1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/MapVector.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 using namespace llvm; 28 29 #define DEBUG_TYPE "instcombine" 30 31 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 32 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 33 34 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 35 /// some part of a constant global variable. This intentionally only accepts 36 /// constant expressions because we can't rewrite arbitrary instructions. 37 static bool pointsToConstantGlobal(Value *V) { 38 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 39 return GV->isConstant(); 40 41 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 42 if (CE->getOpcode() == Instruction::BitCast || 43 CE->getOpcode() == Instruction::AddrSpaceCast || 44 CE->getOpcode() == Instruction::GetElementPtr) 45 return pointsToConstantGlobal(CE->getOperand(0)); 46 } 47 return false; 48 } 49 50 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 51 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 52 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 53 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 54 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 55 /// the alloca, and if the source pointer is a pointer to a constant global, we 56 /// can optimize this. 57 static bool 58 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 59 SmallVectorImpl<Instruction *> &ToDelete) { 60 // We track lifetime intrinsics as we encounter them. If we decide to go 61 // ahead and replace the value with the global, this lets the caller quickly 62 // eliminate the markers. 63 64 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 65 ValuesToInspect.emplace_back(V, false); 66 while (!ValuesToInspect.empty()) { 67 auto ValuePair = ValuesToInspect.pop_back_val(); 68 const bool IsOffset = ValuePair.second; 69 for (auto &U : ValuePair.first->uses()) { 70 auto *I = cast<Instruction>(U.getUser()); 71 72 if (auto *LI = dyn_cast<LoadInst>(I)) { 73 // Ignore non-volatile loads, they are always ok. 74 if (!LI->isSimple()) return false; 75 continue; 76 } 77 78 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 79 // If uses of the bitcast are ok, we are ok. 80 ValuesToInspect.emplace_back(I, IsOffset); 81 continue; 82 } 83 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 84 // If the GEP has all zero indices, it doesn't offset the pointer. If it 85 // doesn't, it does. 86 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 87 continue; 88 } 89 90 if (auto CS = CallSite(I)) { 91 // If this is the function being called then we treat it like a load and 92 // ignore it. 93 if (CS.isCallee(&U)) 94 continue; 95 96 unsigned DataOpNo = CS.getDataOperandNo(&U); 97 bool IsArgOperand = CS.isArgOperand(&U); 98 99 // Inalloca arguments are clobbered by the call. 100 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 101 return false; 102 103 // If this is a readonly/readnone call site, then we know it is just a 104 // load (but one that potentially returns the value itself), so we can 105 // ignore it if we know that the value isn't captured. 106 if (CS.onlyReadsMemory() && 107 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 108 continue; 109 110 // If this is being passed as a byval argument, the caller is making a 111 // copy, so it is only a read of the alloca. 112 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 113 continue; 114 } 115 116 // Lifetime intrinsics can be handled by the caller. 117 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 118 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 119 II->getIntrinsicID() == Intrinsic::lifetime_end) { 120 assert(II->use_empty() && "Lifetime markers have no result to use!"); 121 ToDelete.push_back(II); 122 continue; 123 } 124 } 125 126 // If this is isn't our memcpy/memmove, reject it as something we can't 127 // handle. 128 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 129 if (!MI) 130 return false; 131 132 // If the transfer is using the alloca as a source of the transfer, then 133 // ignore it since it is a load (unless the transfer is volatile). 134 if (U.getOperandNo() == 1) { 135 if (MI->isVolatile()) return false; 136 continue; 137 } 138 139 // If we already have seen a copy, reject the second one. 140 if (TheCopy) return false; 141 142 // If the pointer has been offset from the start of the alloca, we can't 143 // safely handle this. 144 if (IsOffset) return false; 145 146 // If the memintrinsic isn't using the alloca as the dest, reject it. 147 if (U.getOperandNo() != 0) return false; 148 149 // If the source of the memcpy/move is not a constant global, reject it. 150 if (!pointsToConstantGlobal(MI->getSource())) 151 return false; 152 153 // Otherwise, the transform is safe. Remember the copy instruction. 154 TheCopy = MI; 155 } 156 } 157 return true; 158 } 159 160 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 161 /// modified by a copy from a constant global. If we can prove this, we can 162 /// replace any uses of the alloca with uses of the global directly. 163 static MemTransferInst * 164 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 165 SmallVectorImpl<Instruction *> &ToDelete) { 166 MemTransferInst *TheCopy = nullptr; 167 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 168 return TheCopy; 169 return nullptr; 170 } 171 172 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 173 // Check for array size of 1 (scalar allocation). 174 if (!AI.isArrayAllocation()) { 175 // i32 1 is the canonical array size for scalar allocations. 176 if (AI.getArraySize()->getType()->isIntegerTy(32)) 177 return nullptr; 178 179 // Canonicalize it. 180 Value *V = IC.Builder->getInt32(1); 181 AI.setOperand(0, V); 182 return &AI; 183 } 184 185 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 186 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 187 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 188 AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName()); 189 New->setAlignment(AI.getAlignment()); 190 191 // Scan to the end of the allocation instructions, to skip over a block of 192 // allocas if possible...also skip interleaved debug info 193 // 194 BasicBlock::iterator It(New); 195 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 196 ++It; 197 198 // Now that I is pointing to the first non-allocation-inst in the block, 199 // insert our getelementptr instruction... 200 // 201 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 202 Value *NullIdx = Constant::getNullValue(IdxTy); 203 Value *Idx[2] = {NullIdx, NullIdx}; 204 Instruction *GEP = 205 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 206 IC.InsertNewInstBefore(GEP, *It); 207 208 // Now make everything use the getelementptr instead of the original 209 // allocation. 210 return IC.replaceInstUsesWith(AI, GEP); 211 } 212 213 if (isa<UndefValue>(AI.getArraySize())) 214 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 215 216 // Ensure that the alloca array size argument has type intptr_t, so that 217 // any casting is exposed early. 