1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 36 37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 38 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 39 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 41 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 42 /// the alloca, and if the source pointer is a pointer to a constant global, we 43 /// can optimize this. 44 static bool 45 isOnlyCopiedFromConstantMemory(AAResults *AA, 46 Value *V, MemTransferInst *&TheCopy, 47 SmallVectorImpl<Instruction *> &ToDelete) { 48 // We track lifetime intrinsics as we encounter them. If we decide to go 49 // ahead and replace the value with the global, this lets the caller quickly 50 // eliminate the markers. 51 52 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 53 ValuesToInspect.emplace_back(V, false); 54 while (!ValuesToInspect.empty()) { 55 auto ValuePair = ValuesToInspect.pop_back_val(); 56 const bool IsOffset = ValuePair.second; 57 for (auto &U : ValuePair.first->uses()) { 58 auto *I = cast<Instruction>(U.getUser()); 59 60 if (auto *LI = dyn_cast<LoadInst>(I)) { 61 // Ignore non-volatile loads, they are always ok. 62 if (!LI->isSimple()) return false; 63 continue; 64 } 65 66 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 67 // If uses of the bitcast are ok, we are ok. 68 ValuesToInspect.emplace_back(I, IsOffset); 69 continue; 70 } 71 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 72 // If the GEP has all zero indices, it doesn't offset the pointer. If it 73 // doesn't, it does. 74 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 75 continue; 76 } 77 78 if (auto *Call = dyn_cast<CallBase>(I)) { 79 // If this is the function being called then we treat it like a load and 80 // ignore it. 81 if (Call->isCallee(&U)) 82 continue; 83 84 unsigned DataOpNo = Call->getDataOperandNo(&U); 85 bool IsArgOperand = Call->isArgOperand(&U); 86 87 // Inalloca arguments are clobbered by the call. 88 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 89 return false; 90 91 // If this is a readonly/readnone call site, then we know it is just a 92 // load (but one that potentially returns the value itself), so we can 93 // ignore it if we know that the value isn't captured. 94 if (Call->onlyReadsMemory() && 95 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 96 continue; 97 98 // If this is being passed as a byval argument, the caller is making a 99 // copy, so it is only a read of the alloca. 100 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 101 continue; 102 } 103 104 // Lifetime intrinsics can be handled by the caller. 105 if (I->isLifetimeStartOrEnd()) { 106 assert(I->use_empty() && "Lifetime markers have no result to use!"); 107 ToDelete.push_back(I); 108 continue; 109 } 110 111 // If this is isn't our memcpy/memmove, reject it as something we can't 112 // handle. 113 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 114 if (!MI) 115 return false; 116 117 // If the transfer is using the alloca as a source of the transfer, then 118 // ignore it since it is a load (unless the transfer is volatile). 119 if (U.getOperandNo() == 1) { 120 if (MI->isVolatile()) return false; 121 continue; 122 } 123 124 // If we already have seen a copy, reject the second one. 125 if (TheCopy) return false; 126 127 // If the pointer has been offset from the start of the alloca, we can't 128 // safely handle this. 129 if (IsOffset) return false; 130 131 // If the memintrinsic isn't using the alloca as the dest, reject it. 132 if (U.getOperandNo() != 0) return false; 133 134 // If the source of the memcpy/move is not a constant global, reject it. 135 if (!AA->pointsToConstantMemory(MI->getSource())) 136 return false; 137 138 // Otherwise, the transform is safe. Remember the copy instruction. 139 TheCopy = MI; 140 } 141 } 142 return true; 143 } 144 145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 146 /// modified by a copy from a constant global. If we can prove this, we can 147 /// replace any uses of the alloca with uses of the global directly. 148 static MemTransferInst * 149 isOnlyCopiedFromConstantMemory(AAResults *AA, 150 AllocaInst *AI, 151 SmallVectorImpl<Instruction *> &ToDelete) { 152 MemTransferInst *TheCopy = nullptr; 153 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) 154 return TheCopy; 155 return nullptr; 156 } 157 158 /// Returns true if V is dereferenceable for size of alloca. 159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 160 const DataLayout &DL) { 161 if (AI->isArrayAllocation()) 162 return false; 163 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 164 if (!AllocaSize) 165 return false; 166 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()), 167 APInt(64, AllocaSize), DL); 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC, 171 AllocaInst &AI) { 172 // Check for array size of 1 (scalar allocation). 173 if (!AI.isArrayAllocation()) { 174 // i32 1 is the canonical array size for scalar allocations. 175 if (AI.getArraySize()->getType()->isIntegerTy(32)) 176 return nullptr; 177 178 // Canonicalize it. 179 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); 180 } 181 182 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 183 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 184 if (C->getValue().getActiveBits() <= 64) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 187 New->setAlignment(AI.getAlign()); 188 189 // Scan to the end of the allocation instructions, to skip over a block of 190 // allocas if possible...also skip interleaved debug info 191 // 192 BasicBlock::iterator It(New); 193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 194 ++It; 195 196 // Now that I is pointing to the first non-allocation-inst in the block, 197 // insert our getelementptr instruction... 198 // 199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 200 Value *NullIdx = Constant::getNullValue(IdxTy); 201 Value *Idx[2] = {NullIdx, NullIdx}; 202 Instruction *GEP = GetElementPtrInst::CreateInBounds( 203 NewTy, New, Idx, New->getName() + ".sub"); 204 IC.InsertNewInstBefore(GEP, *It); 205 206 // Now make everything use the getelementptr instead of the original 207 // allocation. 208 return IC.replaceInstUsesWith(AI, GEP); 209 } 210 } 211 212 if (isa<UndefValue>(AI.getArraySize())) 213 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 214 215 // Ensure that the alloca array size argument has type intptr_t, so that 216 // any casting is exposed early. 217 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 218 if (AI.getArraySize()->getType() != IntPtrTy) { 219 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 220 return IC.replaceOperand(AI, 0, V); 221 } 222 223 return nullptr; 224 } 225 226 namespace { 227 // If I and V are pointers in different address space, it is not allowed to 228 // use replaceAllUsesWith since I and V have different types. A 229 // non-target-specific transformation should not use addrspacecast on V since 230 // the two address space may be disjoint depending on target. 