1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/Statistic.h" 16 #include "llvm/Analysis/Loads.h" 17 #include "llvm/IR/DataLayout.h" 18 #include "llvm/IR/LLVMContext.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/MDBuilder.h" 21 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 22 #include "llvm/Transforms/Utils/Local.h" 23 using namespace llvm; 24 25 #define DEBUG_TYPE "instcombine" 26 27 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 28 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 29 30 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 31 /// some part of a constant global variable. This intentionally only accepts 32 /// constant expressions because we can't rewrite arbitrary instructions. 33 static bool pointsToConstantGlobal(Value *V) { 34 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 35 return GV->isConstant(); 36 37 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 38 if (CE->getOpcode() == Instruction::BitCast || 39 CE->getOpcode() == Instruction::AddrSpaceCast || 40 CE->getOpcode() == Instruction::GetElementPtr) 41 return pointsToConstantGlobal(CE->getOperand(0)); 42 } 43 return false; 44 } 45 46 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 47 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 48 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 49 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 50 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 51 /// the alloca, and if the source pointer is a pointer to a constant global, we 52 /// can optimize this. 53 static bool 54 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 55 SmallVectorImpl<Instruction *> &ToDelete) { 56 // We track lifetime intrinsics as we encounter them. If we decide to go 57 // ahead and replace the value with the global, this lets the caller quickly 58 // eliminate the markers. 59 60 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 61 ValuesToInspect.push_back(std::make_pair(V, false)); 62 while (!ValuesToInspect.empty()) { 63 auto ValuePair = ValuesToInspect.pop_back_val(); 64 const bool IsOffset = ValuePair.second; 65 for (auto &U : ValuePair.first->uses()) { 66 Instruction *I = cast<Instruction>(U.getUser()); 67 68 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 69 // Ignore non-volatile loads, they are always ok. 70 if (!LI->isSimple()) return false; 71 continue; 72 } 73 74 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 75 // If uses of the bitcast are ok, we are ok. 76 ValuesToInspect.push_back(std::make_pair(I, IsOffset)); 77 continue; 78 } 79 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 80 // If the GEP has all zero indices, it doesn't offset the pointer. If it 81 // doesn't, it does. 82 ValuesToInspect.push_back( 83 std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices())); 84 continue; 85 } 86 87 if (auto CS = CallSite(I)) { 88 // If this is the function being called then we treat it like a load and 89 // ignore it. 90 if (CS.isCallee(&U)) 91 continue; 92 93 // Inalloca arguments are clobbered by the call. 94 unsigned ArgNo = CS.getArgumentNo(&U); 95 if (CS.isInAllocaArgument(ArgNo)) 96 return false; 97 98 // If this is a readonly/readnone call site, then we know it is just a 99 // load (but one that potentially returns the value itself), so we can 100 // ignore it if we know that the value isn't captured. 101 if (CS.onlyReadsMemory() && 102 (CS.getInstruction()->use_empty() || CS.doesNotCapture(ArgNo))) 103 continue; 104 105 // If this is being passed as a byval argument, the caller is making a 106 // copy, so it is only a read of the alloca. 107 if (CS.isByValArgument(ArgNo)) 108 continue; 109 } 110 111 // Lifetime intrinsics can be handled by the caller. 112 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 113 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 114 II->getIntrinsicID() == Intrinsic::lifetime_end) { 115 assert(II->use_empty() && "Lifetime markers have no result to use!"); 116 ToDelete.push_back(II); 117 continue; 118 } 119 } 120 121 // If this is isn't our memcpy/memmove, reject it as something we can't 122 // handle. 123 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 124 if (!MI) 125 return false; 126 127 // If the transfer is using the alloca as a source of the transfer, then 128 // ignore it since it is a load (unless the transfer is volatile). 129 if (U.getOperandNo() == 1) { 130 if (MI->isVolatile()) return false; 131 continue; 132 } 133 134 // If we already have seen a copy, reject the second one. 135 if (TheCopy) return false; 136 137 // If the pointer has been offset from the start of the alloca, we can't 138 // safely handle this. 139 if (IsOffset) return false; 140 141 // If the memintrinsic isn't using the alloca as the dest, reject it. 142 if (U.getOperandNo() != 0) return false; 143 144 // If the source of the memcpy/move is not a constant global, reject it. 145 if (!pointsToConstantGlobal(MI->getSource())) 146 return false; 147 148 // Otherwise, the transform is safe. Remember the copy instruction. 149 TheCopy = MI; 150 } 151 } 152 return true; 153 } 154 155 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 156 /// modified by a copy from a constant global. If we can prove this, we can 157 /// replace any uses of the alloca with uses of the global directly. 158 static MemTransferInst * 159 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 160 SmallVectorImpl<Instruction *> &ToDelete) { 161 MemTransferInst *TheCopy = nullptr; 162 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 163 return TheCopy; 164 return nullptr; 165 } 166 167 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 168 // Check for array size of 1 (scalar allocation). 