1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Transforms/Utils/Local.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "instcombine"
31 
32 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
34 
35 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
36 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
37 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
38 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
39 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
40 /// the alloca, and if the source pointer is a pointer to a constant global, we
41 /// can optimize this.
42 static bool
43 isOnlyCopiedFromConstantMemory(AliasAnalysis *AA,
44                                Value *V, MemTransferInst *&TheCopy,
45                                SmallVectorImpl<Instruction *> &ToDelete) {
46   // We track lifetime intrinsics as we encounter them.  If we decide to go
47   // ahead and replace the value with the global, this lets the caller quickly
48   // eliminate the markers.
49 
50   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
51   ValuesToInspect.emplace_back(V, false);
52   while (!ValuesToInspect.empty()) {
53     auto ValuePair = ValuesToInspect.pop_back_val();
54     const bool IsOffset = ValuePair.second;
55     for (auto &U : ValuePair.first->uses()) {
56       auto *I = cast<Instruction>(U.getUser());
57 
58       if (auto *LI = dyn_cast<LoadInst>(I)) {
59         // Ignore non-volatile loads, they are always ok.
60         if (!LI->isSimple()) return false;
61         continue;
62       }
63 
64       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
65         // If uses of the bitcast are ok, we are ok.
66         ValuesToInspect.emplace_back(I, IsOffset);
67         continue;
68       }
69       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
70         // If the GEP has all zero indices, it doesn't offset the pointer. If it
71         // doesn't, it does.
72         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
73         continue;
74       }
75 
76       if (auto *Call = dyn_cast<CallBase>(I)) {
77         // If this is the function being called then we treat it like a load and
78         // ignore it.
79         if (Call->isCallee(&U))
80           continue;
81 
82         unsigned DataOpNo = Call->getDataOperandNo(&U);
83         bool IsArgOperand = Call->isArgOperand(&U);
84 
85         // Inalloca arguments are clobbered by the call.
86         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
87           return false;
88 
89         // If this is a readonly/readnone call site, then we know it is just a
90         // load (but one that potentially returns the value itself), so we can
91         // ignore it if we know that the value isn't captured.
92         if (Call->onlyReadsMemory() &&
93             (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
94           continue;
95 
96         // If this is being passed as a byval argument, the caller is making a
97         // copy, so it is only a read of the alloca.
98         if (IsArgOperand && Call->isByValArgument(DataOpNo))
99           continue;
100       }
101 
102       // Lifetime intrinsics can be handled by the caller.
103       if (I->isLifetimeStartOrEnd()) {
104         assert(I->use_empty() && "Lifetime markers have no result to use!");
105         ToDelete.push_back(I);
106         continue;
107       }
108 
109       // If this is isn't our memcpy/memmove, reject it as something we can't
110       // handle.
111       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
112       if (!MI)
113         return false;
114 
115       // If the transfer is using the alloca as a source of the transfer, then
116       // ignore it since it is a load (unless the transfer is volatile).
117       if (U.getOperandNo() == 1) {
118         if (MI->isVolatile()) return false;
119         continue;
120       }
121 
122       // If we already have seen a copy, reject the second one.
123       if (TheCopy) return false;
124 
125       // If the pointer has been offset from the start of the alloca, we can't
126       // safely handle this.
127       if (IsOffset) return false;
128 
129       // If the memintrinsic isn't using the alloca as the dest, reject it.
130       if (U.getOperandNo() != 0) return false;
131 
132       // If the source of the memcpy/move is not a constant global, reject it.
133       if (!AA->pointsToConstantMemory(MI->getSource()))
134         return false;
135 
136       // Otherwise, the transform is safe.  Remember the copy instruction.
137       TheCopy = MI;
138     }
139   }
140   return true;
141 }
142 
143 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
144 /// modified by a copy from a constant global.  If we can prove this, we can
145 /// replace any uses of the alloca with uses of the global directly.
146 static MemTransferInst *
147 isOnlyCopiedFromConstantMemory(AliasAnalysis *AA,
148                                AllocaInst *AI,
149                                SmallVectorImpl<Instruction *> &ToDelete) {
150   MemTransferInst *TheCopy = nullptr;
151   if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
152     return TheCopy;
153   return nullptr;
154 }
155 
156 /// Returns true if V is dereferenceable for size of alloca.