231 // 232 // This class chases down uses of the old pointer until reaching the load 233 // instructions, then replaces the old pointer in the load instructions with 234 // the new pointer. If during the chasing it sees bitcast or GEP, it will 235 // create new bitcast or GEP with the new pointer and use them in the load 236 // instruction. 237 class PointerReplacer { 238 public: 239 PointerReplacer(InstCombinerImpl &IC) : IC(IC) {} 240 241 bool collectUsers(Instruction &I); 242 void replacePointer(Instruction &I, Value *V); 243 244 private: 245 void replace(Instruction *I); 246 Value *getReplacement(Value *I); 247 248 SmallSetVector<Instruction *, 4> Worklist; 249 MapVector<Value *, Value *> WorkMap; 250 InstCombinerImpl &IC; 251 }; 252 } // end anonymous namespace 253 254 bool PointerReplacer::collectUsers(Instruction &I) { 255 for (auto U : I.users()) { 256 Instruction *Inst = cast<Instruction>(&*U); 257 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 258 if (Load->isVolatile()) 259 return false; 260 Worklist.insert(Load); 261 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 262 Worklist.insert(Inst); 263 if (!collectUsers(*Inst)) 264 return false; 265 } else if (isa<MemTransferInst>(Inst)) { 266 Worklist.insert(Inst); 267 } else { 268 LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n'); 269 return false; 270 } 271 } 272 273 return true; 274 } 275 276 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); } 277 278 void PointerReplacer::replace(Instruction *I) { 279 if (getReplacement(I)) 280 return; 281 282 if (auto *LT = dyn_cast<LoadInst>(I)) { 283 auto *V = getReplacement(LT->getPointerOperand()); 284 assert(V && "Operand not replaced"); 285 auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(), 286 LT->getAlign(), LT->getOrdering(), 287 LT->getSyncScopeID()); 288 NewI->takeName(LT); 289 copyMetadataForLoad(*NewI, *LT); 290 291 IC.InsertNewInstWith(NewI, *LT); 292 IC.replaceInstUsesWith(*LT, NewI); 293 WorkMap[LT] = NewI; 294 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 295 auto *V = getReplacement(GEP->getPointerOperand()); 296 assert(V && "Operand not replaced"); 297 SmallVector<Value *, 8> Indices; 298 Indices.append(GEP->idx_begin(), GEP->idx_end()); 299 auto *NewI = GetElementPtrInst::Create( 300 V->getType()->getPointerElementType(), V, Indices); 301 IC.InsertNewInstWith(NewI, *GEP); 302 NewI->takeName(GEP); 303 WorkMap[GEP] = NewI; 304 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 305 auto *V = getReplacement(BC->getOperand(0)); 306 assert(V && "Operand not replaced"); 307 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 308 V->getType()->getPointerAddressSpace()); 309 auto *NewI = new BitCastInst(V, NewT); 310 IC.InsertNewInstWith(NewI, *BC); 311 NewI->takeName(BC); 312 WorkMap[BC] = NewI; 313 } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) { 314 auto *SrcV = getReplacement(MemCpy->getRawSource()); 315 // The pointer may appear in the destination of a copy, but we don't want to 316 // replace it. 317 if (!SrcV) { 318 assert(getReplacement(MemCpy->getRawDest()) && 319 "destination not in replace list"); 320 return; 321 } 322 323 IC.Builder.SetInsertPoint(MemCpy); 324 auto *NewI = IC.Builder.CreateMemTransferInst( 325 MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(), 326 SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(), 327 MemCpy->isVolatile()); 328 AAMDNodes AAMD; 329 MemCpy->getAAMetadata(AAMD); 330 if (AAMD) 331 NewI->setAAMetadata(AAMD); 332 333 IC.eraseInstFromFunction(*MemCpy); 334 WorkMap[MemCpy] = NewI; 335 } else { 336 llvm_unreachable("should never reach here"); 337 } 338 } 339 340 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 341 #ifndef NDEBUG 342 auto *PT = cast<PointerType>(I.getType()); 343 auto *NT = cast<PointerType>(V->getType()); 344 assert(PT != NT && PT->getElementType() == NT->getElementType() && 345 "Invalid usage"); 346 #endif 347 WorkMap[&I] = V; 348 349 for (Instruction *Workitem : Worklist) 350 replace(Workitem); 351 } 352 353 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) { 354 if (auto *I = simplifyAllocaArraySize(*this, AI)) 355 return I; 356 357 if (AI.getAllocatedType()->isSized()) { 358 // Move all alloca's of zero byte objects to the entry block and merge them 359 // together. Note that we only do this for alloca's, because malloc should 360 // allocate and return a unique pointer, even for a zero byte allocation. 361 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) { 362 // For a zero sized alloca there is no point in doing an array allocation. 363 // This is helpful if the array size is a complicated expression not used 364 // elsewhere. 365 if (AI.isArrayAllocation()) 366 return replaceOperand(AI, 0, 367 ConstantInt::get(AI.getArraySize()->getType(), 1)); 368 369 // Get the first instruction in the entry block. 370 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 371 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 372 if (FirstInst != &AI) { 373 // If the entry block doesn't start with a zero-size alloca then move 374 // this one to the start of the entry block. There is no problem with 375 // dominance as the array size was forced to a constant earlier already. 376 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 377 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 378 DL.getTypeAllocSize(EntryAI->getAllocatedType()) 379 .getKnownMinSize() != 0) { 380 AI.moveBefore(FirstInst); 381 return &AI; 382 } 383 384 // Replace this zero-sized alloca with the one at the start of the entry 385 // block after ensuring that the address will be aligned enough for both 386 // types. 387 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); 388 EntryAI->setAlignment(MaxAlign); 389 if (AI.getType() != EntryAI->getType()) 390 return new BitCastInst(EntryAI, AI.getType()); 391 return replaceInstUsesWith(AI, EntryAI); 392 } 393 } 394 } 395 396 // Check to see if this allocation is only modified by a memcpy/memmove from 397 // a constant whose alignment is equal to or exceeds that of the allocation. 398 // If this is the case, we can change all users to use the constant global 399 // instead. This is commonly produced by the CFE by constructs like "void 400 // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently 401 // read. 402 SmallVector<Instruction *, 4> ToDelete; 403 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { 404 Value *TheSrc = Copy->getSource(); 405 Align AllocaAlign = AI.getAlign(); 406 Align SourceAlign = getOrEnforceKnownAlignment( 407 TheSrc, AllocaAlign, DL, &AI, &AC, &DT); 408 if (AllocaAlign <= SourceAlign && 409 isDereferenceableForAllocaSize(TheSrc, &AI, DL) && 410 !isa<Instruction>(TheSrc)) { 411 // FIXME: Can we sink instructions without violating dominance when TheSrc 412 // is an instruction instead of a constant or argument? 