1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/MapVector.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Transforms/Utils/Local.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/MDBuilder.h" 26 #include "llvm/IR/PatternMatch.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 using namespace llvm; 29 using namespace PatternMatch; 30 31 #define DEBUG_TYPE "instcombine" 32 33 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 34 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 35 36 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 37 /// some part of a constant global variable. This intentionally only accepts 38 /// constant expressions because we can't rewrite arbitrary instructions. 39 static bool pointsToConstantGlobal(Value *V) { 40 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 41 return GV->isConstant(); 42 43 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 44 if (CE->getOpcode() == Instruction::BitCast || 45 CE->getOpcode() == Instruction::AddrSpaceCast || 46 CE->getOpcode() == Instruction::GetElementPtr) 47 return pointsToConstantGlobal(CE->getOperand(0)); 48 } 49 return false; 50 } 51 52 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 53 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 54 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 55 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 56 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 57 /// the alloca, and if the source pointer is a pointer to a constant global, we 58 /// can optimize this. 59 static bool 60 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 61 SmallVectorImpl<Instruction *> &ToDelete) { 62 // We track lifetime intrinsics as we encounter them. If we decide to go 63 // ahead and replace the value with the global, this lets the caller quickly 64 // eliminate the markers. 65 66 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 67 ValuesToInspect.emplace_back(V, false); 68 while (!ValuesToInspect.empty()) { 69 auto ValuePair = ValuesToInspect.pop_back_val(); 70 const bool IsOffset = ValuePair.second; 71 for (auto &U : ValuePair.first->uses()) { 72 auto *I = cast<Instruction>(U.getUser()); 73 74 if (auto *LI = dyn_cast<LoadInst>(I)) { 75 // Ignore non-volatile loads, they are always ok. 76 if (!LI->isSimple()) return false; 77 continue; 78 } 79 80 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 81 // If uses of the bitcast are ok, we are ok. 82 ValuesToInspect.emplace_back(I, IsOffset); 83 continue; 84 } 85 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 86 // If the GEP has all zero indices, it doesn't offset the pointer. If it 87 // doesn't, it does. 88 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 89 continue; 90 } 91 92 if (auto CS = CallSite(I)) { 93 // If this is the function being called then we treat it like a load and 94 // ignore it. 95 if (CS.isCallee(&U)) 96 continue; 97 98 unsigned DataOpNo = CS.getDataOperandNo(&U); 99 bool IsArgOperand = CS.isArgOperand(&U); 100 101 // Inalloca arguments are clobbered by the call. 102 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 103 return false; 104 105 // If this is a readonly/readnone call site, then we know it is just a 106 // load (but one that potentially returns the value itself), so we can 107 // ignore it if we know that the value isn't captured. 108 if (CS.onlyReadsMemory() && 109 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 110 continue; 111 112 // If this is being passed as a byval argument, the caller is making a 113 // copy, so it is only a read of the alloca. 114 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 115 continue; 116 } 117 118 // Lifetime intrinsics can be handled by the caller. 119 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 120 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 121 II->getIntrinsicID() == Intrinsic::lifetime_end) { 122 assert(II->use_empty() && "Lifetime markers have no result to use!"); 123 ToDelete.push_back(II); 124 continue; 125 } 126 } 127 128 // If this is isn't our memcpy/memmove, reject it as something we can't 129 // handle. 130 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 131 if (!MI) 132 return false; 133 134 // If the transfer is using the alloca as a source of the transfer, then 135 // ignore it since it is a load (unless the transfer is volatile). 136 if (U.getOperandNo() == 1) { 137 if (MI->isVolatile()) return false; 138 continue; 139 } 140 141 // If we already have seen a copy, reject the second one. 142 if (TheCopy) return false; 143 144 // If the pointer has been offset from the start of the alloca, we can't 145 // safely handle this. 146 if (IsOffset) return false; 147 148 // If the memintrinsic isn't using the alloca as the dest, reject it. 149 if (U.getOperandNo() != 0) return false; 150 151 // If the source of the memcpy/move is not a constant global, reject it. 152 if (!pointsToConstantGlobal(MI->getSource())) 153 return false; 154 155 // Otherwise, the transform is safe. Remember the copy instruction. 156 TheCopy = MI; 157 } 158 } 159 return true; 160 } 161 162 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 163 /// modified by a copy from a constant global. If we can prove this, we can 164 /// replace any uses of the alloca with uses of the global directly. 165 static MemTransferInst * 166 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 167 SmallVectorImpl<Instruction *> &ToDelete) { 168 MemTransferInst *TheCopy = nullptr; 169 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 170 return TheCopy; 171 return nullptr; 172 } 173 174 /// Returns true if V is dereferenceable for size of alloca. 175 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 176 const DataLayout &DL) { 177 if (AI->isArrayAllocation()) 178 return false; 179 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 180 if (!AllocaSize) 181 return false; 182 return isDereferenceableAndAlignedPointer(V, AI->getAlignment(), 183 APInt(64, AllocaSize), DL); 184 } 185 186 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 187 // Check for array size of 1 (scalar allocation). 188 if (!AI.isArrayAllocation()) { 189 // i32 1 is the canonical array size for scalar allocations. 190 if (AI.getArraySize()->getType()->isIntegerTy(32)) 191 return nullptr; 192 193 // Canonicalize it. 194 Value *V = IC.Builder.getInt32(1); 195 AI.setOperand(0, V); 196 return &AI; 197 } 198 199 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 200 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 201 if (C->getValue().getActiveBits() <= 64) { 202 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 203 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 204 New->setAlignment(AI.getAlignment()); 205 206 // Scan to the end of the allocation instructions, to skip over a block of 207 // allocas if possible...also skip interleaved debug info 208 // 209 BasicBlock::iterator It(New); 210 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 211 ++It; 212 213 // Now that I is pointing to the first non-allocation-inst in the block, 214 // insert our getelementptr instruction... 215 // 216 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 217 Value *NullIdx = Constant::getNullValue(IdxTy); 218 Value *Idx[2] = {NullIdx, NullIdx}; 219 Instruction *GEP = 220 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 221 IC.InsertNewInstBefore(GEP, *It); 222 223 // Now make everything use the getelementptr instead of the original 224 // allocation. 