1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for load, store and alloca.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/MDBuilder.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "instcombine"
27 
28 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
29 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
30 
31 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
32 /// some part of a constant global variable.  This intentionally only accepts
33 /// constant expressions because we can't rewrite arbitrary instructions.
34 static bool pointsToConstantGlobal(Value *V) {
35   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
36     return GV->isConstant();
37 
38   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
39     if (CE->getOpcode() == Instruction::BitCast ||
40         CE->getOpcode() == Instruction::AddrSpaceCast ||
41         CE->getOpcode() == Instruction::GetElementPtr)
42       return pointsToConstantGlobal(CE->getOperand(0));
43   }
44   return false;
45 }
46 
47 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
48 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
49 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
50 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
51 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
52 /// the alloca, and if the source pointer is a pointer to a constant global, we
53 /// can optimize this.
54 static bool
55 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
56                                SmallVectorImpl<Instruction *> &ToDelete) {
57   // We track lifetime intrinsics as we encounter them.  If we decide to go
58   // ahead and replace the value with the global, this lets the caller quickly
59   // eliminate the markers.
60 
61   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
62   ValuesToInspect.push_back(std::make_pair(V, false));
63   while (!ValuesToInspect.empty()) {
64     auto ValuePair = ValuesToInspect.pop_back_val();
65     const bool IsOffset = ValuePair.second;
66     for (auto &U : ValuePair.first->uses()) {
67       Instruction *I = cast<Instruction>(U.getUser());
68 
69       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
70         // Ignore non-volatile loads, they are always ok.
71         if (!LI->isSimple()) return false;
72         continue;
73       }
74 
75       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
76         // If uses of the bitcast are ok, we are ok.
77         ValuesToInspect.push_back(std::make_pair(I, IsOffset));
78         continue;
79       }
80       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
81         // If the GEP has all zero indices, it doesn't offset the pointer. If it
82         // doesn't, it does.
83         ValuesToInspect.push_back(
84             std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices()));
85         continue;
86       }
87 
88       if (auto CS = CallSite(I)) {
89         // If this is the function being called then we treat it like a load and
90         // ignore it.
91         if (CS.isCallee(&U))
92           continue;
93 
94         unsigned DataOpNo = CS.getDataOperandNo(&U);
95         bool IsArgOperand = CS.isArgOperand(&U);
96 
97         // Inalloca arguments are clobbered by the call.
98         if (IsArgOperand && CS.isInAllocaArgument(DataOpNo))
99           return false;
100 
101         // If this is a readonly/readnone call site, then we know it is just a
102         // load (but one that potentially returns the value itself), so we can
103         // ignore it if we know that the value isn't captured.
104         if (CS.onlyReadsMemory() &&
105             (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo)))
106           continue;
107 
108         // If this is being passed as a byval argument, the caller is making a
109         // copy, so it is only a read of the alloca.
110         if (IsArgOperand && CS.isByValArgument(DataOpNo))
111           continue;
112       }
113 
114       // Lifetime intrinsics can be handled by the caller.
115       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
116         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
117             II->getIntrinsicID() == Intrinsic::lifetime_end) {
118           assert(II->use_empty() && "Lifetime markers have no result to use!");
119           ToDelete.push_back(II);
120           continue;
121         }
122       }
123 
124       // If this is isn't our memcpy/memmove, reject it as something we can't
125       // handle.
126       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
127       if (!MI)
128         return false;
129 
130       // If the transfer is using the alloca as a source of the transfer, then
131       // ignore it since it is a load (unless the transfer is volatile).
132       if (U.getOperandNo() == 1) {
133         if (MI->isVolatile()) return false;
134         continue;
135       }
136 
137       // If we already have seen a copy, reject the second one.
138       if (TheCopy) return false;
139 
140       // If the pointer has been offset from the start of the alloca, we can't
141       // safely handle this.
142       if (IsOffset) return false;
143 
144       // If the memintrinsic isn't using the alloca as the dest, reject it.
145       if (U.getOperandNo() != 0) return false;
146 
147       // If the source of the memcpy/move is not a constant global, reject it.
148       if (!pointsToConstantGlobal(MI->getSource()))
149         return false;
150 
151       // Otherwise, the transform is safe.  Remember the copy instruction.
152       TheCopy = MI;
153     }
154   }
155   return true;
156 }
157 
158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
159 /// modified by a copy from a constant global.  If we can prove this, we can
160 /// replace any uses of the alloca with uses of the global directly.
161 static MemTransferInst *
162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
163                                SmallVectorImpl<Instruction *> &ToDelete) {
164   MemTransferInst *TheCopy = nullptr;
165   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
166     return TheCopy;
167   return nullptr;
168 }
169 
170 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
171   // Check for array size of 1 (scalar allocation).
172   if (!AI.isArrayAllocation()) {
173     // i32 1 is the canonical array size for scalar allocations.
174     if (AI.getArraySize()->getType()->isIntegerTy(32))
175       return nullptr;
176 
177     // Canonicalize it.
178     Value *V = IC.Builder->getInt32(1);
179     AI.setOperand(0, V);
180     return &AI;
181   }
182 
183   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
184   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
185     Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
186     AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
187     New->setAlignment(AI.getAlignment());
188 
189     // Scan to the end of the allocation instructions, to skip over a block of
190     // allocas if possible...also skip interleaved debug info
191     //
192     BasicBlock::iterator It(New);
193     while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
194       ++It;
195 
196     // Now that I is pointing to the first non-allocation-inst in the block,
197     // insert our getelementptr instruction...