413 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 414 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 415 unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace(); 416 auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace); 417 if (AI.getType()->getAddressSpace() == SrcAddrSpace) { 418 for (Instruction *Delete : ToDelete) 419 eraseInstFromFunction(*Delete); 420 421 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 422 Instruction *NewI = replaceInstUsesWith(AI, Cast); 423 eraseInstFromFunction(*Copy); 424 ++NumGlobalCopies; 425 return NewI; 426 } 427 428 PointerReplacer PtrReplacer(*this); 429 if (PtrReplacer.collectUsers(AI)) { 430 for (Instruction *Delete : ToDelete) 431 eraseInstFromFunction(*Delete); 432 433 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 434 PtrReplacer.replacePointer(AI, Cast); 435 ++NumGlobalCopies; 436 } 437 } 438 } 439 440 // At last, use the generic allocation site handler to aggressively remove 441 // unused allocas. 442 return visitAllocSite(AI); 443 } 444 445 // Are we allowed to form a atomic load or store of this type? 446 static bool isSupportedAtomicType(Type *Ty) { 447 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 448 } 449 450 /// Helper to combine a load to a new type. 451 /// 452 /// This just does the work of combining a load to a new type. It handles 453 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 454 /// loaded *value* type. This will convert it to a pointer, cast the operand to 455 /// that pointer type, load it, etc. 456 /// 457 /// Note that this will create all of the instructions with whatever insert 458 /// point the \c InstCombinerImpl currently is using. 459 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy, 460 const Twine &Suffix) { 461 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 462 "can't fold an atomic load to requested type"); 463 464 Value *Ptr = LI.getPointerOperand(); 465 unsigned AS = LI.getPointerAddressSpace(); 466 Value *NewPtr = nullptr; 467 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 468 NewPtr->getType()->getPointerElementType() == NewTy && 469 NewPtr->getType()->getPointerAddressSpace() == AS)) 470 NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 471 472 LoadInst *NewLoad = Builder.CreateAlignedLoad( 473 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); 474 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 475 copyMetadataForLoad(*NewLoad, LI); 476 return NewLoad; 477 } 478 479 /// Combine a store to a new type. 480 /// 481 /// Returns the newly created store instruction. 482 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI, 483 Value *V) { 484 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 485 "can't fold an atomic store of requested type"); 486 487 Value *Ptr = SI.getPointerOperand(); 488 unsigned AS = SI.getPointerAddressSpace(); 489 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 490 SI.getAllMetadata(MD); 491 492 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 493 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 494 SI.getAlign(), SI.isVolatile()); 495 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 496 for (const auto &MDPair : MD) { 497 unsigned ID = MDPair.first; 498 MDNode *N = MDPair.second; 499 // Note, essentially every kind of metadata should be preserved here! This 500 // routine is supposed to clone a store instruction changing *only its 501 // type*. The only metadata it makes sense to drop is metadata which is 502 // invalidated when the pointer type changes. This should essentially 503 // never be the case in LLVM, but we explicitly switch over only known 504 // metadata to be conservatively correct. If you are adding metadata to 505 // LLVM which pertains to stores, you almost certainly want to add it 506 // here. 507 switch (ID) { 508 case LLVMContext::MD_dbg: 509 case LLVMContext::MD_tbaa: 510 case LLVMContext::MD_prof: 511 case LLVMContext::MD_fpmath: 512 case LLVMContext::MD_tbaa_struct: 513 case LLVMContext::MD_alias_scope: 514 case LLVMContext::MD_noalias: 515 case LLVMContext::MD_nontemporal: 516 case LLVMContext::MD_mem_parallel_loop_access: 517 case LLVMContext::MD_access_group: 518 // All of these directly apply. 519 NewStore->setMetadata(ID, N); 520 break; 521 case LLVMContext::MD_invariant_load: 522 case LLVMContext::MD_nonnull: 523 case LLVMContext::MD_noundef: 524 case LLVMContext::MD_range: 525 case LLVMContext::MD_align: 526 case LLVMContext::MD_dereferenceable: 527 case LLVMContext::MD_dereferenceable_or_null: 528 // These don't apply for stores. 529 break; 530 } 531 } 532 533 return NewStore; 534 } 535 536 /// Returns true if instruction represent minmax pattern like: 537 /// select ((cmp load V1, load V2), V1, V2). 538 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 539 assert(V->getType()->isPointerTy() && "Expected pointer type."); 540 // Ignore possible ty* to ixx* bitcast. 541 V = InstCombiner::peekThroughBitcast(V); 542 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 543 // pattern. 544 CmpInst::Predicate Pred; 545 Instruction *L1; 546 Instruction *L2; 547 Value *LHS; 548 Value *RHS; 549 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 550 m_Value(LHS), m_Value(RHS)))) 551 return false; 552 LoadTy = L1->getType(); 553 return (match(L1, m_Load(m_Specific(LHS))) && 554 match(L2, m_Load(m_Specific(RHS)))) || 555 (match(L1, m_Load(m_Specific(RHS))) && 556 match(L2, m_Load(m_Specific(LHS)))); 557 } 558 559 /// Combine loads to match the type of their uses' value after looking 560 /// through intervening bitcasts. 561 /// 562 /// The core idea here is that if the result of a load is used in an operation, 563 /// we should load the type most conducive to that operation. For example, when 564 /// loading an integer and converting that immediately to a pointer, we should 565 /// instead directly load a pointer. 566 /// 567 /// However, this routine must never change the width of a load or the number of 568 /// loads as that would introduce a semantic change. This combine is expected to 569 /// be a semantic no-op which just allows loads to more closely model the types 570 /// of their consuming operations. 571 /// 572 /// Currently, we also refuse to change the precise type used for an atomic load 573 /// or a volatile load. This is debatable, and might be reasonable to change 574 /// later. However, it is risky in case some backend or other part of LLVM is 575 /// relying on the exact type loaded to select appropriate atomic operations. 576 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC, 577 LoadInst &LI) { 578 // FIXME: We could probably with some care handle both volatile and ordered 579 // atomic loads here but it isn't clear that this is important. 580 if (!LI.isUnordered()) 581 return nullptr; 582 583 if (LI.use_empty()) 584 return nullptr; 585 586 // swifterror values can't be bitcasted. 587 if (LI.getPointerOperand()->isSwiftError()) 588 return nullptr; 589 590 const DataLayout &DL = IC.getDataLayout(); 591 592 // Fold away bit casts of the loaded value by loading the desired type. 593 // Note that we should not do this for pointer<->integer casts, 594 // because that would result in type punning. 