225 return IC.replaceInstUsesWith(AI, GEP); 226 } 227 } 228 229 if (isa<UndefValue>(AI.getArraySize())) 230 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 231 232 // Ensure that the alloca array size argument has type intptr_t, so that 233 // any casting is exposed early. 234 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 235 if (AI.getArraySize()->getType() != IntPtrTy) { 236 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 237 AI.setOperand(0, V); 238 return &AI; 239 } 240 241 return nullptr; 242 } 243 244 namespace { 245 // If I and V are pointers in different address space, it is not allowed to 246 // use replaceAllUsesWith since I and V have different types. A 247 // non-target-specific transformation should not use addrspacecast on V since 248 // the two address space may be disjoint depending on target. 249 // 250 // This class chases down uses of the old pointer until reaching the load 251 // instructions, then replaces the old pointer in the load instructions with 252 // the new pointer. If during the chasing it sees bitcast or GEP, it will 253 // create new bitcast or GEP with the new pointer and use them in the load 254 // instruction. 255 class PointerReplacer { 256 public: 257 PointerReplacer(InstCombiner &IC) : IC(IC) {} 258 void replacePointer(Instruction &I, Value *V); 259 260 private: 261 void findLoadAndReplace(Instruction &I); 262 void replace(Instruction *I); 263 Value *getReplacement(Value *I); 264 265 SmallVector<Instruction *, 4> Path; 266 MapVector<Value *, Value *> WorkMap; 267 InstCombiner &IC; 268 }; 269 } // end anonymous namespace 270 271 void PointerReplacer::findLoadAndReplace(Instruction &I) { 272 for (auto U : I.users()) { 273 auto *Inst = dyn_cast<Instruction>(&*U); 274 if (!Inst) 275 return; 276 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 277 if (isa<LoadInst>(Inst)) { 278 for (auto P : Path) 279 replace(P); 280 replace(Inst); 281 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 282 Path.push_back(Inst); 283 findLoadAndReplace(*Inst); 284 Path.pop_back(); 285 } else { 286 return; 287 } 288 } 289 } 290 291 Value *PointerReplacer::getReplacement(Value *V) { 292 auto Loc = WorkMap.find(V); 293 if (Loc != WorkMap.end()) 294 return Loc->second; 295 return nullptr; 296 } 297 298 void PointerReplacer::replace(Instruction *I) { 299 if (getReplacement(I)) 300 return; 301 302 if (auto *LT = dyn_cast<LoadInst>(I)) { 303 auto *V = getReplacement(LT->getPointerOperand()); 304 assert(V && "Operand not replaced"); 305 auto *NewI = new LoadInst(V); 306 NewI->takeName(LT); 307 IC.InsertNewInstWith(NewI, *LT); 308 IC.replaceInstUsesWith(*LT, NewI); 309 WorkMap[LT] = NewI; 310 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 311 auto *V = getReplacement(GEP->getPointerOperand()); 312 assert(V && "Operand not replaced"); 313 SmallVector<Value *, 8> Indices; 314 Indices.append(GEP->idx_begin(), GEP->idx_end()); 315 auto *NewI = GetElementPtrInst::Create( 316 V->getType()->getPointerElementType(), V, Indices); 317 IC.InsertNewInstWith(NewI, *GEP); 318 NewI->takeName(GEP); 319 WorkMap[GEP] = NewI; 320 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 321 auto *V = getReplacement(BC->getOperand(0)); 322 assert(V && "Operand not replaced"); 323 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 324 V->getType()->getPointerAddressSpace()); 325 auto *NewI = new BitCastInst(V, NewT); 326 IC.InsertNewInstWith(NewI, *BC); 327 NewI->takeName(BC); 328 WorkMap[BC] = NewI; 329 } else { 330 llvm_unreachable("should never reach here"); 331 } 332 } 333 334 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 335 #ifndef NDEBUG 336 auto *PT = cast<PointerType>(I.getType()); 337 auto *NT = cast<PointerType>(V->getType()); 338 assert(PT != NT && PT->getElementType() == NT->getElementType() && 339 "Invalid usage"); 340 #endif 341 WorkMap[&I] = V; 342 findLoadAndReplace(I); 343 } 344 345 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 346 if (auto *I = simplifyAllocaArraySize(*this, AI)) 347 return I; 348 349 if (AI.getAllocatedType()->isSized()) { 350 // If the alignment is 0 (unspecified), assign it the preferred alignment. 351 if (AI.getAlignment() == 0) 352 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 353 354 // Move all alloca's of zero byte objects to the entry block and merge them 355 // together. Note that we only do this for alloca's, because malloc should 356 // allocate and return a unique pointer, even for a zero byte allocation. 357 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 358 // For a zero sized alloca there is no point in doing an array allocation. 359 // This is helpful if the array size is a complicated expression not used 360 // elsewhere. 361 if (AI.isArrayAllocation()) { 362 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 363 return &AI; 364 } 365 366 // Get the first instruction in the entry block. 367 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 368 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 369 if (FirstInst != &AI) { 370 // If the entry block doesn't start with a zero-size alloca then move 371 // this one to the start of the entry block. There is no problem with 372 // dominance as the array size was forced to a constant earlier already. 373 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 374 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 375 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 376 AI.moveBefore(FirstInst); 377 return &AI; 378 } 379 380 // If the alignment of the entry block alloca is 0 (unspecified), 381 // assign it the preferred alignment. 382 if (EntryAI->getAlignment() == 0) 383 EntryAI->setAlignment( 384 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 385 // Replace this zero-sized alloca with the one at the start of the entry 386 // block after ensuring that the address will be aligned enough for both 387 // types. 388 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 389 AI.getAlignment()); 390 EntryAI->setAlignment(MaxAlign); 391 if (AI.getType() != EntryAI->getType()) 392 return new BitCastInst(EntryAI, AI.getType()); 393 return replaceInstUsesWith(AI, EntryAI); 394 } 395 } 396 } 397 398 if (AI.getAlignment()) { 399 // Check to see if this allocation is only modified by a memcpy/memmove from 400 // a constant global whose alignment is equal to or exceeds that of the 401 // allocation. If this is the case, we can change all users to use 402 // the constant global instead. This is commonly produced by the CFE by 403 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 404 // is only subsequently read. 405 SmallVector<Instruction *, 4> ToDelete; 406 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 407 unsigned SourceAlign = getOrEnforceKnownAlignment( 408 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 409 if (AI.getAlignment() <= SourceAlign && 410 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 411 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 412 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 413 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 414 eraseInstFromFunction(*ToDelete[i]); 415 Constant *TheSrc = cast<Constant>(Copy->getSource()); 416 auto *SrcTy = TheSrc->getType(); 417 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 418 SrcTy->getPointerAddressSpace()); 419 Constant *Cast = 420 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 421 if (AI.getType()->getPointerAddressSpace() == 422 SrcTy->getPointerAddressSpace()) { 423 Instruction *NewI = replaceInstUsesWith(AI, Cast); 424 eraseInstFromFunction(*Copy); 425 ++NumGlobalCopies; 426 return NewI; 427 } else { 428 PointerReplacer PtrReplacer(*this); 429 PtrReplacer.replacePointer(AI, Cast); 430 ++NumGlobalCopies; 431 } 432 } 433 } 434 } 435 436 // At last, use the generic allocation site handler to aggressively remove 437 // unused allocas. 