157 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
158                                            const DataLayout &DL) {
159   if (AI->isArrayAllocation())
160     return false;
161   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
162   if (!AllocaSize)
163     return false;
164   return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
165                                             APInt(64, AllocaSize), DL);
166 }
167 
168 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
169   // Check for array size of 1 (scalar allocation).
170   if (!AI.isArrayAllocation()) {
171     // i32 1 is the canonical array size for scalar allocations.
172     if (AI.getArraySize()->getType()->isIntegerTy(32))
173       return nullptr;
174 
175     // Canonicalize it.
176     return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
177   }
178 
179   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
180   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
181     if (C->getValue().getActiveBits() <= 64) {
182       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
183       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
184       New->setAlignment(MaybeAlign(AI.getAlignment()));
185 
186       // Scan to the end of the allocation instructions, to skip over a block of
187       // allocas if possible...also skip interleaved debug info
188       //
189       BasicBlock::iterator It(New);
190       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
191         ++It;
192 
193       // Now that I is pointing to the first non-allocation-inst in the block,
194       // insert our getelementptr instruction...
195       //
196       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
197       Value *NullIdx = Constant::getNullValue(IdxTy);
198       Value *Idx[2] = {NullIdx, NullIdx};
199       Instruction *GEP = GetElementPtrInst::CreateInBounds(
200           NewTy, New, Idx, New->getName() + ".sub");
201       IC.InsertNewInstBefore(GEP, *It);
202 
203       // Now make everything use the getelementptr instead of the original
204       // allocation.
205       return IC.replaceInstUsesWith(AI, GEP);
206     }
207   }
208 
209   if (isa<UndefValue>(AI.getArraySize()))
210     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
211 
212   // Ensure that the alloca array size argument has type intptr_t, so that
213   // any casting is exposed early.
214   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
215   if (AI.getArraySize()->getType() != IntPtrTy) {
216     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
217     return IC.replaceOperand(AI, 0, V);
218   }
219 
220   return nullptr;
221 }
222 
223 namespace {
224 // If I and V are pointers in different address space, it is not allowed to
225 // use replaceAllUsesWith since I and V have different types. A
226 // non-target-specific transformation should not use addrspacecast on V since
227 // the two address space may be disjoint depending on target.
228 //
229 // This class chases down uses of the old pointer until reaching the load
230 // instructions, then replaces the old pointer in the load instructions with
231 // the new pointer. If during the chasing it sees bitcast or GEP, it will
232 // create new bitcast or GEP with the new pointer and use them in the load
233 // instruction.
234 class PointerReplacer {
235 public:
236   PointerReplacer(InstCombiner &IC) : IC(IC) {}
237   void replacePointer(Instruction &I, Value *V);
238 
239 private:
240   void findLoadAndReplace(Instruction &I);
241   void replace(Instruction *I);
242   Value *getReplacement(Value *I);
243 
244   SmallVector<Instruction *, 4> Path;
245   MapVector<Value *, Value *> WorkMap;
246   InstCombiner &IC;
247 };
248 } // end anonymous namespace
249 
250 void PointerReplacer::findLoadAndReplace(Instruction &I) {
251   for (auto U : I.users()) {
252     auto *Inst = dyn_cast<Instruction>(&*U);
253     if (!Inst)
254       return;
255     LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n');
256     if (isa<LoadInst>(Inst)) {
257       for (auto P : Path)
258         replace(P);
259       replace(Inst);
260     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
261       Path.push_back(Inst);
262       findLoadAndReplace(*Inst);
263       Path.pop_back();
264     } else {
265       return;
266     }
267   }
268 }
269 
270 Value *PointerReplacer::getReplacement(Value *V) {
271   auto Loc = WorkMap.find(V);
272   if (Loc != WorkMap.end())
273     return Loc->second;
274   return nullptr;
275 }
276 
277 void PointerReplacer::replace(Instruction *I) {
278   if (getReplacement(I))
279     return;
280 
281   if (auto *LT = dyn_cast<LoadInst>(I)) {
282     auto *V = getReplacement(LT->getPointerOperand());
283     assert(V && "Operand not replaced");
