1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/LLVMContext.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "instcombine" 27 28 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 29 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 30 31 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 32 /// some part of a constant global variable. This intentionally only accepts 33 /// constant expressions because we can't rewrite arbitrary instructions. 34 static bool pointsToConstantGlobal(Value *V) { 35 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 36 return GV->isConstant(); 37 38 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 39 if (CE->getOpcode() == Instruction::BitCast || 40 CE->getOpcode() == Instruction::AddrSpaceCast || 41 CE->getOpcode() == Instruction::GetElementPtr) 42 return pointsToConstantGlobal(CE->getOperand(0)); 43 } 44 return false; 45 } 46 47 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 48 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 49 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 50 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 51 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 52 /// the alloca, and if the source pointer is a pointer to a constant global, we 53 /// can optimize this. 54 static bool 55 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 56 SmallVectorImpl<Instruction *> &ToDelete) { 57 // We track lifetime intrinsics as we encounter them. If we decide to go 58 // ahead and replace the value with the global, this lets the caller quickly 59 // eliminate the markers. 60 61 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 62 ValuesToInspect.push_back(std::make_pair(V, false)); 63 while (!ValuesToInspect.empty()) { 64 auto ValuePair = ValuesToInspect.pop_back_val(); 65 const bool IsOffset = ValuePair.second; 66 for (auto &U : ValuePair.first->uses()) { 67 Instruction *I = cast<Instruction>(U.getUser()); 68 69 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 70 // Ignore non-volatile loads, they are always ok. 71 if (!LI->isSimple()) return false; 72 continue; 73 } 74 75 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 76 // If uses of the bitcast are ok, we are ok. 77 ValuesToInspect.push_back(std::make_pair(I, IsOffset)); 78 continue; 79 } 80 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 81 // If the GEP has all zero indices, it doesn't offset the pointer. If it 82 // doesn't, it does. 83 ValuesToInspect.push_back( 84 std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices())); 85 continue; 86 } 87 88 if (auto CS = CallSite(I)) { 89 // If this is the function being called then we treat it like a load and 90 // ignore it. 91 if (CS.isCallee(&U)) 92 continue; 93 94 unsigned DataOpNo = CS.getDataOperandNo(&U); 95 bool IsArgOperand = CS.isArgOperand(&U); 96 97 // Inalloca arguments are clobbered by the call. 98 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 99 return false; 100 101 // If this is a readonly/readnone call site, then we know it is just a 102 // load (but one that potentially returns the value itself), so we can 103 // ignore it if we know that the value isn't captured. 104 if (CS.onlyReadsMemory() && 105 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 106 continue; 107 108 // If this is being passed as a byval argument, the caller is making a 109 // copy, so it is only a read of the alloca. 110 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 111 continue; 112 } 113 114 // Lifetime intrinsics can be handled by the caller. 115 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 116 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 117 II->getIntrinsicID() == Intrinsic::lifetime_end) { 118 assert(II->use_empty() && "Lifetime markers have no result to use!"); 119 ToDelete.push_back(II); 120 continue; 121 } 122 } 123 124 // If this is isn't our memcpy/memmove, reject it as something we can't 125 // handle. 126 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 127 if (!MI) 128 return false; 129 130 // If the transfer is using the alloca as a source of the transfer, then 131 // ignore it since it is a load (unless the transfer is volatile). 132 if (U.getOperandNo() == 1) { 133 if (MI->isVolatile()) return false; 134 continue; 135 } 136 137 // If we already have seen a copy, reject the second one. 138 if (TheCopy) return false; 139 140 // If the pointer has been offset from the start of the alloca, we can't 141 // safely handle this. 142 if (IsOffset) return false; 143 144 // If the memintrinsic isn't using the alloca as the dest, reject it. 145 if (U.getOperandNo() != 0) return false; 146 147 // If the source of the memcpy/move is not a constant global, reject it. 148 if (!pointsToConstantGlobal(MI->getSource())) 149 return false; 150 151 // Otherwise, the transform is safe. Remember the copy instruction. 152 TheCopy = MI; 153 } 154 } 155 return true; 156 } 157 158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 159 /// modified by a copy from a constant global. If we can prove this, we can 160 /// replace any uses of the alloca with uses of the global directly. 161 static MemTransferInst * 162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 163 SmallVectorImpl<Instruction *> &ToDelete) { 164 MemTransferInst *TheCopy = nullptr; 165 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 166 return TheCopy; 167 return nullptr; 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 171 // Check for array size of 1 (scalar allocation). 172 if (!AI.isArrayAllocation()) { 173 // i32 1 is the canonical array size for scalar allocations. 174 if (AI.getArraySize()->getType()->isIntegerTy(32)) 175 return nullptr; 176 177 // Canonicalize it. 178 Value *V = IC.Builder->getInt32(1); 179 AI.setOperand(0, V); 180 return &AI; 181 } 182 183 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 184 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName()); 187 New->setAlignment(AI.getAlignment()); 188 189 // Scan to the end of the allocation instructions, to skip over a block of 190 // allocas if possible...also skip interleaved debug info 191 // 192 BasicBlock::iterator It(New); 193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 194 ++It; 195 196 // Now that I is pointing to the first non-allocation-inst in the block, 197 // insert our getelementptr instruction... 