438 return visitAllocSite(AI); 439 } 440 441 // Are we allowed to form a atomic load or store of this type? 442 static bool isSupportedAtomicType(Type *Ty) { 443 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 444 } 445 446 /// Helper to combine a load to a new type. 447 /// 448 /// This just does the work of combining a load to a new type. It handles 449 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 450 /// loaded *value* type. This will convert it to a pointer, cast the operand to 451 /// that pointer type, load it, etc. 452 /// 453 /// Note that this will create all of the instructions with whatever insert 454 /// point the \c InstCombiner currently is using. 455 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 456 const Twine &Suffix = "") { 457 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 458 "can't fold an atomic load to requested type"); 459 460 Value *Ptr = LI.getPointerOperand(); 461 unsigned AS = LI.getPointerAddressSpace(); 462 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 463 LI.getAllMetadata(MD); 464 465 Value *NewPtr = nullptr; 466 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 467 NewPtr->getType()->getPointerElementType() == NewTy && 468 NewPtr->getType()->getPointerAddressSpace() == AS)) 469 NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 470 471 LoadInst *NewLoad = IC.Builder.CreateAlignedLoad( 472 NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 473 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 474 MDBuilder MDB(NewLoad->getContext()); 475 for (const auto &MDPair : MD) { 476 unsigned ID = MDPair.first; 477 MDNode *N = MDPair.second; 478 // Note, essentially every kind of metadata should be preserved here! This 479 // routine is supposed to clone a load instruction changing *only its type*. 480 // The only metadata it makes sense to drop is metadata which is invalidated 481 // when the pointer type changes. This should essentially never be the case 482 // in LLVM, but we explicitly switch over only known metadata to be 483 // conservatively correct. If you are adding metadata to LLVM which pertains 484 // to loads, you almost certainly want to add it here. 485 switch (ID) { 486 case LLVMContext::MD_dbg: 487 case LLVMContext::MD_tbaa: 488 case LLVMContext::MD_prof: 489 case LLVMContext::MD_fpmath: 490 case LLVMContext::MD_tbaa_struct: 491 case LLVMContext::MD_invariant_load: 492 case LLVMContext::MD_alias_scope: 493 case LLVMContext::MD_noalias: 494 case LLVMContext::MD_nontemporal: 495 case LLVMContext::MD_mem_parallel_loop_access: 496 case LLVMContext::MD_access_group: 497 // All of these directly apply. 498 NewLoad->setMetadata(ID, N); 499 break; 500 501 case LLVMContext::MD_nonnull: 502 copyNonnullMetadata(LI, N, *NewLoad); 503 break; 504 case LLVMContext::MD_align: 505 case LLVMContext::MD_dereferenceable: 506 case LLVMContext::MD_dereferenceable_or_null: 507 // These only directly apply if the new type is also a pointer. 508 if (NewTy->isPointerTy()) 509 NewLoad->setMetadata(ID, N); 510 break; 511 case LLVMContext::MD_range: 512 copyRangeMetadata(IC.getDataLayout(), LI, N, *NewLoad); 513 break; 514 } 515 } 516 return NewLoad; 517 } 518 519 /// Combine a store to a new type. 520 /// 521 /// Returns the newly created store instruction. 522 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 523 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 524 "can't fold an atomic store of requested type"); 525 526 Value *Ptr = SI.getPointerOperand(); 527 unsigned AS = SI.getPointerAddressSpace(); 528 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 529 SI.getAllMetadata(MD); 530 531 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 532 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 533 SI.getAlignment(), SI.isVolatile()); 534 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 535 for (const auto &MDPair : MD) { 536 unsigned ID = MDPair.first; 537 MDNode *N = MDPair.second; 538 // Note, essentially every kind of metadata should be preserved here! This 539 // routine is supposed to clone a store instruction changing *only its 540 // type*. The only metadata it makes sense to drop is metadata which is 541 // invalidated when the pointer type changes. This should essentially 542 // never be the case in LLVM, but we explicitly switch over only known 543 // metadata to be conservatively correct. If you are adding metadata to 544 // LLVM which pertains to stores, you almost certainly want to add it 545 // here. 546 switch (ID) { 547 case LLVMContext::MD_dbg: 548 case LLVMContext::MD_tbaa: 549 case LLVMContext::MD_prof: 550 case LLVMContext::MD_fpmath: 551 case LLVMContext::MD_tbaa_struct: 552 case LLVMContext::MD_alias_scope: 553 case LLVMContext::MD_noalias: 554 case LLVMContext::MD_nontemporal: 555 case LLVMContext::MD_mem_parallel_loop_access: 556 case LLVMContext::MD_access_group: 557 // All of these directly apply. 558 NewStore->setMetadata(ID, N); 559 break; 560 case LLVMContext::MD_invariant_load: 561 case LLVMContext::MD_nonnull: 562 case LLVMContext::MD_range: 563 case LLVMContext::MD_align: 564 case LLVMContext::MD_dereferenceable: 565 case LLVMContext::MD_dereferenceable_or_null: 566 // These don't apply for stores. 567 break; 568 } 569 } 570 571 return NewStore; 572 } 573 574 /// Returns true if instruction represent minmax pattern like: 575 /// select ((cmp load V1, load V2), V1, V2). 576 static bool isMinMaxWithLoads(Value *V) { 577 assert(V->getType()->isPointerTy() && "Expected pointer type."); 578 // Ignore possible ty* to ixx* bitcast. 579 V = peekThroughBitcast(V); 580 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 581 // pattern. 582 CmpInst::Predicate Pred; 583 Instruction *L1; 584 Instruction *L2; 585 Value *LHS; 586 Value *RHS; 587 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 588 m_Value(LHS), m_Value(RHS)))) 589 return false; 590 return (match(L1, m_Load(m_Specific(LHS))) && 591 match(L2, m_Load(m_Specific(RHS)))) || 592 (match(L1, m_Load(m_Specific(RHS))) && 593 match(L2, m_Load(m_Specific(LHS)))); 594 } 595 596 /// Combine loads to match the type of their uses' value after looking 597 /// through intervening bitcasts. 598 /// 599 /// The core idea here is that if the result of a load is used in an operation, 600 /// we should load the type most conducive to that operation. For example, when 601 /// loading an integer and converting that immediately to a pointer, we should 602 /// instead directly load a pointer. 603 /// 604 /// However, this routine must never change the width of a load or the number of 605 /// loads as that would introduce a semantic change. This combine is expected to 606 /// be a semantic no-op which just allows loads to more closely model the types 607 /// of their consuming operations. 