1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for load, store and alloca.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/MapVector.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/Transforms/Utils/Local.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/DebugInfoMetadata.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/MDBuilder.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 using namespace llvm;
29 using namespace PatternMatch;
30 
31 #define DEBUG_TYPE "instcombine"
32 
33 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
34 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
35 
36 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
37 /// some part of a constant global variable.  This intentionally only accepts
38 /// constant expressions because we can't rewrite arbitrary instructions.
39 static bool pointsToConstantGlobal(Value *V) {
40   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
41     return GV->isConstant();
42 
43   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
44     if (CE->getOpcode() == Instruction::BitCast ||
45         CE->getOpcode() == Instruction::AddrSpaceCast ||
46         CE->getOpcode() == Instruction::GetElementPtr)
47       return pointsToConstantGlobal(CE->getOperand(0));
48   }
49   return false;
50 }
51 
52 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
53 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
54 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
55 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
56 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
57 /// the alloca, and if the source pointer is a pointer to a constant global, we
58 /// can optimize this.
59 static bool
60 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
61                                SmallVectorImpl<Instruction *> &ToDelete) {
62   // We track lifetime intrinsics as we encounter them.  If we decide to go
63   // ahead and replace the value with the global, this lets the caller quickly
64   // eliminate the markers.
65 
66   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
67   ValuesToInspect.emplace_back(V, false);
68   while (!ValuesToInspect.empty()) {
69     auto ValuePair = ValuesToInspect.pop_back_val();
70     const bool IsOffset = ValuePair.second;
71     for (auto &U : ValuePair.first->uses()) {
72       auto *I = cast<Instruction>(U.getUser());
73 
74       if (auto *LI = dyn_cast<LoadInst>(I)) {
75         // Ignore non-volatile loads, they are always ok.
76         if (!LI->isSimple()) return false;
77         continue;
78       }
79 
80       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
81         // If uses of the bitcast are ok, we are ok.
82         ValuesToInspect.emplace_back(I, IsOffset);
83         continue;
84       }
85       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
86         // If the GEP has all zero indices, it doesn't offset the pointer. If it
87         // doesn't, it does.
88         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
89         continue;
90       }
91 
92       if (auto CS = CallSite(I)) {
93         // If this is the function being called then we treat it like a load and
94         // ignore it.
95         if (CS.isCallee(&U))
96           continue;
97 
98         unsigned DataOpNo = CS.getDataOperandNo(&U);
99         bool IsArgOperand = CS.isArgOperand(&U);
100 
101         // Inalloca arguments are clobbered by the call.
102         if (IsArgOperand && CS.isInAllocaArgument(DataOpNo))
103           return false;
104 
105         // If this is a readonly/readnone call site, then we know it is just a
106         // load (but one that potentially returns the value itself), so we can
107         // ignore it if we know that the value isn't captured.
108         if (CS.onlyReadsMemory() &&
109             (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo)))
110           continue;
111 
112         // If this is being passed as a byval argument, the caller is making a
113         // copy, so it is only a read of the alloca.
114         if (IsArgOperand && CS.isByValArgument(DataOpNo))
115           continue;
116       }
117 
118       // Lifetime intrinsics can be handled by the caller.
119       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
120         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
121             II->getIntrinsicID() == Intrinsic::lifetime_end) {
122           assert(II->use_empty() && "Lifetime markers have no result to use!");
123           ToDelete.push_back(II);
124           continue;
125         }
126       }
127 
128       // If this is isn't our memcpy/memmove, reject it as something we can't
129       // handle.
130       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
131       if (!MI)
132         return false;
133 
134       // If the transfer is using the alloca as a source of the transfer, then
135       // ignore it since it is a load (unless the transfer is volatile).
136       if (U.getOperandNo() == 1) {
137         if (MI->isVolatile()) return false;
138         continue;
139       }
140 
141       // If we already have seen a copy, reject the second one.
142       if (TheCopy) return false;
143 
144       // If the pointer has been offset from the start of the alloca, we can't
145       // safely handle this.
146       if (IsOffset) return false;
147 
148       // If the memintrinsic isn't using the alloca as the dest, reject it.
149       if (U.getOperandNo() != 0) return false;
150 
151       // If the source of the memcpy/move is not a constant global, reject it.
152       if (!pointsToConstantGlobal(MI->getSource()))
153         return false;
154 
155       // Otherwise, the transform is safe.  Remember the copy instruction.
156       TheCopy = MI;
157     }
158   }
159   return true;
160 }
161 
162 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
163 /// modified by a copy from a constant global.  If we can prove this, we can
164 /// replace any uses of the alloca with uses of the global directly.
165 static MemTransferInst *
166 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
167                                SmallVectorImpl<Instruction *> &ToDelete) {
168   MemTransferInst *TheCopy = nullptr;
169   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
170     return TheCopy;
171   return nullptr;
172 }
173 
174 /// Returns true if V is dereferenceable for size of alloca.
175 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
176                                            const DataLayout &DL) {
177   if (AI->isArrayAllocation())
178     return false;
179   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
180   if (!AllocaSize)
181     return false;
182   return isDereferenceableAndAlignedPointer(V, AI->getAlignment(),
183                                             APInt(64, AllocaSize), DL);
184 }
185 
186 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
187   // Check for array size of 1 (scalar allocation).
188   if (!AI.isArrayAllocation()) {
189     // i32 1 is the canonical array size for scalar allocations.
190     if (AI.getArraySize()->getType()->isIntegerTy(32))
191       return nullptr;
192 
193     // Canonicalize it.
194     Value *V = IC.Builder.getInt32(1);
195     AI.setOperand(0, V);
196     return &AI;
197   }
198 
199   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
200   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
201     if (C->getValue().getActiveBits() <= 64) {
202       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
203       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
204       New->setAlignment(AI.getAlignment());
205 
206       // Scan to the end of the allocation instructions, to skip over a block of
207       // allocas if possible...also skip interleaved debug info
208       //
209       BasicBlock::iterator It(New);
210       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
211         ++It;
212 
213       // Now that I is pointing to the first non-allocation-inst in the block,
214       // insert our getelementptr instruction...
215       //
216       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
217       Value *NullIdx = Constant::getNullValue(IdxTy);
218       Value *Idx[2] = {NullIdx, NullIdx};
219       Instruction *GEP =
220           GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
221       IC.InsertNewInstBefore(GEP, *It);
222 
223       // Now make everything use the getelementptr instead of the original
224       // allocation.
225       return IC.replaceInstUsesWith(AI, GEP);
226     }
227   }
228 
229   if (isa<UndefValue>(AI.getArraySize()))
230     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
231 
232   // Ensure that the alloca array size argument has type intptr_t, so that
233   // any casting is exposed early.