198     //
199     Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
200     Value *NullIdx = Constant::getNullValue(IdxTy);
201     Value *Idx[2] = {NullIdx, NullIdx};
202     Instruction *GEP =
203         GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
204     IC.InsertNewInstBefore(GEP, *It);
205 
206     // Now make everything use the getelementptr instead of the original
207     // allocation.
208     return IC.replaceInstUsesWith(AI, GEP);
209   }
210 
211   if (isa<UndefValue>(AI.getArraySize()))
212     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
213 
214   // Ensure that the alloca array size argument has type intptr_t, so that
215   // any casting is exposed early.
216   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
217   if (AI.getArraySize()->getType() != IntPtrTy) {
218     Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
219     AI.setOperand(0, V);
220     return &AI;
221   }
222 
223   return nullptr;
224 }
225 
226 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
227   if (auto *I = simplifyAllocaArraySize(*this, AI))
228     return I;
229 
230   if (AI.getAllocatedType()->isSized()) {
231     // If the alignment is 0 (unspecified), assign it the preferred alignment.
232     if (AI.getAlignment() == 0)
233       AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
234 
235     // Move all alloca's of zero byte objects to the entry block and merge them
236     // together.  Note that we only do this for alloca's, because malloc should
237     // allocate and return a unique pointer, even for a zero byte allocation.
238     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
239       // For a zero sized alloca there is no point in doing an array allocation.
240       // This is helpful if the array size is a complicated expression not used
241       // elsewhere.
242       if (AI.isArrayAllocation()) {
243         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
244         return &AI;
245       }
246 
247       // Get the first instruction in the entry block.
248       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
249       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
250       if (FirstInst != &AI) {
251         // If the entry block doesn't start with a zero-size alloca then move
252         // this one to the start of the entry block.  There is no problem with
253         // dominance as the array size was forced to a constant earlier already.
254         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
255         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
256             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
257           AI.moveBefore(FirstInst);
258           return &AI;
259         }
260 
261         // If the alignment of the entry block alloca is 0 (unspecified),
262         // assign it the preferred alignment.
263         if (EntryAI->getAlignment() == 0)
264           EntryAI->setAlignment(
265               DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
266         // Replace this zero-sized alloca with the one at the start of the entry
267         // block after ensuring that the address will be aligned enough for both
268         // types.
269         unsigned MaxAlign = std::max(EntryAI->getAlignment(),
270                                      AI.getAlignment());
271         EntryAI->setAlignment(MaxAlign);
272         if (AI.getType() != EntryAI->getType())
273           return new BitCastInst(EntryAI, AI.getType());
274         return replaceInstUsesWith(AI, EntryAI);
275       }
276     }
277   }
278 
279   if (AI.getAlignment()) {
280     // Check to see if this allocation is only modified by a memcpy/memmove from
281     // a constant global whose alignment is equal to or exceeds that of the
282     // allocation.  If this is the case, we can change all users to use
283     // the constant global instead.  This is commonly produced by the CFE by
284     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
285     // is only subsequently read.
286     SmallVector<Instruction *, 4> ToDelete;
287     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
288       unsigned SourceAlign = getOrEnforceKnownAlignment(
289           Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT);
290       if (AI.getAlignment() <= SourceAlign) {
291         DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
292         DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
293         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
294           eraseInstFromFunction(*ToDelete[i]);
295         Constant *TheSrc = cast<Constant>(Copy->getSource());
296         Constant *Cast
297           = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
298         Instruction *NewI = replaceInstUsesWith(AI, Cast);
299         eraseInstFromFunction(*Copy);
300         ++NumGlobalCopies;
301         return NewI;
302       }
303     }
304   }
305 
306   // At last, use the generic allocation site handler to aggressively remove
307   // unused allocas.
308   return visitAllocSite(AI);
309 }
310 
311 /// \brief Helper to combine a load to a new type.
312 ///
313 /// This just does the work of combining a load to a new type. It handles
314 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
315 /// loaded *value* type. This will convert it to a pointer, cast the operand to
316 /// that pointer type, load it, etc.
317 ///
318 /// Note that this will create all of the instructions with whatever insert
319 /// point the \c InstCombiner currently is using.
320 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
321                                       const Twine &Suffix = "") {
322   Value *Ptr = LI.getPointerOperand();
323   unsigned AS = LI.getPointerAddressSpace();
324   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
325   LI.getAllMetadata(MD);
326 
327   LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
328       IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
329       LI.getAlignment(), LI.getName() + Suffix);
330   MDBuilder MDB(NewLoad->getContext());
331   for (const auto &MDPair : MD) {
332     unsigned ID = MDPair.first;
333     MDNode *N = MDPair.second;
334     // Note, essentially every kind of metadata should be preserved here! This
335     // routine is supposed to clone a load instruction changing *only its type*.
336     // The only metadata it makes sense to drop is metadata which is invalidated
337     // when the pointer type changes. This should essentially never be the case
338     // in LLVM, but we explicitly switch over only known metadata to be
339     // conservatively correct. If you are adding metadata to LLVM which pertains
340     // to loads, you almost certainly want to add it here.
341     switch (ID) {
342     case LLVMContext::MD_dbg:
343     case LLVMContext::MD_tbaa:
344     case LLVMContext::MD_prof:
345     case LLVMContext::MD_fpmath:
346     case LLVMContext::MD_tbaa_struct:
347     case LLVMContext::MD_invariant_load:
348     case LLVMContext::MD_alias_scope:
349     case LLVMContext::MD_noalias:
350     case LLVMContext::MD_nontemporal:
351     case LLVMContext::MD_mem_parallel_loop_access:
352       // All of these directly apply.
353       NewLoad->setMetadata(ID, N);
354       break;
355 
356     case LLVMContext::MD_nonnull:
357       // This only directly applies if the new type is also a pointer.