198 // 199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 200 Value *NullIdx = Constant::getNullValue(IdxTy); 201 Value *Idx[2] = {NullIdx, NullIdx}; 202 Instruction *GEP = 203 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 204 IC.InsertNewInstBefore(GEP, *It); 205 206 // Now make everything use the getelementptr instead of the original 207 // allocation. 208 return IC.replaceInstUsesWith(AI, GEP); 209 } 210 211 if (isa<UndefValue>(AI.getArraySize())) 212 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 213 214 // Ensure that the alloca array size argument has type intptr_t, so that 215 // any casting is exposed early. 216 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 217 if (AI.getArraySize()->getType() != IntPtrTy) { 218 Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false); 219 AI.setOperand(0, V); 220 return &AI; 221 } 222 223 return nullptr; 224 } 225 226 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 227 if (auto *I = simplifyAllocaArraySize(*this, AI)) 228 return I; 229 230 if (AI.getAllocatedType()->isSized()) { 231 // If the alignment is 0 (unspecified), assign it the preferred alignment. 232 if (AI.getAlignment() == 0) 233 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 234 235 // Move all alloca's of zero byte objects to the entry block and merge them 236 // together. Note that we only do this for alloca's, because malloc should 237 // allocate and return a unique pointer, even for a zero byte allocation. 238 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 239 // For a zero sized alloca there is no point in doing an array allocation. 240 // This is helpful if the array size is a complicated expression not used 241 // elsewhere. 242 if (AI.isArrayAllocation()) { 243 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 244 return &AI; 245 } 246 247 // Get the first instruction in the entry block. 248 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 249 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 250 if (FirstInst != &AI) { 251 // If the entry block doesn't start with a zero-size alloca then move 252 // this one to the start of the entry block. There is no problem with 253 // dominance as the array size was forced to a constant earlier already. 254 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 255 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 256 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 257 AI.moveBefore(FirstInst); 258 return &AI; 259 } 260 261 // If the alignment of the entry block alloca is 0 (unspecified), 262 // assign it the preferred alignment. 263 if (EntryAI->getAlignment() == 0) 264 EntryAI->setAlignment( 265 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 266 // Replace this zero-sized alloca with the one at the start of the entry 267 // block after ensuring that the address will be aligned enough for both 268 // types. 269 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 270 AI.getAlignment()); 271 EntryAI->setAlignment(MaxAlign); 272 if (AI.getType() != EntryAI->getType()) 273 return new BitCastInst(EntryAI, AI.getType()); 274 return replaceInstUsesWith(AI, EntryAI); 275 } 276 } 277 } 278 279 if (AI.getAlignment()) { 280 // Check to see if this allocation is only modified by a memcpy/memmove from 281 // a constant global whose alignment is equal to or exceeds that of the 282 // allocation. If this is the case, we can change all users to use 283 // the constant global instead. This is commonly produced by the CFE by 284 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 285 // is only subsequently read. 286 SmallVector<Instruction *, 4> ToDelete; 287 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 288 unsigned SourceAlign = getOrEnforceKnownAlignment( 289 Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT); 290 if (AI.getAlignment() <= SourceAlign) { 291 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 292 DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 293 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 294 eraseInstFromFunction(*ToDelete[i]); 295 Constant *TheSrc = cast<Constant>(Copy->getSource()); 296 Constant *Cast 297 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType()); 298 Instruction *NewI = replaceInstUsesWith(AI, Cast); 299 eraseInstFromFunction(*Copy); 300 ++NumGlobalCopies; 301 return NewI; 302 } 303 } 304 } 305 306 // At last, use the generic allocation site handler to aggressively remove 307 // unused allocas. 308 return visitAllocSite(AI); 309 } 310 311 /// \brief Helper to combine a load to a new type. 312 /// 313 /// This just does the work of combining a load to a new type. It handles 314 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 315 /// loaded *value* type. This will convert it to a pointer, cast the operand to 316 /// that pointer type, load it, etc. 317 /// 318 /// Note that this will create all of the instructions with whatever insert 319 /// point the \c InstCombiner currently is using. 320 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 321 const Twine &Suffix = "") { 322 Value *Ptr = LI.getPointerOperand(); 323 unsigned AS = LI.getPointerAddressSpace(); 324 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 325 LI.getAllMetadata(MD); 326 327 LoadInst *NewLoad = IC.Builder->CreateAlignedLoad( 328 IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)), 329 LI.getAlignment(), LI.getName() + Suffix); 330 MDBuilder MDB(NewLoad->getContext()); 331 for (const auto &MDPair : MD) { 332 unsigned ID = MDPair.first; 333 MDNode *N = MDPair.second; 334 // Note, essentially every kind of metadata should be preserved here! This 335 // routine is supposed to clone a load instruction changing *only its type*. 