234   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
235   if (AI.getArraySize()->getType() != IntPtrTy) {
236     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
237     AI.setOperand(0, V);
238     return &AI;
239   }
240 
241   return nullptr;
242 }
243 
244 namespace {
245 // If I and V are pointers in different address space, it is not allowed to
246 // use replaceAllUsesWith since I and V have different types. A
247 // non-target-specific transformation should not use addrspacecast on V since
248 // the two address space may be disjoint depending on target.
249 //
250 // This class chases down uses of the old pointer until reaching the load
251 // instructions, then replaces the old pointer in the load instructions with
252 // the new pointer. If during the chasing it sees bitcast or GEP, it will
253 // create new bitcast or GEP with the new pointer and use them in the load
254 // instruction.
255 class PointerReplacer {
256 public:
257   PointerReplacer(InstCombiner &IC) : IC(IC) {}
258   void replacePointer(Instruction &I, Value *V);
259 
260 private:
261   void findLoadAndReplace(Instruction &I);
262   void replace(Instruction *I);
263   Value *getReplacement(Value *I);
264 
265   SmallVector<Instruction *, 4> Path;
266   MapVector<Value *, Value *> WorkMap;
267   InstCombiner &IC;
268 };
269 } // end anonymous namespace
270 
271 void PointerReplacer::findLoadAndReplace(Instruction &I) {
272   for (auto U : I.users()) {
273     auto *Inst = dyn_cast<Instruction>(&*U);
274     if (!Inst)
275       return;
276     LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n');
277     if (isa<LoadInst>(Inst)) {
278       for (auto P : Path)
279         replace(P);
280       replace(Inst);
281     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
282       Path.push_back(Inst);
283       findLoadAndReplace(*Inst);
284       Path.pop_back();
285     } else {
286       return;
287     }
288   }
289 }
290 
291 Value *PointerReplacer::getReplacement(Value *V) {
292   auto Loc = WorkMap.find(V);
293   if (Loc != WorkMap.end())
294     return Loc->second;
295   return nullptr;
296 }
297 
298 void PointerReplacer::replace(Instruction *I) {
299   if (getReplacement(I))
300     return;
301 
302   if (auto *LT = dyn_cast<LoadInst>(I)) {
303     auto *V = getReplacement(LT->getPointerOperand());
304     assert(V && "Operand not replaced");
305     auto *NewI = new LoadInst(V);
306     NewI->takeName(LT);
307     IC.InsertNewInstWith(NewI, *LT);
308     IC.replaceInstUsesWith(*LT, NewI);
309     WorkMap[LT] = NewI;
310   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
311     auto *V = getReplacement(GEP->getPointerOperand());
312     assert(V && "Operand not replaced");
313     SmallVector<Value *, 8> Indices;
314     Indices.append(GEP->idx_begin(), GEP->idx_end());
315     auto *NewI = GetElementPtrInst::Create(
316         V->getType()->getPointerElementType(), V, Indices);
317     IC.InsertNewInstWith(NewI, *GEP);
318     NewI->takeName(GEP);
319     WorkMap[GEP] = NewI;
320   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
321     auto *V = getReplacement(BC->getOperand(0));
322     assert(V && "Operand not replaced");
323     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
324                                   V->getType()->getPointerAddressSpace());
325     auto *NewI = new BitCastInst(V, NewT);
326     IC.InsertNewInstWith(NewI, *BC);
327     NewI->takeName(BC);
328     WorkMap[BC] = NewI;
329   } else {
330     llvm_unreachable("should never reach here");
331   }
332 }
333 
334 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
335 #ifndef NDEBUG
336   auto *PT = cast<PointerType>(I.getType());
337   auto *NT = cast<PointerType>(V->getType());
338   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
339          "Invalid usage");
340 #endif
341   WorkMap[&I] = V;
342   findLoadAndReplace(I);
343 }
344 
345 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
346   if (auto *I = simplifyAllocaArraySize(*this, AI))
347     return I;
348 
349   if (AI.getAllocatedType()->isSized()) {
350     // If the alignment is 0 (unspecified), assign it the preferred alignment.
351     if (AI.getAlignment() == 0)
352       AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
353 
354     // Move all alloca's of zero byte objects to the entry block and merge them
355     // together.  Note that we only do this for alloca's, because malloc should
356     // allocate and return a unique pointer, even for a zero byte allocation.
357     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
358       // For a zero sized alloca there is no point in doing an array allocation.
359       // This is helpful if the array size is a complicated expression not used
360       // elsewhere.
361       if (AI.isArrayAllocation()) {
362         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
363         return &AI;
364       }
365 
366       // Get the first instruction in the entry block.
367       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
368       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
369       if (FirstInst != &AI) {
370         // If the entry block doesn't start with a zero-size alloca then move
371         // this one to the start of the entry block.  There is no problem with
372         // dominance as the array size was forced to a constant earlier already.
373         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
374         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
375             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
376           AI.moveBefore(FirstInst);
377           return &AI;
378         }
379 
380         // If the alignment of the entry block alloca is 0 (unspecified),
381         // assign it the preferred alignment.
382         if (EntryAI->getAlignment() == 0)
383           EntryAI->setAlignment(
384               DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
385         // Replace this zero-sized alloca with the one at the start of the entry
386         // block after ensuring that the address will be aligned enough for both
387         // types.
388         unsigned MaxAlign = std::max(EntryAI->getAlignment(),
389                                      AI.getAlignment());
390         EntryAI->setAlignment(MaxAlign);
391         if (AI.getType() != EntryAI->getType())
392           return new BitCastInst(EntryAI, AI.getType());
393         return replaceInstUsesWith(AI, EntryAI);
394       }
395     }
396   }
397 
398   if (AI.getAlignment()) {
399     // Check to see if this allocation is only modified by a memcpy/memmove from
400     // a constant global whose alignment is equal to or exceeds that of the
401     // allocation.  If this is the case, we can change all users to use
402     // the constant global instead.  This is commonly produced by the CFE by
403     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
404     // is only subsequently read.
405     SmallVector<Instruction *, 4> ToDelete;
406     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
407       unsigned SourceAlign = getOrEnforceKnownAlignment(
408           Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
409       if (AI.getAlignment() <= SourceAlign &&
410           isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) {
411         LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
412         LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
413         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
414           eraseInstFromFunction(*ToDelete[i]);
415         Constant *TheSrc = cast<Constant>(Copy->getSource());
416         auto *SrcTy = TheSrc->getType();
417         auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(),
418                                         SrcTy->getPointerAddressSpace());
419         Constant *Cast =
420             ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy);
421         if (AI.getType()->getPointerAddressSpace() ==
422             SrcTy->getPointerAddressSpace()) {
423           Instruction *NewI = replaceInstUsesWith(AI, Cast);
424           eraseInstFromFunction(*Copy);
425           ++NumGlobalCopies;
426           return NewI;
427         } else {
428           PointerReplacer PtrReplacer(*this);
429           PtrReplacer.replacePointer(AI, Cast);
430           ++NumGlobalCopies;
431         }
432       }
433     }
434   }
435 
436   // At last, use the generic allocation site handler to aggressively remove
437   // unused allocas.