608 /// 609 /// Currently, we also refuse to change the precise type used for an atomic load 610 /// or a volatile load. This is debatable, and might be reasonable to change 611 /// later. However, it is risky in case some backend or other part of LLVM is 612 /// relying on the exact type loaded to select appropriate atomic operations. 613 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 614 // FIXME: We could probably with some care handle both volatile and ordered 615 // atomic loads here but it isn't clear that this is important. 616 if (!LI.isUnordered()) 617 return nullptr; 618 619 if (LI.use_empty()) 620 return nullptr; 621 622 // swifterror values can't be bitcasted. 623 if (LI.getPointerOperand()->isSwiftError()) 624 return nullptr; 625 626 Type *Ty = LI.getType(); 627 const DataLayout &DL = IC.getDataLayout(); 628 629 // Try to canonicalize loads which are only ever stored to operate over 630 // integers instead of any other type. We only do this when the loaded type 631 // is sized and has a size exactly the same as its store size and the store 632 // size is a legal integer type. 633 // Do not perform canonicalization if minmax pattern is found (to avoid 634 // infinite loop). 635 if (!Ty->isIntegerTy() && Ty->isSized() && 636 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 637 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) && 638 !DL.isNonIntegralPointerType(Ty) && 639 !isMinMaxWithLoads( 640 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) { 641 if (all_of(LI.users(), [&LI](User *U) { 642 auto *SI = dyn_cast<StoreInst>(U); 643 return SI && SI->getPointerOperand() != &LI && 644 !SI->getPointerOperand()->isSwiftError(); 645 })) { 646 LoadInst *NewLoad = combineLoadToNewType( 647 IC, LI, 648 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 649 // Replace all the stores with stores of the newly loaded value. 650 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 651 auto *SI = cast<StoreInst>(*UI++); 652 IC.Builder.SetInsertPoint(SI); 653 combineStoreToNewValue(IC, *SI, NewLoad); 654 IC.eraseInstFromFunction(*SI); 655 } 656 assert(LI.use_empty() && "Failed to remove all users of the load!"); 657 // Return the old load so the combiner can delete it safely. 658 return &LI; 659 } 660 } 661 662 // Fold away bit casts of the loaded value by loading the desired type. 663 // We can do this for BitCastInsts as well as casts from and to pointer types, 664 // as long as those are noops (i.e., the source or dest type have the same 665 // bitwidth as the target's pointers). 666 if (LI.hasOneUse()) 667 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 668 if (CI->isNoopCast(DL)) 669 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 670 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 671 CI->replaceAllUsesWith(NewLoad); 672 IC.eraseInstFromFunction(*CI); 673 return &LI; 674 } 675 676 // FIXME: We should also canonicalize loads of vectors when their elements are 677 // cast to other types. 678 return nullptr; 679 } 680 681 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 682 // FIXME: We could probably with some care handle both volatile and atomic 683 // stores here but it isn't clear that this is important. 684 if (!LI.isSimple()) 685 return nullptr; 686 687 Type *T = LI.getType(); 688 if (!T->isAggregateType()) 689 return nullptr; 690 691 StringRef Name = LI.getName(); 692 assert(LI.getAlignment() && "Alignment must be set at this point"); 693 694 if (auto *ST = dyn_cast<StructType>(T)) { 695 // If the struct only have one element, we unpack. 696 auto NumElements = ST->getNumElements(); 697 if (NumElements == 1) { 698 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 699 ".unpack"); 700 AAMDNodes AAMD; 701 LI.getAAMetadata(AAMD); 702 NewLoad->setAAMetadata(AAMD); 703 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 704 UndefValue::get(T), NewLoad, 0, Name)); 705 } 706 707 // We don't want to break loads with padding here as we'd loose 708 // the knowledge that padding exists for the rest of the pipeline. 709 const DataLayout &DL = IC.getDataLayout(); 710 auto *SL = DL.getStructLayout(ST); 711 if (SL->hasPadding()) 712 return nullptr; 713 714 auto Align = LI.getAlignment(); 715 if (!Align) 716 Align = DL.getABITypeAlignment(ST); 717 718 auto *Addr = LI.getPointerOperand(); 719 auto *IdxType = Type::getInt32Ty(T->getContext()); 720 auto *Zero = ConstantInt::get(IdxType, 0); 721 722 Value *V = UndefValue::get(T); 723 for (unsigned i = 0; i < NumElements; i++) { 724 Value *Indices[2] = { 725 Zero, 726 ConstantInt::get(IdxType, i), 727 }; 728 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 729 Name + ".elt"); 730 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 731 auto *L = IC.Builder.CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 732 // Propagate AA metadata. It'll still be valid on the narrowed load. 733 AAMDNodes AAMD; 734 LI.getAAMetadata(AAMD); 735 L->setAAMetadata(AAMD); 736 V = IC.Builder.CreateInsertValue(V, L, i); 737 } 738 739 V->setName(Name); 740 return IC.replaceInstUsesWith(LI, V); 741 } 742 743 if (auto *AT = dyn_cast<ArrayType>(T)) { 744 auto *ET = AT->getElementType(); 745 auto NumElements = AT->getNumElements(); 746 if (NumElements == 1) { 747 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 748 AAMDNodes AAMD; 749 LI.getAAMetadata(AAMD); 750 NewLoad->setAAMetadata(AAMD); 751 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 752 UndefValue::get(T), NewLoad, 0, Name)); 753 } 754 755 // Bail out if the array is too large. Ideally we would like to optimize 756 // arrays of arbitrary size but this has a terrible impact on compile time. 757 // The threshold here is chosen arbitrarily, maybe needs a little bit of 758 // tuning. 759 if (NumElements > IC.MaxArraySizeForCombine) 760 return nullptr; 761 762 const DataLayout &DL = IC.getDataLayout(); 763 auto EltSize = DL.getTypeAllocSize(ET); 764 auto Align = LI.getAlignment(); 765 if (!Align) 766 Align = DL.getABITypeAlignment(T); 767 768 auto *Addr = LI.getPointerOperand(); 769 auto *IdxType = Type::getInt64Ty(T->getContext()); 770 auto *Zero = ConstantInt::get(IdxType, 0); 771 772 Value *V = UndefValue::get(T); 773 uint64_t Offset = 0; 774 for (uint64_t i = 0; i < NumElements; i++) { 775 Value *Indices[2] = { 776 Zero, 777 ConstantInt::get(IdxType, i), 778 }; 779 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 780 Name + ".elt"); 781 auto *L = IC.Builder.CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 782 Name + ".unpack"); 783 AAMDNodes AAMD; 784 LI.getAAMetadata(AAMD); 785 L->setAAMetadata(AAMD); 786 V = IC.Builder.CreateInsertValue(V, L, i); 787 Offset += EltSize; 788 } 789 790 V->setName(Name); 791 return IC.replaceInstUsesWith(LI, V); 792 } 793 794 return nullptr; 795 } 796 797 // If we can determine that all possible objects pointed to by the provided 798 // pointer value are, not only dereferenceable, but also definitively less than 799 // or equal to the provided maximum size, then return true. Otherwise, return 800 // false (constant global values and allocas fall into this category). 801 // 802 // FIXME: This should probably live in ValueTracking (or similar). 