358       if (NewTy->isPointerTy()) {
359         NewLoad->setMetadata(ID, N);
360         break;
361       }
362       // If it's integral now, translate it to !range metadata.
363       if (NewTy->isIntegerTy()) {
364         auto *ITy = cast<IntegerType>(NewTy);
365         auto *NullInt = ConstantExpr::getPtrToInt(
366             ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
367         auto *NonNullInt =
368             ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
369         NewLoad->setMetadata(LLVMContext::MD_range,
370                              MDB.createRange(NonNullInt, NullInt));
371       }
372       break;
373     case LLVMContext::MD_align:
374     case LLVMContext::MD_dereferenceable:
375     case LLVMContext::MD_dereferenceable_or_null:
376       // These only directly apply if the new type is also a pointer.
377       if (NewTy->isPointerTy())
378         NewLoad->setMetadata(ID, N);
379       break;
380     case LLVMContext::MD_range:
381       // FIXME: It would be nice to propagate this in some way, but the type
382       // conversions make it hard. If the new type is a pointer, we could
383       // translate it to !nonnull metadata.
384       break;
385     }
386   }
387   return NewLoad;
388 }
389 
390 /// \brief Combine a store to a new type.
391 ///
392 /// Returns the newly created store instruction.
393 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
394   Value *Ptr = SI.getPointerOperand();
395   unsigned AS = SI.getPointerAddressSpace();
396   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
397   SI.getAllMetadata(MD);
398 
399   StoreInst *NewStore = IC.Builder->CreateAlignedStore(
400       V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
401       SI.getAlignment());
402   for (const auto &MDPair : MD) {
403     unsigned ID = MDPair.first;
404     MDNode *N = MDPair.second;
405     // Note, essentially every kind of metadata should be preserved here! This
406     // routine is supposed to clone a store instruction changing *only its
407     // type*. The only metadata it makes sense to drop is metadata which is
408     // invalidated when the pointer type changes. This should essentially
409     // never be the case in LLVM, but we explicitly switch over only known
410     // metadata to be conservatively correct. If you are adding metadata to
411     // LLVM which pertains to stores, you almost certainly want to add it
412     // here.
413     switch (ID) {
414     case LLVMContext::MD_dbg:
415     case LLVMContext::MD_tbaa:
416     case LLVMContext::MD_prof:
417     case LLVMContext::MD_fpmath:
418     case LLVMContext::MD_tbaa_struct:
419     case LLVMContext::MD_alias_scope:
420     case LLVMContext::MD_noalias:
421     case LLVMContext::MD_nontemporal:
422     case LLVMContext::MD_mem_parallel_loop_access:
423       // All of these directly apply.
424       NewStore->setMetadata(ID, N);
425       break;
426 
427     case LLVMContext::MD_invariant_load:
428     case LLVMContext::MD_nonnull:
429     case LLVMContext::MD_range:
430     case LLVMContext::MD_align:
431     case LLVMContext::MD_dereferenceable:
432     case LLVMContext::MD_dereferenceable_or_null:
433       // These don't apply for stores.
434       break;
435     }
436   }
437 
438   return NewStore;
439 }
440 
441 /// \brief Combine loads to match the type of value their uses after looking
442 /// through intervening bitcasts.
443 ///
444 /// The core idea here is that if the result of a load is used in an operation,
445 /// we should load the type most conducive to that operation. For example, when
446 /// loading an integer and converting that immediately to a pointer, we should
447 /// instead directly load a pointer.
448 ///
449 /// However, this routine must never change the width of a load or the number of
450 /// loads as that would introduce a semantic change. This combine is expected to
451 /// be a semantic no-op which just allows loads to more closely model the types
452 /// of their consuming operations.
453 ///
454 /// Currently, we also refuse to change the precise type used for an atomic load
455 /// or a volatile load. This is debatable, and might be reasonable to change
456 /// later. However, it is risky in case some backend or other part of LLVM is
457 /// relying on the exact type loaded to select appropriate atomic operations.
458 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
459   // FIXME: We could probably with some care handle both volatile and atomic
460   // loads here but it isn't clear that this is important.
461   if (!LI.isSimple())
462     return nullptr;
463 
464   if (LI.use_empty())
465     return nullptr;
466 
467   Type *Ty = LI.getType();
468   const DataLayout &DL = IC.getDataLayout();
469 
470   // Try to canonicalize loads which are only ever stored to operate over
471   // integers instead of any other type. We only do this when the loaded type
472   // is sized and has a size exactly the same as its store size and the store
473   // size is a legal integer type.
474   if (!Ty->isIntegerTy() && Ty->isSized() &&
475       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
476       DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) {
477     if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) {
478           auto *SI = dyn_cast<StoreInst>(U);
479           return SI && SI->getPointerOperand() != &LI;
480         })) {
481       LoadInst *NewLoad = combineLoadToNewType(
482           IC, LI,
483           Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
484       // Replace all the stores with stores of the newly loaded value.
485       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
486         auto *SI = cast<StoreInst>(*UI++);
487         IC.Builder->SetInsertPoint(SI);
488         combineStoreToNewValue(IC, *SI, NewLoad);
489         IC.eraseInstFromFunction(*SI);
490       }
491       assert(LI.use_empty() && "Failed to remove all users of the load!");
492       // Return the old load so the combiner can delete it safely.
493       return &LI;
494     }
495   }
496 
497   // Fold away bit casts of the loaded value by loading the desired type.
498   // We can do this for BitCastInsts as well as casts from and to pointer types,
499   // as long as those are noops (i.e., the source or dest type have the same
500   // bitwidth as the target's pointers).