284     auto *NewI = new LoadInst(I->getType(), V, "", false,
285                               IC.getDataLayout().getABITypeAlign(I->getType()));
286     NewI->takeName(LT);
287     IC.InsertNewInstWith(NewI, *LT);
288     IC.replaceInstUsesWith(*LT, NewI);
289     WorkMap[LT] = NewI;
290   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
291     auto *V = getReplacement(GEP->getPointerOperand());
292     assert(V && "Operand not replaced");
293     SmallVector<Value *, 8> Indices;
294     Indices.append(GEP->idx_begin(), GEP->idx_end());
295     auto *NewI = GetElementPtrInst::Create(
296         V->getType()->getPointerElementType(), V, Indices);
297     IC.InsertNewInstWith(NewI, *GEP);
298     NewI->takeName(GEP);
299     WorkMap[GEP] = NewI;
300   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
301     auto *V = getReplacement(BC->getOperand(0));
302     assert(V && "Operand not replaced");
303     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
304                                   V->getType()->getPointerAddressSpace());
305     auto *NewI = new BitCastInst(V, NewT);
306     IC.InsertNewInstWith(NewI, *BC);
307     NewI->takeName(BC);
308     WorkMap[BC] = NewI;
309   } else {
310     llvm_unreachable("should never reach here");
311   }
312 }
313 
314 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
315 #ifndef NDEBUG
316   auto *PT = cast<PointerType>(I.getType());
317   auto *NT = cast<PointerType>(V->getType());
318   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
319          "Invalid usage");
320 #endif
321   WorkMap[&I] = V;
322   findLoadAndReplace(I);
323 }
324 
325 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
326   if (auto *I = simplifyAllocaArraySize(*this, AI))
327     return I;
328 
329   if (AI.getAllocatedType()->isSized()) {
330     // If the alignment is 0 (unspecified), assign it the preferred alignment.
331     if (AI.getAlignment() == 0)
332       AI.setAlignment(
333           MaybeAlign(DL.getPrefTypeAlignment(AI.getAllocatedType())));
334 
335     // Move all alloca's of zero byte objects to the entry block and merge them
336     // together.  Note that we only do this for alloca's, because malloc should
337     // allocate and return a unique pointer, even for a zero byte allocation.
338     if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
339       // For a zero sized alloca there is no point in doing an array allocation.
340       // This is helpful if the array size is a complicated expression not used
341       // elsewhere.
342       if (AI.isArrayAllocation())
343         return replaceOperand(AI, 0,
344             ConstantInt::get(AI.getArraySize()->getType(), 1));
345 
346       // Get the first instruction in the entry block.
347       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
348       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
349       if (FirstInst != &AI) {
350         // If the entry block doesn't start with a zero-size alloca then move
351         // this one to the start of the entry block.  There is no problem with
352         // dominance as the array size was forced to a constant earlier already.
353         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
354         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
355             DL.getTypeAllocSize(EntryAI->getAllocatedType())
356                     .getKnownMinSize() != 0) {
357           AI.moveBefore(FirstInst);
358           return &AI;
359         }
360 
361         // If the alignment of the entry block alloca is 0 (unspecified),
362         // assign it the preferred alignment.
363         if (EntryAI->getAlignment() == 0)
364           EntryAI->setAlignment(
365               MaybeAlign(DL.getPrefTypeAlignment(EntryAI->getAllocatedType())));
366         // Replace this zero-sized alloca with the one at the start of the entry
367         // block after ensuring that the address will be aligned enough for both
368         // types.
369         const MaybeAlign MaxAlign(
370             std::max(EntryAI->getAlignment(), AI.getAlignment()));
371         EntryAI->setAlignment(MaxAlign);
372         if (AI.getType() != EntryAI->getType())
373           return new BitCastInst(EntryAI, AI.getType());
374         return replaceInstUsesWith(AI, EntryAI);
375       }
376     }
377   }
378 
379   if (AI.getAlignment()) {
380     // Check to see if this allocation is only modified by a memcpy/memmove from
381     // a constant whose alignment is equal to or exceeds that of the allocation.
382     // If this is the case, we can change all users to use the constant global
383     // instead.  This is commonly produced by the CFE by constructs like "void
384     // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently
385     // read.