169 if (!AI.isArrayAllocation()) { 170 // i32 1 is the canonical array size for scalar allocations. 171 if (AI.getArraySize()->getType()->isIntegerTy(32)) 172 return nullptr; 173 174 // Canonicalize it. 175 Value *V = IC.Builder->getInt32(1); 176 AI.setOperand(0, V); 177 return &AI; 178 } 179 180 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 181 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 182 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 183 AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName()); 184 New->setAlignment(AI.getAlignment()); 185 186 // Scan to the end of the allocation instructions, to skip over a block of 187 // allocas if possible...also skip interleaved debug info 188 // 189 BasicBlock::iterator It = New; 190 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 191 ++It; 192 193 // Now that I is pointing to the first non-allocation-inst in the block, 194 // insert our getelementptr instruction... 195 // 196 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 197 Value *NullIdx = Constant::getNullValue(IdxTy); 198 Value *Idx[2] = {NullIdx, NullIdx}; 199 Instruction *GEP = 200 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 201 IC.InsertNewInstBefore(GEP, *It); 202 203 // Now make everything use the getelementptr instead of the original 204 // allocation. 205 return IC.ReplaceInstUsesWith(AI, GEP); 206 } 207 208 if (isa<UndefValue>(AI.getArraySize())) 209 return IC.ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 210 211 // Ensure that the alloca array size argument has type intptr_t, so that 212 // any casting is exposed early. 213 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 214 if (AI.getArraySize()->getType() != IntPtrTy) { 215 Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false); 216 AI.setOperand(0, V); 217 return &AI; 218 } 219 220 return nullptr; 221 } 222 223 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 224 if (auto *I = simplifyAllocaArraySize(*this, AI)) 225 return I; 226 227 if (AI.getAllocatedType()->isSized()) { 228 // If the alignment is 0 (unspecified), assign it the preferred alignment. 229 if (AI.getAlignment() == 0) 230 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 231 232 // Move all alloca's of zero byte objects to the entry block and merge them 233 // together. Note that we only do this for alloca's, because malloc should 234 // allocate and return a unique pointer, even for a zero byte allocation. 235 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 236 // For a zero sized alloca there is no point in doing an array allocation. 237 // This is helpful if the array size is a complicated expression not used 238 // elsewhere. 239 if (AI.isArrayAllocation()) { 240 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 241 return &AI; 242 } 243 244 // Get the first instruction in the entry block. 245 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 246 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 247 if (FirstInst != &AI) { 248 // If the entry block doesn't start with a zero-size alloca then move 249 // this one to the start of the entry block. There is no problem with 250 // dominance as the array size was forced to a constant earlier already. 251 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 252 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 253 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 254 AI.moveBefore(FirstInst); 255 return &AI; 256 } 257 258 // If the alignment of the entry block alloca is 0 (unspecified), 259 // assign it the preferred alignment. 260 if (EntryAI->getAlignment() == 0) 261 EntryAI->setAlignment( 262 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 263 // Replace this zero-sized alloca with the one at the start of the entry 264 // block after ensuring that the address will be aligned enough for both 265 // types. 266 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 267 AI.getAlignment()); 268 EntryAI->setAlignment(MaxAlign); 269 if (AI.getType() != EntryAI->getType()) 270 return new BitCastInst(EntryAI, AI.getType()); 271 return ReplaceInstUsesWith(AI, EntryAI); 272 } 273 } 274 } 275 276 if (AI.getAlignment()) { 277 // Check to see if this allocation is only modified by a memcpy/memmove from 278 // a constant global whose alignment is equal to or exceeds that of the 279 // allocation. If this is the case, we can change all users to use 280 // the constant global instead. This is commonly produced by the CFE by 281 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 282 // is only subsequently read. 283 SmallVector<Instruction *, 4> ToDelete; 284 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 285 unsigned SourceAlign = getOrEnforceKnownAlignment( 286 Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT); 287 if (AI.getAlignment() <= SourceAlign) { 288 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 289 DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 290 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 291 EraseInstFromFunction(*ToDelete[i]); 292 Constant *TheSrc = cast<Constant>(Copy->getSource()); 293 Constant *Cast 294 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType()); 295 Instruction *NewI = ReplaceInstUsesWith(AI, Cast); 296 EraseInstFromFunction(*Copy); 297 ++NumGlobalCopies; 298 return NewI; 299 } 300 } 301 } 302 303 // At last, use the generic allocation site handler to aggressively remove 304 // unused allocas. 