595 if (LI.hasOneUse()) { 596 // Don't transform when the type is x86_amx, it makes the pass that lower 597 // x86_amx type happy. 598 if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) { 599 assert(!LI.getType()->isX86_AMXTy() && 600 "load from x86_amx* should not happen!"); 601 if (BC->getType()->isX86_AMXTy()) 602 return nullptr; 603 } 604 605 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 606 if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() == 607 CI->getDestTy()->isPtrOrPtrVectorTy()) 608 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 609 LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy()); 610 CI->replaceAllUsesWith(NewLoad); 611 IC.eraseInstFromFunction(*CI); 612 return &LI; 613 } 614 } 615 616 // FIXME: We should also canonicalize loads of vectors when their elements are 617 // cast to other types. 618 return nullptr; 619 } 620 621 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) { 622 // FIXME: We could probably with some care handle both volatile and atomic 623 // stores here but it isn't clear that this is important. 624 if (!LI.isSimple()) 625 return nullptr; 626 627 Type *T = LI.getType(); 628 if (!T->isAggregateType()) 629 return nullptr; 630 631 StringRef Name = LI.getName(); 632 assert(LI.getAlignment() && "Alignment must be set at this point"); 633 634 if (auto *ST = dyn_cast<StructType>(T)) { 635 // If the struct only have one element, we unpack. 636 auto NumElements = ST->getNumElements(); 637 if (NumElements == 1) { 638 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 639 ".unpack"); 640 AAMDNodes AAMD; 641 LI.getAAMetadata(AAMD); 642 NewLoad->setAAMetadata(AAMD); 643 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 644 UndefValue::get(T), NewLoad, 0, Name)); 645 } 646 647 // We don't want to break loads with padding here as we'd loose 648 // the knowledge that padding exists for the rest of the pipeline. 649 const DataLayout &DL = IC.getDataLayout(); 650 auto *SL = DL.getStructLayout(ST); 651 if (SL->hasPadding()) 652 return nullptr; 653 654 const auto Align = LI.getAlign(); 655 auto *Addr = LI.getPointerOperand(); 656 auto *IdxType = Type::getInt32Ty(T->getContext()); 657 auto *Zero = ConstantInt::get(IdxType, 0); 658 659 Value *V = UndefValue::get(T); 660 for (unsigned i = 0; i < NumElements; i++) { 661 Value *Indices[2] = { 662 Zero, 663 ConstantInt::get(IdxType, i), 664 }; 665 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 666 Name + ".elt"); 667 auto *L = IC.Builder.CreateAlignedLoad( 668 ST->getElementType(i), Ptr, 669 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); 670 // Propagate AA metadata. It'll still be valid on the narrowed load. 671 AAMDNodes AAMD; 672 LI.getAAMetadata(AAMD); 673 L->setAAMetadata(AAMD); 674 V = IC.Builder.CreateInsertValue(V, L, i); 675 } 676 677 V->setName(Name); 678 return IC.replaceInstUsesWith(LI, V); 679 } 680 681 if (auto *AT = dyn_cast<ArrayType>(T)) { 682 auto *ET = AT->getElementType(); 683 auto NumElements = AT->getNumElements(); 684 if (NumElements == 1) { 685 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 686 AAMDNodes AAMD; 687 LI.getAAMetadata(AAMD); 688 NewLoad->setAAMetadata(AAMD); 689 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 690 UndefValue::get(T), NewLoad, 0, Name)); 691 } 692 693 // Bail out if the array is too large. Ideally we would like to optimize 694 // arrays of arbitrary size but this has a terrible impact on compile time. 695 // The threshold here is chosen arbitrarily, maybe needs a little bit of 696 // tuning. 697 if (NumElements > IC.MaxArraySizeForCombine) 698 return nullptr; 699 700 const DataLayout &DL = IC.getDataLayout(); 701 auto EltSize = DL.getTypeAllocSize(ET); 702 const auto Align = LI.getAlign(); 703 704 auto *Addr = LI.getPointerOperand(); 705 auto *IdxType = Type::getInt64Ty(T->getContext()); 706 auto *Zero = ConstantInt::get(IdxType, 0); 707 708 Value *V = UndefValue::get(T); 709 uint64_t Offset = 0; 710 for (uint64_t i = 0; i < NumElements; i++) { 711 Value *Indices[2] = { 712 Zero, 713 ConstantInt::get(IdxType, i), 714 }; 715 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 716 Name + ".elt"); 717 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, 718 commonAlignment(Align, Offset), 719 Name + ".unpack"); 720 AAMDNodes AAMD; 721 LI.getAAMetadata(AAMD); 722 L->setAAMetadata(AAMD); 723 V = IC.Builder.CreateInsertValue(V, L, i); 724 Offset += EltSize; 725 } 726 727 V->setName(Name); 728 return IC.replaceInstUsesWith(LI, V); 729 } 730 731 return nullptr; 732 } 733 734 // If we can determine that all possible objects pointed to by the provided 735 // pointer value are, not only dereferenceable, but also definitively less than 736 // or equal to the provided maximum size, then return true. Otherwise, return 737 // false (constant global values and allocas fall into this category). 738 // 739 // FIXME: This should probably live in ValueTracking (or similar). 740 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 741 const DataLayout &DL) { 742 SmallPtrSet<Value *, 4> Visited; 743 SmallVector<Value *, 4> Worklist(1, V); 744 745 do { 746 Value *P = Worklist.pop_back_val(); 747 P = P->stripPointerCasts(); 748 749 if (!Visited.insert(P).second) 750 continue; 751 752 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 753 Worklist.push_back(SI->getTrueValue()); 754 Worklist.push_back(SI->getFalseValue()); 755 continue; 756 } 757 758 if (PHINode *PN = dyn_cast<PHINode>(P)) { 759 append_range(Worklist, PN->incoming_values()); 760 continue; 761 } 762 763 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 764 if (GA->isInterposable()) 765 return false; 766 Worklist.push_back(GA->getAliasee()); 767 continue; 768 } 769 770 // If we know how big this object is, and it is less than MaxSize, continue 771 // searching. Otherwise, return false. 772 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 773 if (!AI->getAllocatedType()->isSized()) 774 return false; 775 776 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 777 if (!CS) 778 return false; 779 780 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 781 // Make sure that, even if the multiplication below would wrap as an 782 // uint64_t, we still do the right thing. 783 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 784 return false; 785 continue; 786 } 787 788 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 789 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 790 return false; 791 792 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 793 if (InitSize > MaxSize) 794 return false; 795 continue; 796 } 797 798 return false; 799 } while (!Worklist.empty()); 800 801 return true; 802 } 803 804 // If we're indexing into an object of a known size, and the outer index is 805 // not a constant, but having any value but zero would lead to undefined 806 // behavior, replace it with zero. 807 // 808 // For example, if we have: 809 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 810 // ... 811 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 812 // ... = load i32* %arrayidx, align 4 813 // Then we know that we can replace %x in the GEP with i64 0. 