386     SmallVector<Instruction *, 4> ToDelete;
387     if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
388       MaybeAlign AllocaAlign = AI.getAlign();
389       Align SourceAlign = getOrEnforceKnownAlignment(
390           Copy->getSource(), AllocaAlign, DL, &AI, &AC, &DT);
391       if ((!AllocaAlign || *AllocaAlign <= SourceAlign) &&
392           isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) {
393         LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
394         LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
395         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
396           eraseInstFromFunction(*ToDelete[i]);
397         Value *TheSrc = Copy->getSource();
398         auto *SrcTy = TheSrc->getType();
399         auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(),
400                                         SrcTy->getPointerAddressSpace());
401         Value *Cast =
402           Builder.CreatePointerBitCastOrAddrSpaceCast(TheSrc, DestTy);
403         if (AI.getType()->getPointerAddressSpace() ==
404             SrcTy->getPointerAddressSpace()) {
405           Instruction *NewI = replaceInstUsesWith(AI, Cast);
406           eraseInstFromFunction(*Copy);
407           ++NumGlobalCopies;
408           return NewI;
409         }
410 
411         PointerReplacer PtrReplacer(*this);
412         PtrReplacer.replacePointer(AI, Cast);
413         ++NumGlobalCopies;
414       }
415     }
416   }
417 
418   // At last, use the generic allocation site handler to aggressively remove
419   // unused allocas.
420   return visitAllocSite(AI);
421 }
422 
423 // Are we allowed to form a atomic load or store of this type?
424 static bool isSupportedAtomicType(Type *Ty) {
425   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
426 }
427 
428 /// Helper to combine a load to a new type.
429 ///
430 /// This just does the work of combining a load to a new type. It handles
431 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
432 /// loaded *value* type. This will convert it to a pointer, cast the operand to
433 /// that pointer type, load it, etc.
434 ///
435 /// Note that this will create all of the instructions with whatever insert
436 /// point the \c InstCombiner currently is using.
437 LoadInst *InstCombiner::combineLoadToNewType(LoadInst &LI, Type *NewTy,
438                                              const Twine &Suffix) {
439   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
440          "can't fold an atomic load to requested type");
441 
442   Value *Ptr = LI.getPointerOperand();
443   unsigned AS = LI.getPointerAddressSpace();
444   Value *NewPtr = nullptr;
445   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
446         NewPtr->getType()->getPointerElementType() == NewTy &&
447         NewPtr->getType()->getPointerAddressSpace() == AS))
448     NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
449 
450     // If old load did not have an explicit alignment specified,
451     // manually preserve the implied (ABI) alignment of the load.
452     // Else we may inadvertently incorrectly over-promise alignment.
453   const auto Align =
454       getDataLayout().getValueOrABITypeAlignment(LI.getAlign(), LI.getType());
455 
456   LoadInst *NewLoad = Builder.CreateAlignedLoad(
457       NewTy, NewPtr, Align, LI.isVolatile(), LI.getName() + Suffix);
458   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
459   copyMetadataForLoad(*NewLoad, LI);
460   return NewLoad;
461 }
462 
463 /// Combine a store to a new type.
464 ///
465 /// Returns the newly created store instruction.
466 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
467   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
468          "can't fold an atomic store of requested type");
469 
470   Value *Ptr = SI.getPointerOperand();
471   unsigned AS = SI.getPointerAddressSpace();
472   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
473   SI.getAllMetadata(MD);
474 
475   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
476       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
477       SI.getAlign(), SI.isVolatile());
478   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
479   for (const auto &MDPair : MD) {
480     unsigned ID = MDPair.first;
481     MDNode *N = MDPair.second;
482     // Note, essentially every kind of metadata should be preserved here! This
483     // routine is supposed to clone a store instruction changing *only its
484     // type*. The only metadata it makes sense to drop is metadata which is
485     // invalidated when the pointer type changes. This should essentially
486     // never be the case in LLVM, but we explicitly switch over only known
487     // metadata to be conservatively correct. If you are adding metadata to
488     // LLVM which pertains to stores, you almost certainly want to add it
489     // here.
490     switch (ID) {
491     case LLVMContext::MD_dbg:
492     case LLVMContext::MD_tbaa:
493     case LLVMContext::MD_prof:
494     case LLVMContext::MD_fpmath:
495     case LLVMContext::MD_tbaa_struct:
496     case LLVMContext::MD_alias_scope:
497     case LLVMContext::MD_noalias:
498     case LLVMContext::MD_nontemporal:
499     case LLVMContext::MD_mem_parallel_loop_access:
500     case LLVMContext::MD_access_group:
501       // All of these directly apply.