803 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 804 const DataLayout &DL) { 805 SmallPtrSet<Value *, 4> Visited; 806 SmallVector<Value *, 4> Worklist(1, V); 807 808 do { 809 Value *P = Worklist.pop_back_val(); 810 P = P->stripPointerCasts(); 811 812 if (!Visited.insert(P).second) 813 continue; 814 815 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 816 Worklist.push_back(SI->getTrueValue()); 817 Worklist.push_back(SI->getFalseValue()); 818 continue; 819 } 820 821 if (PHINode *PN = dyn_cast<PHINode>(P)) { 822 for (Value *IncValue : PN->incoming_values()) 823 Worklist.push_back(IncValue); 824 continue; 825 } 826 827 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 828 if (GA->isInterposable()) 829 return false; 830 Worklist.push_back(GA->getAliasee()); 831 continue; 832 } 833 834 // If we know how big this object is, and it is less than MaxSize, continue 835 // searching. Otherwise, return false. 836 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 837 if (!AI->getAllocatedType()->isSized()) 838 return false; 839 840 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 841 if (!CS) 842 return false; 843 844 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 845 // Make sure that, even if the multiplication below would wrap as an 846 // uint64_t, we still do the right thing. 847 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 848 return false; 849 continue; 850 } 851 852 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 853 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 854 return false; 855 856 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 857 if (InitSize > MaxSize) 858 return false; 859 continue; 860 } 861 862 return false; 863 } while (!Worklist.empty()); 864 865 return true; 866 } 867 868 // If we're indexing into an object of a known size, and the outer index is 869 // not a constant, but having any value but zero would lead to undefined 870 // behavior, replace it with zero. 871 // 872 // For example, if we have: 873 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 874 // ... 875 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 876 // ... = load i32* %arrayidx, align 4 877 // Then we know that we can replace %x in the GEP with i64 0. 878 // 879 // FIXME: We could fold any GEP index to zero that would cause UB if it were 880 // not zero. Currently, we only handle the first such index. Also, we could 881 // also search through non-zero constant indices if we kept track of the 882 // offsets those indices implied. 883 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 884 Instruction *MemI, unsigned &Idx) { 885 if (GEPI->getNumOperands() < 2) 886 return false; 887 888 // Find the first non-zero index of a GEP. If all indices are zero, return 889 // one past the last index. 890 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 891 unsigned I = 1; 892 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 893 Value *V = GEPI->getOperand(I); 894 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 895 if (CI->isZero()) 896 continue; 897 898 break; 899 } 900 901 return I; 902 }; 903 904 // Skip through initial 'zero' indices, and find the corresponding pointer 905 // type. See if the next index is not a constant. 906 Idx = FirstNZIdx(GEPI); 907 if (Idx == GEPI->getNumOperands()) 908 return false; 909 if (isa<Constant>(GEPI->getOperand(Idx))) 910 return false; 911 912 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 913 Type *AllocTy = 914 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 915 if (!AllocTy || !AllocTy->isSized()) 916 return false; 917 const DataLayout &DL = IC.getDataLayout(); 918 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 919 920 // If there are more indices after the one we might replace with a zero, make 921 // sure they're all non-negative. If any of them are negative, the overall 922 // address being computed might be before the base address determined by the 923 // first non-zero index. 924 auto IsAllNonNegative = [&]() { 925 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 926 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 927 if (Known.isNonNegative()) 928 continue; 929 return false; 930 } 931 932 return true; 933 }; 934 935 // FIXME: If the GEP is not inbounds, and there are extra indices after the 936 // one we'll replace, those could cause the address computation to wrap 937 // (rendering the IsAllNonNegative() check below insufficient). We can do 938 // better, ignoring zero indices (and other indices we can prove small 939 // enough not to wrap). 940 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 941 return false; 942 943 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 944 // also known to be dereferenceable. 945 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 946 IsAllNonNegative(); 947 } 948 949 // If we're indexing into an object with a variable index for the memory 950 // access, but the object has only one element, we can assume that the index 951 // will always be zero. If we replace the GEP, return it. 952 template <typename T> 953 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 954 T &MemI) { 955 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 956 unsigned Idx; 957 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 958 Instruction *NewGEPI = GEPI->clone(); 959 NewGEPI->setOperand(Idx, 960 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 961 NewGEPI->insertBefore(GEPI); 962 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 963 return NewGEPI; 964 } 965 } 966 967 return nullptr; 968 } 969 970 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 971 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 972 return false; 973 974 auto *Ptr = SI.getPointerOperand(); 975 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 976 Ptr = GEPI->getOperand(0); 977 return (isa<ConstantPointerNull>(Ptr) && 978 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 979 } 980 981 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 982 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 983 const Value *GEPI0 = GEPI->getOperand(0); 984 if (isa<ConstantPointerNull>(GEPI0) && 985 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 986 return true; 987 } 988 if (isa<UndefValue>(Op) || 989 (isa<ConstantPointerNull>(Op) && 990 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 991 return true; 992 return false; 993 } 994 995 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 996 Value *Op = LI.getOperand(0); 997 998 // Try to canonicalize the loaded type. 999 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 1000 return Res; 1001 1002 // Attempt to improve the alignment. 1003 unsigned KnownAlign = getOrEnforceKnownAlignment( 1004 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 1005 unsigned LoadAlign = LI.getAlignment(); 1006 unsigned EffectiveLoadAlign = 1007 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 1008 1009 if (KnownAlign > EffectiveLoadAlign) 1010 LI.setAlignment(KnownAlign); 1011 else if (LoadAlign == 0) 1012 LI.setAlignment(EffectiveLoadAlign); 1013 1014 // Replace GEP indices if possible. 1015 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 1016 Worklist.Add(NewGEPI); 1017 return &LI; 1018 } 1019 1020 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 1021 return Res; 1022 1023 // Do really simple store-to-load forwarding and load CSE, to catch cases 1024 // where there are several consecutive memory accesses to the same location, 1025 // separated by a few arithmetic operations. 