218 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 219 if (AI.getArraySize()->getType() != IntPtrTy) { 220 Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false); 221 AI.setOperand(0, V); 222 return &AI; 223 } 224 225 return nullptr; 226 } 227 228 namespace { 229 // If I and V are pointers in different address space, it is not allowed to 230 // use replaceAllUsesWith since I and V have different types. A 231 // non-target-specific transformation should not use addrspacecast on V since 232 // the two address space may be disjoint depending on target. 233 // 234 // This class chases down uses of the old pointer until reaching the load 235 // instructions, then replaces the old pointer in the load instructions with 236 // the new pointer. If during the chasing it sees bitcast or GEP, it will 237 // create new bitcast or GEP with the new pointer and use them in the load 238 // instruction. 239 class PointerReplacer { 240 public: 241 PointerReplacer(InstCombiner &IC) : IC(IC) {} 242 void replacePointer(Instruction &I, Value *V); 243 244 private: 245 void findLoadAndReplace(Instruction &I); 246 void replace(Instruction *I); 247 Value *getReplacement(Value *I); 248 249 SmallVector<Instruction *, 4> Path; 250 MapVector<Value *, Value *> WorkMap; 251 InstCombiner &IC; 252 }; 253 } // end anonymous namespace 254 255 void PointerReplacer::findLoadAndReplace(Instruction &I) { 256 for (auto U : I.users()) { 257 auto *Inst = dyn_cast<Instruction>(&*U); 258 if (!Inst) 259 return; 260 DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 261 if (isa<LoadInst>(Inst)) { 262 for (auto P : Path) 263 replace(P); 264 replace(Inst); 265 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 266 Path.push_back(Inst); 267 findLoadAndReplace(*Inst); 268 Path.pop_back(); 269 } else { 270 return; 271 } 272 } 273 } 274 275 Value *PointerReplacer::getReplacement(Value *V) { 276 auto Loc = WorkMap.find(V); 277 if (Loc != WorkMap.end()) 278 return Loc->second; 279 return nullptr; 280 } 281 282 void PointerReplacer::replace(Instruction *I) { 283 if (getReplacement(I)) 284 return; 285 286 if (auto *LT = dyn_cast<LoadInst>(I)) { 287 auto *V = getReplacement(LT->getPointerOperand()); 288 assert(V && "Operand not replaced"); 289 auto *NewI = new LoadInst(V); 290 NewI->takeName(LT); 291 IC.InsertNewInstWith(NewI, *LT); 292 IC.replaceInstUsesWith(*LT, NewI); 293 WorkMap[LT] = NewI; 294 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 295 auto *V = getReplacement(GEP->getPointerOperand()); 296 assert(V && "Operand not replaced"); 297 SmallVector<Value *, 8> Indices; 298 Indices.append(GEP->idx_begin(), GEP->idx_end()); 299 auto *NewI = GetElementPtrInst::Create( 300 V->getType()->getPointerElementType(), V, Indices); 301 IC.InsertNewInstWith(NewI, *GEP); 302 NewI->takeName(GEP); 303 WorkMap[GEP] = NewI; 304 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 305 auto *V = getReplacement(BC->getOperand(0)); 306 assert(V && "Operand not replaced"); 307 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 308 V->getType()->getPointerAddressSpace()); 309 auto *NewI = new BitCastInst(V, NewT); 310 IC.InsertNewInstWith(NewI, *BC); 311 NewI->takeName(BC); 312 WorkMap[BC] = NewI; 313 } else { 314 llvm_unreachable("should never reach here"); 315 } 316 } 317 318 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 319 #ifndef NDEBUG 320 auto *PT = cast<PointerType>(I.getType()); 321 auto *NT = cast<PointerType>(V->getType()); 322 assert(PT != NT && PT->getElementType() == NT->getElementType() && 323 "Invalid usage"); 324 #endif 325 WorkMap[&I] = V; 326 findLoadAndReplace(I); 327 } 328 329 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 330 if (auto *I = simplifyAllocaArraySize(*this, AI)) 331 return I; 332 333 if (AI.getAllocatedType()->isSized()) { 334 // If the alignment is 0 (unspecified), assign it the preferred alignment. 335 if (AI.getAlignment() == 0) 336 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 337 338 // Move all alloca's of zero byte objects to the entry block and merge them 339 // together. Note that we only do this for alloca's, because malloc should 340 // allocate and return a unique pointer, even for a zero byte allocation. 341 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 342 // For a zero sized alloca there is no point in doing an array allocation. 343 // This is helpful if the array size is a complicated expression not used 344 // elsewhere. 345 if (AI.isArrayAllocation()) { 346 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 347 return &AI; 348 } 349 350 // Get the first instruction in the entry block. 351 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 352 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 353 if (FirstInst != &AI) { 354 // If the entry block doesn't start with a zero-size alloca then move 355 // this one to the start of the entry block. There is no problem with 356 // dominance as the array size was forced to a constant earlier already. 357 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 358 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 359 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 360 AI.moveBefore(FirstInst); 361 return &AI; 362 } 363 364 // If the alignment of the entry block alloca is 0 (unspecified), 365 // assign it the preferred alignment. 366 if (EntryAI->getAlignment() == 0) 367 EntryAI->setAlignment( 368 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 369 // Replace this zero-sized alloca with the one at the start of the entry 370 // block after ensuring that the address will be aligned enough for both 371 // types. 372 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 373 AI.getAlignment()); 374 EntryAI->setAlignment(MaxAlign); 375 if (AI.getType() != EntryAI->getType()) 376 return new BitCastInst(EntryAI, AI.getType()); 377 return replaceInstUsesWith(AI, EntryAI); 378 } 379 } 380 } 381 382 if (AI.getAlignment()) { 383 // Check to see if this allocation is only modified by a memcpy/memmove from 384 // a constant global whose alignment is equal to or exceeds that of the 385 // allocation. If this is the case, we can change all users to use 386 // the constant global instead. This is commonly produced by the CFE by 387 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 388 // is only subsequently read. 389 SmallVector<Instruction *, 4> ToDelete; 390 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 391 unsigned SourceAlign = getOrEnforceKnownAlignment( 392 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 393 if (AI.getAlignment() <= SourceAlign) { 394 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 395 DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 396 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 397 eraseInstFromFunction(*ToDelete[i]); 398 Constant *TheSrc = cast<Constant>(Copy->getSource()); 399 auto *SrcTy = TheSrc->getType(); 400 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 401 SrcTy->getPointerAddressSpace()); 402 Constant *Cast = 403 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 404 if (AI.getType()->getPointerAddressSpace() == 405 SrcTy->getPointerAddressSpace()) { 406 Instruction *NewI = replaceInstUsesWith(AI, Cast); 407 eraseInstFromFunction(*Copy); 408 ++NumGlobalCopies; 409 return NewI; 410 } else { 411 PointerReplacer PtrReplacer(*this); 412 PtrReplacer.replacePointer(AI, Cast); 413 ++NumGlobalCopies; 414 } 415 } 416 } 417 } 418 419 // At last, use the generic allocation site handler to aggressively remove 420 // unused allocas. 