502       NewStore->setMetadata(ID, N);
503       break;
504     case LLVMContext::MD_invariant_load:
505     case LLVMContext::MD_nonnull:
506     case LLVMContext::MD_range:
507     case LLVMContext::MD_align:
508     case LLVMContext::MD_dereferenceable:
509     case LLVMContext::MD_dereferenceable_or_null:
510       // These don't apply for stores.
511       break;
512     }
513   }
514 
515   return NewStore;
516 }
517 
518 /// Returns true if instruction represent minmax pattern like:
519 ///   select ((cmp load V1, load V2), V1, V2).
520 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
521   assert(V->getType()->isPointerTy() && "Expected pointer type.");
522   // Ignore possible ty* to ixx* bitcast.
523   V = peekThroughBitcast(V);
524   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
525   // pattern.
526   CmpInst::Predicate Pred;
527   Instruction *L1;
528   Instruction *L2;
529   Value *LHS;
530   Value *RHS;
531   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
532                          m_Value(LHS), m_Value(RHS))))
533     return false;
534   LoadTy = L1->getType();
535   return (match(L1, m_Load(m_Specific(LHS))) &&
536           match(L2, m_Load(m_Specific(RHS)))) ||
537          (match(L1, m_Load(m_Specific(RHS))) &&
538           match(L2, m_Load(m_Specific(LHS))));
539 }
540 
541 /// Combine loads to match the type of their uses' value after looking
542 /// through intervening bitcasts.
543 ///
544 /// The core idea here is that if the result of a load is used in an operation,
545 /// we should load the type most conducive to that operation. For example, when
546 /// loading an integer and converting that immediately to a pointer, we should
547 /// instead directly load a pointer.
548 ///
549 /// However, this routine must never change the width of a load or the number of
550 /// loads as that would introduce a semantic change. This combine is expected to
551 /// be a semantic no-op which just allows loads to more closely model the types
552 /// of their consuming operations.
553 ///
554 /// Currently, we also refuse to change the precise type used for an atomic load
555 /// or a volatile load. This is debatable, and might be reasonable to change
556 /// later. However, it is risky in case some backend or other part of LLVM is
557 /// relying on the exact type loaded to select appropriate atomic operations.
558 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
559   // FIXME: We could probably with some care handle both volatile and ordered
560   // atomic loads here but it isn't clear that this is important.
561   if (!LI.isUnordered())
562     return nullptr;
563 
564   if (LI.use_empty())
565     return nullptr;
566 
567   // swifterror values can't be bitcasted.
568   if (LI.getPointerOperand()->isSwiftError())
569     return nullptr;
570 
571   Type *Ty = LI.getType();
572   const DataLayout &DL = IC.getDataLayout();
573 
574   // Try to canonicalize loads which are only ever stored to operate over
575   // integers instead of any other type. We only do this when the loaded type
576   // is sized and has a size exactly the same as its store size and the store
577   // size is a legal integer type.
578   // Do not perform canonicalization if minmax pattern is found (to avoid
579   // infinite loop).
580   Type *Dummy;
581   if (!Ty->isIntegerTy() && Ty->isSized() && !isa<ScalableVectorType>(Ty) &&
582       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
583       DL.typeSizeEqualsStoreSize(Ty) && !DL.isNonIntegralPointerType(Ty) &&
584       !isMinMaxWithLoads(
585           peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true),
586           Dummy)) {
587     if (all_of(LI.users(), [&LI](User *U) {
588           auto *SI = dyn_cast<StoreInst>(U);
589           return SI && SI->getPointerOperand() != &LI &&
590                  !SI->getPointerOperand()->isSwiftError();
591         })) {
592       LoadInst *NewLoad = IC.combineLoadToNewType(
593           LI, Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
594       // Replace all the stores with stores of the newly loaded value.
595       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
596         auto *SI = cast<StoreInst>(*UI++);
597         IC.Builder.SetInsertPoint(SI);
598         combineStoreToNewValue(IC, *SI, NewLoad);
599         IC.eraseInstFromFunction(*SI);
600       }
601       assert(LI.use_empty() && "Failed to remove all users of the load!");
602       // Return the old load so the combiner can delete it safely.
603       return &LI;
604     }
605   }
606 
607   // Fold away bit casts of the loaded value by loading the desired type.
608   // We can do this for BitCastInsts as well as casts from and to pointer types,
609   // as long as those are noops (i.e., the source or dest type have the same
610   // bitwidth as the target's pointers).