336 // The only metadata it makes sense to drop is metadata which is invalidated 337 // when the pointer type changes. This should essentially never be the case 338 // in LLVM, but we explicitly switch over only known metadata to be 339 // conservatively correct. If you are adding metadata to LLVM which pertains 340 // to loads, you almost certainly want to add it here. 341 switch (ID) { 342 case LLVMContext::MD_dbg: 343 case LLVMContext::MD_tbaa: 344 case LLVMContext::MD_prof: 345 case LLVMContext::MD_fpmath: 346 case LLVMContext::MD_tbaa_struct: 347 case LLVMContext::MD_invariant_load: 348 case LLVMContext::MD_alias_scope: 349 case LLVMContext::MD_noalias: 350 case LLVMContext::MD_nontemporal: 351 case LLVMContext::MD_mem_parallel_loop_access: 352 // All of these directly apply. 353 NewLoad->setMetadata(ID, N); 354 break; 355 356 case LLVMContext::MD_nonnull: 357 // This only directly applies if the new type is also a pointer. 358 if (NewTy->isPointerTy()) { 359 NewLoad->setMetadata(ID, N); 360 break; 361 } 362 // If it's integral now, translate it to !range metadata. 363 if (NewTy->isIntegerTy()) { 364 auto *ITy = cast<IntegerType>(NewTy); 365 auto *NullInt = ConstantExpr::getPtrToInt( 366 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 367 auto *NonNullInt = 368 ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 369 NewLoad->setMetadata(LLVMContext::MD_range, 370 MDB.createRange(NonNullInt, NullInt)); 371 } 372 break; 373 case LLVMContext::MD_align: 374 case LLVMContext::MD_dereferenceable: 375 case LLVMContext::MD_dereferenceable_or_null: 376 // These only directly apply if the new type is also a pointer. 377 if (NewTy->isPointerTy()) 378 NewLoad->setMetadata(ID, N); 379 break; 380 case LLVMContext::MD_range: 381 // FIXME: It would be nice to propagate this in some way, but the type 382 // conversions make it hard. If the new type is a pointer, we could 383 // translate it to !nonnull metadata. 384 break; 385 } 386 } 387 return NewLoad; 388 } 389 390 /// \brief Combine a store to a new type. 391 /// 392 /// Returns the newly created store instruction. 393 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 394 Value *Ptr = SI.getPointerOperand(); 395 unsigned AS = SI.getPointerAddressSpace(); 396 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 397 SI.getAllMetadata(MD); 398 399 StoreInst *NewStore = IC.Builder->CreateAlignedStore( 400 V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 401 SI.getAlignment()); 402 for (const auto &MDPair : MD) { 403 unsigned ID = MDPair.first; 404 MDNode *N = MDPair.second; 405 // Note, essentially every kind of metadata should be preserved here! This 406 // routine is supposed to clone a store instruction changing *only its 407 // type*. The only metadata it makes sense to drop is metadata which is 408 // invalidated when the pointer type changes. This should essentially 409 // never be the case in LLVM, but we explicitly switch over only known 410 // metadata to be conservatively correct. If you are adding metadata to 411 // LLVM which pertains to stores, you almost certainly want to add it 412 // here. 413 switch (ID) { 414 case LLVMContext::MD_dbg: 415 case LLVMContext::MD_tbaa: 416 case LLVMContext::MD_prof: 417 case LLVMContext::MD_fpmath: 418 case LLVMContext::MD_tbaa_struct: 419 case LLVMContext::MD_alias_scope: 420 case LLVMContext::MD_noalias: 421 case LLVMContext::MD_nontemporal: 422 case LLVMContext::MD_mem_parallel_loop_access: 423 // All of these directly apply. 424 NewStore->setMetadata(ID, N); 425 break; 426 427 case LLVMContext::MD_invariant_load: 428 case LLVMContext::MD_nonnull: 429 case LLVMContext::MD_range: 430 case LLVMContext::MD_align: 431 case LLVMContext::MD_dereferenceable: 432 case LLVMContext::MD_dereferenceable_or_null: 433 // These don't apply for stores. 434 break; 435 } 436 } 437 438 return NewStore; 439 } 440 441 /// \brief Combine loads to match the type of value their uses after looking 442 /// through intervening bitcasts. 443 /// 444 /// The core idea here is that if the result of a load is used in an operation, 445 /// we should load the type most conducive to that operation. For example, when 446 /// loading an integer and converting that immediately to a pointer, we should 447 /// instead directly load a pointer. 448 /// 449 /// However, this routine must never change the width of a load or the number of 450 /// loads as that would introduce a semantic change. This combine is expected to 451 /// be a semantic no-op which just allows loads to more closely model the types 452 /// of their consuming operations. 453 /// 454 /// Currently, we also refuse to change the precise type used for an atomic load 455 /// or a volatile load. This is debatable, and might be reasonable to change 456 /// later. However, it is risky in case some backend or other part of LLVM is 457 /// relying on the exact type loaded to select appropriate atomic operations. 458 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 459 // FIXME: We could probably with some care handle both volatile and atomic 460 // loads here but it isn't clear that this is important. 461 if (!LI.isSimple()) 462 return nullptr; 463 464 if (LI.use_empty()) 465 return nullptr; 466 467 Type *Ty = LI.getType(); 468 const DataLayout &DL = IC.getDataLayout(); 469 470 // Try to canonicalize loads which are only ever stored to operate over 471 // integers instead of any other type. We only do this when the loaded type 472 // is sized and has a size exactly the same as its store size and the store 473 // size is a legal integer type. 474 if (!Ty->isIntegerTy() && Ty->isSized() && 475 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 476 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) { 477 if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) { 478 auto *SI = dyn_cast<StoreInst>(U); 479 return SI && SI->getPointerOperand() != &LI; 480 })) { 481 LoadInst *NewLoad = combineLoadToNewType( 482 IC, LI, 483 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 484 // Replace all the stores with stores of the newly loaded value. 