1026 BasicBlock::iterator BBI(LI); 1027 bool IsLoadCSE = false; 1028 if (Value *AvailableVal = FindAvailableLoadedValue( 1029 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1030 if (IsLoadCSE) 1031 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 1032 1033 return replaceInstUsesWith( 1034 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 1035 LI.getName() + ".cast")); 1036 } 1037 1038 // None of the following transforms are legal for volatile/ordered atomic 1039 // loads. Most of them do apply for unordered atomics. 1040 if (!LI.isUnordered()) return nullptr; 1041 1042 // load(gep null, ...) -> unreachable 1043 // load null/undef -> unreachable 1044 // TODO: Consider a target hook for valid address spaces for this xforms. 1045 if (canSimplifyNullLoadOrGEP(LI, Op)) { 1046 // Insert a new store to null instruction before the load to indicate 1047 // that this code is not reachable. We do this instead of inserting 1048 // an unreachable instruction directly because we cannot modify the 1049 // CFG. 1050 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 1051 Constant::getNullValue(Op->getType()), &LI); 1052 SI->setDebugLoc(LI.getDebugLoc()); 1053 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 1054 } 1055 1056 if (Op->hasOneUse()) { 1057 // Change select and PHI nodes to select values instead of addresses: this 1058 // helps alias analysis out a lot, allows many others simplifications, and 1059 // exposes redundancy in the code. 1060 // 1061 // Note that we cannot do the transformation unless we know that the 1062 // introduced loads cannot trap! Something like this is valid as long as 1063 // the condition is always false: load (select bool %C, int* null, int* %G), 1064 // but it would not be valid if we transformed it to load from null 1065 // unconditionally. 1066 // 1067 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1068 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1069 unsigned Align = LI.getAlignment(); 1070 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && 1071 isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { 1072 LoadInst *V1 = Builder.CreateLoad(SI->getOperand(1), 1073 SI->getOperand(1)->getName()+".val"); 1074 LoadInst *V2 = Builder.CreateLoad(SI->getOperand(2), 1075 SI->getOperand(2)->getName()+".val"); 1076 assert(LI.isUnordered() && "implied by above"); 1077 V1->setAlignment(Align); 1078 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1079 V2->setAlignment(Align); 1080 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1081 return SelectInst::Create(SI->getCondition(), V1, V2); 1082 } 1083 1084 // load (select (cond, null, P)) -> load P 1085 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1086 !NullPointerIsDefined(SI->getFunction(), 1087 LI.getPointerAddressSpace())) { 1088 LI.setOperand(0, SI->getOperand(2)); 1089 return &LI; 1090 } 1091 1092 // load (select (cond, P, null)) -> load P 1093 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1094 !NullPointerIsDefined(SI->getFunction(), 1095 LI.getPointerAddressSpace())) { 1096 LI.setOperand(0, SI->getOperand(1)); 1097 return &LI; 1098 } 1099 } 1100 } 1101 return nullptr; 1102 } 1103 1104 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1105 /// 1106 /// \returns underlying value that was "cast", or nullptr otherwise. 1107 /// 1108 /// For example, if we have: 1109 /// 1110 /// %E0 = extractelement <2 x double> %U, i32 0 1111 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1112 /// %E1 = extractelement <2 x double> %U, i32 1 1113 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1114 /// 1115 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1116 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1117 /// Note that %U may contain non-undef values where %V1 has undef. 1118 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1119 Value *U = nullptr; 1120 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1121 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1122 if (!E) 1123 return nullptr; 1124 auto *W = E->getVectorOperand(); 1125 if (!U) 1126 U = W; 1127 else if (U != W) 1128 return nullptr; 1129 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1130 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1131 return nullptr; 1132 V = IV->getAggregateOperand(); 1133 } 1134 if (!isa<UndefValue>(V) ||!U) 1135 return nullptr; 1136 1137 auto *UT = cast<VectorType>(U->getType()); 1138 auto *VT = V->getType(); 1139 // Check that types UT and VT are bitwise isomorphic. 1140 const auto &DL = IC.getDataLayout(); 1141 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1142 return nullptr; 1143 } 1144 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1145 if (AT->getNumElements() != UT->getNumElements()) 1146 return nullptr; 1147 } else { 1148 auto *ST = cast<StructType>(VT); 1149 if (ST->getNumElements() != UT->getNumElements()) 1150 return nullptr; 1151 for (const auto *EltT : ST->elements()) { 1152 if (EltT != UT->getElementType()) 1153 return nullptr; 1154 } 1155 } 1156 return U; 1157 } 1158 1159 /// Combine stores to match the type of value being stored. 1160 /// 1161 /// The core idea here is that the memory does not have any intrinsic type and 1162 /// where we can we should match the type of a store to the type of value being 1163 /// stored. 1164 /// 1165 /// However, this routine must never change the width of a store or the number of 1166 /// stores as that would introduce a semantic change. This combine is expected to 1167 /// be a semantic no-op which just allows stores to more closely model the types 1168 /// of their incoming values. 1169 /// 1170 /// Currently, we also refuse to change the precise type used for an atomic or 1171 /// volatile store. This is debatable, and might be reasonable to change later. 1172 /// However, it is risky in case some backend or other part of LLVM is relying 1173 /// on the exact type stored to select appropriate atomic operations. 1174 /// 1175 /// \returns true if the store was successfully combined away. This indicates 1176 /// the caller must erase the store instruction. We have to let the caller erase 1177 /// the store instruction as otherwise there is no way to signal whether it was 1178 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1179 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1180 // FIXME: We could probably with some care handle both volatile and ordered 1181 // atomic stores here but it isn't clear that this is important. 1182 if (!SI.isUnordered()) 1183 return false; 1184 1185 // swifterror values can't be bitcasted. 1186 if (SI.getPointerOperand()->isSwiftError()) 1187 return false; 1188 1189 Value *V = SI.getValueOperand(); 1190 1191 // Fold away bit casts of the stored value by storing the original type. 1192 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1193 V = BC->getOperand(0); 1194 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1195 combineStoreToNewValue(IC, SI, V); 1196 return true; 1197 } 1198 } 1199 1200 if (Value *U = likeBitCastFromVector(IC, V)) 1201 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1202 combineStoreToNewValue(IC, SI, U); 1203 return true; 1204 } 1205 1206 // FIXME: We should also canonicalize stores of vectors when their elements 1207 // are cast to other types. 1208 return false; 1209 } 1210 1211 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1212 // FIXME: We could probably with some care handle both volatile and atomic 1213 // stores here but it isn't clear that this is important. 