305 return visitAllocSite(AI); 306 } 307 308 /// \brief Helper to combine a load to a new type. 309 /// 310 /// This just does the work of combining a load to a new type. It handles 311 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 312 /// loaded *value* type. This will convert it to a pointer, cast the operand to 313 /// that pointer type, load it, etc. 314 /// 315 /// Note that this will create all of the instructions with whatever insert 316 /// point the \c InstCombiner currently is using. 317 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 318 const Twine &Suffix = "") { 319 Value *Ptr = LI.getPointerOperand(); 320 unsigned AS = LI.getPointerAddressSpace(); 321 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 322 LI.getAllMetadata(MD); 323 324 LoadInst *NewLoad = IC.Builder->CreateAlignedLoad( 325 IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)), 326 LI.getAlignment(), LI.getName() + Suffix); 327 MDBuilder MDB(NewLoad->getContext()); 328 for (const auto &MDPair : MD) { 329 unsigned ID = MDPair.first; 330 MDNode *N = MDPair.second; 331 // Note, essentially every kind of metadata should be preserved here! This 332 // routine is supposed to clone a load instruction changing *only its type*. 333 // The only metadata it makes sense to drop is metadata which is invalidated 334 // when the pointer type changes. This should essentially never be the case 335 // in LLVM, but we explicitly switch over only known metadata to be 336 // conservatively correct. If you are adding metadata to LLVM which pertains 337 // to loads, you almost certainly want to add it here. 338 switch (ID) { 339 case LLVMContext::MD_dbg: 340 case LLVMContext::MD_tbaa: 341 case LLVMContext::MD_prof: 342 case LLVMContext::MD_fpmath: 343 case LLVMContext::MD_tbaa_struct: 344 case LLVMContext::MD_invariant_load: 345 case LLVMContext::MD_alias_scope: 346 case LLVMContext::MD_noalias: 347 case LLVMContext::MD_nontemporal: 348 case LLVMContext::MD_mem_parallel_loop_access: 349 // All of these directly apply. 350 NewLoad->setMetadata(ID, N); 351 break; 352 353 case LLVMContext::MD_nonnull: 354 // This only directly applies if the new type is also a pointer. 355 if (NewTy->isPointerTy()) { 356 NewLoad->setMetadata(ID, N); 357 break; 358 } 359 // If it's integral now, translate it to !range metadata. 360 if (NewTy->isIntegerTy()) { 361 auto *ITy = cast<IntegerType>(NewTy); 362 auto *NullInt = ConstantExpr::getPtrToInt( 363 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 364 auto *NonNullInt = 365 ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 366 NewLoad->setMetadata(LLVMContext::MD_range, 367 MDB.createRange(NonNullInt, NullInt)); 368 } 369 break; 370 371 case LLVMContext::MD_range: 372 // FIXME: It would be nice to propagate this in some way, but the type 373 // conversions make it hard. If the new type is a pointer, we could 374 // translate it to !nonnull metadata. 375 break; 376 } 377 } 378 return NewLoad; 379 } 380 381 /// \brief Combine a store to a new type. 382 /// 383 /// Returns the newly created store instruction. 384 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 385 Value *Ptr = SI.getPointerOperand(); 386 unsigned AS = SI.getPointerAddressSpace(); 387 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 388 SI.getAllMetadata(MD); 389 390 StoreInst *NewStore = IC.Builder->CreateAlignedStore( 391 V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 392 SI.getAlignment()); 393 for (const auto &MDPair : MD) { 394 unsigned ID = MDPair.first; 395 MDNode *N = MDPair.second; 396 // Note, essentially every kind of metadata should be preserved here! This 397 // routine is supposed to clone a store instruction changing *only its 398 // type*. The only metadata it makes sense to drop is metadata which is 399 // invalidated when the pointer type changes. This should essentially 400 // never be the case in LLVM, but we explicitly switch over only known 401 // metadata to be conservatively correct. If you are adding metadata to 402 // LLVM which pertains to stores, you almost certainly want to add it 403 // here. 404 switch (ID) { 405 case LLVMContext::MD_dbg: 406 case LLVMContext::MD_tbaa: 407 case LLVMContext::MD_prof: 408 case LLVMContext::MD_fpmath: 409 case LLVMContext::MD_tbaa_struct: 410 case LLVMContext::MD_alias_scope: 411 case LLVMContext::MD_noalias: 412 case LLVMContext::MD_nontemporal: 413 case LLVMContext::MD_mem_parallel_loop_access: 414 // All of these directly apply. 415 NewStore->setMetadata(ID, N); 416 break; 417 418 case LLVMContext::MD_invariant_load: 419 case LLVMContext::MD_nonnull: 420 case LLVMContext::MD_range: 421 // These don't apply for stores. 422 break; 423 } 424 } 425 426 return NewStore; 427 } 428 429 /// \brief Combine loads to match the type of value their uses after looking 430 /// through intervening bitcasts. 431 /// 432 /// The core idea here is that if the result of a load is used in an operation, 433 /// we should load the type most conducive to that operation. For example, when 434 /// loading an integer and converting that immediately to a pointer, we should 435 /// instead directly load a pointer. 436 /// 437 /// However, this routine must never change the width of a load or the number of 438 /// loads as that would introduce a semantic change. This combine is expected to 439 /// be a semantic no-op which just allows loads to more closely model the types 440 /// of their consuming operations. 