421 return visitAllocSite(AI); 422 } 423 424 // Are we allowed to form a atomic load or store of this type? 425 static bool isSupportedAtomicType(Type *Ty) { 426 return Ty->isIntegerTy() || Ty->isPointerTy() || Ty->isFloatingPointTy(); 427 } 428 429 /// \brief Helper to combine a load to a new type. 430 /// 431 /// This just does the work of combining a load to a new type. It handles 432 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 433 /// loaded *value* type. This will convert it to a pointer, cast the operand to 434 /// that pointer type, load it, etc. 435 /// 436 /// Note that this will create all of the instructions with whatever insert 437 /// point the \c InstCombiner currently is using. 438 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 439 const Twine &Suffix = "") { 440 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 441 "can't fold an atomic load to requested type"); 442 443 Value *Ptr = LI.getPointerOperand(); 444 unsigned AS = LI.getPointerAddressSpace(); 445 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 446 LI.getAllMetadata(MD); 447 448 LoadInst *NewLoad = IC.Builder->CreateAlignedLoad( 449 IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)), 450 LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 451 NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope()); 452 MDBuilder MDB(NewLoad->getContext()); 453 for (const auto &MDPair : MD) { 454 unsigned ID = MDPair.first; 455 MDNode *N = MDPair.second; 456 // Note, essentially every kind of metadata should be preserved here! This 457 // routine is supposed to clone a load instruction changing *only its type*. 458 // The only metadata it makes sense to drop is metadata which is invalidated 459 // when the pointer type changes. This should essentially never be the case 460 // in LLVM, but we explicitly switch over only known metadata to be 461 // conservatively correct. If you are adding metadata to LLVM which pertains 462 // to loads, you almost certainly want to add it here. 463 switch (ID) { 464 case LLVMContext::MD_dbg: 465 case LLVMContext::MD_tbaa: 466 case LLVMContext::MD_prof: 467 case LLVMContext::MD_fpmath: 468 case LLVMContext::MD_tbaa_struct: 469 case LLVMContext::MD_invariant_load: 470 case LLVMContext::MD_alias_scope: 471 case LLVMContext::MD_noalias: 472 case LLVMContext::MD_nontemporal: 473 case LLVMContext::MD_mem_parallel_loop_access: 474 // All of these directly apply. 475 NewLoad->setMetadata(ID, N); 476 break; 477 478 case LLVMContext::MD_nonnull: 479 // This only directly applies if the new type is also a pointer. 480 if (NewTy->isPointerTy()) { 481 NewLoad->setMetadata(ID, N); 482 break; 483 } 484 // If it's integral now, translate it to !range metadata. 485 if (NewTy->isIntegerTy()) { 486 auto *ITy = cast<IntegerType>(NewTy); 487 auto *NullInt = ConstantExpr::getPtrToInt( 488 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 489 auto *NonNullInt = 490 ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 491 NewLoad->setMetadata(LLVMContext::MD_range, 492 MDB.createRange(NonNullInt, NullInt)); 493 } 494 break; 495 case LLVMContext::MD_align: 496 case LLVMContext::MD_dereferenceable: 497 case LLVMContext::MD_dereferenceable_or_null: 498 // These only directly apply if the new type is also a pointer. 499 if (NewTy->isPointerTy()) 500 NewLoad->setMetadata(ID, N); 501 break; 502 case LLVMContext::MD_range: 503 // FIXME: It would be nice to propagate this in some way, but the type 504 // conversions make it hard. 505 506 // If it's a pointer now and the range does not contain 0, make it !nonnull. 507 if (NewTy->isPointerTy()) { 508 unsigned BitWidth = IC.getDataLayout().getTypeSizeInBits(NewTy); 509 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 510 MDNode *NN = MDNode::get(LI.getContext(), None); 511 NewLoad->setMetadata(LLVMContext::MD_nonnull, NN); 512 } 513 } 514 break; 515 } 516 } 517 return NewLoad; 518 } 519 520 /// \brief Combine a store to a new type. 521 /// 522 /// Returns the newly created store instruction. 523 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 524 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 525 "can't fold an atomic store of requested type"); 526 527 Value *Ptr = SI.getPointerOperand(); 528 unsigned AS = SI.getPointerAddressSpace(); 529 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 530 SI.getAllMetadata(MD); 531 532 StoreInst *NewStore = IC.Builder->CreateAlignedStore( 533 V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 534 SI.getAlignment(), SI.isVolatile()); 535 NewStore->setAtomic(SI.getOrdering(), SI.getSynchScope()); 536 for (const auto &MDPair : MD) { 537 unsigned ID = MDPair.first; 538 MDNode *N = MDPair.second; 539 // Note, essentially every kind of metadata should be preserved here! This 540 // routine is supposed to clone a store instruction changing *only its 541 // type*. The only metadata it makes sense to drop is metadata which is 542 // invalidated when the pointer type changes. This should essentially 543 // never be the case in LLVM, but we explicitly switch over only known 544 // metadata to be conservatively correct. If you are adding metadata to 545 // LLVM which pertains to stores, you almost certainly want to add it 546 // here. 547 switch (ID) { 548 case LLVMContext::MD_dbg: 549 case LLVMContext::MD_tbaa: 550 case LLVMContext::MD_prof: 551 case LLVMContext::MD_fpmath: 552 case LLVMContext::MD_tbaa_struct: 553 case LLVMContext::MD_alias_scope: 554 case LLVMContext::MD_noalias: 555 case LLVMContext::MD_nontemporal: 556 case LLVMContext::MD_mem_parallel_loop_access: 557 // All of these directly apply. 558 NewStore->setMetadata(ID, N); 559 break; 560 561 case LLVMContext::MD_invariant_load: 562 case LLVMContext::MD_nonnull: 563 case LLVMContext::MD_range: 564 case LLVMContext::MD_align: 565 case LLVMContext::MD_dereferenceable: 566 case LLVMContext::MD_dereferenceable_or_null: 567 // These don't apply for stores. 568 break; 569 } 570 } 571 572 return NewStore; 573 } 574 575 /// \brief Combine loads to match the type of their uses' value after looking 576 /// through intervening bitcasts. 577 /// 578 /// The core idea here is that if the result of a load is used in an operation, 579 /// we should load the type most conducive to that operation. For example, when 580 /// loading an integer and converting that immediately to a pointer, we should 581 /// instead directly load a pointer. 