611   if (LI.hasOneUse())
612     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
613       if (CI->isNoopCast(DL))
614         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
615           LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
616           CI->replaceAllUsesWith(NewLoad);
617           IC.eraseInstFromFunction(*CI);
618           return &LI;
619         }
620 
621   // FIXME: We should also canonicalize loads of vectors when their elements are
622   // cast to other types.
623   return nullptr;
624 }
625 
626 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
627   // FIXME: We could probably with some care handle both volatile and atomic
628   // stores here but it isn't clear that this is important.
629   if (!LI.isSimple())
630     return nullptr;
631 
632   Type *T = LI.getType();
633   if (!T->isAggregateType())
634     return nullptr;
635 
636   StringRef Name = LI.getName();
637   assert(LI.getAlignment() && "Alignment must be set at this point");
638 
639   if (auto *ST = dyn_cast<StructType>(T)) {
640     // If the struct only have one element, we unpack.
641     auto NumElements = ST->getNumElements();
642     if (NumElements == 1) {
643       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
644                                                   ".unpack");
645       AAMDNodes AAMD;
646       LI.getAAMetadata(AAMD);
647       NewLoad->setAAMetadata(AAMD);
648       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
649         UndefValue::get(T), NewLoad, 0, Name));
650     }
651 
652     // We don't want to break loads with padding here as we'd loose
653     // the knowledge that padding exists for the rest of the pipeline.
654     const DataLayout &DL = IC.getDataLayout();
655     auto *SL = DL.getStructLayout(ST);
656     if (SL->hasPadding())
657       return nullptr;
658 
659     const auto Align = DL.getValueOrABITypeAlignment(LI.getAlign(), ST);
660 
661     auto *Addr = LI.getPointerOperand();
662     auto *IdxType = Type::getInt32Ty(T->getContext());
663     auto *Zero = ConstantInt::get(IdxType, 0);
664 
665     Value *V = UndefValue::get(T);
666     for (unsigned i = 0; i < NumElements; i++) {
667       Value *Indices[2] = {
668         Zero,
669         ConstantInt::get(IdxType, i),
670       };
671       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
672                                                Name + ".elt");
673       auto *L = IC.Builder.CreateAlignedLoad(
674           ST->getElementType(i), Ptr,
675           commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
676       // Propagate AA metadata. It'll still be valid on the narrowed load.
677       AAMDNodes AAMD;
678       LI.getAAMetadata(AAMD);
679       L->setAAMetadata(AAMD);
680       V = IC.Builder.CreateInsertValue(V, L, i);
681     }
682 
683     V->setName(Name);
684     return IC.replaceInstUsesWith(LI, V);
685   }
686 
687   if (auto *AT = dyn_cast<ArrayType>(T)) {
688     auto *ET = AT->getElementType();
689     auto NumElements = AT->getNumElements();
690     if (NumElements == 1) {
691       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
692       AAMDNodes AAMD;
693       LI.getAAMetadata(AAMD);
694       NewLoad->setAAMetadata(AAMD);
695       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
696         UndefValue::get(T), NewLoad, 0, Name));
697     }
698 
699     // Bail out if the array is too large. Ideally we would like to optimize
700     // arrays of arbitrary size but this has a terrible impact on compile time.
701     // The threshold here is chosen arbitrarily, maybe needs a little bit of
702     // tuning.
703     if (NumElements > IC.MaxArraySizeForCombine)
704       return nullptr;
705 
706     const DataLayout &DL = IC.getDataLayout();
707     auto EltSize = DL.getTypeAllocSize(ET);
708     const auto Align = DL.getValueOrABITypeAlignment(LI.getAlign(), T);
709 
710     auto *Addr = LI.getPointerOperand();
711     auto *IdxType = Type::getInt64Ty(T->getContext());
712     auto *Zero = ConstantInt::get(IdxType, 0);
713 
714     Value *V = UndefValue::get(T);
715     uint64_t Offset = 0;
716     for (uint64_t i = 0; i < NumElements; i++) {
717       Value *Indices[2] = {
718         Zero,
719         ConstantInt::get(IdxType, i),
720       };
721       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
722                                                Name + ".elt");
723       auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
724                                              commonAlignment(Align, Offset),
725                                              Name + ".unpack");
726       AAMDNodes AAMD;
727       LI.getAAMetadata(AAMD);
728       L->setAAMetadata(AAMD);
729       V = IC.Builder.CreateInsertValue(V, L, i);
730       Offset += EltSize;
731     }
732 
733     V->setName(Name);
734     return IC.replaceInstUsesWith(LI, V);
735   }
736 
737   return nullptr;
738 }
739 
740 // If we can determine that all possible objects pointed to by the provided
741 // pointer value are, not only dereferenceable, but also definitively less than
742 // or equal to the provided maximum size, then return true. Otherwise, return
743 // false (constant global values and allocas fall into this category).