441 /// 442 /// Currently, we also refuse to change the precise type used for an atomic load 443 /// or a volatile load. This is debatable, and might be reasonable to change 444 /// later. However, it is risky in case some backend or other part of LLVM is 445 /// relying on the exact type loaded to select appropriate atomic operations. 446 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 447 // FIXME: We could probably with some care handle both volatile and atomic 448 // loads here but it isn't clear that this is important. 449 if (!LI.isSimple()) 450 return nullptr; 451 452 if (LI.use_empty()) 453 return nullptr; 454 455 Type *Ty = LI.getType(); 456 const DataLayout &DL = IC.getDataLayout(); 457 458 // Try to canonicalize loads which are only ever stored to operate over 459 // integers instead of any other type. We only do this when the loaded type 460 // is sized and has a size exactly the same as its store size and the store 461 // size is a legal integer type. 462 if (!Ty->isIntegerTy() && Ty->isSized() && 463 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 464 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) { 465 if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) { 466 auto *SI = dyn_cast<StoreInst>(U); 467 return SI && SI->getPointerOperand() != &LI; 468 })) { 469 LoadInst *NewLoad = combineLoadToNewType( 470 IC, LI, 471 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 472 // Replace all the stores with stores of the newly loaded value. 473 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 474 auto *SI = cast<StoreInst>(*UI++); 475 IC.Builder->SetInsertPoint(SI); 476 combineStoreToNewValue(IC, *SI, NewLoad); 477 IC.EraseInstFromFunction(*SI); 478 } 479 assert(LI.use_empty() && "Failed to remove all users of the load!"); 480 // Return the old load so the combiner can delete it safely. 481 return &LI; 482 } 483 } 484 485 // Fold away bit casts of the loaded value by loading the desired type. 486 // We can do this for BitCastInsts as well as casts from and to pointer types, 487 // as long as those are noops (i.e., the source or dest type have the same 488 // bitwidth as the target's pointers). 489 if (LI.hasOneUse()) 490 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) { 491 if (CI->isNoopCast(DL)) { 492 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 493 CI->replaceAllUsesWith(NewLoad); 494 IC.EraseInstFromFunction(*CI); 495 return &LI; 496 } 497 } 498 499 // FIXME: We should also canonicalize loads of vectors when their elements are 500 // cast to other types. 501 return nullptr; 502 } 503 504 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 505 // FIXME: We could probably with some care handle both volatile and atomic 506 // stores here but it isn't clear that this is important. 507 if (!LI.isSimple()) 508 return nullptr; 509 510 Type *T = LI.getType(); 511 if (!T->isAggregateType()) 512 return nullptr; 513 514 assert(LI.getAlignment() && "Alignement must be set at this point"); 515 516 if (auto *ST = dyn_cast<StructType>(T)) { 517 // If the struct only have one element, we unpack. 518 if (ST->getNumElements() == 1) { 519 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 520 ".unpack"); 521 return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 522 UndefValue::get(T), NewLoad, 0, LI.getName())); 523 } 524 } 525 526 if (auto *AT = dyn_cast<ArrayType>(T)) { 527 // If the array only have one element, we unpack. 528 if (AT->getNumElements() == 1) { 529 LoadInst *NewLoad = combineLoadToNewType(IC, LI, AT->getElementType(), 530 ".unpack"); 531 return IC.ReplaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 532 UndefValue::get(T), NewLoad, 0, LI.getName())); 533 } 534 } 535 536 return nullptr; 537 } 538 539 // If we can determine that all possible objects pointed to by the provided 540 // pointer value are, not only dereferenceable, but also definitively less than 541 // or equal to the provided maximum size, then return true. Otherwise, return 542 // false (constant global values and allocas fall into this category). 543 // 544 // FIXME: This should probably live in ValueTracking (or similar). 545 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 546 const DataLayout &DL) { 547 SmallPtrSet<Value *, 4> Visited; 548 SmallVector<Value *, 4> Worklist(1, V); 549 550 do { 551 Value *P = Worklist.pop_back_val(); 552 P = P->stripPointerCasts(); 553 554 if (!Visited.insert(P).second) 555 continue; 556 557 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 558 Worklist.push_back(SI->getTrueValue()); 559 Worklist.push_back(SI->getFalseValue()); 560 continue; 561 } 562 563 if (PHINode *PN = dyn_cast<PHINode>(P)) { 564 for (Value *IncValue : PN->incoming_values()) 565 Worklist.push_back(IncValue); 566 continue; 567 } 568 569 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 570 if (GA->mayBeOverridden()) 571 return false; 572 Worklist.push_back(GA->getAliasee()); 573 continue; 574 } 575 576 // If we know how big this object is, and it is less than MaxSize, continue 577 // searching. Otherwise, return false. 578 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 579 if (!AI->getAllocatedType()->isSized()) 580 return false; 581 582 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 583 if (!CS) 584 return false; 585 586 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 587 // Make sure that, even if the multiplication below would wrap as an 588 // uint64_t, we still do the right thing. 