582 /// 583 /// However, this routine must never change the width of a load or the number of 584 /// loads as that would introduce a semantic change. This combine is expected to 585 /// be a semantic no-op which just allows loads to more closely model the types 586 /// of their consuming operations. 587 /// 588 /// Currently, we also refuse to change the precise type used for an atomic load 589 /// or a volatile load. This is debatable, and might be reasonable to change 590 /// later. However, it is risky in case some backend or other part of LLVM is 591 /// relying on the exact type loaded to select appropriate atomic operations. 592 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 593 // FIXME: We could probably with some care handle both volatile and ordered 594 // atomic loads here but it isn't clear that this is important. 595 if (!LI.isUnordered()) 596 return nullptr; 597 598 if (LI.use_empty()) 599 return nullptr; 600 601 // swifterror values can't be bitcasted. 602 if (LI.getPointerOperand()->isSwiftError()) 603 return nullptr; 604 605 Type *Ty = LI.getType(); 606 const DataLayout &DL = IC.getDataLayout(); 607 608 // Try to canonicalize loads which are only ever stored to operate over 609 // integers instead of any other type. We only do this when the loaded type 610 // is sized and has a size exactly the same as its store size and the store 611 // size is a legal integer type. 612 if (!Ty->isIntegerTy() && Ty->isSized() && 613 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 614 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) && 615 !DL.isNonIntegralPointerType(Ty)) { 616 if (all_of(LI.users(), [&LI](User *U) { 617 auto *SI = dyn_cast<StoreInst>(U); 618 return SI && SI->getPointerOperand() != &LI && 619 !SI->getPointerOperand()->isSwiftError(); 620 })) { 621 LoadInst *NewLoad = combineLoadToNewType( 622 IC, LI, 623 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 624 // Replace all the stores with stores of the newly loaded value. 625 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 626 auto *SI = cast<StoreInst>(*UI++); 627 IC.Builder->SetInsertPoint(SI); 628 combineStoreToNewValue(IC, *SI, NewLoad); 629 IC.eraseInstFromFunction(*SI); 630 } 631 assert(LI.use_empty() && "Failed to remove all users of the load!"); 632 // Return the old load so the combiner can delete it safely. 633 return &LI; 634 } 635 } 636 637 // Fold away bit casts of the loaded value by loading the desired type. 638 // We can do this for BitCastInsts as well as casts from and to pointer types, 639 // as long as those are noops (i.e., the source or dest type have the same 640 // bitwidth as the target's pointers). 641 if (LI.hasOneUse()) 642 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 643 if (CI->isNoopCast(DL)) 644 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 645 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 646 CI->replaceAllUsesWith(NewLoad); 647 IC.eraseInstFromFunction(*CI); 648 return &LI; 649 } 650 651 // FIXME: We should also canonicalize loads of vectors when their elements are 652 // cast to other types. 653 return nullptr; 654 } 655 656 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 657 // FIXME: We could probably with some care handle both volatile and atomic 658 // stores here but it isn't clear that this is important. 659 if (!LI.isSimple()) 660 return nullptr; 661 662 Type *T = LI.getType(); 663 if (!T->isAggregateType()) 664 return nullptr; 665 666 StringRef Name = LI.getName(); 667 assert(LI.getAlignment() && "Alignment must be set at this point"); 668 669 if (auto *ST = dyn_cast<StructType>(T)) { 670 // If the struct only have one element, we unpack. 671 auto NumElements = ST->getNumElements(); 672 if (NumElements == 1) { 673 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 674 ".unpack"); 675 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 676 UndefValue::get(T), NewLoad, 0, Name)); 677 } 678 679 // We don't want to break loads with padding here as we'd loose 680 // the knowledge that padding exists for the rest of the pipeline. 681 const DataLayout &DL = IC.getDataLayout(); 682 auto *SL = DL.getStructLayout(ST); 683 if (SL->hasPadding()) 684 return nullptr; 685 686 auto Align = LI.getAlignment(); 687 if (!Align) 688 Align = DL.getABITypeAlignment(ST); 689 690 auto *Addr = LI.getPointerOperand(); 691 auto *IdxType = Type::getInt32Ty(T->getContext()); 692 auto *Zero = ConstantInt::get(IdxType, 0); 693 694 Value *V = UndefValue::get(T); 695 for (unsigned i = 0; i < NumElements; i++) { 696 Value *Indices[2] = { 697 Zero, 698 ConstantInt::get(IdxType, i), 699 }; 700 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 701 Name + ".elt"); 702 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 703 auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 704 V = IC.Builder->CreateInsertValue(V, L, i); 705 } 706 707 V->setName(Name); 708 return IC.replaceInstUsesWith(LI, V); 709 } 710 711 if (auto *AT = dyn_cast<ArrayType>(T)) { 712 auto *ET = AT->getElementType(); 713 auto NumElements = AT->getNumElements(); 714 if (NumElements == 1) { 715 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 716 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 717 UndefValue::get(T), NewLoad, 0, Name)); 718 } 719 720 // Bail out if the array is too large. Ideally we would like to optimize 721 // arrays of arbitrary size but this has a terrible impact on compile time. 722 // The threshold here is chosen arbitrarily, maybe needs a little bit of 723 // tuning. 724 if (NumElements > IC.MaxArraySizeForCombine) 725 return nullptr; 726 727 const DataLayout &DL = IC.getDataLayout(); 728 auto EltSize = DL.getTypeAllocSize(ET); 729 auto Align = LI.getAlignment(); 730 if (!Align) 731 Align = DL.getABITypeAlignment(T); 732 733 auto *Addr = LI.getPointerOperand(); 734 auto *IdxType = Type::getInt64Ty(T->getContext()); 735 auto *Zero = ConstantInt::get(IdxType, 0); 736 737 Value *V = UndefValue::get(T); 738 uint64_t Offset = 0; 739 for (uint64_t i = 0; i < NumElements; i++) { 740 Value *Indices[2] = { 741 Zero, 742 ConstantInt::get(IdxType, i), 743 }; 744 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 745 Name + ".elt"); 746 auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 747 Name + ".unpack"); 748 V = IC.Builder->CreateInsertValue(V, L, i); 749 Offset += EltSize; 750 } 751 752 V->setName(Name); 753 return IC.replaceInstUsesWith(LI, V); 754 } 755 756 return nullptr; 757 } 758 759 // If we can determine that all possible objects pointed to by the provided 760 // pointer value are, not only dereferenceable, but also definitively less than 761 // or equal to the provided maximum size, then return true. Otherwise, return 762 // false (constant global values and allocas fall into this category). 763 // 764 // FIXME: This should probably live in ValueTracking (or similar). 