485 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 486 auto *SI = cast<StoreInst>(*UI++); 487 IC.Builder->SetInsertPoint(SI); 488 combineStoreToNewValue(IC, *SI, NewLoad); 489 IC.eraseInstFromFunction(*SI); 490 } 491 assert(LI.use_empty() && "Failed to remove all users of the load!"); 492 // Return the old load so the combiner can delete it safely. 493 return &LI; 494 } 495 } 496 497 // Fold away bit casts of the loaded value by loading the desired type. 498 // We can do this for BitCastInsts as well as casts from and to pointer types, 499 // as long as those are noops (i.e., the source or dest type have the same 500 // bitwidth as the target's pointers). 501 if (LI.hasOneUse()) 502 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) { 503 if (CI->isNoopCast(DL)) { 504 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 505 CI->replaceAllUsesWith(NewLoad); 506 IC.eraseInstFromFunction(*CI); 507 return &LI; 508 } 509 } 510 511 // FIXME: We should also canonicalize loads of vectors when their elements are 512 // cast to other types. 513 return nullptr; 514 } 515 516 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 517 // FIXME: We could probably with some care handle both volatile and atomic 518 // stores here but it isn't clear that this is important. 519 if (!LI.isSimple()) 520 return nullptr; 521 522 Type *T = LI.getType(); 523 if (!T->isAggregateType()) 524 return nullptr; 525 526 StringRef Name = LI.getName(); 527 assert(LI.getAlignment() && "Alignment must be set at this point"); 528 529 if (auto *ST = dyn_cast<StructType>(T)) { 530 // If the struct only have one element, we unpack. 531 auto NumElements = ST->getNumElements(); 532 if (NumElements == 1) { 533 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 534 ".unpack"); 535 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 536 UndefValue::get(T), NewLoad, 0, Name)); 537 } 538 539 // We don't want to break loads with padding here as we'd loose 540 // the knowledge that padding exists for the rest of the pipeline. 541 const DataLayout &DL = IC.getDataLayout(); 542 auto *SL = DL.getStructLayout(ST); 543 if (SL->hasPadding()) 544 return nullptr; 545 546 auto Align = LI.getAlignment(); 547 if (!Align) 548 Align = DL.getABITypeAlignment(ST); 549 550 auto *Addr = LI.getPointerOperand(); 551 auto *IdxType = Type::getInt32Ty(T->getContext()); 552 auto *Zero = ConstantInt::get(IdxType, 0); 553 554 Value *V = UndefValue::get(T); 555 for (unsigned i = 0; i < NumElements; i++) { 556 Value *Indices[2] = { 557 Zero, 558 ConstantInt::get(IdxType, i), 559 }; 560 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 561 Name + ".elt"); 562 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 563 auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 564 V = IC.Builder->CreateInsertValue(V, L, i); 565 } 566 567 V->setName(Name); 568 return IC.replaceInstUsesWith(LI, V); 569 } 570 571 if (auto *AT = dyn_cast<ArrayType>(T)) { 572 auto *ET = AT->getElementType(); 573 auto NumElements = AT->getNumElements(); 574 if (NumElements == 1) { 575 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 576 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 577 UndefValue::get(T), NewLoad, 0, Name)); 578 } 579 580 const DataLayout &DL = IC.getDataLayout(); 581 auto EltSize = DL.getTypeAllocSize(ET); 582 auto Align = LI.getAlignment(); 583 if (!Align) 584 Align = DL.getABITypeAlignment(T); 585 586 auto *Addr = LI.getPointerOperand(); 587 auto *IdxType = Type::getInt64Ty(T->getContext()); 588 auto *Zero = ConstantInt::get(IdxType, 0); 589 590 Value *V = UndefValue::get(T); 591 uint64_t Offset = 0; 592 for (uint64_t i = 0; i < NumElements; i++) { 593 Value *Indices[2] = { 594 Zero, 595 ConstantInt::get(IdxType, i), 596 }; 597 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 598 Name + ".elt"); 599 auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 600 Name + ".unpack"); 601 V = IC.Builder->CreateInsertValue(V, L, i); 602 Offset += EltSize; 603 } 604 605 V->setName(Name); 606 return IC.replaceInstUsesWith(LI, V); 607 } 608 609 return nullptr; 610 } 611 612 // If we can determine that all possible objects pointed to by the provided 613 // pointer value are, not only dereferenceable, but also definitively less than 614 // or equal to the provided maximum size, then return true. Otherwise, return 615 // false (constant global values and allocas fall into this category). 616 // 617 // FIXME: This should probably live in ValueTracking (or similar). 618 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 619 const DataLayout &DL) { 620 SmallPtrSet<Value *, 4> Visited; 621 SmallVector<Value *, 4> Worklist(1, V); 622 623 do { 624 Value *P = Worklist.pop_back_val(); 625 P = P->stripPointerCasts(); 626 627 if (!Visited.insert(P).second) 628 continue; 629 630 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 631 Worklist.push_back(SI->getTrueValue()); 632 Worklist.push_back(SI->getFalseValue()); 633 continue; 634 } 635 636 if (PHINode *PN = dyn_cast<PHINode>(P)) { 637 for (Value *IncValue : PN->incoming_values()) 638 Worklist.push_back(IncValue); 639 continue; 640 } 641 642 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 643 if (GA->isInterposable()) 644 return false; 645 Worklist.push_back(GA->getAliasee()); 646 continue; 647 } 648 649 // If we know how big this object is, and it is less than MaxSize, continue 650 // searching. Otherwise, return false. 651 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 652 if (!AI->getAllocatedType()->isSized()) 653 return false; 654 655 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 656 if (!CS) 657 return false; 658 659 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 660 // Make sure that, even if the multiplication below would wrap as an 661 // uint64_t, we still do the right thing. 