438   return visitAllocSite(AI);
439 }
440 
441 // Are we allowed to form a atomic load or store of this type?
442 static bool isSupportedAtomicType(Type *Ty) {
443   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
444 }
445 
446 /// Helper to combine a load to a new type.
447 ///
448 /// This just does the work of combining a load to a new type. It handles
449 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
450 /// loaded *value* type. This will convert it to a pointer, cast the operand to
451 /// that pointer type, load it, etc.
452 ///
453 /// Note that this will create all of the instructions with whatever insert
454 /// point the \c InstCombiner currently is using.
455 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
456                                       const Twine &Suffix = "") {
457   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
458          "can't fold an atomic load to requested type");
459 
460   Value *Ptr = LI.getPointerOperand();
461   unsigned AS = LI.getPointerAddressSpace();
462   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
463   LI.getAllMetadata(MD);
464 
465   Value *NewPtr = nullptr;
466   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
467         NewPtr->getType()->getPointerElementType() == NewTy &&
468         NewPtr->getType()->getPointerAddressSpace() == AS))
469     NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
470 
471   LoadInst *NewLoad = IC.Builder.CreateAlignedLoad(
472       NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix);
473   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
474   MDBuilder MDB(NewLoad->getContext());
475   for (const auto &MDPair : MD) {
476     unsigned ID = MDPair.first;
477     MDNode *N = MDPair.second;
478     // Note, essentially every kind of metadata should be preserved here! This
479     // routine is supposed to clone a load instruction changing *only its type*.
480     // The only metadata it makes sense to drop is metadata which is invalidated
481     // when the pointer type changes. This should essentially never be the case
482     // in LLVM, but we explicitly switch over only known metadata to be
483     // conservatively correct. If you are adding metadata to LLVM which pertains
484     // to loads, you almost certainly want to add it here.
485     switch (ID) {
486     case LLVMContext::MD_dbg:
487     case LLVMContext::MD_tbaa:
488     case LLVMContext::MD_prof:
489     case LLVMContext::MD_fpmath:
490     case LLVMContext::MD_tbaa_struct:
491     case LLVMContext::MD_invariant_load:
492     case LLVMContext::MD_alias_scope:
493     case LLVMContext::MD_noalias:
494     case LLVMContext::MD_nontemporal:
495     case LLVMContext::MD_mem_parallel_loop_access:
496     case LLVMContext::MD_access_group:
497       // All of these directly apply.
498       NewLoad->setMetadata(ID, N);
499       break;
500 
501     case LLVMContext::MD_nonnull:
502       copyNonnullMetadata(LI, N, *NewLoad);
503       break;
504     case LLVMContext::MD_align:
505     case LLVMContext::MD_dereferenceable:
506     case LLVMContext::MD_dereferenceable_or_null:
507       // These only directly apply if the new type is also a pointer.
508       if (NewTy->isPointerTy())
509         NewLoad->setMetadata(ID, N);
510       break;
511     case LLVMContext::MD_range:
512       copyRangeMetadata(IC.getDataLayout(), LI, N, *NewLoad);
513       break;
514     }
515   }
516   return NewLoad;
517 }
518 
519 /// Combine a store to a new type.
520 ///
521 /// Returns the newly created store instruction.
522 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
523   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
524          "can't fold an atomic store of requested type");
525 
526   Value *Ptr = SI.getPointerOperand();
527   unsigned AS = SI.getPointerAddressSpace();
528   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
529   SI.getAllMetadata(MD);
530 
531   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
532       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
533       SI.getAlignment(), SI.isVolatile());
534   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
535   for (const auto &MDPair : MD) {
536     unsigned ID = MDPair.first;
537     MDNode *N = MDPair.second;
538     // Note, essentially every kind of metadata should be preserved here! This
539     // routine is supposed to clone a store instruction changing *only its
540     // type*. The only metadata it makes sense to drop is metadata which is
541     // invalidated when the pointer type changes. This should essentially
542     // never be the case in LLVM, but we explicitly switch over only known
543     // metadata to be conservatively correct. If you are adding metadata to
544     // LLVM which pertains to stores, you almost certainly want to add it
545     // here.
546     switch (ID) {
547     case LLVMContext::MD_dbg:
548     case LLVMContext::MD_tbaa:
549     case LLVMContext::MD_prof:
550     case LLVMContext::MD_fpmath:
551     case LLVMContext::MD_tbaa_struct:
552     case LLVMContext::MD_alias_scope:
553     case LLVMContext::MD_noalias:
554     case LLVMContext::MD_nontemporal:
555     case LLVMContext::MD_mem_parallel_loop_access:
556     case LLVMContext::MD_access_group:
557       // All of these directly apply.
558       NewStore->setMetadata(ID, N);
559       break;
560     case LLVMContext::MD_invariant_load:
561     case LLVMContext::MD_nonnull:
562     case LLVMContext::MD_range:
563     case LLVMContext::MD_align:
564     case LLVMContext::MD_dereferenceable:
565     case LLVMContext::MD_dereferenceable_or_null:
566       // These don't apply for stores.
567       break;
568     }
569   }
570 
571   return NewStore;
572 }
573 
574 /// Returns true if instruction represent minmax pattern like:
575 ///   select ((cmp load V1, load V2), V1, V2).
576 static bool isMinMaxWithLoads(Value *V) {
577   assert(V->getType()->isPointerTy() && "Expected pointer type.");
578   // Ignore possible ty* to ixx* bitcast.
579   V = peekThroughBitcast(V);
580   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
581   // pattern.
582   CmpInst::Predicate Pred;
583   Instruction *L1;
584   Instruction *L2;
585   Value *LHS;
586   Value *RHS;
587   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
588                          m_Value(LHS), m_Value(RHS))))
589     return false;
590   return (match(L1, m_Load(m_Specific(LHS))) &&
591           match(L2, m_Load(m_Specific(RHS)))) ||
592          (match(L1, m_Load(m_Specific(RHS))) &&
593           match(L2, m_Load(m_Specific(LHS))));
594 }
595 
596 /// Combine loads to match the type of their uses' value after looking
597 /// through intervening bitcasts.
598 ///
599 /// The core idea here is that if the result of a load is used in an operation,
600 /// we should load the type most conducive to that operation. For example, when
601 /// loading an integer and converting that immediately to a pointer, we should
602 /// instead directly load a pointer.
603 ///
604 /// However, this routine must never change the width of a load or the number of
605 /// loads as that would introduce a semantic change. This combine is expected to
606 /// be a semantic no-op which just allows loads to more closely model the types
607 /// of their consuming operations.
608 ///
609 /// Currently, we also refuse to change the precise type used for an atomic load
610 /// or a volatile load. This is debatable, and might be reasonable to change
611 /// later. However, it is risky in case some backend or other part of LLVM is
612 /// relying on the exact type loaded to select appropriate atomic operations.
613 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
614   // FIXME: We could probably with some care handle both volatile and ordered
615   // atomic loads here but it isn't clear that this is important.
