264 } 1265 1266 // Otherwise, this is a load from some other location. Stores before it 1267 // may not be dead. 1268 break; 1269 } 1270 1271 // Don't skip over loads, throws or things that can modify memory. 1272 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1273 break; 1274 } 1275 1276 // store X, null -> turns into 'unreachable' in SimplifyCFG 1277 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { 1278 if (!isa<UndefValue>(Val)) { 1279 SI.setOperand(0, UndefValue::get(Val->getType())); 1280 if (Instruction *U = dyn_cast<Instruction>(Val)) 1281 Worklist.Add(U); // Dropped a use. 1282 } 1283 return nullptr; // Do not modify these! 1284 } 1285 1286 // store undef, Ptr -> noop 1287 if (isa<UndefValue>(Val)) 1288 return eraseInstFromFunction(SI); 1289 1290 // If this store is the last instruction in the basic block (possibly 1291 // excepting debug info instructions), and if the block ends with an 1292 // unconditional branch, try to move it to the successor block. 1293 BBI = SI.getIterator(); 1294 do { 1295 ++BBI; 1296 } while (isa<DbgInfoIntrinsic>(BBI) || 1297 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1298 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1299 if (BI->isUnconditional()) 1300 if (SimplifyStoreAtEndOfBlock(SI)) 1301 return nullptr; // xform done! 1302 1303 return nullptr; 1304 } 1305 1306 /// SimplifyStoreAtEndOfBlock - Turn things like: 1307 /// if () { *P = v1; } else { *P = v2 } 1308 /// into a phi node with a store in the successor. 1309 /// 1310 /// Simplify things like: 1311 /// *P = v1; if () { *P = v2; } 1312 /// into a phi node with a store in the successor. 1313 /// 1314 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1315 assert(SI.isUnordered() && 1316 "this code has not been auditted for volatile or ordered store case"); 1317 1318 BasicBlock *StoreBB = SI.getParent(); 1319 1320 // Check to see if the successor block has exactly two incoming edges. If 1321 // so, see if the other predecessor contains a store to the same location. 1322 // if so, insert a PHI node (if needed) and move the stores down. 1323 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1324 1325 // Determine whether Dest has exactly two predecessors and, if so, compute 1326 // the other predecessor. 1327 pred_iterator PI = pred_begin(DestBB); 1328 BasicBlock *P = *PI; 1329 BasicBlock *OtherBB = nullptr; 1330 1331 if (P != StoreBB) 1332 OtherBB = P; 1333 1334 if (++PI == pred_end(DestBB)) 1335 return false; 1336 1337 P = *PI; 1338 if (P != StoreBB) { 1339 if (OtherBB) 1340 return false; 1341 OtherBB = P; 1342 } 1343 if (++PI != pred_end(DestBB)) 1344 return false; 1345 1346 // Bail out if all the relevant blocks aren't distinct (this can happen, 1347 // for example, if SI is in an infinite loop) 1348 if (StoreBB == DestBB || OtherBB == DestBB) 1349 return false; 1350 1351 // Verify that the other block ends in a branch and is not otherwise empty. 1352 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1353 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1354 if (!OtherBr || BBI == OtherBB->begin()) 1355 return false; 1356 1357 // If the other block ends in an unconditional branch, check for the 'if then 1358 // else' case. there is an instruction before the branch. 1359 StoreInst *OtherStore = nullptr; 1360 if (OtherBr->isUnconditional()) { 1361 --BBI; 1362 // Skip over debugging info. 1363 while (isa<DbgInfoIntrinsic>(BBI) || 1364 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1365 if (BBI==OtherBB->begin()) 1366 return false; 1367 --BBI; 1368 } 1369 // If this isn't a store, isn't a store to the same location, or is not the 1370 // right kind of store, bail out. 1371 OtherStore = dyn_cast<StoreInst>(BBI); 1372 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1373 !SI.isSameOperationAs(OtherStore)) 1374 return false; 1375 } else { 1376 // Otherwise, the other block ended with a conditional branch. If one of the 1377 // destinations is StoreBB, then we have the if/then case. 1378 if (OtherBr->getSuccessor(0) != StoreBB && 1379 OtherBr->getSuccessor(1) != StoreBB) 1380 return false; 1381 1382 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1383 // if/then triangle. See if there is a store to the same ptr as SI that 1384 // lives in OtherBB. 1385 for (;; --BBI) { 1386 // Check to see if we find the matching store. 1387 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1388 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1389 !SI.isSameOperationAs(OtherStore)) 1390 return false; 1391 break; 1392 } 1393 // If we find something that may be using or overwriting the stored 1394 // value, or if we run out of instructions, we can't do the xform. 1395 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1396 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1397 return false; 1398 } 1399 1400 // In order to eliminate the store in OtherBr, we have to 1401 // make sure nothing reads or overwrites the stored value in 1402 // StoreBB. 1403 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1404 // FIXME: This should really be AA driven. 1405 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1406 return false; 1407 } 1408 } 1409 1410 // Insert a PHI node now if we need it. 1411 Value *MergedVal = OtherStore->getOperand(0); 1412 if (MergedVal != SI.getOperand(0)) { 1413 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1414 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1415 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1416 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1417 } 1418 1419 // Advance to a place where it is safe to insert the new store and 1420 // insert it. 1421 BBI = DestBB->getFirstInsertionPt(); 1422 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1423 SI.isVolatile(), 1424 SI.getAlignment(), 1425 SI.getOrdering(), 1426 SI.getSynchScope()); 1427 InsertNewInstBefore(NewSI, *BBI); 1428 NewSI->setDebugLoc(OtherStore->getDebugLoc()); 1429 1430 // If the two stores had AA tags, merge them. 1431 AAMDNodes AATags; 1432 SI.getAAMetadata(AATags); 1433 if (AATags) { 1434 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1435 NewSI->setAAMetadata(AATags); 1436 } 1437 1438 // Nuke the old stores. 1439 eraseInstFromFunction(SI); 1440 eraseInstFromFunction(*OtherStore); 1441 return true; 1442 } 1443