814 // 815 // FIXME: We could fold any GEP index to zero that would cause UB if it were 816 // not zero. Currently, we only handle the first such index. Also, we could 817 // also search through non-zero constant indices if we kept track of the 818 // offsets those indices implied. 819 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC, 820 GetElementPtrInst *GEPI, Instruction *MemI, 821 unsigned &Idx) { 822 if (GEPI->getNumOperands() < 2) 823 return false; 824 825 // Find the first non-zero index of a GEP. If all indices are zero, return 826 // one past the last index. 827 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 828 unsigned I = 1; 829 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 830 Value *V = GEPI->getOperand(I); 831 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 832 if (CI->isZero()) 833 continue; 834 835 break; 836 } 837 838 return I; 839 }; 840 841 // Skip through initial 'zero' indices, and find the corresponding pointer 842 // type. See if the next index is not a constant. 843 Idx = FirstNZIdx(GEPI); 844 if (Idx == GEPI->getNumOperands()) 845 return false; 846 if (isa<Constant>(GEPI->getOperand(Idx))) 847 return false; 848 849 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 850 Type *SourceElementType = GEPI->getSourceElementType(); 851 // Size information about scalable vectors is not available, so we cannot 852 // deduce whether indexing at n is undefined behaviour or not. Bail out. 853 if (isa<ScalableVectorType>(SourceElementType)) 854 return false; 855 856 Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops); 857 if (!AllocTy || !AllocTy->isSized()) 858 return false; 859 const DataLayout &DL = IC.getDataLayout(); 860 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize(); 861 862 // If there are more indices after the one we might replace with a zero, make 863 // sure they're all non-negative. If any of them are negative, the overall 864 // address being computed might be before the base address determined by the 865 // first non-zero index. 866 auto IsAllNonNegative = [&]() { 867 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 868 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 869 if (Known.isNonNegative()) 870 continue; 871 return false; 872 } 873 874 return true; 875 }; 876 877 // FIXME: If the GEP is not inbounds, and there are extra indices after the 878 // one we'll replace, those could cause the address computation to wrap 879 // (rendering the IsAllNonNegative() check below insufficient). We can do 880 // better, ignoring zero indices (and other indices we can prove small 881 // enough not to wrap). 882 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 883 return false; 884 885 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 886 // also known to be dereferenceable. 887 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 888 IsAllNonNegative(); 889 } 890 891 // If we're indexing into an object with a variable index for the memory 892 // access, but the object has only one element, we can assume that the index 893 // will always be zero. If we replace the GEP, return it. 894 template <typename T> 895 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr, 896 T &MemI) { 897 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 898 unsigned Idx; 899 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 900 Instruction *NewGEPI = GEPI->clone(); 901 NewGEPI->setOperand(Idx, 902 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 903 NewGEPI->insertBefore(GEPI); 904 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 905 return NewGEPI; 906 } 907 } 908 909 return nullptr; 910 } 911 912 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 913 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 914 return false; 915 916 auto *Ptr = SI.getPointerOperand(); 917 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 918 Ptr = GEPI->getOperand(0); 919 return (isa<ConstantPointerNull>(Ptr) && 920 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 921 } 922 923 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 924 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 925 const Value *GEPI0 = GEPI->getOperand(0); 926 if (isa<ConstantPointerNull>(GEPI0) && 927 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 928 return true; 929 } 930 if (isa<UndefValue>(Op) || 931 (isa<ConstantPointerNull>(Op) && 932 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 933 return true; 934 return false; 935 } 936 937 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) { 938 Value *Op = LI.getOperand(0); 939 940 // Try to canonicalize the loaded type. 941 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 942 return Res; 943 944 // Attempt to improve the alignment. 945 Align KnownAlign = getOrEnforceKnownAlignment( 946 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); 947 if (KnownAlign > LI.getAlign()) 948 LI.setAlignment(KnownAlign); 949 950 // Replace GEP indices if possible. 951 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 952 Worklist.push(NewGEPI); 953 return &LI; 954 } 955 956 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 957 return Res; 958 959 // Do really simple store-to-load forwarding and load CSE, to catch cases 960 // where there are several consecutive memory accesses to the same location, 961 // separated by a few arithmetic operations. 962 bool IsLoadCSE = false; 963 if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) { 964 if (IsLoadCSE) 965 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 966 967 return replaceInstUsesWith( 968 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 969 LI.getName() + ".cast")); 970 } 971 972 // None of the following transforms are legal for volatile/ordered atomic 973 // loads. Most of them do apply for unordered atomics. 974 if (!LI.isUnordered()) return nullptr; 975 976 // load(gep null, ...) -> unreachable 977 // load null/undef -> unreachable 978 // TODO: Consider a target hook for valid address spaces for this xforms. 979 if (canSimplifyNullLoadOrGEP(LI, Op)) { 980 // Insert a new store to null instruction before the load to indicate 981 // that this code is not reachable. We do this instead of inserting 982 // an unreachable instruction directly because we cannot modify the 983 // CFG. 984 StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()), 985 Constant::getNullValue(Op->getType()), &LI); 986 SI->setDebugLoc(LI.getDebugLoc()); 987 return replaceInstUsesWith(LI, PoisonValue::get(LI.getType())); 988 } 989 990 if (Op->hasOneUse()) { 991 // Change select and PHI nodes to select values instead of addresses: this 992 // helps alias analysis out a lot, allows many others simplifications, and 993 // exposes redundancy in the code. 994 // 995 // Note that we cannot do the transformation unless we know that the 996 // introduced loads cannot trap! Something like this is valid as long as 997 // the condition is always false: load (select bool %C, int* null, int* %G), 998 // but it would not be valid if we transformed it to load from null 999 // unconditionally. 