662 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 663 return false; 664 continue; 665 } 666 667 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 668 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 669 return false; 670 671 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 672 if (InitSize > MaxSize) 673 return false; 674 continue; 675 } 676 677 return false; 678 } while (!Worklist.empty()); 679 680 return true; 681 } 682 683 // If we're indexing into an object of a known size, and the outer index is 684 // not a constant, but having any value but zero would lead to undefined 685 // behavior, replace it with zero. 686 // 687 // For example, if we have: 688 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 689 // ... 690 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 691 // ... = load i32* %arrayidx, align 4 692 // Then we know that we can replace %x in the GEP with i64 0. 693 // 694 // FIXME: We could fold any GEP index to zero that would cause UB if it were 695 // not zero. Currently, we only handle the first such index. Also, we could 696 // also search through non-zero constant indices if we kept track of the 697 // offsets those indices implied. 698 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 699 Instruction *MemI, unsigned &Idx) { 700 if (GEPI->getNumOperands() < 2) 701 return false; 702 703 // Find the first non-zero index of a GEP. If all indices are zero, return 704 // one past the last index. 705 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 706 unsigned I = 1; 707 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 708 Value *V = GEPI->getOperand(I); 709 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 710 if (CI->isZero()) 711 continue; 712 713 break; 714 } 715 716 return I; 717 }; 718 719 // Skip through initial 'zero' indices, and find the corresponding pointer 720 // type. See if the next index is not a constant. 721 Idx = FirstNZIdx(GEPI); 722 if (Idx == GEPI->getNumOperands()) 723 return false; 724 if (isa<Constant>(GEPI->getOperand(Idx))) 725 return false; 726 727 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 728 Type *AllocTy = 729 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 730 if (!AllocTy || !AllocTy->isSized()) 731 return false; 732 const DataLayout &DL = IC.getDataLayout(); 733 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 734 735 // If there are more indices after the one we might replace with a zero, make 736 // sure they're all non-negative. If any of them are negative, the overall 737 // address being computed might be before the base address determined by the 738 // first non-zero index. 739 auto IsAllNonNegative = [&]() { 740 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 741 bool KnownNonNegative, KnownNegative; 742 IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative, 743 KnownNegative, 0, MemI); 744 if (KnownNonNegative) 745 continue; 746 return false; 747 } 748 749 return true; 750 }; 751 752 // FIXME: If the GEP is not inbounds, and there are extra indices after the 753 // one we'll replace, those could cause the address computation to wrap 754 // (rendering the IsAllNonNegative() check below insufficient). We can do 755 // better, ignoring zero indices (and other indices we can prove small 756 // enough not to wrap). 757 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 758 return false; 759 760 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 761 // also known to be dereferenceable. 762 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 763 IsAllNonNegative(); 764 } 765 766 // If we're indexing into an object with a variable index for the memory 767 // access, but the object has only one element, we can assume that the index 768 // will always be zero. If we replace the GEP, return it. 769 template <typename T> 770 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 771 T &MemI) { 772 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 773 unsigned Idx; 774 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 775 Instruction *NewGEPI = GEPI->clone(); 776 NewGEPI->setOperand(Idx, 777 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 778 NewGEPI->insertBefore(GEPI); 779 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 780 return NewGEPI; 781 } 782 } 783 784 return nullptr; 785 } 786 787 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 788 Value *Op = LI.getOperand(0); 789 790 // Try to canonicalize the loaded type. 791 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 792 return Res; 793 794 // Attempt to improve the alignment. 795 unsigned KnownAlign = getOrEnforceKnownAlignment( 796 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT); 797 unsigned LoadAlign = LI.getAlignment(); 798 unsigned EffectiveLoadAlign = 799 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 800 801 if (KnownAlign > EffectiveLoadAlign) 802 LI.setAlignment(KnownAlign); 803 else if (LoadAlign == 0) 804 LI.setAlignment(EffectiveLoadAlign); 805 806 // Replace GEP indices if possible. 807 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 808 Worklist.Add(NewGEPI); 809 return &LI; 810 } 811 812 // None of the following transforms are legal for volatile/atomic loads. 813 // FIXME: Some of it is okay for atomic loads; needs refactoring. 814 if (!LI.isSimple()) return nullptr; 815 816 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 817 return Res; 818 819 // Do really simple store-to-load forwarding and load CSE, to catch cases 820 // where there are several consecutive memory accesses to the same location, 821 // separated by a few arithmetic operations. 822 BasicBlock::iterator BBI(LI); 823 AAMDNodes AATags; 824 if (Value *AvailableVal = 825 FindAvailableLoadedValue(&LI, LI.getParent(), BBI, 826 DefMaxInstsToScan, AA, &AATags)) { 827 if (LoadInst *NLI = dyn_cast<LoadInst>(AvailableVal)) { 828 unsigned KnownIDs[] = { 829 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 830 LLVMContext::MD_noalias, LLVMContext::MD_range, 831 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 832 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 833 LLVMContext::MD_dereferenceable, 834 LLVMContext::MD_dereferenceable_or_null}; 835 combineMetadata(NLI, &LI, KnownIDs); 836 }; 837 838 return replaceInstUsesWith( 839 LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(), 840 LI.getName() + ".cast")); 841 } 842 843 // load(gep null, ...) -> unreachable 844 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 845 const Value *GEPI0 = GEPI->getOperand(0); 846 // TODO: Consider a target hook for valid address spaces for this xform. 