589 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 590 return false; 591 continue; 592 } 593 594 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 595 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 596 return false; 597 598 uint64_t InitSize = DL.getTypeAllocSize(GV->getType()->getElementType()); 599 if (InitSize > MaxSize) 600 return false; 601 continue; 602 } 603 604 return false; 605 } while (!Worklist.empty()); 606 607 return true; 608 } 609 610 // If we're indexing into an object of a known size, and the outer index is 611 // not a constant, but having any value but zero would lead to undefined 612 // behavior, replace it with zero. 613 // 614 // For example, if we have: 615 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 616 // ... 617 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 618 // ... = load i32* %arrayidx, align 4 619 // Then we know that we can replace %x in the GEP with i64 0. 620 // 621 // FIXME: We could fold any GEP index to zero that would cause UB if it were 622 // not zero. Currently, we only handle the first such index. Also, we could 623 // also search through non-zero constant indices if we kept track of the 624 // offsets those indices implied. 625 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 626 Instruction *MemI, unsigned &Idx) { 627 if (GEPI->getNumOperands() < 2) 628 return false; 629 630 // Find the first non-zero index of a GEP. If all indices are zero, return 631 // one past the last index. 632 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 633 unsigned I = 1; 634 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 635 Value *V = GEPI->getOperand(I); 636 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 637 if (CI->isZero()) 638 continue; 639 640 break; 641 } 642 643 return I; 644 }; 645 646 // Skip through initial 'zero' indices, and find the corresponding pointer 647 // type. See if the next index is not a constant. 648 Idx = FirstNZIdx(GEPI); 649 if (Idx == GEPI->getNumOperands()) 650 return false; 651 if (isa<Constant>(GEPI->getOperand(Idx))) 652 return false; 653 654 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 655 Type *AllocTy = GetElementPtrInst::getIndexedType( 656 cast<PointerType>(GEPI->getOperand(0)->getType()->getScalarType()) 657 ->getElementType(), 658 Ops); 659 if (!AllocTy || !AllocTy->isSized()) 660 return false; 661 const DataLayout &DL = IC.getDataLayout(); 662 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 663 664 // If there are more indices after the one we might replace with a zero, make 665 // sure they're all non-negative. If any of them are negative, the overall 666 // address being computed might be before the base address determined by the 667 // first non-zero index. 668 auto IsAllNonNegative = [&]() { 669 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 670 bool KnownNonNegative, KnownNegative; 671 IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative, 672 KnownNegative, 0, MemI); 673 if (KnownNonNegative) 674 continue; 675 return false; 676 } 677 678 return true; 679 }; 680 681 // FIXME: If the GEP is not inbounds, and there are extra indices after the 682 // one we'll replace, those could cause the address computation to wrap 683 // (rendering the IsAllNonNegative() check below insufficient). We can do 684 // better, ignoring zero indicies (and other indicies we can prove small 685 // enough not to wrap). 686 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 687 return false; 688 689 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 690 // also known to be dereferenceable. 691 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 692 IsAllNonNegative(); 693 } 694 695 // If we're indexing into an object with a variable index for the memory 696 // access, but the object has only one element, we can assume that the index 697 // will always be zero. If we replace the GEP, return it. 698 template <typename T> 699 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 700 T &MemI) { 701 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 702 unsigned Idx; 703 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 704 Instruction *NewGEPI = GEPI->clone(); 705 NewGEPI->setOperand(Idx, 706 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 707 NewGEPI->insertBefore(GEPI); 708 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 709 return NewGEPI; 710 } 711 } 712 713 return nullptr; 714 } 715 716 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 717 Value *Op = LI.getOperand(0); 718 719 // Try to canonicalize the loaded type. 720 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 721 return Res; 722 723 // Attempt to improve the alignment. 724 unsigned KnownAlign = getOrEnforceKnownAlignment( 725 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT); 726 unsigned LoadAlign = LI.getAlignment(); 727 unsigned EffectiveLoadAlign = 728 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 729 730 if (KnownAlign > EffectiveLoadAlign) 731 LI.setAlignment(KnownAlign); 732 else if (LoadAlign == 0) 733 LI.setAlignment(EffectiveLoadAlign); 734 735 // Replace GEP indices if possible. 736 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 737 Worklist.Add(NewGEPI); 738 return &LI; 739 } 740 741 // None of the following transforms are legal for volatile/atomic loads. 742 // FIXME: Some of it is okay for atomic loads; needs refactoring. 743 if (!LI.isSimple()) return nullptr; 744 745 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 746 return Res; 747 748 // Do really simple store-to-load forwarding and load CSE, to catch cases 749 // where there are several consecutive memory accesses to the same location, 750 // separated by a few arithmetic operations. 