1000 // 1001 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1002 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1003 Align Alignment = LI.getAlign(); 1004 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 1005 Alignment, DL, SI) && 1006 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 1007 Alignment, DL, SI)) { 1008 LoadInst *V1 = 1009 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 1010 SI->getOperand(1)->getName() + ".val"); 1011 LoadInst *V2 = 1012 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1013 SI->getOperand(2)->getName() + ".val"); 1014 assert(LI.isUnordered() && "implied by above"); 1015 V1->setAlignment(Alignment); 1016 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1017 V2->setAlignment(Alignment); 1018 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1019 return SelectInst::Create(SI->getCondition(), V1, V2); 1020 } 1021 1022 // load (select (cond, null, P)) -> load P 1023 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1024 !NullPointerIsDefined(SI->getFunction(), 1025 LI.getPointerAddressSpace())) 1026 return replaceOperand(LI, 0, SI->getOperand(2)); 1027 1028 // load (select (cond, P, null)) -> load P 1029 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1030 !NullPointerIsDefined(SI->getFunction(), 1031 LI.getPointerAddressSpace())) 1032 return replaceOperand(LI, 0, SI->getOperand(1)); 1033 } 1034 } 1035 return nullptr; 1036 } 1037 1038 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1039 /// 1040 /// \returns underlying value that was "cast", or nullptr otherwise. 1041 /// 1042 /// For example, if we have: 1043 /// 1044 /// %E0 = extractelement <2 x double> %U, i32 0 1045 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1046 /// %E1 = extractelement <2 x double> %U, i32 1 1047 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1048 /// 1049 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1050 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1051 /// Note that %U may contain non-undef values where %V1 has undef. 1052 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) { 1053 Value *U = nullptr; 1054 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1055 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1056 if (!E) 1057 return nullptr; 1058 auto *W = E->getVectorOperand(); 1059 if (!U) 1060 U = W; 1061 else if (U != W) 1062 return nullptr; 1063 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1064 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1065 return nullptr; 1066 V = IV->getAggregateOperand(); 1067 } 1068 if (!match(V, m_Undef()) || !U) 1069 return nullptr; 1070 1071 auto *UT = cast<VectorType>(U->getType()); 1072 auto *VT = V->getType(); 1073 // Check that types UT and VT are bitwise isomorphic. 1074 const auto &DL = IC.getDataLayout(); 1075 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1076 return nullptr; 1077 } 1078 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1079 if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1080 return nullptr; 1081 } else { 1082 auto *ST = cast<StructType>(VT); 1083 if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1084 return nullptr; 1085 for (const auto *EltT : ST->elements()) { 1086 if (EltT != UT->getElementType()) 1087 return nullptr; 1088 } 1089 } 1090 return U; 1091 } 1092 1093 /// Combine stores to match the type of value being stored. 1094 /// 1095 /// The core idea here is that the memory does not have any intrinsic type and 1096 /// where we can we should match the type of a store to the type of value being 1097 /// stored. 1098 /// 1099 /// However, this routine must never change the width of a store or the number of 1100 /// stores as that would introduce a semantic change. This combine is expected to 1101 /// be a semantic no-op which just allows stores to more closely model the types 1102 /// of their incoming values. 1103 /// 1104 /// Currently, we also refuse to change the precise type used for an atomic or 1105 /// volatile store. This is debatable, and might be reasonable to change later. 1106 /// However, it is risky in case some backend or other part of LLVM is relying 1107 /// on the exact type stored to select appropriate atomic operations. 1108 /// 1109 /// \returns true if the store was successfully combined away. This indicates 1110 /// the caller must erase the store instruction. We have to let the caller erase 1111 /// the store instruction as otherwise there is no way to signal whether it was 1112 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1113 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) { 1114 // FIXME: We could probably with some care handle both volatile and ordered 1115 // atomic stores here but it isn't clear that this is important. 1116 if (!SI.isUnordered()) 1117 return false; 1118 1119 // swifterror values can't be bitcasted. 1120 if (SI.getPointerOperand()->isSwiftError()) 1121 return false; 1122 1123 Value *V = SI.getValueOperand(); 1124 1125 // Fold away bit casts of the stored value by storing the original type. 1126 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1127 assert(!BC->getType()->isX86_AMXTy() && 1128 "store to x86_amx* should not happen!"); 1129 V = BC->getOperand(0); 1130 // Don't transform when the type is x86_amx, it makes the pass that lower 1131 // x86_amx type happy. 1132 if (V->getType()->isX86_AMXTy()) 1133 return false; 1134 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1135 combineStoreToNewValue(IC, SI, V); 1136 return true; 1137 } 1138 } 1139 1140 if (Value *U = likeBitCastFromVector(IC, V)) 1141 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1142 combineStoreToNewValue(IC, SI, U); 1143 return true; 1144 } 1145 1146 // FIXME: We should also canonicalize stores of vectors when their elements 1147 // are cast to other types. 1148 return false; 1149 } 1150 1151 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) { 1152 // FIXME: We could probably with some care handle both volatile and atomic 1153 // stores here but it isn't clear that this is important. 1154 if (!SI.isSimple()) 1155 return false; 1156 1157 Value *V = SI.getValueOperand(); 1158 Type *T = V->getType(); 1159 1160 if (!T->isAggregateType()) 1161 return false; 1162 1163 if (auto *ST = dyn_cast<StructType>(T)) { 1164 // If the struct only have one element, we unpack. 1165 unsigned Count = ST->getNumElements(); 1166 if (Count == 1) { 1167 V = IC.Builder.CreateExtractValue(V, 0); 1168 combineStoreToNewValue(IC, SI, V); 1169 return true; 1170 } 1171 1172 // We don't want to break loads with padding here as we'd loose 1173 // the knowledge that padding exists for the rest of the pipeline. 