847 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ 848 // Insert a new store to null instruction before the load to indicate 849 // that this code is not reachable. We do this instead of inserting 850 // an unreachable instruction directly because we cannot modify the 851 // CFG. 852 new StoreInst(UndefValue::get(LI.getType()), 853 Constant::getNullValue(Op->getType()), &LI); 854 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 855 } 856 } 857 858 // load null/undef -> unreachable 859 // TODO: Consider a target hook for valid address spaces for this xform. 860 if (isa<UndefValue>(Op) || 861 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { 862 // Insert a new store to null instruction before the load to indicate that 863 // this code is not reachable. We do this instead of inserting an 864 // unreachable instruction directly because we cannot modify the CFG. 865 new StoreInst(UndefValue::get(LI.getType()), 866 Constant::getNullValue(Op->getType()), &LI); 867 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 868 } 869 870 if (Op->hasOneUse()) { 871 // Change select and PHI nodes to select values instead of addresses: this 872 // helps alias analysis out a lot, allows many others simplifications, and 873 // exposes redundancy in the code. 874 // 875 // Note that we cannot do the transformation unless we know that the 876 // introduced loads cannot trap! Something like this is valid as long as 877 // the condition is always false: load (select bool %C, int* null, int* %G), 878 // but it would not be valid if we transformed it to load from null 879 // unconditionally. 880 // 881 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 882 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 883 unsigned Align = LI.getAlignment(); 884 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, SI) && 885 isSafeToLoadUnconditionally(SI->getOperand(2), Align, SI)) { 886 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), 887 SI->getOperand(1)->getName()+".val"); 888 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), 889 SI->getOperand(2)->getName()+".val"); 890 V1->setAlignment(Align); 891 V2->setAlignment(Align); 892 return SelectInst::Create(SI->getCondition(), V1, V2); 893 } 894 895 // load (select (cond, null, P)) -> load P 896 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 897 LI.getPointerAddressSpace() == 0) { 898 LI.setOperand(0, SI->getOperand(2)); 899 return &LI; 900 } 901 902 // load (select (cond, P, null)) -> load P 903 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 904 LI.getPointerAddressSpace() == 0) { 905 LI.setOperand(0, SI->getOperand(1)); 906 return &LI; 907 } 908 } 909 } 910 return nullptr; 911 } 912 913 /// \brief Combine stores to match the type of value being stored. 914 /// 915 /// The core idea here is that the memory does not have any intrinsic type and 916 /// where we can we should match the type of a store to the type of value being 917 /// stored. 918 /// 919 /// However, this routine must never change the width of a store or the number of 920 /// stores as that would introduce a semantic change. This combine is expected to 921 /// be a semantic no-op which just allows stores to more closely model the types 922 /// of their incoming values. 923 /// 924 /// Currently, we also refuse to change the precise type used for an atomic or 925 /// volatile store. This is debatable, and might be reasonable to change later. 926 /// However, it is risky in case some backend or other part of LLVM is relying 927 /// on the exact type stored to select appropriate atomic operations. 928 /// 929 /// \returns true if the store was successfully combined away. This indicates 930 /// the caller must erase the store instruction. We have to let the caller erase 931 /// the store instruction as otherwise there is no way to signal whether it was 932 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 933 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 934 // FIXME: We could probably with some care handle both volatile and atomic 935 // stores here but it isn't clear that this is important. 936 if (!SI.isSimple()) 937 return false; 938 939 Value *V = SI.getValueOperand(); 940 941 // Fold away bit casts of the stored value by storing the original type. 942 if (auto *BC = dyn_cast<BitCastInst>(V)) { 943 V = BC->getOperand(0); 944 combineStoreToNewValue(IC, SI, V); 945 return true; 946 } 947 948 // FIXME: We should also canonicalize loads of vectors when their elements are 949 // cast to other types. 950 return false; 951 } 952 953 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 954 // FIXME: We could probably with some care handle both volatile and atomic 955 // stores here but it isn't clear that this is important. 956 if (!SI.isSimple()) 957 return false; 958 959 Value *V = SI.getValueOperand(); 960 Type *T = V->getType(); 961 962 if (!T->isAggregateType()) 963 return false; 964 965 if (auto *ST = dyn_cast<StructType>(T)) { 966 // If the struct only have one element, we unpack. 967 unsigned Count = ST->getNumElements(); 968 if (Count == 1) { 969 V = IC.Builder->CreateExtractValue(V, 0); 970 combineStoreToNewValue(IC, SI, V); 971 return true; 972 } 973 974 // We don't want to break loads with padding here as we'd loose 975 // the knowledge that padding exists for the rest of the pipeline. 