765 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 766 const DataLayout &DL) { 767 SmallPtrSet<Value *, 4> Visited; 768 SmallVector<Value *, 4> Worklist(1, V); 769 770 do { 771 Value *P = Worklist.pop_back_val(); 772 P = P->stripPointerCasts(); 773 774 if (!Visited.insert(P).second) 775 continue; 776 777 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 778 Worklist.push_back(SI->getTrueValue()); 779 Worklist.push_back(SI->getFalseValue()); 780 continue; 781 } 782 783 if (PHINode *PN = dyn_cast<PHINode>(P)) { 784 for (Value *IncValue : PN->incoming_values()) 785 Worklist.push_back(IncValue); 786 continue; 787 } 788 789 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 790 if (GA->isInterposable()) 791 return false; 792 Worklist.push_back(GA->getAliasee()); 793 continue; 794 } 795 796 // If we know how big this object is, and it is less than MaxSize, continue 797 // searching. Otherwise, return false. 798 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 799 if (!AI->getAllocatedType()->isSized()) 800 return false; 801 802 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 803 if (!CS) 804 return false; 805 806 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 807 // Make sure that, even if the multiplication below would wrap as an 808 // uint64_t, we still do the right thing. 809 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 810 return false; 811 continue; 812 } 813 814 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 815 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 816 return false; 817 818 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 819 if (InitSize > MaxSize) 820 return false; 821 continue; 822 } 823 824 return false; 825 } while (!Worklist.empty()); 826 827 return true; 828 } 829 830 // If we're indexing into an object of a known size, and the outer index is 831 // not a constant, but having any value but zero would lead to undefined 832 // behavior, replace it with zero. 833 // 834 // For example, if we have: 835 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 836 // ... 837 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 838 // ... = load i32* %arrayidx, align 4 839 // Then we know that we can replace %x in the GEP with i64 0. 840 // 841 // FIXME: We could fold any GEP index to zero that would cause UB if it were 842 // not zero. Currently, we only handle the first such index. Also, we could 843 // also search through non-zero constant indices if we kept track of the 844 // offsets those indices implied. 845 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 846 Instruction *MemI, unsigned &Idx) { 847 if (GEPI->getNumOperands() < 2) 848 return false; 849 850 // Find the first non-zero index of a GEP. If all indices are zero, return 851 // one past the last index. 852 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 853 unsigned I = 1; 854 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 855 Value *V = GEPI->getOperand(I); 856 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 857 if (CI->isZero()) 858 continue; 859 860 break; 861 } 862 863 return I; 864 }; 865 866 // Skip through initial 'zero' indices, and find the corresponding pointer 867 // type. See if the next index is not a constant. 868 Idx = FirstNZIdx(GEPI); 869 if (Idx == GEPI->getNumOperands()) 870 return false; 871 if (isa<Constant>(GEPI->getOperand(Idx))) 872 return false; 873 874 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 875 Type *AllocTy = 876 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 877 if (!AllocTy || !AllocTy->isSized()) 878 return false; 879 const DataLayout &DL = IC.getDataLayout(); 880 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 881 882 // If there are more indices after the one we might replace with a zero, make 883 // sure they're all non-negative. If any of them are negative, the overall 884 // address being computed might be before the base address determined by the 885 // first non-zero index. 886 auto IsAllNonNegative = [&]() { 887 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 888 bool KnownNonNegative, KnownNegative; 889 IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative, 890 KnownNegative, 0, MemI); 891 if (KnownNonNegative) 892 continue; 893 return false; 894 } 895 896 return true; 897 }; 898 899 // FIXME: If the GEP is not inbounds, and there are extra indices after the 900 // one we'll replace, those could cause the address computation to wrap 901 // (rendering the IsAllNonNegative() check below insufficient). We can do 902 // better, ignoring zero indices (and other indices we can prove small 903 // enough not to wrap). 904 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 905 return false; 906 907 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 908 // also known to be dereferenceable. 909 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 910 IsAllNonNegative(); 911 } 912 913 // If we're indexing into an object with a variable index for the memory 914 // access, but the object has only one element, we can assume that the index 915 // will always be zero. If we replace the GEP, return it. 916 template <typename T> 917 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 918 T &MemI) { 919 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 920 unsigned Idx; 921 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 922 Instruction *NewGEPI = GEPI->clone(); 923 NewGEPI->setOperand(Idx, 924 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 925 NewGEPI->insertBefore(GEPI); 926 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 927 return NewGEPI; 928 } 929 } 930 931 return nullptr; 932 } 933 934 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 935 Value *Op = LI.getOperand(0); 936 937 // Try to canonicalize the loaded type. 938 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 939 return Res; 940 941 // Attempt to improve the alignment. 942 unsigned KnownAlign = getOrEnforceKnownAlignment( 943 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 944 unsigned LoadAlign = LI.getAlignment(); 945 unsigned EffectiveLoadAlign = 946 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 947 948 if (KnownAlign > EffectiveLoadAlign) 949 LI.setAlignment(KnownAlign); 950 else if (LoadAlign == 0) 951 LI.setAlignment(EffectiveLoadAlign); 952 953 // Replace GEP indices if possible. 954 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 955 Worklist.Add(NewGEPI); 956 return &LI; 957 } 958 959 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 960 return Res; 961 962 // Do really simple store-to-load forwarding and load CSE, to catch cases 963 // where there are several consecutive memory accesses to the same location, 964 // separated by a few arithmetic operations. 965 BasicBlock::iterator BBI(LI); 966 bool IsLoadCSE = false; 967 if (Value *AvailableVal = FindAvailableLoadedValue( 968 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 969 if (IsLoadCSE) 970 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI); 971 972 return replaceInstUsesWith( 973 LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(), 974 LI.getName() + ".cast")); 975 } 976 977 // None of the following transforms are legal for volatile/ordered atomic 978 // loads. Most of them do apply for unordered atomics. 