1174 const DataLayout &DL = IC.getDataLayout(); 1175 auto *SL = DL.getStructLayout(ST); 1176 if (SL->hasPadding()) 1177 return false; 1178 1179 const auto Align = SI.getAlign(); 1180 1181 SmallString<16> EltName = V->getName(); 1182 EltName += ".elt"; 1183 auto *Addr = SI.getPointerOperand(); 1184 SmallString<16> AddrName = Addr->getName(); 1185 AddrName += ".repack"; 1186 1187 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1188 auto *Zero = ConstantInt::get(IdxType, 0); 1189 for (unsigned i = 0; i < Count; i++) { 1190 Value *Indices[2] = { 1191 Zero, 1192 ConstantInt::get(IdxType, i), 1193 }; 1194 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1195 AddrName); 1196 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1197 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); 1198 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1199 AAMDNodes AAMD; 1200 SI.getAAMetadata(AAMD); 1201 NS->setAAMetadata(AAMD); 1202 } 1203 1204 return true; 1205 } 1206 1207 if (auto *AT = dyn_cast<ArrayType>(T)) { 1208 // If the array only have one element, we unpack. 1209 auto NumElements = AT->getNumElements(); 1210 if (NumElements == 1) { 1211 V = IC.Builder.CreateExtractValue(V, 0); 1212 combineStoreToNewValue(IC, SI, V); 1213 return true; 1214 } 1215 1216 // Bail out if the array is too large. Ideally we would like to optimize 1217 // arrays of arbitrary size but this has a terrible impact on compile time. 1218 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1219 // tuning. 1220 if (NumElements > IC.MaxArraySizeForCombine) 1221 return false; 1222 1223 const DataLayout &DL = IC.getDataLayout(); 1224 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1225 const auto Align = SI.getAlign(); 1226 1227 SmallString<16> EltName = V->getName(); 1228 EltName += ".elt"; 1229 auto *Addr = SI.getPointerOperand(); 1230 SmallString<16> AddrName = Addr->getName(); 1231 AddrName += ".repack"; 1232 1233 auto *IdxType = Type::getInt64Ty(T->getContext()); 1234 auto *Zero = ConstantInt::get(IdxType, 0); 1235 1236 uint64_t Offset = 0; 1237 for (uint64_t i = 0; i < NumElements; i++) { 1238 Value *Indices[2] = { 1239 Zero, 1240 ConstantInt::get(IdxType, i), 1241 }; 1242 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1243 AddrName); 1244 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1245 auto EltAlign = commonAlignment(Align, Offset); 1246 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1247 AAMDNodes AAMD; 1248 SI.getAAMetadata(AAMD); 1249 NS->setAAMetadata(AAMD); 1250 Offset += EltSize; 1251 } 1252 1253 return true; 1254 } 1255 1256 return false; 1257 } 1258 1259 /// equivalentAddressValues - Test if A and B will obviously have the same 1260 /// value. This includes recognizing that %t0 and %t1 will have the same 1261 /// value in code like this: 1262 /// %t0 = getelementptr \@a, 0, 3 1263 /// store i32 0, i32* %t0 1264 /// %t1 = getelementptr \@a, 0, 3 1265 /// %t2 = load i32* %t1 1266 /// 1267 static bool equivalentAddressValues(Value *A, Value *B) { 1268 // Test if the values are trivially equivalent. 1269 if (A == B) return true; 1270 1271 // Test if the values come form identical arithmetic instructions. 1272 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1273 // its only used to compare two uses within the same basic block, which 1274 // means that they'll always either have the same value or one of them 1275 // will have an undefined value. 1276 if (isa<BinaryOperator>(A) || 1277 isa<CastInst>(A) || 1278 isa<PHINode>(A) || 1279 isa<GetElementPtrInst>(A)) 1280 if (Instruction *BI = dyn_cast<Instruction>(B)) 1281 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1282 return true; 1283 1284 // Otherwise they may not be equivalent. 1285 return false; 1286 } 1287 1288 /// Converts store (bitcast (load (bitcast (select ...)))) to 1289 /// store (load (select ...)), where select is minmax: 1290 /// select ((cmp load V1, load V2), V1, V2). 1291 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC, 1292 StoreInst &SI) { 1293 // bitcast? 1294 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1295 return false; 1296 // load? integer? 1297 Value *LoadAddr; 1298 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1299 return false; 1300 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1301 if (!LI->getType()->isIntegerTy()) 1302 return false; 1303 Type *CmpLoadTy; 1304 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1305 return false; 1306 1307 // Make sure the type would actually change. 1308 // This condition can be hit with chains of bitcasts. 1309 if (LI->getType() == CmpLoadTy) 1310 return false; 1311 1312 // Make sure we're not changing the size of the load/store. 1313 const auto &DL = IC.getDataLayout(); 1314 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1315 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1316 return false; 1317 1318 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1319 auto *SI = dyn_cast<StoreInst>(U); 1320 return SI && SI->getPointerOperand() != LI && 1321 InstCombiner::peekThroughBitcast(SI->getPointerOperand()) != 1322 LoadAddr && 1323 !SI->getPointerOperand()->isSwiftError(); 1324 })) 1325 return false; 1326 1327 IC.Builder.SetInsertPoint(LI); 1328 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1329 // Replace all the stores with stores of the newly loaded value. 1330 for (auto *UI : LI->users()) { 1331 auto *USI = cast<StoreInst>(UI); 1332 IC.Builder.SetInsertPoint(USI); 1333 combineStoreToNewValue(IC, *USI, NewLI); 1334 } 1335 IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 1336 IC.eraseInstFromFunction(*LI); 1337 return true; 1338 } 1339 1340 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) { 1341 Value *Val = SI.getOperand(0); 1342 Value *Ptr = SI.getOperand(1); 1343 1344 // Try to canonicalize the stored type. 1345 if (combineStoreToValueType(*this, SI)) 1346 return eraseInstFromFunction(SI); 1347 1348 // Attempt to improve the alignment. 1349 const Align KnownAlign = getOrEnforceKnownAlignment( 1350 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); 1351 if (KnownAlign > SI.getAlign()) 1352 SI.setAlignment(KnownAlign); 1353 1354 // Try to canonicalize the stored type. 1355 if (unpackStoreToAggregate(*this, SI)) 1356 return eraseInstFromFunction(SI); 1357 1358 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1359 return eraseInstFromFunction(SI); 1360 1361 // Replace GEP indices if possible. 1362 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1363 Worklist.push(NewGEPI); 1364 return &SI; 1365 } 1366 1367 // Don't hack volatile/ordered stores. 1368 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1369 if (!SI.isUnordered()) return nullptr; 1370 1371 // If the RHS is an alloca with a single use, zapify the store, making the 1372 // alloca dead. 1373 if (Ptr->hasOneUse()) { 1374 if (isa<AllocaInst>(Ptr)) 1375 return eraseInstFromFunction(SI); 1376 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1377 if (isa<AllocaInst>(GEP->getOperand(0))) { 1378 if (GEP->getOperand(0)->hasOneUse()) 1379 return eraseInstFromFunction(SI); 1380 } 1381 } 1382 } 1383 1384 // If we have a store to a location which is known constant, we can conclude 1385 // that the store must be storing the constant value (else the memory 1386 // wouldn't be constant), and this must be a noop. 1387 if (AA->pointsToConstantMemory(Ptr)) 1388 return eraseInstFromFunction(SI); 1389 1390 // Do really simple DSE, to catch cases where there are several consecutive 1391 // stores to the same location, separated by a few arithmetic operations. This 1392 // situation often occurs with bitfield accesses. 