616   if (!LI.isUnordered())
617     return nullptr;
618 
619   if (LI.use_empty())
620     return nullptr;
621 
622   // swifterror values can't be bitcasted.
623   if (LI.getPointerOperand()->isSwiftError())
624     return nullptr;
625 
626   Type *Ty = LI.getType();
627   const DataLayout &DL = IC.getDataLayout();
628 
629   // Try to canonicalize loads which are only ever stored to operate over
630   // integers instead of any other type. We only do this when the loaded type
631   // is sized and has a size exactly the same as its store size and the store
632   // size is a legal integer type.
633   // Do not perform canonicalization if minmax pattern is found (to avoid
634   // infinite loop).
635   if (!Ty->isIntegerTy() && Ty->isSized() &&
636       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
637       DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) &&
638       !DL.isNonIntegralPointerType(Ty) &&
639       !isMinMaxWithLoads(
640           peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) {
641     if (all_of(LI.users(), [&LI](User *U) {
642           auto *SI = dyn_cast<StoreInst>(U);
643           return SI && SI->getPointerOperand() != &LI &&
644                  !SI->getPointerOperand()->isSwiftError();
645         })) {
646       LoadInst *NewLoad = combineLoadToNewType(
647           IC, LI,
648           Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
649       // Replace all the stores with stores of the newly loaded value.
650       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
651         auto *SI = cast<StoreInst>(*UI++);
652         IC.Builder.SetInsertPoint(SI);
653         combineStoreToNewValue(IC, *SI, NewLoad);
654         IC.eraseInstFromFunction(*SI);
655       }
656       assert(LI.use_empty() && "Failed to remove all users of the load!");
657       // Return the old load so the combiner can delete it safely.
658       return &LI;
659     }
660   }
661 
662   // Fold away bit casts of the loaded value by loading the desired type.
663   // We can do this for BitCastInsts as well as casts from and to pointer types,
664   // as long as those are noops (i.e., the source or dest type have the same
665   // bitwidth as the target's pointers).
666   if (LI.hasOneUse())
667     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
668       if (CI->isNoopCast(DL))
669         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
670           LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
671           CI->replaceAllUsesWith(NewLoad);
672           IC.eraseInstFromFunction(*CI);
673           return &LI;
674         }
675 
676   // FIXME: We should also canonicalize loads of vectors when their elements are
677   // cast to other types.
678   return nullptr;
679 }
680 
681 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
682   // FIXME: We could probably with some care handle both volatile and atomic
683   // stores here but it isn't clear that this is important.
684   if (!LI.isSimple())
685     return nullptr;
686 
687   Type *T = LI.getType();
688   if (!T->isAggregateType())
689     return nullptr;
690 
691   StringRef Name = LI.getName();
692   assert(LI.getAlignment() && "Alignment must be set at this point");
693 
694   if (auto *ST = dyn_cast<StructType>(T)) {
695     // If the struct only have one element, we unpack.
696     auto NumElements = ST->getNumElements();
697     if (NumElements == 1) {
698       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
699                                                ".unpack");
700       AAMDNodes AAMD;
701       LI.getAAMetadata(AAMD);
702       NewLoad->setAAMetadata(AAMD);
703       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
704         UndefValue::get(T), NewLoad, 0, Name));
705     }
706 
707     // We don't want to break loads with padding here as we'd loose
708     // the knowledge that padding exists for the rest of the pipeline.
709     const DataLayout &DL = IC.getDataLayout();
710     auto *SL = DL.getStructLayout(ST);
711     if (SL->hasPadding())
712       return nullptr;
713 
714     auto Align = LI.getAlignment();
715     if (!Align)
716       Align = DL.getABITypeAlignment(ST);
717 
718     auto *Addr = LI.getPointerOperand();
719     auto *IdxType = Type::getInt32Ty(T->getContext());
720     auto *Zero = ConstantInt::get(IdxType, 0);
721 
722     Value *V = UndefValue::get(T);
723     for (unsigned i = 0; i < NumElements; i++) {
724       Value *Indices[2] = {
725         Zero,
726         ConstantInt::get(IdxType, i),
727       };
728       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
729                                                Name + ".elt");
730       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
731       auto *L = IC.Builder.CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack");
732       // Propagate AA metadata. It'll still be valid on the narrowed load.
733       AAMDNodes AAMD;
734       LI.getAAMetadata(AAMD);
735       L->setAAMetadata(AAMD);
736       V = IC.Builder.CreateInsertValue(V, L, i);
737     }
738 
739     V->setName(Name);
740     return IC.replaceInstUsesWith(LI, V);
741   }
742 
743   if (auto *AT = dyn_cast<ArrayType>(T)) {
744     auto *ET = AT->getElementType();
745     auto NumElements = AT->getNumElements();
746     if (NumElements == 1) {
747       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
748       AAMDNodes AAMD;
749       LI.getAAMetadata(AAMD);
750       NewLoad->setAAMetadata(AAMD);
751       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
752         UndefValue::get(T), NewLoad, 0, Name));
753     }
754 
755     // Bail out if the array is too large. Ideally we would like to optimize
756     // arrays of arbitrary size but this has a terrible impact on compile time.
757     // The threshold here is chosen arbitrarily, maybe needs a little bit of
758     // tuning.
759     if (NumElements > IC.MaxArraySizeForCombine)
760       return nullptr;
761 
762     const DataLayout &DL = IC.getDataLayout();
763     auto EltSize = DL.getTypeAllocSize(ET);
764     auto Align = LI.getAlignment();
765     if (!Align)
766       Align = DL.getABITypeAlignment(T);
767 
768     auto *Addr = LI.getPointerOperand();
769     auto *IdxType = Type::getInt64Ty(T->getContext());
770     auto *Zero = ConstantInt::get(IdxType, 0);
771 
772     Value *V = UndefValue::get(T);
773     uint64_t Offset = 0;
774     for (uint64_t i = 0; i < NumElements; i++) {
775       Value *Indices[2] = {
776         Zero,
777         ConstantInt::get(IdxType, i),
778       };
779       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
780                                                Name + ".elt");
781       auto *L = IC.Builder.CreateAlignedLoad(Ptr, MinAlign(Align, Offset),
782                                              Name + ".unpack");
783       AAMDNodes AAMD;
784       LI.getAAMetadata(AAMD);
785       L->setAAMetadata(AAMD);
786       V = IC.Builder.CreateInsertValue(V, L, i);
787       Offset += EltSize;
788     }
789 
790     V->setName(Name);
791     return IC.replaceInstUsesWith(LI, V);
792   }
793 
794   return nullptr;
795 }
796 
797 // If we can determine that all possible objects pointed to by the provided
798 // pointer value are, not only dereferenceable, but also definitively less than
799 // or equal to the provided maximum size, then return true. Otherwise, return
800 // false (constant global values and allocas fall into this category).
801 //
802 // FIXME: This should probably live in ValueTracking (or similar).