979 if (!LI.isUnordered()) return nullptr; 980 981 // load(gep null, ...) -> unreachable 982 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 983 const Value *GEPI0 = GEPI->getOperand(0); 984 // TODO: Consider a target hook for valid address spaces for this xform. 985 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ 986 // Insert a new store to null instruction before the load to indicate 987 // that this code is not reachable. We do this instead of inserting 988 // an unreachable instruction directly because we cannot modify the 989 // CFG. 990 new StoreInst(UndefValue::get(LI.getType()), 991 Constant::getNullValue(Op->getType()), &LI); 992 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 993 } 994 } 995 996 // load null/undef -> unreachable 997 // TODO: Consider a target hook for valid address spaces for this xform. 998 if (isa<UndefValue>(Op) || 999 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { 1000 // Insert a new store to null instruction before the load to indicate that 1001 // this code is not reachable. We do this instead of inserting an 1002 // unreachable instruction directly because we cannot modify the CFG. 1003 new StoreInst(UndefValue::get(LI.getType()), 1004 Constant::getNullValue(Op->getType()), &LI); 1005 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 1006 } 1007 1008 if (Op->hasOneUse()) { 1009 // Change select and PHI nodes to select values instead of addresses: this 1010 // helps alias analysis out a lot, allows many others simplifications, and 1011 // exposes redundancy in the code. 1012 // 1013 // Note that we cannot do the transformation unless we know that the 1014 // introduced loads cannot trap! Something like this is valid as long as 1015 // the condition is always false: load (select bool %C, int* null, int* %G), 1016 // but it would not be valid if we transformed it to load from null 1017 // unconditionally. 1018 // 1019 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1020 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1021 unsigned Align = LI.getAlignment(); 1022 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && 1023 isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { 1024 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), 1025 SI->getOperand(1)->getName()+".val"); 1026 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), 1027 SI->getOperand(2)->getName()+".val"); 1028 assert(LI.isUnordered() && "implied by above"); 1029 V1->setAlignment(Align); 1030 V1->setAtomic(LI.getOrdering(), LI.getSynchScope()); 1031 V2->setAlignment(Align); 1032 V2->setAtomic(LI.getOrdering(), LI.getSynchScope()); 1033 return SelectInst::Create(SI->getCondition(), V1, V2); 1034 } 1035 1036 // load (select (cond, null, P)) -> load P 1037 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1038 LI.getPointerAddressSpace() == 0) { 1039 LI.setOperand(0, SI->getOperand(2)); 1040 return &LI; 1041 } 1042 1043 // load (select (cond, P, null)) -> load P 1044 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1045 LI.getPointerAddressSpace() == 0) { 1046 LI.setOperand(0, SI->getOperand(1)); 1047 return &LI; 1048 } 1049 } 1050 } 1051 return nullptr; 1052 } 1053 1054 /// \brief Look for extractelement/insertvalue sequence that acts like a bitcast. 1055 /// 1056 /// \returns underlying value that was "cast", or nullptr otherwise. 1057 /// 1058 /// For example, if we have: 1059 /// 1060 /// %E0 = extractelement <2 x double> %U, i32 0 1061 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1062 /// %E1 = extractelement <2 x double> %U, i32 1 1063 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1064 /// 1065 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1066 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1067 /// Note that %U may contain non-undef values where %V1 has undef. 1068 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1069 Value *U = nullptr; 1070 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1071 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1072 if (!E) 1073 return nullptr; 1074 auto *W = E->getVectorOperand(); 1075 if (!U) 1076 U = W; 1077 else if (U != W) 1078 return nullptr; 1079 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1080 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1081 return nullptr; 1082 V = IV->getAggregateOperand(); 1083 } 1084 if (!isa<UndefValue>(V) ||!U) 1085 return nullptr; 1086 1087 auto *UT = cast<VectorType>(U->getType()); 1088 auto *VT = V->getType(); 1089 // Check that types UT and VT are bitwise isomorphic. 1090 const auto &DL = IC.getDataLayout(); 1091 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1092 return nullptr; 1093 } 1094 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1095 if (AT->getNumElements() != UT->getNumElements()) 1096 return nullptr; 1097 } else { 1098 auto *ST = cast<StructType>(VT); 1099 if (ST->getNumElements() != UT->getNumElements()) 1100 return nullptr; 1101 for (const auto *EltT : ST->elements()) { 1102 if (EltT != UT->getElementType()) 1103 return nullptr; 1104 } 1105 } 1106 return U; 1107 } 1108 1109 /// \brief Combine stores to match the type of value being stored. 1110 /// 1111 /// The core idea here is that the memory does not have any intrinsic type and 1112 /// where we can we should match the type of a store to the type of value being 1113 /// stored. 1114 /// 1115 /// However, this routine must never change the width of a store or the number of 1116 /// stores as that would introduce a semantic change. This combine is expected to 1117 /// be a semantic no-op which just allows stores to more closely model the types 1118 /// of their incoming values. 1119 /// 1120 /// Currently, we also refuse to change the precise type used for an atomic or 1121 /// volatile store. This is debatable, and might be reasonable to change later. 1122 /// However, it is risky in case some backend or other part of LLVM is relying 1123 /// on the exact type stored to select appropriate atomic operations. 1124 /// 1125 /// \returns true if the store was successfully combined away. This indicates 1126 /// the caller must erase the store instruction. We have to let the caller erase 1127 /// the store instruction as otherwise there is no way to signal whether it was 1128 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1129 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1130 // FIXME: We could probably with some care handle both volatile and ordered 1131 // atomic stores here but it isn't clear that this is important. 1132 if (!SI.isUnordered()) 1133 return false; 1134 1135 // swifterror values can't be bitcasted. 1136 if (SI.getPointerOperand()->isSwiftError()) 1137 return false; 1138 1139 Value *V = SI.getValueOperand(); 1140 1141 // Fold away bit casts of the stored value by storing the original type. 1142 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1143 V = BC->getOperand(0); 1144 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1145 combineStoreToNewValue(IC, SI, V); 1146 return true; 1147 } 1148 } 1149 1150 if (Value *U = likeBitCastFromVector(IC, V)) 1151 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1152 combineStoreToNewValue(IC, SI, U); 1153 return true; 1154 } 1155 1156 // FIXME: We should also canonicalize stores of vectors when their elements 1157 // are cast to other types. 