501   if (LI.hasOneUse())
502     if (auto* CI = dyn_cast<CastInst>(LI.user_back())) {
503       if (CI->isNoopCast(DL)) {
504         LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
505         CI->replaceAllUsesWith(NewLoad);
506         IC.eraseInstFromFunction(*CI);
507         return &LI;
508       }
509     }
510 
511   // FIXME: We should also canonicalize loads of vectors when their elements are
512   // cast to other types.
513   return nullptr;
514 }
515 
516 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
517   // FIXME: We could probably with some care handle both volatile and atomic
518   // stores here but it isn't clear that this is important.
519   if (!LI.isSimple())
520     return nullptr;
521 
522   Type *T = LI.getType();
523   if (!T->isAggregateType())
524     return nullptr;
525 
526   StringRef Name = LI.getName();
527   assert(LI.getAlignment() && "Alignment must be set at this point");
528 
529   if (auto *ST = dyn_cast<StructType>(T)) {
530     // If the struct only have one element, we unpack.
531     auto NumElements = ST->getNumElements();
532     if (NumElements == 1) {
533       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
534                                                ".unpack");
535       return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
536         UndefValue::get(T), NewLoad, 0, Name));
537     }
538 
539     // We don't want to break loads with padding here as we'd loose
540     // the knowledge that padding exists for the rest of the pipeline.
541     const DataLayout &DL = IC.getDataLayout();
542     auto *SL = DL.getStructLayout(ST);
543     if (SL->hasPadding())
544       return nullptr;
545 
546     auto Align = LI.getAlignment();
547     if (!Align)
548       Align = DL.getABITypeAlignment(ST);
549 
550     auto *Addr = LI.getPointerOperand();
551     auto *IdxType = Type::getInt32Ty(T->getContext());
552     auto *Zero = ConstantInt::get(IdxType, 0);
553 
554     Value *V = UndefValue::get(T);
555     for (unsigned i = 0; i < NumElements; i++) {
556       Value *Indices[2] = {
557         Zero,
558         ConstantInt::get(IdxType, i),
559       };
560       auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
561                                                 Name + ".elt");
562       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
563       auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack");
564       V = IC.Builder->CreateInsertValue(V, L, i);
565     }
566 
567     V->setName(Name);
568     return IC.replaceInstUsesWith(LI, V);
569   }
570 
571   if (auto *AT = dyn_cast<ArrayType>(T)) {
572     auto *ET = AT->getElementType();
573     auto NumElements = AT->getNumElements();
574     if (NumElements == 1) {
575       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
576       return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
577         UndefValue::get(T), NewLoad, 0, Name));
578     }
579 
580     const DataLayout &DL = IC.getDataLayout();
581     auto EltSize = DL.getTypeAllocSize(ET);
582     auto Align = LI.getAlignment();
583     if (!Align)
584       Align = DL.getABITypeAlignment(T);
585 
586     auto *Addr = LI.getPointerOperand();
587     auto *IdxType = Type::getInt64Ty(T->getContext());
588     auto *Zero = ConstantInt::get(IdxType, 0);
589 
590     Value *V = UndefValue::get(T);
591     uint64_t Offset = 0;
592     for (uint64_t i = 0; i < NumElements; i++) {
593       Value *Indices[2] = {
594         Zero,
595         ConstantInt::get(IdxType, i),
596       };
597       auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
598                                                 Name + ".elt");
599       auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset),
600                                               Name + ".unpack");
601       V = IC.Builder->CreateInsertValue(V, L, i);
602       Offset += EltSize;
603     }
604 
605     V->setName(Name);
606     return IC.replaceInstUsesWith(LI, V);
607   }
608 
609   return nullptr;
610 }
611 
612 // If we can determine that all possible objects pointed to by the provided
613 // pointer value are, not only dereferenceable, but also definitively less than
614 // or equal to the provided maximum size, then return true. Otherwise, return
615 // false (constant global values and allocas fall into this category).
616 //
617 // FIXME: This should probably live in ValueTracking (or similar).
618 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
619                                      const DataLayout &DL) {
620   SmallPtrSet<Value *, 4> Visited;
621   SmallVector<Value *, 4> Worklist(1, V);
622 
623   do {
624     Value *P = Worklist.pop_back_val();
625     P = P->stripPointerCasts();
626 
627     if (!Visited.insert(P).second)
628       continue;
629 
630     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
631       Worklist.push_back(SI->getTrueValue());
632       Worklist.push_back(SI->getFalseValue());
633       continue;
634     }
635 
636     if (PHINode *PN = dyn_cast<PHINode>(P)) {
637       for (Value *IncValue : PN->incoming_values())
638         Worklist.push_back(IncValue);
639       continue;
640     }
641 
642     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
643       if (GA->isInterposable())
644         return false;
645       Worklist.push_back(GA->getAliasee());
646       continue;
647     }
648 
649     // If we know how big this object is, and it is less than MaxSize, continue
650     // searching. Otherwise, return false.
651     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
652       if (!AI->getAllocatedType()->isSized())
653         return false;
654 
655       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
656       if (!CS)
657         return false;
658 
659       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
660       // Make sure that, even if the multiplication below would wrap as an
661       // uint64_t, we still do the right thing.
662       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
663         return false;
664       continue;
665     }
666 
667     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
668       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
669         return false;
670 
671       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
672       if (InitSize > MaxSize)
673         return false;
674       continue;
675     }
676 
677     return false;
678   } while (!Worklist.empty());
679 
680   return true;
681 }
682 
683 // If we're indexing into an object of a known size, and the outer index is
684 // not a constant, but having any value but zero would lead to undefined
685 // behavior, replace it with zero.
686 //
687 // For example, if we have:
688 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
689 // ...