751 BasicBlock::iterator BBI = &LI; 752 AAMDNodes AATags; 753 if (Value *AvailableVal = FindAvailableLoadedValue(Op, LI.getParent(), BBI, 754 6, AA, &AATags)) { 755 if (LoadInst *NLI = dyn_cast<LoadInst>(AvailableVal)) { 756 unsigned KnownIDs[] = { 757 LLVMContext::MD_tbaa, 758 LLVMContext::MD_alias_scope, 759 LLVMContext::MD_noalias, 760 LLVMContext::MD_range, 761 LLVMContext::MD_invariant_load, 762 LLVMContext::MD_nonnull, 763 }; 764 combineMetadata(NLI, &LI, KnownIDs); 765 }; 766 767 return ReplaceInstUsesWith( 768 LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(), 769 LI.getName() + ".cast")); 770 } 771 772 // load(gep null, ...) -> unreachable 773 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 774 const Value *GEPI0 = GEPI->getOperand(0); 775 // TODO: Consider a target hook for valid address spaces for this xform. 776 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ 777 // Insert a new store to null instruction before the load to indicate 778 // that this code is not reachable. We do this instead of inserting 779 // an unreachable instruction directly because we cannot modify the 780 // CFG. 781 new StoreInst(UndefValue::get(LI.getType()), 782 Constant::getNullValue(Op->getType()), &LI); 783 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); 784 } 785 } 786 787 // load null/undef -> unreachable 788 // TODO: Consider a target hook for valid address spaces for this xform. 789 if (isa<UndefValue>(Op) || 790 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { 791 // Insert a new store to null instruction before the load to indicate that 792 // this code is not reachable. We do this instead of inserting an 793 // unreachable instruction directly because we cannot modify the CFG. 794 new StoreInst(UndefValue::get(LI.getType()), 795 Constant::getNullValue(Op->getType()), &LI); 796 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType())); 797 } 798 799 if (Op->hasOneUse()) { 800 // Change select and PHI nodes to select values instead of addresses: this 801 // helps alias analysis out a lot, allows many others simplifications, and 802 // exposes redundancy in the code. 803 // 804 // Note that we cannot do the transformation unless we know that the 805 // introduced loads cannot trap! Something like this is valid as long as 806 // the condition is always false: load (select bool %C, int* null, int* %G), 807 // but it would not be valid if we transformed it to load from null 808 // unconditionally. 809 // 810 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 811 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 812 unsigned Align = LI.getAlignment(); 813 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI, Align) && 814 isSafeToLoadUnconditionally(SI->getOperand(2), SI, Align)) { 815 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), 816 SI->getOperand(1)->getName()+".val"); 817 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), 818 SI->getOperand(2)->getName()+".val"); 819 V1->setAlignment(Align); 820 V2->setAlignment(Align); 821 return SelectInst::Create(SI->getCondition(), V1, V2); 822 } 823 824 // load (select (cond, null, P)) -> load P 825 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 826 LI.getPointerAddressSpace() == 0) { 827 LI.setOperand(0, SI->getOperand(2)); 828 return &LI; 829 } 830 831 // load (select (cond, P, null)) -> load P 832 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 833 LI.getPointerAddressSpace() == 0) { 834 LI.setOperand(0, SI->getOperand(1)); 835 return &LI; 836 } 837 } 838 } 839 return nullptr; 840 } 841 842 /// \brief Combine stores to match the type of value being stored. 843 /// 844 /// The core idea here is that the memory does not have any intrinsic type and 845 /// where we can we should match the type of a store to the type of value being 846 /// stored. 847 /// 848 /// However, this routine must never change the width of a store or the number of 849 /// stores as that would introduce a semantic change. This combine is expected to 850 /// be a semantic no-op which just allows stores to more closely model the types 851 /// of their incoming values. 852 /// 853 /// Currently, we also refuse to change the precise type used for an atomic or 854 /// volatile store. This is debatable, and might be reasonable to change later. 855 /// However, it is risky in case some backend or other part of LLVM is relying 856 /// on the exact type stored to select appropriate atomic operations. 857 /// 858 /// \returns true if the store was successfully combined away. This indicates 859 /// the caller must erase the store instruction. We have to let the caller erase 860 /// the store instruction sas otherwise there is no way to signal whether it was 861 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 862 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 863 // FIXME: We could probably with some care handle both volatile and atomic 864 // stores here but it isn't clear that this is important. 865 if (!SI.isSimple()) 866 return false; 867 868 Value *V = SI.getValueOperand(); 869 870 // Fold away bit casts of the stored value by storing the original type. 871 if (auto *BC = dyn_cast<BitCastInst>(V)) { 872 V = BC->getOperand(0); 873 combineStoreToNewValue(IC, SI, V); 874 return true; 875 } 876 877 // FIXME: We should also canonicalize loads of vectors when their elements are 878 // cast to other types. 