1158 return false; 1159 } 1160 1161 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1162 // FIXME: We could probably with some care handle both volatile and atomic 1163 // stores here but it isn't clear that this is important. 1164 if (!SI.isSimple()) 1165 return false; 1166 1167 Value *V = SI.getValueOperand(); 1168 Type *T = V->getType(); 1169 1170 if (!T->isAggregateType()) 1171 return false; 1172 1173 if (auto *ST = dyn_cast<StructType>(T)) { 1174 // If the struct only have one element, we unpack. 1175 unsigned Count = ST->getNumElements(); 1176 if (Count == 1) { 1177 V = IC.Builder->CreateExtractValue(V, 0); 1178 combineStoreToNewValue(IC, SI, V); 1179 return true; 1180 } 1181 1182 // We don't want to break loads with padding here as we'd loose 1183 // the knowledge that padding exists for the rest of the pipeline. 1184 const DataLayout &DL = IC.getDataLayout(); 1185 auto *SL = DL.getStructLayout(ST); 1186 if (SL->hasPadding()) 1187 return false; 1188 1189 auto Align = SI.getAlignment(); 1190 if (!Align) 1191 Align = DL.getABITypeAlignment(ST); 1192 1193 SmallString<16> EltName = V->getName(); 1194 EltName += ".elt"; 1195 auto *Addr = SI.getPointerOperand(); 1196 SmallString<16> AddrName = Addr->getName(); 1197 AddrName += ".repack"; 1198 1199 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1200 auto *Zero = ConstantInt::get(IdxType, 0); 1201 for (unsigned i = 0; i < Count; i++) { 1202 Value *Indices[2] = { 1203 Zero, 1204 ConstantInt::get(IdxType, i), 1205 }; 1206 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1207 AddrName); 1208 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1209 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1210 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1211 } 1212 1213 return true; 1214 } 1215 1216 if (auto *AT = dyn_cast<ArrayType>(T)) { 1217 // If the array only have one element, we unpack. 1218 auto NumElements = AT->getNumElements(); 1219 if (NumElements == 1) { 1220 V = IC.Builder->CreateExtractValue(V, 0); 1221 combineStoreToNewValue(IC, SI, V); 1222 return true; 1223 } 1224 1225 // Bail out if the array is too large. Ideally we would like to optimize 1226 // arrays of arbitrary size but this has a terrible impact on compile time. 1227 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1228 // tuning. 1229 if (NumElements > IC.MaxArraySizeForCombine) 1230 return false; 1231 1232 const DataLayout &DL = IC.getDataLayout(); 1233 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1234 auto Align = SI.getAlignment(); 1235 if (!Align) 1236 Align = DL.getABITypeAlignment(T); 1237 1238 SmallString<16> EltName = V->getName(); 1239 EltName += ".elt"; 1240 auto *Addr = SI.getPointerOperand(); 1241 SmallString<16> AddrName = Addr->getName(); 1242 AddrName += ".repack"; 1243 1244 auto *IdxType = Type::getInt64Ty(T->getContext()); 1245 auto *Zero = ConstantInt::get(IdxType, 0); 1246 1247 uint64_t Offset = 0; 1248 for (uint64_t i = 0; i < NumElements; i++) { 1249 Value *Indices[2] = { 1250 Zero, 1251 ConstantInt::get(IdxType, i), 1252 }; 1253 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1254 AddrName); 1255 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1256 auto EltAlign = MinAlign(Align, Offset); 1257 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1258 Offset += EltSize; 1259 } 1260 1261 return true; 1262 } 1263 1264 return false; 1265 } 1266 1267 /// equivalentAddressValues - Test if A and B will obviously have the same 1268 /// value. This includes recognizing that %t0 and %t1 will have the same 1269 /// value in code like this: 1270 /// %t0 = getelementptr \@a, 0, 3 1271 /// store i32 0, i32* %t0 1272 /// %t1 = getelementptr \@a, 0, 3 1273 /// %t2 = load i32* %t1 1274 /// 1275 static bool equivalentAddressValues(Value *A, Value *B) { 1276 // Test if the values are trivially equivalent. 1277 if (A == B) return true; 1278 1279 // Test if the values come form identical arithmetic instructions. 1280 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1281 // its only used to compare two uses within the same basic block, which 1282 // means that they'll always either have the same value or one of them 1283 // will have an undefined value. 1284 if (isa<BinaryOperator>(A) || 1285 isa<CastInst>(A) || 1286 isa<PHINode>(A) || 1287 isa<GetElementPtrInst>(A)) 1288 if (Instruction *BI = dyn_cast<Instruction>(B)) 1289 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1290 return true; 1291 1292 // Otherwise they may not be equivalent. 1293 return false; 1294 } 1295 1296 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1297 Value *Val = SI.getOperand(0); 1298 Value *Ptr = SI.getOperand(1); 1299 1300 // Try to canonicalize the stored type. 1301 if (combineStoreToValueType(*this, SI)) 1302 return eraseInstFromFunction(SI); 1303 1304 // Attempt to improve the alignment. 1305 unsigned KnownAlign = getOrEnforceKnownAlignment( 1306 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1307 unsigned StoreAlign = SI.getAlignment(); 1308 unsigned EffectiveStoreAlign = 1309 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1310 1311 if (KnownAlign > EffectiveStoreAlign) 1312 SI.setAlignment(KnownAlign); 1313 else if (StoreAlign == 0) 1314 SI.setAlignment(EffectiveStoreAlign); 1315 1316 // Try to canonicalize the stored type. 1317 if (unpackStoreToAggregate(*this, SI)) 1318 return eraseInstFromFunction(SI); 1319 1320 // Replace GEP indices if possible. 1321 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1322 Worklist.Add(NewGEPI); 1323 return &SI; 1324 } 1325 1326 // Don't hack volatile/ordered stores. 1327 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1328 if (!SI.isUnordered()) return nullptr; 1329 1330 // If the RHS is an alloca with a single use, zapify the store, making the 1331 // alloca dead. 1332 if (Ptr->hasOneUse()) { 1333 if (isa<AllocaInst>(Ptr)) 1334 return eraseInstFromFunction(SI); 1335 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1336 if (isa<AllocaInst>(GEP->getOperand(0))) { 1337 if (GEP->getOperand(0)->hasOneUse()) 1338 return eraseInstFromFunction(SI); 1339 } 1340 } 1341 } 1342 1343 // Do really simple DSE, to catch cases where there are several consecutive 1344 // stores to the same location, separated by a few arithmetic operations. This 1345 // situation often occurs with bitfield accesses. 1346 BasicBlock::iterator BBI(SI); 1347 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1348 --ScanInsts) { 1349 --BBI; 1350 // Don't count debug info directives, lest they affect codegen, 1351 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1352 if (isa<DbgInfoIntrinsic>(BBI) || 1353 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1354 ScanInsts++; 1355 continue; 1356 } 1357 1358 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1359 // Prev store isn't volatile, and stores to the same location? 