976 const DataLayout &DL = IC.getDataLayout(); 977 auto *SL = DL.getStructLayout(ST); 978 if (SL->hasPadding()) 979 return false; 980 981 auto Align = SI.getAlignment(); 982 if (!Align) 983 Align = DL.getABITypeAlignment(ST); 984 985 SmallString<16> EltName = V->getName(); 986 EltName += ".elt"; 987 auto *Addr = SI.getPointerOperand(); 988 SmallString<16> AddrName = Addr->getName(); 989 AddrName += ".repack"; 990 991 auto *IdxType = Type::getInt32Ty(ST->getContext()); 992 auto *Zero = ConstantInt::get(IdxType, 0); 993 for (unsigned i = 0; i < Count; i++) { 994 Value *Indices[2] = { 995 Zero, 996 ConstantInt::get(IdxType, i), 997 }; 998 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 999 AddrName); 1000 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1001 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1002 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1003 } 1004 1005 return true; 1006 } 1007 1008 if (auto *AT = dyn_cast<ArrayType>(T)) { 1009 // If the array only have one element, we unpack. 1010 auto NumElements = AT->getNumElements(); 1011 if (NumElements == 1) { 1012 V = IC.Builder->CreateExtractValue(V, 0); 1013 combineStoreToNewValue(IC, SI, V); 1014 return true; 1015 } 1016 1017 const DataLayout &DL = IC.getDataLayout(); 1018 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1019 auto Align = SI.getAlignment(); 1020 if (!Align) 1021 Align = DL.getABITypeAlignment(T); 1022 1023 SmallString<16> EltName = V->getName(); 1024 EltName += ".elt"; 1025 auto *Addr = SI.getPointerOperand(); 1026 SmallString<16> AddrName = Addr->getName(); 1027 AddrName += ".repack"; 1028 1029 auto *IdxType = Type::getInt64Ty(T->getContext()); 1030 auto *Zero = ConstantInt::get(IdxType, 0); 1031 1032 uint64_t Offset = 0; 1033 for (uint64_t i = 0; i < NumElements; i++) { 1034 Value *Indices[2] = { 1035 Zero, 1036 ConstantInt::get(IdxType, i), 1037 }; 1038 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1039 AddrName); 1040 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1041 auto EltAlign = MinAlign(Align, Offset); 1042 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1043 Offset += EltSize; 1044 } 1045 1046 return true; 1047 } 1048 1049 return false; 1050 } 1051 1052 /// equivalentAddressValues - Test if A and B will obviously have the same 1053 /// value. This includes recognizing that %t0 and %t1 will have the same 1054 /// value in code like this: 1055 /// %t0 = getelementptr \@a, 0, 3 1056 /// store i32 0, i32* %t0 1057 /// %t1 = getelementptr \@a, 0, 3 1058 /// %t2 = load i32* %t1 1059 /// 1060 static bool equivalentAddressValues(Value *A, Value *B) { 1061 // Test if the values are trivially equivalent. 1062 if (A == B) return true; 1063 1064 // Test if the values come form identical arithmetic instructions. 1065 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1066 // its only used to compare two uses within the same basic block, which 1067 // means that they'll always either have the same value or one of them 1068 // will have an undefined value. 1069 if (isa<BinaryOperator>(A) || 1070 isa<CastInst>(A) || 1071 isa<PHINode>(A) || 1072 isa<GetElementPtrInst>(A)) 1073 if (Instruction *BI = dyn_cast<Instruction>(B)) 1074 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1075 return true; 1076 1077 // Otherwise they may not be equivalent. 1078 return false; 1079 } 1080 1081 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1082 Value *Val = SI.getOperand(0); 1083 Value *Ptr = SI.getOperand(1); 1084 1085 // Try to canonicalize the stored type. 1086 if (combineStoreToValueType(*this, SI)) 1087 return eraseInstFromFunction(SI); 1088 1089 // Attempt to improve the alignment. 1090 unsigned KnownAlign = getOrEnforceKnownAlignment( 1091 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT); 1092 unsigned StoreAlign = SI.getAlignment(); 1093 unsigned EffectiveStoreAlign = 1094 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1095 1096 if (KnownAlign > EffectiveStoreAlign) 1097 SI.setAlignment(KnownAlign); 1098 else if (StoreAlign == 0) 1099 SI.setAlignment(EffectiveStoreAlign); 1100 1101 // Try to canonicalize the stored type. 1102 if (unpackStoreToAggregate(*this, SI)) 1103 return eraseInstFromFunction(SI); 1104 1105 // Replace GEP indices if possible. 1106 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1107 Worklist.Add(NewGEPI); 1108 return &SI; 1109 } 1110 1111 // Don't hack volatile/ordered stores. 1112 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1113 if (!SI.isUnordered()) return nullptr; 1114 1115 // If the RHS is an alloca with a single use, zapify the store, making the 1116 // alloca dead. 1117 if (Ptr->hasOneUse()) { 1118 if (isa<AllocaInst>(Ptr)) 1119 return eraseInstFromFunction(SI); 1120 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1121 if (isa<AllocaInst>(GEP->getOperand(0))) { 1122 if (GEP->getOperand(0)->hasOneUse()) 1123 return eraseInstFromFunction(SI); 1124 } 1125 } 1126 } 1127 1128 // Do really simple DSE, to catch cases where there are several consecutive 1129 // stores to the same location, separated by a few arithmetic operations. This 1130 // situation often occurs with bitfield accesses. 1131 BasicBlock::iterator BBI(SI); 1132 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1133 --ScanInsts) { 1134 --BBI; 1135 // Don't count debug info directives, lest they affect codegen, 1136 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1137 if (isa<DbgInfoIntrinsic>(BBI) || 1138 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1139 ScanInsts++; 1140 continue; 1141 } 1142 1143 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1144 // Prev store isn't volatile, and stores to the same location? 1145 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1146 SI.getOperand(1))) { 1147 ++NumDeadStore; 1148 ++BBI; 1149 eraseInstFromFunction(*PrevSI); 1150 continue; 1151 } 1152 break; 1153 } 1154 1155 // If this is a load, we have to stop. However, if the loaded value is from 1156 // the pointer we're loading and is producing the pointer we're storing, 1157 // then *this* store is dead (X = load P; store X -> P). 1158 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1159 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1160 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1161 return eraseInstFromFunction(SI); 1162 } 1163 1164 // Otherwise, this is a load from some other location. Stores before it 1165 // may not be dead. 1166 break; 1167 } 1168 1169 // Don't skip over loads or things that can modify memory. 