1393 BasicBlock::iterator BBI(SI); 1394 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1395 --ScanInsts) { 1396 --BBI; 1397 // Don't count debug info directives, lest they affect codegen, 1398 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1399 if (BBI->isDebugOrPseudoInst() || 1400 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1401 ScanInsts++; 1402 continue; 1403 } 1404 1405 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1406 // Prev store isn't volatile, and stores to the same location? 1407 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1408 SI.getOperand(1))) { 1409 ++NumDeadStore; 1410 // Manually add back the original store to the worklist now, so it will 1411 // be processed after the operands of the removed store, as this may 1412 // expose additional DSE opportunities. 1413 Worklist.push(&SI); 1414 eraseInstFromFunction(*PrevSI); 1415 return nullptr; 1416 } 1417 break; 1418 } 1419 1420 // If this is a load, we have to stop. However, if the loaded value is from 1421 // the pointer we're loading and is producing the pointer we're storing, 1422 // then *this* store is dead (X = load P; store X -> P). 1423 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1424 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1425 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1426 return eraseInstFromFunction(SI); 1427 } 1428 1429 // Otherwise, this is a load from some other location. Stores before it 1430 // may not be dead. 1431 break; 1432 } 1433 1434 // Don't skip over loads, throws or things that can modify memory. 1435 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1436 break; 1437 } 1438 1439 // store X, null -> turns into 'unreachable' in SimplifyCFG 1440 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1441 if (canSimplifyNullStoreOrGEP(SI)) { 1442 if (!isa<PoisonValue>(Val)) 1443 return replaceOperand(SI, 0, PoisonValue::get(Val->getType())); 1444 return nullptr; // Do not modify these! 1445 } 1446 1447 // store undef, Ptr -> noop 1448 if (isa<UndefValue>(Val)) 1449 return eraseInstFromFunction(SI); 1450 1451 return nullptr; 1452 } 1453 1454 /// Try to transform: 1455 /// if () { *P = v1; } else { *P = v2 } 1456 /// or: 1457 /// *P = v1; if () { *P = v2; } 1458 /// into a phi node with a store in the successor. 1459 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) { 1460 if (!SI.isUnordered()) 1461 return false; // This code has not been audited for volatile/ordered case. 1462 1463 // Check if the successor block has exactly 2 incoming edges. 1464 BasicBlock *StoreBB = SI.getParent(); 1465 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1466 if (!DestBB->hasNPredecessors(2)) 1467 return false; 1468 1469 // Capture the other block (the block that doesn't contain our store). 1470 pred_iterator PredIter = pred_begin(DestBB); 1471 if (*PredIter == StoreBB) 1472 ++PredIter; 1473 BasicBlock *OtherBB = *PredIter; 1474 1475 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1476 // for example, if SI is in an infinite loop. 1477 if (StoreBB == DestBB || OtherBB == DestBB) 1478 return false; 1479 1480 // Verify that the other block ends in a branch and is not otherwise empty. 1481 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1482 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1483 if (!OtherBr || BBI == OtherBB->begin()) 1484 return false; 1485 1486 // If the other block ends in an unconditional branch, check for the 'if then 1487 // else' case. There is an instruction before the branch. 1488 StoreInst *OtherStore = nullptr; 1489 if (OtherBr->isUnconditional()) { 1490 --BBI; 1491 // Skip over debugging info. 1492 while (isa<DbgInfoIntrinsic>(BBI) || 1493 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1494 if (BBI==OtherBB->begin()) 1495 return false; 1496 --BBI; 1497 } 1498 // If this isn't a store, isn't a store to the same location, or is not the 1499 // right kind of store, bail out. 1500 OtherStore = dyn_cast<StoreInst>(BBI); 1501 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1502 !SI.isSameOperationAs(OtherStore)) 1503 return false; 1504 } else { 1505 // Otherwise, the other block ended with a conditional branch. If one of the 1506 // destinations is StoreBB, then we have the if/then case. 1507 if (OtherBr->getSuccessor(0) != StoreBB && 1508 OtherBr->getSuccessor(1) != StoreBB) 1509 return false; 1510 1511 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1512 // if/then triangle. See if there is a store to the same ptr as SI that 1513 // lives in OtherBB. 1514 for (;; --BBI) { 1515 // Check to see if we find the matching store. 1516 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1517 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1518 !SI.isSameOperationAs(OtherStore)) 1519 return false; 1520 break; 1521 } 1522 // If we find something that may be using or overwriting the stored 1523 // value, or if we run out of instructions, we can't do the transform. 1524 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1525 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1526 return false; 1527 } 1528 1529 // In order to eliminate the store in OtherBr, we have to make sure nothing 1530 // reads or overwrites the stored value in StoreBB. 1531 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1532 // FIXME: This should really be AA driven. 1533 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1534 return false; 1535 } 1536 } 1537 1538 // Insert a PHI node now if we need it. 1539 Value *MergedVal = OtherStore->getOperand(0); 1540 // The debug locations of the original instructions might differ. Merge them. 1541 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1542 OtherStore->getDebugLoc()); 1543 if (MergedVal != SI.getOperand(0)) { 1544 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1545 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1546 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1547 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1548 PN->setDebugLoc(MergedLoc); 1549 } 1550 1551 // Advance to a place where it is safe to insert the new store and insert it. 1552 BBI = DestBB->getFirstInsertionPt(); 1553 StoreInst *NewSI = 1554 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), 1555 SI.getOrdering(), SI.getSyncScopeID()); 1556 InsertNewInstBefore(NewSI, *BBI); 1557 NewSI->setDebugLoc(MergedLoc); 1558 1559 // If the two stores had AA tags, merge them. 1560 AAMDNodes AATags; 1561 SI.getAAMetadata(AATags); 1562 if (AATags) { 1563 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1564 NewSI->setAAMetadata(AATags); 1565 } 1566 1567 // Nuke the old stores. 1568 eraseInstFromFunction(SI); 1569 eraseInstFromFunction(*OtherStore); 1570 return true; 1571 } 1572