690 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
691 // ... = load i32* %arrayidx, align 4
692 // Then we know that we can replace %x in the GEP with i64 0.
693 //
694 // FIXME: We could fold any GEP index to zero that would cause UB if it were
695 // not zero. Currently, we only handle the first such index. Also, we could
696 // also search through non-zero constant indices if we kept track of the
697 // offsets those indices implied.
698 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
699                                      Instruction *MemI, unsigned &Idx) {
700   if (GEPI->getNumOperands() < 2)
701     return false;
702 
703   // Find the first non-zero index of a GEP. If all indices are zero, return
704   // one past the last index.
705   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
706     unsigned I = 1;
707     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
708       Value *V = GEPI->getOperand(I);
709       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
710         if (CI->isZero())
711           continue;
712 
713       break;
714     }
715 
716     return I;
717   };
718 
719   // Skip through initial 'zero' indices, and find the corresponding pointer
720   // type. See if the next index is not a constant.
721   Idx = FirstNZIdx(GEPI);
722   if (Idx == GEPI->getNumOperands())
723     return false;
724   if (isa<Constant>(GEPI->getOperand(Idx)))
725     return false;
726 
727   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
728   Type *AllocTy =
729     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
730   if (!AllocTy || !AllocTy->isSized())
731     return false;
732   const DataLayout &DL = IC.getDataLayout();
733   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
734 
735   // If there are more indices after the one we might replace with a zero, make
736   // sure they're all non-negative. If any of them are negative, the overall
737   // address being computed might be before the base address determined by the
738   // first non-zero index.
739   auto IsAllNonNegative = [&]() {
740     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
741       bool KnownNonNegative, KnownNegative;
742       IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative,
743                         KnownNegative, 0, MemI);
744       if (KnownNonNegative)
745         continue;
746       return false;
747     }
748 
749     return true;
750   };
751 
752   // FIXME: If the GEP is not inbounds, and there are extra indices after the
753   // one we'll replace, those could cause the address computation to wrap
754   // (rendering the IsAllNonNegative() check below insufficient). We can do
755   // better, ignoring zero indices (and other indices we can prove small
756   // enough not to wrap).
757   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
758     return false;
759 
760   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
761   // also known to be dereferenceable.
762   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
763          IsAllNonNegative();
764 }
765 
766 // If we're indexing into an object with a variable index for the memory
767 // access, but the object has only one element, we can assume that the index
768 // will always be zero. If we replace the GEP, return it.
769 template <typename T>
770 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
771                                           T &MemI) {
772   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
773     unsigned Idx;
774     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
775       Instruction *NewGEPI = GEPI->clone();
776       NewGEPI->setOperand(Idx,
777         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
778       NewGEPI->insertBefore(GEPI);
779       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
780       return NewGEPI;
781     }
782   }
783 
784   return nullptr;
785 }
786 
787 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
788   Value *Op = LI.getOperand(0);
789 
790   // Try to canonicalize the loaded type.
791   if (Instruction *Res = combineLoadToOperationType(*this, LI))
792     return Res;
793 
794   // Attempt to improve the alignment.
795   unsigned KnownAlign = getOrEnforceKnownAlignment(
796       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT);
797   unsigned LoadAlign = LI.getAlignment();
798   unsigned EffectiveLoadAlign =
799       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
800 
801   if (KnownAlign > EffectiveLoadAlign)
802     LI.setAlignment(KnownAlign);
803   else if (LoadAlign == 0)
804     LI.setAlignment(EffectiveLoadAlign);
805 
806   // Replace GEP indices if possible.
807   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
808       Worklist.Add(NewGEPI);
809       return &LI;
810   }
811 
812   // None of the following transforms are legal for volatile/atomic loads.
813   // FIXME: Some of it is okay for atomic loads; needs refactoring.
814   if (!LI.isSimple()) return nullptr;
815 
816   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
817     return Res;
818 
819   // Do really simple store-to-load forwarding and load CSE, to catch cases
820   // where there are several consecutive memory accesses to the same location,
821   // separated by a few arithmetic operations.
822   BasicBlock::iterator BBI(LI);
823   AAMDNodes AATags;
824   if (Value *AvailableVal =
825       FindAvailableLoadedValue(&LI, LI.getParent(), BBI,
826                                DefMaxInstsToScan, AA, &AATags)) {
827     if (LoadInst *NLI = dyn_cast<LoadInst>(AvailableVal)) {
828       unsigned KnownIDs[] = {
829           LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
830           LLVMContext::MD_noalias,         LLVMContext::MD_range,
831           LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
832           LLVMContext::MD_invariant_group, LLVMContext::MD_align,
833           LLVMContext::MD_dereferenceable,
834           LLVMContext::MD_dereferenceable_or_null};
835       combineMetadata(NLI, &LI, KnownIDs);
836     };
837 
838     return replaceInstUsesWith(
839         LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
840                                             LI.getName() + ".cast"));
841   }
842 
843   // load(gep null, ...) -> unreachable
844   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
845     const Value *GEPI0 = GEPI->getOperand(0);
846     // TODO: Consider a target hook for valid address spaces for this xform.
847     if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
848       // Insert a new store to null instruction before the load to indicate
849       // that this code is not reachable.  We do this instead of inserting
850       // an unreachable instruction directly because we cannot modify the
851       // CFG.
852       new StoreInst(UndefValue::get(LI.getType()),
853                     Constant::getNullValue(Op->getType()), &LI);
854       return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
855     }
856   }
857 
858   // load null/undef -> unreachable
859   // TODO: Consider a target hook for valid address spaces for this xform.