1360 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1361 SI.getOperand(1))) { 1362 ++NumDeadStore; 1363 ++BBI; 1364 eraseInstFromFunction(*PrevSI); 1365 continue; 1366 } 1367 break; 1368 } 1369 1370 // If this is a load, we have to stop. However, if the loaded value is from 1371 // the pointer we're loading and is producing the pointer we're storing, 1372 // then *this* store is dead (X = load P; store X -> P). 1373 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1374 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1375 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1376 return eraseInstFromFunction(SI); 1377 } 1378 1379 // Otherwise, this is a load from some other location. Stores before it 1380 // may not be dead. 1381 break; 1382 } 1383 1384 // Don't skip over loads, throws or things that can modify memory. 1385 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1386 break; 1387 } 1388 1389 // store X, null -> turns into 'unreachable' in SimplifyCFG 1390 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { 1391 if (!isa<UndefValue>(Val)) { 1392 SI.setOperand(0, UndefValue::get(Val->getType())); 1393 if (Instruction *U = dyn_cast<Instruction>(Val)) 1394 Worklist.Add(U); // Dropped a use. 1395 } 1396 return nullptr; // Do not modify these! 1397 } 1398 1399 // store undef, Ptr -> noop 1400 if (isa<UndefValue>(Val)) 1401 return eraseInstFromFunction(SI); 1402 1403 // If this store is the last instruction in the basic block (possibly 1404 // excepting debug info instructions), and if the block ends with an 1405 // unconditional branch, try to move it to the successor block. 1406 BBI = SI.getIterator(); 1407 do { 1408 ++BBI; 1409 } while (isa<DbgInfoIntrinsic>(BBI) || 1410 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1411 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1412 if (BI->isUnconditional()) 1413 if (SimplifyStoreAtEndOfBlock(SI)) 1414 return nullptr; // xform done! 1415 1416 return nullptr; 1417 } 1418 1419 /// SimplifyStoreAtEndOfBlock - Turn things like: 1420 /// if () { *P = v1; } else { *P = v2 } 1421 /// into a phi node with a store in the successor. 1422 /// 1423 /// Simplify things like: 1424 /// *P = v1; if () { *P = v2; } 1425 /// into a phi node with a store in the successor. 1426 /// 1427 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1428 assert(SI.isUnordered() && 1429 "this code has not been auditted for volatile or ordered store case"); 1430 1431 BasicBlock *StoreBB = SI.getParent(); 1432 1433 // Check to see if the successor block has exactly two incoming edges. If 1434 // so, see if the other predecessor contains a store to the same location. 1435 // if so, insert a PHI node (if needed) and move the stores down. 1436 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1437 1438 // Determine whether Dest has exactly two predecessors and, if so, compute 1439 // the other predecessor. 1440 pred_iterator PI = pred_begin(DestBB); 1441 BasicBlock *P = *PI; 1442 BasicBlock *OtherBB = nullptr; 1443 1444 if (P != StoreBB) 1445 OtherBB = P; 1446 1447 if (++PI == pred_end(DestBB)) 1448 return false; 1449 1450 P = *PI; 1451 if (P != StoreBB) { 1452 if (OtherBB) 1453 return false; 1454 OtherBB = P; 1455 } 1456 if (++PI != pred_end(DestBB)) 1457 return false; 1458 1459 // Bail out if all the relevant blocks aren't distinct (this can happen, 1460 // for example, if SI is in an infinite loop) 1461 if (StoreBB == DestBB || OtherBB == DestBB) 1462 return false; 1463 1464 // Verify that the other block ends in a branch and is not otherwise empty. 1465 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1466 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1467 if (!OtherBr || BBI == OtherBB->begin()) 1468 return false; 1469 1470 // If the other block ends in an unconditional branch, check for the 'if then 1471 // else' case. there is an instruction before the branch. 1472 StoreInst *OtherStore = nullptr; 1473 if (OtherBr->isUnconditional()) { 1474 --BBI; 1475 // Skip over debugging info. 1476 while (isa<DbgInfoIntrinsic>(BBI) || 1477 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1478 if (BBI==OtherBB->begin()) 1479 return false; 1480 --BBI; 1481 } 1482 // If this isn't a store, isn't a store to the same location, or is not the 1483 // right kind of store, bail out. 1484 OtherStore = dyn_cast<StoreInst>(BBI); 1485 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1486 !SI.isSameOperationAs(OtherStore)) 1487 return false; 1488 } else { 1489 // Otherwise, the other block ended with a conditional branch. If one of the 1490 // destinations is StoreBB, then we have the if/then case. 1491 if (OtherBr->getSuccessor(0) != StoreBB && 1492 OtherBr->getSuccessor(1) != StoreBB) 1493 return false; 1494 1495 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1496 // if/then triangle. See if there is a store to the same ptr as SI that 1497 // lives in OtherBB. 1498 for (;; --BBI) { 1499 // Check to see if we find the matching store. 1500 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1501 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1502 !SI.isSameOperationAs(OtherStore)) 1503 return false; 1504 break; 1505 } 1506 // If we find something that may be using or overwriting the stored 1507 // value, or if we run out of instructions, we can't do the xform. 1508 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1509 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1510 return false; 1511 } 1512 1513 // In order to eliminate the store in OtherBr, we have to 1514 // make sure nothing reads or overwrites the stored value in 1515 // StoreBB. 1516 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1517 // FIXME: This should really be AA driven. 1518 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1519 return false; 1520 } 1521 } 1522 1523 // Insert a PHI node now if we need it. 1524 Value *MergedVal = OtherStore->getOperand(0); 1525 if (MergedVal != SI.getOperand(0)) { 1526 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1527 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1528 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1529 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1530 } 1531 1532 // Advance to a place where it is safe to insert the new store and 1533 // insert it. 1534 BBI = DestBB->getFirstInsertionPt(); 1535 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1536 SI.isVolatile(), 1537 SI.getAlignment(), 1538 SI.getOrdering(), 1539 SI.getSynchScope()); 1540 InsertNewInstBefore(NewSI, *BBI); 1541 // The debug locations of the original instructions might differ; merge them. 1542 NewSI->setDebugLoc(DILocation::getMergedLocation(SI.getDebugLoc(), 1543 OtherStore->getDebugLoc())); 1544 1545 // If the two stores had AA tags, merge them. 1546 AAMDNodes AATags; 1547 SI.getAAMetadata(AATags); 1548 if (AATags) { 1549 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1550 NewSI->setAAMetadata(AATags); 1551 } 1552 1553 // Nuke the old stores. 1554 eraseInstFromFunction(SI); 1555 eraseInstFromFunction(*OtherStore); 1556 return true; 1557 } 1558