1214 if (!SI.isSimple()) 1215 return false; 1216 1217 Value *V = SI.getValueOperand(); 1218 Type *T = V->getType(); 1219 1220 if (!T->isAggregateType()) 1221 return false; 1222 1223 if (auto *ST = dyn_cast<StructType>(T)) { 1224 // If the struct only have one element, we unpack. 1225 unsigned Count = ST->getNumElements(); 1226 if (Count == 1) { 1227 V = IC.Builder.CreateExtractValue(V, 0); 1228 combineStoreToNewValue(IC, SI, V); 1229 return true; 1230 } 1231 1232 // We don't want to break loads with padding here as we'd loose 1233 // the knowledge that padding exists for the rest of the pipeline. 1234 const DataLayout &DL = IC.getDataLayout(); 1235 auto *SL = DL.getStructLayout(ST); 1236 if (SL->hasPadding()) 1237 return false; 1238 1239 auto Align = SI.getAlignment(); 1240 if (!Align) 1241 Align = DL.getABITypeAlignment(ST); 1242 1243 SmallString<16> EltName = V->getName(); 1244 EltName += ".elt"; 1245 auto *Addr = SI.getPointerOperand(); 1246 SmallString<16> AddrName = Addr->getName(); 1247 AddrName += ".repack"; 1248 1249 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1250 auto *Zero = ConstantInt::get(IdxType, 0); 1251 for (unsigned i = 0; i < Count; i++) { 1252 Value *Indices[2] = { 1253 Zero, 1254 ConstantInt::get(IdxType, i), 1255 }; 1256 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1257 AddrName); 1258 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1259 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1260 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1261 AAMDNodes AAMD; 1262 SI.getAAMetadata(AAMD); 1263 NS->setAAMetadata(AAMD); 1264 } 1265 1266 return true; 1267 } 1268 1269 if (auto *AT = dyn_cast<ArrayType>(T)) { 1270 // If the array only have one element, we unpack. 1271 auto NumElements = AT->getNumElements(); 1272 if (NumElements == 1) { 1273 V = IC.Builder.CreateExtractValue(V, 0); 1274 combineStoreToNewValue(IC, SI, V); 1275 return true; 1276 } 1277 1278 // Bail out if the array is too large. Ideally we would like to optimize 1279 // arrays of arbitrary size but this has a terrible impact on compile time. 1280 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1281 // tuning. 1282 if (NumElements > IC.MaxArraySizeForCombine) 1283 return false; 1284 1285 const DataLayout &DL = IC.getDataLayout(); 1286 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1287 auto Align = SI.getAlignment(); 1288 if (!Align) 1289 Align = DL.getABITypeAlignment(T); 1290 1291 SmallString<16> EltName = V->getName(); 1292 EltName += ".elt"; 1293 auto *Addr = SI.getPointerOperand(); 1294 SmallString<16> AddrName = Addr->getName(); 1295 AddrName += ".repack"; 1296 1297 auto *IdxType = Type::getInt64Ty(T->getContext()); 1298 auto *Zero = ConstantInt::get(IdxType, 0); 1299 1300 uint64_t Offset = 0; 1301 for (uint64_t i = 0; i < NumElements; i++) { 1302 Value *Indices[2] = { 1303 Zero, 1304 ConstantInt::get(IdxType, i), 1305 }; 1306 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1307 AddrName); 1308 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1309 auto EltAlign = MinAlign(Align, Offset); 1310 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1311 AAMDNodes AAMD; 1312 SI.getAAMetadata(AAMD); 1313 NS->setAAMetadata(AAMD); 1314 Offset += EltSize; 1315 } 1316 1317 return true; 1318 } 1319 1320 return false; 1321 } 1322 1323 /// equivalentAddressValues - Test if A and B will obviously have the same 1324 /// value. This includes recognizing that %t0 and %t1 will have the same 1325 /// value in code like this: 1326 /// %t0 = getelementptr \@a, 0, 3 1327 /// store i32 0, i32* %t0 1328 /// %t1 = getelementptr \@a, 0, 3 1329 /// %t2 = load i32* %t1 1330 /// 1331 static bool equivalentAddressValues(Value *A, Value *B) { 1332 // Test if the values are trivially equivalent. 1333 if (A == B) return true; 1334 1335 // Test if the values come form identical arithmetic instructions. 1336 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1337 // its only used to compare two uses within the same basic block, which 1338 // means that they'll always either have the same value or one of them 1339 // will have an undefined value. 1340 if (isa<BinaryOperator>(A) || 1341 isa<CastInst>(A) || 1342 isa<PHINode>(A) || 1343 isa<GetElementPtrInst>(A)) 1344 if (Instruction *BI = dyn_cast<Instruction>(B)) 1345 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1346 return true; 1347 1348 // Otherwise they may not be equivalent. 1349 return false; 1350 } 1351 1352 /// Converts store (bitcast (load (bitcast (select ...)))) to 1353 /// store (load (select ...)), where select is minmax: 1354 /// select ((cmp load V1, load V2), V1, V2). 1355 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC, 1356 StoreInst &SI) { 1357 // bitcast? 1358 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1359 return false; 1360 // load? integer? 1361 Value *LoadAddr; 1362 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1363 return false; 1364 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1365 if (!LI->getType()->isIntegerTy()) 1366 return false; 1367 if (!isMinMaxWithLoads(LoadAddr)) 1368 return false; 1369 1370 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1371 auto *SI = dyn_cast<StoreInst>(U); 1372 return SI && SI->getPointerOperand() != LI && 1373 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && 1374 !SI->getPointerOperand()->isSwiftError(); 1375 })) 1376 return false; 1377 1378 IC.Builder.SetInsertPoint(LI); 1379 LoadInst *NewLI = combineLoadToNewType( 1380 IC, *LI, LoadAddr->getType()->getPointerElementType()); 1381 // Replace all the stores with stores of the newly loaded value. 1382 for (auto *UI : LI->users()) { 1383 auto *USI = cast<StoreInst>(UI); 1384 IC.Builder.SetInsertPoint(USI); 1385 combineStoreToNewValue(IC, *USI, NewLI); 1386 } 1387 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1388 IC.eraseInstFromFunction(*LI); 1389 return true; 1390 } 1391 1392 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1393 Value *Val = SI.getOperand(0); 1394 Value *Ptr = SI.getOperand(1); 1395 1396 // Try to canonicalize the stored type. 1397 if (combineStoreToValueType(*this, SI)) 1398 return eraseInstFromFunction(SI); 1399 1400 // Attempt to improve the alignment. 1401 unsigned KnownAlign = getOrEnforceKnownAlignment( 1402 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1403 unsigned StoreAlign = SI.getAlignment(); 1404 unsigned EffectiveStoreAlign = 1405 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1406 1407 if (KnownAlign > EffectiveStoreAlign) 1408 SI.setAlignment(KnownAlign); 1409 else if (StoreAlign == 0) 1410 SI.setAlignment(EffectiveStoreAlign); 1411 1412 // Try to canonicalize the stored type. 1413 if (unpackStoreToAggregate(*this, SI)) 1414 return eraseInstFromFunction(SI); 1415 1416 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1417 return eraseInstFromFunction(SI); 1418 1419 // Replace GEP indices if possible. 1420 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1421 Worklist.Add(NewGEPI); 1422 return &SI; 1423 } 1424 1425 // Don't hack volatile/ordered stores. 1426 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1427 if (!SI.isUnordered()) return nullptr; 1428 1429 // If the RHS is an alloca with a single use, zapify the store, making the 1430 // alloca dead. 1431 if (Ptr->hasOneUse()) { 1432 if (isa<AllocaInst>(Ptr)) 1433 return eraseInstFromFunction(SI); 1434 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1435 if (isa<AllocaInst>(GEP->getOperand(0))) { 1436 if (GEP->getOperand(0)->hasOneUse()) 1437 return eraseInstFromFunction(SI); 1438 } 1439 } 1440 } 1441 1442 // Do really simple DSE, to catch cases where there are several consecutive 1443 // stores to the same location, separated by a few arithmetic operations. This 1444 // situation often occurs with bitfield accesses. 