803 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
804                                      const DataLayout &DL) {
805   SmallPtrSet<Value *, 4> Visited;
806   SmallVector<Value *, 4> Worklist(1, V);
807 
808   do {
809     Value *P = Worklist.pop_back_val();
810     P = P->stripPointerCasts();
811 
812     if (!Visited.insert(P).second)
813       continue;
814 
815     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
816       Worklist.push_back(SI->getTrueValue());
817       Worklist.push_back(SI->getFalseValue());
818       continue;
819     }
820 
821     if (PHINode *PN = dyn_cast<PHINode>(P)) {
822       for (Value *IncValue : PN->incoming_values())
823         Worklist.push_back(IncValue);
824       continue;
825     }
826 
827     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
828       if (GA->isInterposable())
829         return false;
830       Worklist.push_back(GA->getAliasee());
831       continue;
832     }
833 
834     // If we know how big this object is, and it is less than MaxSize, continue
835     // searching. Otherwise, return false.
836     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
837       if (!AI->getAllocatedType()->isSized())
838         return false;
839 
840       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
841       if (!CS)
842         return false;
843 
844       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
845       // Make sure that, even if the multiplication below would wrap as an
846       // uint64_t, we still do the right thing.
847       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
848         return false;
849       continue;
850     }
851 
852     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
853       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
854         return false;
855 
856       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
857       if (InitSize > MaxSize)
858         return false;
859       continue;
860     }
861 
862     return false;
863   } while (!Worklist.empty());
864 
865   return true;
866 }
867 
868 // If we're indexing into an object of a known size, and the outer index is
869 // not a constant, but having any value but zero would lead to undefined
870 // behavior, replace it with zero.
871 //
872 // For example, if we have:
873 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
874 // ...
875 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
876 // ... = load i32* %arrayidx, align 4
877 // Then we know that we can replace %x in the GEP with i64 0.
878 //
879 // FIXME: We could fold any GEP index to zero that would cause UB if it were
880 // not zero. Currently, we only handle the first such index. Also, we could
881 // also search through non-zero constant indices if we kept track of the
882 // offsets those indices implied.
883 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
884                                      Instruction *MemI, unsigned &Idx) {
885   if (GEPI->getNumOperands() < 2)
886     return false;
887 
888   // Find the first non-zero index of a GEP. If all indices are zero, return
889   // one past the last index.
890   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
891     unsigned I = 1;
892     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
893       Value *V = GEPI->getOperand(I);
894       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
895         if (CI->isZero())
896           continue;
897 
898       break;
899     }
900 
901     return I;
902   };
903 
904   // Skip through initial 'zero' indices, and find the corresponding pointer
905   // type. See if the next index is not a constant.
906   Idx = FirstNZIdx(GEPI);
907   if (Idx == GEPI->getNumOperands())
908     return false;
909   if (isa<Constant>(GEPI->getOperand(Idx)))
910     return false;
911 
912   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
913   Type *AllocTy =
914     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
915   if (!AllocTy || !AllocTy->isSized())
916     return false;
917   const DataLayout &DL = IC.getDataLayout();
918   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
919 
920   // If there are more indices after the one we might replace with a zero, make
921   // sure they're all non-negative. If any of them are negative, the overall
922   // address being computed might be before the base address determined by the
923   // first non-zero index.
924   auto IsAllNonNegative = [&]() {
925     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
926       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
927       if (Known.isNonNegative())
928         continue;
929       return false;
930     }
931 
932     return true;
933   };
934 
935   // FIXME: If the GEP is not inbounds, and there are extra indices after the
936   // one we'll replace, those could cause the address computation to wrap
937   // (rendering the IsAllNonNegative() check below insufficient). We can do
938   // better, ignoring zero indices (and other indices we can prove small
939   // enough not to wrap).
940   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
941     return false;
942 
943   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
944   // also known to be dereferenceable.
945   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
946          IsAllNonNegative();
947 }
948 
949 // If we're indexing into an object with a variable index for the memory
950 // access, but the object has only one element, we can assume that the index
951 // will always be zero. If we replace the GEP, return it.
952 template <typename T>
953 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
954                                           T &MemI) {
955   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
956     unsigned Idx;
957     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
958       Instruction *NewGEPI = GEPI->clone();
959       NewGEPI->setOperand(Idx,
960         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
961       NewGEPI->insertBefore(GEPI);
962       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
963       return NewGEPI;
964     }
965   }
966 
967   return nullptr;
968 }
969 
970 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
971   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
972     return false;
973 
974   auto *Ptr = SI.getPointerOperand();
975   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
976     Ptr = GEPI->getOperand(0);
977   return (isa<ConstantPointerNull>(Ptr) &&
978           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
979 }
980 
981 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
982   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
983     const Value *GEPI0 = GEPI->getOperand(0);
984     if (isa<ConstantPointerNull>(GEPI0) &&
985         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
986       return true;
987   }
988   if (isa<UndefValue>(Op) ||
989       (isa<ConstantPointerNull>(Op) &&
990        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
991     return true;
992   return false;
993 }
994 
995 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
996   Value *Op = LI.getOperand(0);
997 
998   // Try to canonicalize the loaded type.
999   if (Instruction *Res = combineLoadToOperationType(*this, LI))
1000     return Res;
1001 
1002   // Attempt to improve the alignment.
1003   unsigned KnownAlign = getOrEnforceKnownAlignment(
1004       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
1005   unsigned LoadAlign = LI.getAlignment();
1006   unsigned EffectiveLoadAlign =
1007       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
1008 
1009   if (KnownAlign > EffectiveLoadAlign)
1010     LI.setAlignment(KnownAlign);
1011   else if (LoadAlign == 0)
1012     LI.setAlignment(EffectiveLoadAlign);
1013 
1014   // Replace GEP indices if possible.
1015   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
1016       Worklist.Add(NewGEPI);
1017       return &LI;
1018   }
1019 
1020   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
1021     return Res;
1022 
1023   // Do really simple store-to-load forwarding and load CSE, to catch cases
1024   // where there are several consecutive memory accesses to the same location,
1025   // separated by a few arithmetic operations.
1026   BasicBlock::iterator BBI(LI);
1027   bool IsLoadCSE = false;
1028   if (Value *AvailableVal = FindAvailableLoadedValue(
1029           &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
1030     if (IsLoadCSE)
1031       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
1032 
1033     return replaceInstUsesWith(
1034         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
1035                                            LI.getName() + ".cast"));
1036   }
1037 
1038   // None of the following transforms are legal for volatile/ordered atomic
1039   // loads.  Most of them do apply for unordered atomics.
1040   if (!LI.isUnordered()) return nullptr;
1041 
1042   // load(gep null, ...) -> unreachable
1043   // load null/undef -> unreachable
1044   // TODO: Consider a target hook for valid address spaces for this xforms.