860   if (isa<UndefValue>(Op) ||
861       (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
862     // Insert a new store to null instruction before the load to indicate that
863     // this code is not reachable.  We do this instead of inserting an
864     // unreachable instruction directly because we cannot modify the CFG.
865     new StoreInst(UndefValue::get(LI.getType()),
866                   Constant::getNullValue(Op->getType()), &LI);
867     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
868   }
869 
870   if (Op->hasOneUse()) {
871     // Change select and PHI nodes to select values instead of addresses: this
872     // helps alias analysis out a lot, allows many others simplifications, and
873     // exposes redundancy in the code.
874     //
875     // Note that we cannot do the transformation unless we know that the
876     // introduced loads cannot trap!  Something like this is valid as long as
877     // the condition is always false: load (select bool %C, int* null, int* %G),
878     // but it would not be valid if we transformed it to load from null
879     // unconditionally.
880     //
881     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
882       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
883       unsigned Align = LI.getAlignment();
884       if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, SI) &&
885           isSafeToLoadUnconditionally(SI->getOperand(2), Align, SI)) {
886         LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
887                                            SI->getOperand(1)->getName()+".val");
888         LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
889                                            SI->getOperand(2)->getName()+".val");
890         V1->setAlignment(Align);
891         V2->setAlignment(Align);
892         return SelectInst::Create(SI->getCondition(), V1, V2);
893       }
894 
895       // load (select (cond, null, P)) -> load P
896       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
897           LI.getPointerAddressSpace() == 0) {
898         LI.setOperand(0, SI->getOperand(2));
899         return &LI;
900       }
901 
902       // load (select (cond, P, null)) -> load P
903       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
904           LI.getPointerAddressSpace() == 0) {
905         LI.setOperand(0, SI->getOperand(1));
906         return &LI;
907       }
908     }
909   }
910   return nullptr;
911 }
912 
913 /// \brief Combine stores to match the type of value being stored.
914 ///
915 /// The core idea here is that the memory does not have any intrinsic type and
916 /// where we can we should match the type of a store to the type of value being
917 /// stored.
918 ///
919 /// However, this routine must never change the width of a store or the number of
920 /// stores as that would introduce a semantic change. This combine is expected to
921 /// be a semantic no-op which just allows stores to more closely model the types
922 /// of their incoming values.
923 ///
924 /// Currently, we also refuse to change the precise type used for an atomic or
925 /// volatile store. This is debatable, and might be reasonable to change later.
926 /// However, it is risky in case some backend or other part of LLVM is relying
927 /// on the exact type stored to select appropriate atomic operations.
928 ///
929 /// \returns true if the store was successfully combined away. This indicates
930 /// the caller must erase the store instruction. We have to let the caller erase
931 /// the store instruction as otherwise there is no way to signal whether it was
932 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
933 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
934   // FIXME: We could probably with some care handle both volatile and atomic
935   // stores here but it isn't clear that this is important.
936   if (!SI.isSimple())
937     return false;
938 
939   Value *V = SI.getValueOperand();
940 
941   // Fold away bit casts of the stored value by storing the original type.
942   if (auto *BC = dyn_cast<BitCastInst>(V)) {
943     V = BC->getOperand(0);
944     combineStoreToNewValue(IC, SI, V);
945     return true;
946   }
947 
948   // FIXME: We should also canonicalize loads of vectors when their elements are
949   // cast to other types.
950   return false;
951 }
952 
953 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
954   // FIXME: We could probably with some care handle both volatile and atomic
955   // stores here but it isn't clear that this is important.
956   if (!SI.isSimple())
957     return false;
958 
959   Value *V = SI.getValueOperand();
960   Type *T = V->getType();
961 
962   if (!T->isAggregateType())
963     return false;
964 
965   if (auto *ST = dyn_cast<StructType>(T)) {
966     // If the struct only have one element, we unpack.
967     unsigned Count = ST->getNumElements();
968     if (Count == 1) {
969       V = IC.Builder->CreateExtractValue(V, 0);
970       combineStoreToNewValue(IC, SI, V);
971       return true;
972     }
973 
974     // We don't want to break loads with padding here as we'd loose
975     // the knowledge that padding exists for the rest of the pipeline.
976     const DataLayout &DL = IC.getDataLayout();
977     auto *SL = DL.getStructLayout(ST);
978     if (SL->hasPadding())
979       return false;
980 
981     auto Align = SI.getAlignment();
982     if (!Align)
983       Align = DL.getABITypeAlignment(ST);
984 
985     SmallString<16> EltName = V->getName();
986     EltName += ".elt";
987     auto *Addr = SI.getPointerOperand();
988     SmallString<16> AddrName = Addr->getName();
989     AddrName += ".repack";
990 
991     auto *IdxType = Type::getInt32Ty(ST->getContext());
992     auto *Zero = ConstantInt::get(IdxType, 0);
993     for (unsigned i = 0; i < Count; i++) {
994       Value *Indices[2] = {
995         Zero,
996         ConstantInt::get(IdxType, i),
997       };
998       auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
999                                                 AddrName);
1000       auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
1001       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
1002       IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign);
1003     }
1004 
1005     return true;
1006   }
1007 
1008   if (auto *AT = dyn_cast<ArrayType>(T)) {
1009     // If the array only have one element, we unpack.