879 return false; 880 } 881 882 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 883 // FIXME: We could probably with some care handle both volatile and atomic 884 // stores here but it isn't clear that this is important. 885 if (!SI.isSimple()) 886 return false; 887 888 Value *V = SI.getValueOperand(); 889 Type *T = V->getType(); 890 891 if (!T->isAggregateType()) 892 return false; 893 894 if (auto *ST = dyn_cast<StructType>(T)) { 895 // If the struct only have one element, we unpack. 896 if (ST->getNumElements() == 1) { 897 V = IC.Builder->CreateExtractValue(V, 0); 898 combineStoreToNewValue(IC, SI, V); 899 return true; 900 } 901 } 902 903 if (auto *AT = dyn_cast<ArrayType>(T)) { 904 // If the array only have one element, we unpack. 905 if (AT->getNumElements() == 1) { 906 V = IC.Builder->CreateExtractValue(V, 0); 907 combineStoreToNewValue(IC, SI, V); 908 return true; 909 } 910 } 911 912 return false; 913 } 914 915 /// equivalentAddressValues - Test if A and B will obviously have the same 916 /// value. This includes recognizing that %t0 and %t1 will have the same 917 /// value in code like this: 918 /// %t0 = getelementptr \@a, 0, 3 919 /// store i32 0, i32* %t0 920 /// %t1 = getelementptr \@a, 0, 3 921 /// %t2 = load i32* %t1 922 /// 923 static bool equivalentAddressValues(Value *A, Value *B) { 924 // Test if the values are trivially equivalent. 925 if (A == B) return true; 926 927 // Test if the values come form identical arithmetic instructions. 928 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 929 // its only used to compare two uses within the same basic block, which 930 // means that they'll always either have the same value or one of them 931 // will have an undefined value. 932 if (isa<BinaryOperator>(A) || 933 isa<CastInst>(A) || 934 isa<PHINode>(A) || 935 isa<GetElementPtrInst>(A)) 936 if (Instruction *BI = dyn_cast<Instruction>(B)) 937 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 938 return true; 939 940 // Otherwise they may not be equivalent. 941 return false; 942 } 943 944 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 945 Value *Val = SI.getOperand(0); 946 Value *Ptr = SI.getOperand(1); 947 948 // Try to canonicalize the stored type. 949 if (combineStoreToValueType(*this, SI)) 950 return EraseInstFromFunction(SI); 951 952 // Attempt to improve the alignment. 953 unsigned KnownAlign = getOrEnforceKnownAlignment( 954 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT); 955 unsigned StoreAlign = SI.getAlignment(); 956 unsigned EffectiveStoreAlign = 957 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 958 959 if (KnownAlign > EffectiveStoreAlign) 960 SI.setAlignment(KnownAlign); 961 else if (StoreAlign == 0) 962 SI.setAlignment(EffectiveStoreAlign); 963 964 // Try to canonicalize the stored type. 965 if (unpackStoreToAggregate(*this, SI)) 966 return EraseInstFromFunction(SI); 967 968 // Replace GEP indices if possible. 969 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 970 Worklist.Add(NewGEPI); 971 return &SI; 972 } 973 974 // Don't hack volatile/atomic stores. 975 // FIXME: Some bits are legal for atomic stores; needs refactoring. 976 if (!SI.isSimple()) return nullptr; 977 978 // If the RHS is an alloca with a single use, zapify the store, making the 979 // alloca dead. 980 if (Ptr->hasOneUse()) { 981 if (isa<AllocaInst>(Ptr)) 982 return EraseInstFromFunction(SI); 983 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 984 if (isa<AllocaInst>(GEP->getOperand(0))) { 985 if (GEP->getOperand(0)->hasOneUse()) 986 return EraseInstFromFunction(SI); 987 } 988 } 989 } 990 991 // Do really simple DSE, to catch cases where there are several consecutive 992 // stores to the same location, separated by a few arithmetic operations. This 993 // situation often occurs with bitfield accesses. 994 BasicBlock::iterator BBI = &SI; 995 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 996 --ScanInsts) { 997 --BBI; 998 // Don't count debug info directives, lest they affect codegen, 999 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1000 if (isa<DbgInfoIntrinsic>(BBI) || 1001 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1002 ScanInsts++; 1003 continue; 1004 } 1005 1006 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1007 // Prev store isn't volatile, and stores to the same location? 1008 if (PrevSI->isSimple() && equivalentAddressValues(PrevSI->getOperand(1), 1009 SI.getOperand(1))) { 1010 ++NumDeadStore; 1011 ++BBI; 1012 EraseInstFromFunction(*PrevSI); 1013 continue; 1014 } 1015 break; 1016 } 1017 1018 // If this is a load, we have to stop. However, if the loaded value is from 1019 // the pointer we're loading and is producing the pointer we're storing, 1020 // then *this* store is dead (X = load P; store X -> P). 1021 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1022 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr) && 1023 LI->isSimple()) 1024 return EraseInstFromFunction(SI); 1025 1026 // Otherwise, this is a load from some other location. Stores before it 1027 // may not be dead. 1028 break; 1029 } 1030 1031 // Don't skip over loads or things that can modify memory. 1032 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) 1033 break; 1034 } 1035 1036 // store X, null -> turns into 'unreachable' in SimplifyCFG 1037 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { 1038 if (!isa<UndefValue>(Val)) { 1039 SI.setOperand(0, UndefValue::get(Val->getType())); 1040 if (Instruction *U = dyn_cast<Instruction>(Val)) 1041 Worklist.Add(U); // Dropped a use. 1042 } 1043 return nullptr; // Do not modify these! 