1170 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) 1171 break; 1172 } 1173 1174 // store X, null -> turns into 'unreachable' in SimplifyCFG 1175 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { 1176 if (!isa<UndefValue>(Val)) { 1177 SI.setOperand(0, UndefValue::get(Val->getType())); 1178 if (Instruction *U = dyn_cast<Instruction>(Val)) 1179 Worklist.Add(U); // Dropped a use. 1180 } 1181 return nullptr; // Do not modify these! 1182 } 1183 1184 // store undef, Ptr -> noop 1185 if (isa<UndefValue>(Val)) 1186 return eraseInstFromFunction(SI); 1187 1188 // The code below needs to be audited and adjusted for unordered atomics 1189 if (!SI.isSimple()) 1190 return nullptr; 1191 1192 // If this store is the last instruction in the basic block (possibly 1193 // excepting debug info instructions), and if the block ends with an 1194 // unconditional branch, try to move it to the successor block. 1195 BBI = SI.getIterator(); 1196 do { 1197 ++BBI; 1198 } while (isa<DbgInfoIntrinsic>(BBI) || 1199 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1200 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1201 if (BI->isUnconditional()) 1202 if (SimplifyStoreAtEndOfBlock(SI)) 1203 return nullptr; // xform done! 1204 1205 return nullptr; 1206 } 1207 1208 /// SimplifyStoreAtEndOfBlock - Turn things like: 1209 /// if () { *P = v1; } else { *P = v2 } 1210 /// into a phi node with a store in the successor. 1211 /// 1212 /// Simplify things like: 1213 /// *P = v1; if () { *P = v2; } 1214 /// into a phi node with a store in the successor. 1215 /// 1216 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1217 BasicBlock *StoreBB = SI.getParent(); 1218 1219 // Check to see if the successor block has exactly two incoming edges. If 1220 // so, see if the other predecessor contains a store to the same location. 1221 // if so, insert a PHI node (if needed) and move the stores down. 1222 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1223 1224 // Determine whether Dest has exactly two predecessors and, if so, compute 1225 // the other predecessor. 1226 pred_iterator PI = pred_begin(DestBB); 1227 BasicBlock *P = *PI; 1228 BasicBlock *OtherBB = nullptr; 1229 1230 if (P != StoreBB) 1231 OtherBB = P; 1232 1233 if (++PI == pred_end(DestBB)) 1234 return false; 1235 1236 P = *PI; 1237 if (P != StoreBB) { 1238 if (OtherBB) 1239 return false; 1240 OtherBB = P; 1241 } 1242 if (++PI != pred_end(DestBB)) 1243 return false; 1244 1245 // Bail out if all the relevant blocks aren't distinct (this can happen, 1246 // for example, if SI is in an infinite loop) 1247 if (StoreBB == DestBB || OtherBB == DestBB) 1248 return false; 1249 1250 // Verify that the other block ends in a branch and is not otherwise empty. 1251 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1252 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1253 if (!OtherBr || BBI == OtherBB->begin()) 1254 return false; 1255 1256 // If the other block ends in an unconditional branch, check for the 'if then 1257 // else' case. there is an instruction before the branch. 1258 StoreInst *OtherStore = nullptr; 1259 if (OtherBr->isUnconditional()) { 1260 --BBI; 1261 // Skip over debugging info. 1262 while (isa<DbgInfoIntrinsic>(BBI) || 1263 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1264 if (BBI==OtherBB->begin()) 1265 return false; 1266 --BBI; 1267 } 1268 // If this isn't a store, isn't a store to the same location, or is not the 1269 // right kind of store, bail out. 1270 OtherStore = dyn_cast<StoreInst>(BBI); 1271 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1272 !SI.isSameOperationAs(OtherStore)) 1273 return false; 1274 } else { 1275 // Otherwise, the other block ended with a conditional branch. If one of the 1276 // destinations is StoreBB, then we have the if/then case. 1277 if (OtherBr->getSuccessor(0) != StoreBB && 1278 OtherBr->getSuccessor(1) != StoreBB) 1279 return false; 1280 1281 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1282 // if/then triangle. See if there is a store to the same ptr as SI that 1283 // lives in OtherBB. 1284 for (;; --BBI) { 1285 // Check to see if we find the matching store. 1286 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1287 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1288 !SI.isSameOperationAs(OtherStore)) 1289 return false; 1290 break; 1291 } 1292 // If we find something that may be using or overwriting the stored 1293 // value, or if we run out of instructions, we can't do the xform. 1294 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || 1295 BBI == OtherBB->begin()) 1296 return false; 1297 } 1298 1299 // In order to eliminate the store in OtherBr, we have to 1300 // make sure nothing reads or overwrites the stored value in 1301 // StoreBB. 1302 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1303 // FIXME: This should really be AA driven. 1304 if (I->mayReadFromMemory() || I->mayWriteToMemory()) 1305 return false; 1306 } 1307 } 1308 1309 // Insert a PHI node now if we need it. 1310 Value *MergedVal = OtherStore->getOperand(0); 1311 if (MergedVal != SI.getOperand(0)) { 1312 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1313 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1314 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1315 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1316 } 1317 1318 // Advance to a place where it is safe to insert the new store and 1319 // insert it. 1320 BBI = DestBB->getFirstInsertionPt(); 1321 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1322 SI.isVolatile(), 1323 SI.getAlignment(), 1324 SI.getOrdering(), 1325 SI.getSynchScope()); 1326 InsertNewInstBefore(NewSI, *BBI); 1327 NewSI->setDebugLoc(OtherStore->getDebugLoc()); 1328 1329 // If the two stores had AA tags, merge them. 1330 AAMDNodes AATags; 1331 SI.getAAMetadata(AATags); 1332 if (AATags) { 1333 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1334 NewSI->setAAMetadata(AATags); 1335 } 1336 1337 // Nuke the old stores. 1338 eraseInstFromFunction(SI); 1339 eraseInstFromFunction(*OtherStore); 1340 return true; 1341 } 1342