1010     auto NumElements = AT->getNumElements();
1011     if (NumElements == 1) {
1012       V = IC.Builder->CreateExtractValue(V, 0);
1013       combineStoreToNewValue(IC, SI, V);
1014       return true;
1015     }
1016 
1017     const DataLayout &DL = IC.getDataLayout();
1018     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1019     auto Align = SI.getAlignment();
1020     if (!Align)
1021       Align = DL.getABITypeAlignment(T);
1022 
1023     SmallString<16> EltName = V->getName();
1024     EltName += ".elt";
1025     auto *Addr = SI.getPointerOperand();
1026     SmallString<16> AddrName = Addr->getName();
1027     AddrName += ".repack";
1028 
1029     auto *IdxType = Type::getInt64Ty(T->getContext());
1030     auto *Zero = ConstantInt::get(IdxType, 0);
1031 
1032     uint64_t Offset = 0;
1033     for (uint64_t i = 0; i < NumElements; i++) {
1034       Value *Indices[2] = {
1035         Zero,
1036         ConstantInt::get(IdxType, i),
1037       };
1038       auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1039                                                 AddrName);
1040       auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
1041       auto EltAlign = MinAlign(Align, Offset);
1042       IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign);
1043       Offset += EltSize;
1044     }
1045 
1046     return true;
1047   }
1048 
1049   return false;
1050 }
1051 
1052 /// equivalentAddressValues - Test if A and B will obviously have the same
1053 /// value. This includes recognizing that %t0 and %t1 will have the same
1054 /// value in code like this:
1055 ///   %t0 = getelementptr \@a, 0, 3
1056 ///   store i32 0, i32* %t0
1057 ///   %t1 = getelementptr \@a, 0, 3
1058 ///   %t2 = load i32* %t1
1059 ///
1060 static bool equivalentAddressValues(Value *A, Value *B) {
1061   // Test if the values are trivially equivalent.
1062   if (A == B) return true;
1063 
1064   // Test if the values come form identical arithmetic instructions.
1065   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1066   // its only used to compare two uses within the same basic block, which
1067   // means that they'll always either have the same value or one of them
1068   // will have an undefined value.
1069   if (isa<BinaryOperator>(A) ||
1070       isa<CastInst>(A) ||
1071       isa<PHINode>(A) ||
1072       isa<GetElementPtrInst>(A))
1073     if (Instruction *BI = dyn_cast<Instruction>(B))
1074       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1075         return true;
1076 
1077   // Otherwise they may not be equivalent.
1078   return false;
1079 }
1080 
1081 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1082   Value *Val = SI.getOperand(0);
1083   Value *Ptr = SI.getOperand(1);
1084 
1085   // Try to canonicalize the stored type.
1086   if (combineStoreToValueType(*this, SI))
1087     return eraseInstFromFunction(SI);
1088 
1089   // Attempt to improve the alignment.
1090   unsigned KnownAlign = getOrEnforceKnownAlignment(
1091       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT);
1092   unsigned StoreAlign = SI.getAlignment();
1093   unsigned EffectiveStoreAlign =
1094       StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
1095 
1096   if (KnownAlign > EffectiveStoreAlign)
1097     SI.setAlignment(KnownAlign);
1098   else if (StoreAlign == 0)
1099     SI.setAlignment(EffectiveStoreAlign);
1100 
1101   // Try to canonicalize the stored type.
1102   if (unpackStoreToAggregate(*this, SI))
1103     return eraseInstFromFunction(SI);
1104 
1105   // Replace GEP indices if possible.
1106   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1107       Worklist.Add(NewGEPI);
1108       return &SI;
1109   }
1110 
1111   // Don't hack volatile/ordered stores.
1112   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1113   if (!SI.isUnordered()) return nullptr;
1114 
1115   // If the RHS is an alloca with a single use, zapify the store, making the
1116   // alloca dead.
1117   if (Ptr->hasOneUse()) {
1118     if (isa<AllocaInst>(Ptr))
1119       return eraseInstFromFunction(SI);
1120     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1121       if (isa<AllocaInst>(GEP->getOperand(0))) {
1122         if (GEP->getOperand(0)->hasOneUse())
1123           return eraseInstFromFunction(SI);
1124       }
1125     }
1126   }
1127 
1128   // Do really simple DSE, to catch cases where there are several consecutive
1129   // stores to the same location, separated by a few arithmetic operations. This
1130   // situation often occurs with bitfield accesses.
1131   BasicBlock::iterator BBI(SI);
1132   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1133        --ScanInsts) {
1134     --BBI;
1135     // Don't count debug info directives, lest they affect codegen,
1136     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1137     if (isa<DbgInfoIntrinsic>(BBI) ||
1138         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1139       ScanInsts++;
1140       continue;
1141     }
1142 
1143     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1144       // Prev store isn't volatile, and stores to the same location?
1145       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1146                                                         SI.getOperand(1))) {
1147         ++NumDeadStore;
1148         ++BBI;
1149         eraseInstFromFunction(*PrevSI);
1150         continue;
1151       }
1152       break;
1153     }
1154 
1155     // If this is a load, we have to stop.  However, if the loaded value is from
1156     // the pointer we're loading and is producing the pointer we're storing,
1157     // then *this* store is dead (X = load P; store X -> P).
1158     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1159       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1160         assert(SI.isUnordered() && "can't eliminate ordering operation");
1161         return eraseInstFromFunction(SI);
1162       }
1163 
1164       // Otherwise, this is a load from some other location.  Stores before it
1165       // may not be dead.
1166       break;
1167     }
1168 
1169     // Don't skip over loads or things that can modify memory.
1170     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
1171       break;
1172   }
1173 
1174   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1175   if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
1176     if (!isa<UndefValue>(Val)) {
1177       SI.setOperand(0, UndefValue::get(Val->getType()));
1178       if (Instruction *U = dyn_cast<Instruction>(Val))
1179         Worklist.Add(U);  // Dropped a use.
1180     }
1181     return nullptr;  // Do not modify these!