1045   if (canSimplifyNullLoadOrGEP(LI, Op)) {
1046     // Insert a new store to null instruction before the load to indicate
1047     // that this code is not reachable.  We do this instead of inserting
1048     // an unreachable instruction directly because we cannot modify the
1049     // CFG.
1050     StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
1051                                   Constant::getNullValue(Op->getType()), &LI);
1052     SI->setDebugLoc(LI.getDebugLoc());
1053     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
1054   }
1055 
1056   if (Op->hasOneUse()) {
1057     // Change select and PHI nodes to select values instead of addresses: this
1058     // helps alias analysis out a lot, allows many others simplifications, and
1059     // exposes redundancy in the code.
1060     //
1061     // Note that we cannot do the transformation unless we know that the
1062     // introduced loads cannot trap!  Something like this is valid as long as
1063     // the condition is always false: load (select bool %C, int* null, int* %G),
1064     // but it would not be valid if we transformed it to load from null
1065     // unconditionally.
1066     //
1067     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1068       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1069       unsigned Align = LI.getAlignment();
1070       if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) &&
1071           isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) {
1072         LoadInst *V1 = Builder.CreateLoad(SI->getOperand(1),
1073                                           SI->getOperand(1)->getName()+".val");
1074         LoadInst *V2 = Builder.CreateLoad(SI->getOperand(2),
1075                                           SI->getOperand(2)->getName()+".val");
1076         assert(LI.isUnordered() && "implied by above");
1077         V1->setAlignment(Align);
1078         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1079         V2->setAlignment(Align);
1080         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1081         return SelectInst::Create(SI->getCondition(), V1, V2);
1082       }
1083 
1084       // load (select (cond, null, P)) -> load P
1085       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1086           !NullPointerIsDefined(SI->getFunction(),
1087                                 LI.getPointerAddressSpace())) {
1088         LI.setOperand(0, SI->getOperand(2));
1089         return &LI;
1090       }
1091 
1092       // load (select (cond, P, null)) -> load P
1093       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1094           !NullPointerIsDefined(SI->getFunction(),
1095                                 LI.getPointerAddressSpace())) {
1096         LI.setOperand(0, SI->getOperand(1));
1097         return &LI;
1098       }
1099     }
1100   }
1101   return nullptr;
1102 }
1103 
1104 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1105 ///
1106 /// \returns underlying value that was "cast", or nullptr otherwise.
1107 ///
1108 /// For example, if we have:
1109 ///
1110 ///     %E0 = extractelement <2 x double> %U, i32 0
1111 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1112 ///     %E1 = extractelement <2 x double> %U, i32 1
1113 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1114 ///
1115 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1116 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1117 /// Note that %U may contain non-undef values where %V1 has undef.
1118 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
1119   Value *U = nullptr;
1120   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1121     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1122     if (!E)
1123       return nullptr;
1124     auto *W = E->getVectorOperand();
1125     if (!U)
1126       U = W;
1127     else if (U != W)
1128       return nullptr;
1129     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1130     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1131       return nullptr;
1132     V = IV->getAggregateOperand();
1133   }
1134   if (!isa<UndefValue>(V) ||!U)
1135     return nullptr;
1136 
1137   auto *UT = cast<VectorType>(U->getType());
1138   auto *VT = V->getType();
1139   // Check that types UT and VT are bitwise isomorphic.
1140   const auto &DL = IC.getDataLayout();
1141   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1142     return nullptr;
1143   }
1144   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1145     if (AT->getNumElements() != UT->getNumElements())
1146       return nullptr;
1147   } else {
1148     auto *ST = cast<StructType>(VT);
1149     if (ST->getNumElements() != UT->getNumElements())
1150       return nullptr;
1151     for (const auto *EltT : ST->elements()) {
1152       if (EltT != UT->getElementType())
1153         return nullptr;
1154     }
1155   }
1156   return U;
1157 }
1158 
1159 /// Combine stores to match the type of value being stored.
1160 ///
1161 /// The core idea here is that the memory does not have any intrinsic type and
1162 /// where we can we should match the type of a store to the type of value being
1163 /// stored.
1164 ///
1165 /// However, this routine must never change the width of a store or the number of
1166 /// stores as that would introduce a semantic change. This combine is expected to
1167 /// be a semantic no-op which just allows stores to more closely model the types
1168 /// of their incoming values.
1169 ///
1170 /// Currently, we also refuse to change the precise type used for an atomic or
1171 /// volatile store. This is debatable, and might be reasonable to change later.
1172 /// However, it is risky in case some backend or other part of LLVM is relying
1173 /// on the exact type stored to select appropriate atomic operations.
1174 ///
1175 /// \returns true if the store was successfully combined away. This indicates
1176 /// the caller must erase the store instruction. We have to let the caller erase
1177 /// the store instruction as otherwise there is no way to signal whether it was
1178 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1179 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
1180   // FIXME: We could probably with some care handle both volatile and ordered
1181   // atomic stores here but it isn't clear that this is important.
1182   if (!SI.isUnordered())
1183     return false;
1184 
1185   // swifterror values can't be bitcasted.
1186   if (SI.getPointerOperand()->isSwiftError())
1187     return false;
1188 
1189   Value *V = SI.getValueOperand();
1190 
1191   // Fold away bit casts of the stored value by storing the original type.
1192   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1193     V = BC->getOperand(0);
1194     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1195       combineStoreToNewValue(IC, SI, V);
1196       return true;
1197     }
1198   }
1199 
1200   if (Value *U = likeBitCastFromVector(IC, V))
1201     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1202       combineStoreToNewValue(IC, SI, U);
1203       return true;
1204     }
1205 
1206   // FIXME: We should also canonicalize stores of vectors when their elements
1207   // are cast to other types.
1208   return false;
1209 }
1210 
1211 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1212   // FIXME: We could probably with some care handle both volatile and atomic
1213   // stores here but it isn't clear that this is important.
1214   if (!SI.isSimple())
1215     return false;
1216 
1217   Value *V = SI.getValueOperand();
1218   Type *T = V->getType();
1219 
1220   if (!T->isAggregateType())
1221     return false;
1222 
1223   if (auto *ST = dyn_cast<StructType>(T)) {
1224     // If the struct only have one element, we unpack.
1225     unsigned Count = ST->getNumElements();
1226     if (Count == 1) {
1227       V = IC.Builder.CreateExtractValue(V, 0);
1228       combineStoreToNewValue(IC, SI, V);
1229       return true;
1230     }
1231 
1232     // We don't want to break loads with padding here as we'd loose
1233     // the knowledge that padding exists for the rest of the pipeline.