1044 } 1045 1046 // store undef, Ptr -> noop 1047 if (isa<UndefValue>(Val)) 1048 return EraseInstFromFunction(SI); 1049 1050 // If this store is the last instruction in the basic block (possibly 1051 // excepting debug info instructions), and if the block ends with an 1052 // unconditional branch, try to move it to the successor block. 1053 BBI = &SI; 1054 do { 1055 ++BBI; 1056 } while (isa<DbgInfoIntrinsic>(BBI) || 1057 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1058 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1059 if (BI->isUnconditional()) 1060 if (SimplifyStoreAtEndOfBlock(SI)) 1061 return nullptr; // xform done! 1062 1063 return nullptr; 1064 } 1065 1066 /// SimplifyStoreAtEndOfBlock - Turn things like: 1067 /// if () { *P = v1; } else { *P = v2 } 1068 /// into a phi node with a store in the successor. 1069 /// 1070 /// Simplify things like: 1071 /// *P = v1; if () { *P = v2; } 1072 /// into a phi node with a store in the successor. 1073 /// 1074 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1075 BasicBlock *StoreBB = SI.getParent(); 1076 1077 // Check to see if the successor block has exactly two incoming edges. If 1078 // so, see if the other predecessor contains a store to the same location. 1079 // if so, insert a PHI node (if needed) and move the stores down. 1080 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1081 1082 // Determine whether Dest has exactly two predecessors and, if so, compute 1083 // the other predecessor. 1084 pred_iterator PI = pred_begin(DestBB); 1085 BasicBlock *P = *PI; 1086 BasicBlock *OtherBB = nullptr; 1087 1088 if (P != StoreBB) 1089 OtherBB = P; 1090 1091 if (++PI == pred_end(DestBB)) 1092 return false; 1093 1094 P = *PI; 1095 if (P != StoreBB) { 1096 if (OtherBB) 1097 return false; 1098 OtherBB = P; 1099 } 1100 if (++PI != pred_end(DestBB)) 1101 return false; 1102 1103 // Bail out if all the relevant blocks aren't distinct (this can happen, 1104 // for example, if SI is in an infinite loop) 1105 if (StoreBB == DestBB || OtherBB == DestBB) 1106 return false; 1107 1108 // Verify that the other block ends in a branch and is not otherwise empty. 1109 BasicBlock::iterator BBI = OtherBB->getTerminator(); 1110 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1111 if (!OtherBr || BBI == OtherBB->begin()) 1112 return false; 1113 1114 // If the other block ends in an unconditional branch, check for the 'if then 1115 // else' case. there is an instruction before the branch. 1116 StoreInst *OtherStore = nullptr; 1117 if (OtherBr->isUnconditional()) { 1118 --BBI; 1119 // Skip over debugging info. 1120 while (isa<DbgInfoIntrinsic>(BBI) || 1121 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1122 if (BBI==OtherBB->begin()) 1123 return false; 1124 --BBI; 1125 } 1126 // If this isn't a store, isn't a store to the same location, or is not the 1127 // right kind of store, bail out. 1128 OtherStore = dyn_cast<StoreInst>(BBI); 1129 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1130 !SI.isSameOperationAs(OtherStore)) 1131 return false; 1132 } else { 1133 // Otherwise, the other block ended with a conditional branch. If one of the 1134 // destinations is StoreBB, then we have the if/then case. 1135 if (OtherBr->getSuccessor(0) != StoreBB && 1136 OtherBr->getSuccessor(1) != StoreBB) 1137 return false; 1138 1139 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1140 // if/then triangle. See if there is a store to the same ptr as SI that 1141 // lives in OtherBB. 1142 for (;; --BBI) { 1143 // Check to see if we find the matching store. 1144 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1145 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1146 !SI.isSameOperationAs(OtherStore)) 1147 return false; 1148 break; 1149 } 1150 // If we find something that may be using or overwriting the stored 1151 // value, or if we run out of instructions, we can't do the xform. 1152 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || 1153 BBI == OtherBB->begin()) 1154 return false; 1155 } 1156 1157 // In order to eliminate the store in OtherBr, we have to 1158 // make sure nothing reads or overwrites the stored value in 1159 // StoreBB. 1160 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1161 // FIXME: This should really be AA driven. 1162 if (I->mayReadFromMemory() || I->mayWriteToMemory()) 1163 return false; 1164 } 1165 } 1166 1167 // Insert a PHI node now if we need it. 1168 Value *MergedVal = OtherStore->getOperand(0); 1169 if (MergedVal != SI.getOperand(0)) { 1170 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1171 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1172 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1173 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1174 } 1175 1176 // Advance to a place where it is safe to insert the new store and 1177 // insert it. 1178 BBI = DestBB->getFirstInsertionPt(); 1179 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1180 SI.isVolatile(), 1181 SI.getAlignment(), 1182 SI.getOrdering(), 1183 SI.getSynchScope()); 1184 InsertNewInstBefore(NewSI, *BBI); 1185 NewSI->setDebugLoc(OtherStore->getDebugLoc()); 1186 1187 // If the two stores had AA tags, merge them. 1188 AAMDNodes AATags; 1189 SI.getAAMetadata(AATags); 1190 if (AATags) { 1191 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1192 NewSI->setAAMetadata(AATags); 1193 } 1194 1195 // Nuke the old stores. 1196 EraseInstFromFunction(SI); 1197 EraseInstFromFunction(*OtherStore); 1198 return true; 1199 } 1200