1445 BasicBlock::iterator BBI(SI); 1446 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1447 --ScanInsts) { 1448 --BBI; 1449 // Don't count debug info directives, lest they affect codegen, 1450 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1451 if (isa<DbgInfoIntrinsic>(BBI) || 1452 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1453 ScanInsts++; 1454 continue; 1455 } 1456 1457 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1458 // Prev store isn't volatile, and stores to the same location? 1459 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1460 SI.getOperand(1))) { 1461 ++NumDeadStore; 1462 ++BBI; 1463 eraseInstFromFunction(*PrevSI); 1464 continue; 1465 } 1466 break; 1467 } 1468 1469 // If this is a load, we have to stop. However, if the loaded value is from 1470 // the pointer we're loading and is producing the pointer we're storing, 1471 // then *this* store is dead (X = load P; store X -> P). 1472 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1473 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1474 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1475 return eraseInstFromFunction(SI); 1476 } 1477 1478 // Otherwise, this is a load from some other location. Stores before it 1479 // may not be dead. 1480 break; 1481 } 1482 1483 // Don't skip over loads, throws or things that can modify memory. 1484 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1485 break; 1486 } 1487 1488 // store X, null -> turns into 'unreachable' in SimplifyCFG 1489 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1490 if (canSimplifyNullStoreOrGEP(SI)) { 1491 if (!isa<UndefValue>(Val)) { 1492 SI.setOperand(0, UndefValue::get(Val->getType())); 1493 if (Instruction *U = dyn_cast<Instruction>(Val)) 1494 Worklist.Add(U); // Dropped a use. 1495 } 1496 return nullptr; // Do not modify these! 1497 } 1498 1499 // store undef, Ptr -> noop 1500 if (isa<UndefValue>(Val)) 1501 return eraseInstFromFunction(SI); 1502 1503 // If this store is the second-to-last instruction in the basic block 1504 // (excluding debug info and bitcasts of pointers) and if the block ends with 1505 // an unconditional branch, try to move the store to the successor block. 1506 BBI = SI.getIterator(); 1507 do { 1508 ++BBI; 1509 } while (isa<DbgInfoIntrinsic>(BBI) || 1510 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1511 1512 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1513 if (BI->isUnconditional()) 1514 mergeStoreIntoSuccessor(SI); 1515 1516 return nullptr; 1517 } 1518 1519 /// Try to transform: 1520 /// if () { *P = v1; } else { *P = v2 } 1521 /// or: 1522 /// *P = v1; if () { *P = v2; } 1523 /// into a phi node with a store in the successor. 1524 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) { 1525 assert(SI.isUnordered() && 1526 "This code has not been audited for volatile or ordered store case."); 1527 1528 // Check if the successor block has exactly 2 incoming edges. 1529 BasicBlock *StoreBB = SI.getParent(); 1530 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1531 if (!DestBB->hasNPredecessors(2)) 1532 return false; 1533 1534 // Capture the other block (the block that doesn't contain our store). 1535 pred_iterator PredIter = pred_begin(DestBB); 1536 if (*PredIter == StoreBB) 1537 ++PredIter; 1538 BasicBlock *OtherBB = *PredIter; 1539 1540 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1541 // for example, if SI is in an infinite loop. 1542 if (StoreBB == DestBB || OtherBB == DestBB) 1543 return false; 1544 1545 // Verify that the other block ends in a branch and is not otherwise empty. 1546 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1547 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1548 if (!OtherBr || BBI == OtherBB->begin()) 1549 return false; 1550 1551 // If the other block ends in an unconditional branch, check for the 'if then 1552 // else' case. There is an instruction before the branch. 1553 StoreInst *OtherStore = nullptr; 1554 if (OtherBr->isUnconditional()) { 1555 --BBI; 1556 // Skip over debugging info. 1557 while (isa<DbgInfoIntrinsic>(BBI) || 1558 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1559 if (BBI==OtherBB->begin()) 1560 return false; 1561 --BBI; 1562 } 1563 // If this isn't a store, isn't a store to the same location, or is not the 1564 // right kind of store, bail out. 1565 OtherStore = dyn_cast<StoreInst>(BBI); 1566 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1567 !SI.isSameOperationAs(OtherStore)) 1568 return false; 1569 } else { 1570 // Otherwise, the other block ended with a conditional branch. If one of the 1571 // destinations is StoreBB, then we have the if/then case. 1572 if (OtherBr->getSuccessor(0) != StoreBB && 1573 OtherBr->getSuccessor(1) != StoreBB) 1574 return false; 1575 1576 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1577 // if/then triangle. See if there is a store to the same ptr as SI that 1578 // lives in OtherBB. 1579 for (;; --BBI) { 1580 // Check to see if we find the matching store. 1581 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1582 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1583 !SI.isSameOperationAs(OtherStore)) 1584 return false; 1585 break; 1586 } 1587 // If we find something that may be using or overwriting the stored 1588 // value, or if we run out of instructions, we can't do the transform. 1589 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1590 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1591 return false; 1592 } 1593 1594 // In order to eliminate the store in OtherBr, we have to make sure nothing 1595 // reads or overwrites the stored value in StoreBB. 1596 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1597 // FIXME: This should really be AA driven. 1598 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1599 return false; 1600 } 1601 } 1602 1603 // Insert a PHI node now if we need it. 1604 Value *MergedVal = OtherStore->getOperand(0); 1605 // The debug locations of the original instructions might differ. Merge them. 1606 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1607 OtherStore->getDebugLoc()); 1608 if (MergedVal != SI.getOperand(0)) { 1609 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1610 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1611 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1612 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1613 PN->setDebugLoc(MergedLoc); 1614 } 1615 1616 // Advance to a place where it is safe to insert the new store and insert it. 1617 BBI = DestBB->getFirstInsertionPt(); 1618 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1619 SI.isVolatile(), SI.getAlignment(), 1620 SI.getOrdering(), SI.getSyncScopeID()); 1621 InsertNewInstBefore(NewSI, *BBI); 1622 NewSI->setDebugLoc(MergedLoc); 1623 1624 // If the two stores had AA tags, merge them. 1625 AAMDNodes AATags; 1626 SI.getAAMetadata(AATags); 1627 if (AATags) { 1628 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1629 NewSI->setAAMetadata(AATags); 1630 } 1631 1632 // Nuke the old stores. 1633 eraseInstFromFunction(SI); 1634 eraseInstFromFunction(*OtherStore); 1635 return true; 1636 } 1637