1234     const DataLayout &DL = IC.getDataLayout();
1235     auto *SL = DL.getStructLayout(ST);
1236     if (SL->hasPadding())
1237       return false;
1238 
1239     auto Align = SI.getAlignment();
1240     if (!Align)
1241       Align = DL.getABITypeAlignment(ST);
1242 
1243     SmallString<16> EltName = V->getName();
1244     EltName += ".elt";
1245     auto *Addr = SI.getPointerOperand();
1246     SmallString<16> AddrName = Addr->getName();
1247     AddrName += ".repack";
1248 
1249     auto *IdxType = Type::getInt32Ty(ST->getContext());
1250     auto *Zero = ConstantInt::get(IdxType, 0);
1251     for (unsigned i = 0; i < Count; i++) {
1252       Value *Indices[2] = {
1253         Zero,
1254         ConstantInt::get(IdxType, i),
1255       };
1256       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1257                                                AddrName);
1258       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1259       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
1260       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1261       AAMDNodes AAMD;
1262       SI.getAAMetadata(AAMD);
1263       NS->setAAMetadata(AAMD);
1264     }
1265 
1266     return true;
1267   }
1268 
1269   if (auto *AT = dyn_cast<ArrayType>(T)) {
1270     // If the array only have one element, we unpack.
1271     auto NumElements = AT->getNumElements();
1272     if (NumElements == 1) {
1273       V = IC.Builder.CreateExtractValue(V, 0);
1274       combineStoreToNewValue(IC, SI, V);
1275       return true;
1276     }
1277 
1278     // Bail out if the array is too large. Ideally we would like to optimize
1279     // arrays of arbitrary size but this has a terrible impact on compile time.
1280     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1281     // tuning.
1282     if (NumElements > IC.MaxArraySizeForCombine)
1283       return false;
1284 
1285     const DataLayout &DL = IC.getDataLayout();
1286     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1287     auto Align = SI.getAlignment();
1288     if (!Align)
1289       Align = DL.getABITypeAlignment(T);
1290 
1291     SmallString<16> EltName = V->getName();
1292     EltName += ".elt";
1293     auto *Addr = SI.getPointerOperand();
1294     SmallString<16> AddrName = Addr->getName();
1295     AddrName += ".repack";
1296 
1297     auto *IdxType = Type::getInt64Ty(T->getContext());
1298     auto *Zero = ConstantInt::get(IdxType, 0);
1299 
1300     uint64_t Offset = 0;
1301     for (uint64_t i = 0; i < NumElements; i++) {
1302       Value *Indices[2] = {
1303         Zero,
1304         ConstantInt::get(IdxType, i),
1305       };
1306       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1307                                                AddrName);
1308       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1309       auto EltAlign = MinAlign(Align, Offset);
1310       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1311       AAMDNodes AAMD;
1312       SI.getAAMetadata(AAMD);
1313       NS->setAAMetadata(AAMD);
1314       Offset += EltSize;
1315     }
1316 
1317     return true;
1318   }
1319 
1320   return false;
1321 }
1322 
1323 /// equivalentAddressValues - Test if A and B will obviously have the same
1324 /// value. This includes recognizing that %t0 and %t1 will have the same
1325 /// value in code like this:
1326 ///   %t0 = getelementptr \@a, 0, 3
1327 ///   store i32 0, i32* %t0
1328 ///   %t1 = getelementptr \@a, 0, 3
1329 ///   %t2 = load i32* %t1
1330 ///
1331 static bool equivalentAddressValues(Value *A, Value *B) {
1332   // Test if the values are trivially equivalent.
1333   if (A == B) return true;
1334 
1335   // Test if the values come form identical arithmetic instructions.
1336   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1337   // its only used to compare two uses within the same basic block, which
1338   // means that they'll always either have the same value or one of them
1339   // will have an undefined value.
1340   if (isa<BinaryOperator>(A) ||
1341       isa<CastInst>(A) ||
1342       isa<PHINode>(A) ||
1343       isa<GetElementPtrInst>(A))
1344     if (Instruction *BI = dyn_cast<Instruction>(B))
1345       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1346         return true;
1347 
1348   // Otherwise they may not be equivalent.
1349   return false;
1350 }
1351 
1352 /// Converts store (bitcast (load (bitcast (select ...)))) to
1353 /// store (load (select ...)), where select is minmax:
1354 /// select ((cmp load V1, load V2), V1, V2).
1355 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC,
1356                                                 StoreInst &SI) {
1357   // bitcast?
1358   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1359     return false;
1360   // load? integer?
1361   Value *LoadAddr;
1362   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1363     return false;
1364   auto *LI = cast<LoadInst>(SI.getValueOperand());
1365   if (!LI->getType()->isIntegerTy())
1366     return false;
1367   if (!isMinMaxWithLoads(LoadAddr))
1368     return false;
1369 
1370   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1371         auto *SI = dyn_cast<StoreInst>(U);
1372         return SI && SI->getPointerOperand() != LI &&
1373                peekThroughBitcast(SI->getPointerOperand()) != LoadAddr &&
1374                !SI->getPointerOperand()->isSwiftError();
1375       }))
1376     return false;
1377 
1378   IC.Builder.SetInsertPoint(LI);
1379   LoadInst *NewLI = combineLoadToNewType(
1380       IC, *LI, LoadAddr->getType()->getPointerElementType());
1381   // Replace all the stores with stores of the newly loaded value.
1382   for (auto *UI : LI->users()) {
1383     auto *USI = cast<StoreInst>(UI);
1384     IC.Builder.SetInsertPoint(USI);
1385     combineStoreToNewValue(IC, *USI, NewLI);
1386   }
1387   IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1388   IC.eraseInstFromFunction(*LI);
1389   return true;
1390 }
1391 
1392 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1393   Value *Val = SI.getOperand(0);
1394   Value *Ptr = SI.getOperand(1);
1395 
1396   // Try to canonicalize the stored type.
1397   if (combineStoreToValueType(*this, SI))
1398     return eraseInstFromFunction(SI);
1399 
1400   // Attempt to improve the alignment.
1401   unsigned KnownAlign = getOrEnforceKnownAlignment(
1402       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT);
1403   unsigned StoreAlign = SI.getAlignment();
1404   unsigned EffectiveStoreAlign =
1405       StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
1406 
1407   if (KnownAlign > EffectiveStoreAlign)
1408     SI.setAlignment(KnownAlign);
1409   else if (StoreAlign == 0)
1410     SI.setAlignment(EffectiveStoreAlign);
1411 
1412   // Try to canonicalize the stored type.
1413   if (unpackStoreToAggregate(*this, SI))
1414     return eraseInstFromFunction(SI);
1415 
1416   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1417     return eraseInstFromFunction(SI);
1418 
1419   // Replace GEP indices if possible.
1420   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1421       Worklist.Add(NewGEPI);
1422       return &SI;
1423   }
1424 
1425   // Don't hack volatile/ordered stores.
1426   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1427   if (!SI.isUnordered()) return nullptr;
1428 
1429   // If the RHS is an alloca with a single use, zapify the store, making the
1430   // alloca dead.
1431   if (Ptr->hasOneUse()) {
1432     if (isa<AllocaInst>(Ptr))
1433       return eraseInstFromFunction(SI);
1434     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1435       if (isa<AllocaInst>(GEP->getOperand(0))) {
1436         if (GEP->getOperand(0)->hasOneUse())
1437           return eraseInstFromFunction(SI);
1438       }
1439     }
1440   }
1441 
1442   // Do really simple DSE, to catch cases where there are several consecutive
1443   // stores to the same location, separated by a few arithmetic operations. This
1444   // situation often occurs with bitfield accesses.