1182   }
1183 
1184   // store undef, Ptr -> noop
1185   if (isa<UndefValue>(Val))
1186     return eraseInstFromFunction(SI);
1187 
1188   // The code below needs to be audited and adjusted for unordered atomics
1189   if (!SI.isSimple())
1190     return nullptr;
1191 
1192   // If this store is the last instruction in the basic block (possibly
1193   // excepting debug info instructions), and if the block ends with an
1194   // unconditional branch, try to move it to the successor block.
1195   BBI = SI.getIterator();
1196   do {
1197     ++BBI;
1198   } while (isa<DbgInfoIntrinsic>(BBI) ||
1199            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1200   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1201     if (BI->isUnconditional())
1202       if (SimplifyStoreAtEndOfBlock(SI))
1203         return nullptr;  // xform done!
1204 
1205   return nullptr;
1206 }
1207 
1208 /// SimplifyStoreAtEndOfBlock - Turn things like:
1209 ///   if () { *P = v1; } else { *P = v2 }
1210 /// into a phi node with a store in the successor.
1211 ///
1212 /// Simplify things like:
1213 ///   *P = v1; if () { *P = v2; }
1214 /// into a phi node with a store in the successor.
1215 ///
1216 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
1217   BasicBlock *StoreBB = SI.getParent();
1218 
1219   // Check to see if the successor block has exactly two incoming edges.  If
1220   // so, see if the other predecessor contains a store to the same location.
1221   // if so, insert a PHI node (if needed) and move the stores down.
1222   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1223 
1224   // Determine whether Dest has exactly two predecessors and, if so, compute
1225   // the other predecessor.
1226   pred_iterator PI = pred_begin(DestBB);
1227   BasicBlock *P = *PI;
1228   BasicBlock *OtherBB = nullptr;
1229 
1230   if (P != StoreBB)
1231     OtherBB = P;
1232 
1233   if (++PI == pred_end(DestBB))
1234     return false;
1235 
1236   P = *PI;
1237   if (P != StoreBB) {
1238     if (OtherBB)
1239       return false;
1240     OtherBB = P;
1241   }
1242   if (++PI != pred_end(DestBB))
1243     return false;
1244 
1245   // Bail out if all the relevant blocks aren't distinct (this can happen,
1246   // for example, if SI is in an infinite loop)
1247   if (StoreBB == DestBB || OtherBB == DestBB)
1248     return false;
1249 
1250   // Verify that the other block ends in a branch and is not otherwise empty.
1251   BasicBlock::iterator BBI(OtherBB->getTerminator());
1252   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1253   if (!OtherBr || BBI == OtherBB->begin())
1254     return false;
1255 
1256   // If the other block ends in an unconditional branch, check for the 'if then
1257   // else' case.  there is an instruction before the branch.
1258   StoreInst *OtherStore = nullptr;
1259   if (OtherBr->isUnconditional()) {
1260     --BBI;
1261     // Skip over debugging info.
1262     while (isa<DbgInfoIntrinsic>(BBI) ||
1263            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1264       if (BBI==OtherBB->begin())
1265         return false;
1266       --BBI;
1267     }
1268     // If this isn't a store, isn't a store to the same location, or is not the
1269     // right kind of store, bail out.
1270     OtherStore = dyn_cast<StoreInst>(BBI);
1271     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1272         !SI.isSameOperationAs(OtherStore))
1273       return false;
1274   } else {
1275     // Otherwise, the other block ended with a conditional branch. If one of the
1276     // destinations is StoreBB, then we have the if/then case.
1277     if (OtherBr->getSuccessor(0) != StoreBB &&
1278         OtherBr->getSuccessor(1) != StoreBB)
1279       return false;
1280 
1281     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1282     // if/then triangle.  See if there is a store to the same ptr as SI that
1283     // lives in OtherBB.
1284     for (;; --BBI) {
1285       // Check to see if we find the matching store.
1286       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1287         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1288             !SI.isSameOperationAs(OtherStore))
1289           return false;
1290         break;
1291       }
1292       // If we find something that may be using or overwriting the stored
1293       // value, or if we run out of instructions, we can't do the xform.
1294       if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
1295           BBI == OtherBB->begin())
1296         return false;
1297     }
1298 
1299     // In order to eliminate the store in OtherBr, we have to
1300     // make sure nothing reads or overwrites the stored value in
1301     // StoreBB.
1302     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1303       // FIXME: This should really be AA driven.
1304       if (I->mayReadFromMemory() || I->mayWriteToMemory())
1305         return false;
1306     }
1307   }
1308 
1309   // Insert a PHI node now if we need it.
1310   Value *MergedVal = OtherStore->getOperand(0);
1311   if (MergedVal != SI.getOperand(0)) {
1312     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1313     PN->addIncoming(SI.getOperand(0), SI.getParent());
1314     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1315     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1316   }
1317 
1318   // Advance to a place where it is safe to insert the new store and
1319   // insert it.
1320   BBI = DestBB->getFirstInsertionPt();
1321   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
1322                                    SI.isVolatile(),
1323                                    SI.getAlignment(),
1324                                    SI.getOrdering(),
1325                                    SI.getSynchScope());
1326   InsertNewInstBefore(NewSI, *BBI);
1327   NewSI->setDebugLoc(OtherStore->getDebugLoc());
1328 
1329   // If the two stores had AA tags, merge them.
1330   AAMDNodes AATags;
1331   SI.getAAMetadata(AATags);
1332   if (AATags) {
1333     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1334     NewSI->setAAMetadata(AATags);
1335   }
1336 
1337   // Nuke the old stores.
1338   eraseInstFromFunction(SI);
1339   eraseInstFromFunction(*OtherStore);
1340   return true;
1341 }
1342