1445   BasicBlock::iterator BBI(SI);
1446   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1447        --ScanInsts) {
1448     --BBI;
1449     // Don't count debug info directives, lest they affect codegen,
1450     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1451     if (isa<DbgInfoIntrinsic>(BBI) ||
1452         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1453       ScanInsts++;
1454       continue;
1455     }
1456 
1457     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1458       // Prev store isn't volatile, and stores to the same location?
1459       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1460                                                         SI.getOperand(1))) {
1461         ++NumDeadStore;
1462         ++BBI;
1463         eraseInstFromFunction(*PrevSI);
1464         continue;
1465       }
1466       break;
1467     }
1468 
1469     // If this is a load, we have to stop.  However, if the loaded value is from
1470     // the pointer we're loading and is producing the pointer we're storing,
1471     // then *this* store is dead (X = load P; store X -> P).
1472     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1473       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1474         assert(SI.isUnordered() && "can't eliminate ordering operation");
1475         return eraseInstFromFunction(SI);
1476       }
1477 
1478       // Otherwise, this is a load from some other location.  Stores before it
1479       // may not be dead.
1480       break;
1481     }
1482 
1483     // Don't skip over loads, throws or things that can modify memory.
1484     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1485       break;
1486   }
1487 
1488   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1489   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1490   if (canSimplifyNullStoreOrGEP(SI)) {
1491     if (!isa<UndefValue>(Val)) {
1492       SI.setOperand(0, UndefValue::get(Val->getType()));
1493       if (Instruction *U = dyn_cast<Instruction>(Val))
1494         Worklist.Add(U);  // Dropped a use.
1495     }
1496     return nullptr;  // Do not modify these!
1497   }
1498 
1499   // store undef, Ptr -> noop
1500   if (isa<UndefValue>(Val))
1501     return eraseInstFromFunction(SI);
1502 
1503   // If this store is the second-to-last instruction in the basic block
1504   // (excluding debug info and bitcasts of pointers) and if the block ends with
1505   // an unconditional branch, try to move the store to the successor block.
1506   BBI = SI.getIterator();
1507   do {
1508     ++BBI;
1509   } while (isa<DbgInfoIntrinsic>(BBI) ||
1510            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1511 
1512   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1513     if (BI->isUnconditional())
1514       mergeStoreIntoSuccessor(SI);
1515 
1516   return nullptr;
1517 }
1518 
1519 /// Try to transform:
1520 ///   if () { *P = v1; } else { *P = v2 }
1521 /// or:
1522 ///   *P = v1; if () { *P = v2; }
1523 /// into a phi node with a store in the successor.
1524 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) {
1525   assert(SI.isUnordered() &&
1526          "This code has not been audited for volatile or ordered store case.");
1527 
1528   // Check if the successor block has exactly 2 incoming edges.
1529   BasicBlock *StoreBB = SI.getParent();
1530   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1531   if (!DestBB->hasNPredecessors(2))
1532     return false;
1533 
1534   // Capture the other block (the block that doesn't contain our store).
1535   pred_iterator PredIter = pred_begin(DestBB);
1536   if (*PredIter == StoreBB)
1537     ++PredIter;
1538   BasicBlock *OtherBB = *PredIter;
1539 
1540   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1541   // for example, if SI is in an infinite loop.
1542   if (StoreBB == DestBB || OtherBB == DestBB)
1543     return false;
1544 
1545   // Verify that the other block ends in a branch and is not otherwise empty.
1546   BasicBlock::iterator BBI(OtherBB->getTerminator());
1547   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1548   if (!OtherBr || BBI == OtherBB->begin())
1549     return false;
1550 
1551   // If the other block ends in an unconditional branch, check for the 'if then
1552   // else' case. There is an instruction before the branch.
1553   StoreInst *OtherStore = nullptr;
1554   if (OtherBr->isUnconditional()) {
1555     --BBI;
1556     // Skip over debugging info.
1557     while (isa<DbgInfoIntrinsic>(BBI) ||
1558            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1559       if (BBI==OtherBB->begin())
1560         return false;
1561       --BBI;
1562     }
1563     // If this isn't a store, isn't a store to the same location, or is not the
1564     // right kind of store, bail out.
1565     OtherStore = dyn_cast<StoreInst>(BBI);
1566     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1567         !SI.isSameOperationAs(OtherStore))
1568       return false;
1569   } else {
1570     // Otherwise, the other block ended with a conditional branch. If one of the
1571     // destinations is StoreBB, then we have the if/then case.
1572     if (OtherBr->getSuccessor(0) != StoreBB &&
1573         OtherBr->getSuccessor(1) != StoreBB)
1574       return false;
1575 
1576     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1577     // if/then triangle. See if there is a store to the same ptr as SI that
1578     // lives in OtherBB.
1579     for (;; --BBI) {
1580       // Check to see if we find the matching store.
1581       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1582         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1583             !SI.isSameOperationAs(OtherStore))
1584           return false;
1585         break;
1586       }
1587       // If we find something that may be using or overwriting the stored
1588       // value, or if we run out of instructions, we can't do the transform.
1589       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1590           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1591         return false;
1592     }
1593 
1594     // In order to eliminate the store in OtherBr, we have to make sure nothing
1595     // reads or overwrites the stored value in StoreBB.
1596     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1597       // FIXME: This should really be AA driven.
1598       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1599         return false;
1600     }
1601   }
1602 
1603   // Insert a PHI node now if we need it.
1604   Value *MergedVal = OtherStore->getOperand(0);
1605   // The debug locations of the original instructions might differ. Merge them.
1606   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1607                                                      OtherStore->getDebugLoc());
1608   if (MergedVal != SI.getOperand(0)) {
1609     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1610     PN->addIncoming(SI.getOperand(0), SI.getParent());
1611     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1612     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1613     PN->setDebugLoc(MergedLoc);
1614   }
1615 
1616   // Advance to a place where it is safe to insert the new store and insert it.
1617   BBI = DestBB->getFirstInsertionPt();
1618   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
1619                                    SI.isVolatile(), SI.getAlignment(),
1620                                    SI.getOrdering(), SI.getSyncScopeID());
1621   InsertNewInstBefore(NewSI, *BBI);
1622   NewSI->setDebugLoc(MergedLoc);
1623 
1624   // If the two stores had AA tags, merge them.
1625   AAMDNodes AATags;
1626   SI.getAAMetadata(AATags);
1627   if (AATags) {
1628     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1629     NewSI->setAAMetadata(AATags);
1630   }
1631 
1632   // Nuke the old stores.
1633   eraseInstFromFunction(SI);
1634   eraseInstFromFunction(*OtherStore);
1635   return true;
1636 }
1637