744 //
745 // FIXME: This should probably live in ValueTracking (or similar).
746 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
747                                      const DataLayout &DL) {
748   SmallPtrSet<Value *, 4> Visited;
749   SmallVector<Value *, 4> Worklist(1, V);
750 
751   do {
752     Value *P = Worklist.pop_back_val();
753     P = P->stripPointerCasts();
754 
755     if (!Visited.insert(P).second)
756       continue;
757 
758     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
759       Worklist.push_back(SI->getTrueValue());
760       Worklist.push_back(SI->getFalseValue());
761       continue;
762     }
763 
764     if (PHINode *PN = dyn_cast<PHINode>(P)) {
765       for (Value *IncValue : PN->incoming_values())
766         Worklist.push_back(IncValue);
767       continue;
768     }
769 
770     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
771       if (GA->isInterposable())
772         return false;
773       Worklist.push_back(GA->getAliasee());
774       continue;
775     }
776 
777     // If we know how big this object is, and it is less than MaxSize, continue
778     // searching. Otherwise, return false.
779     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
780       if (!AI->getAllocatedType()->isSized())
781         return false;
782 
783       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
784       if (!CS)
785         return false;
786 
787       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
788       // Make sure that, even if the multiplication below would wrap as an
789       // uint64_t, we still do the right thing.
790       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
791         return false;
792       continue;
793     }
794 
795     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
796       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
797         return false;
798 
799       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
800       if (InitSize > MaxSize)
801         return false;
802       continue;
803     }
804 
805     return false;
806   } while (!Worklist.empty());
807 
808   return true;
809 }
810 
811 // If we're indexing into an object of a known size, and the outer index is
812 // not a constant, but having any value but zero would lead to undefined
813 // behavior, replace it with zero.
814 //
815 // For example, if we have:
816 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
817 // ...
818 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
819 // ... = load i32* %arrayidx, align 4
820 // Then we know that we can replace %x in the GEP with i64 0.
821 //
822 // FIXME: We could fold any GEP index to zero that would cause UB if it were
823 // not zero. Currently, we only handle the first such index. Also, we could
824 // also search through non-zero constant indices if we kept track of the
825 // offsets those indices implied.
826 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
827                                      Instruction *MemI, unsigned &Idx) {
828   if (GEPI->getNumOperands() < 2)
829     return false;
830 
831   // Find the first non-zero index of a GEP. If all indices are zero, return
832   // one past the last index.
833   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
834     unsigned I = 1;
835     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
836       Value *V = GEPI->getOperand(I);
837       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
838         if (CI->isZero())
839           continue;
840 
841       break;
842     }
843 
844     return I;
845   };
846 
847   // Skip through initial 'zero' indices, and find the corresponding pointer
848   // type. See if the next index is not a constant.
849   Idx = FirstNZIdx(GEPI);
850   if (Idx == GEPI->getNumOperands())
851     return false;
852   if (isa<Constant>(GEPI->getOperand(Idx)))
853     return false;
854 
855   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
856   Type *AllocTy =
857     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
858   if (!AllocTy || !AllocTy->isSized())
859     return false;
860   const DataLayout &DL = IC.getDataLayout();
861   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
862 
863   // If there are more indices after the one we might replace with a zero, make
864   // sure they're all non-negative. If any of them are negative, the overall
865   // address being computed might be before the base address determined by the
866   // first non-zero index.
867   auto IsAllNonNegative = [&]() {
868     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
869       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
870       if (Known.isNonNegative())
871         continue;
872       return false;
873     }
874 
875     return true;
876   };
877 
878   // FIXME: If the GEP is not inbounds, and there are extra indices after the
879   // one we'll replace, those could cause the address computation to wrap
880   // (rendering the IsAllNonNegative() check below insufficient). We can do
881   // better, ignoring zero indices (and other indices we can prove small
882   // enough not to wrap).
883   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
884     return false;
885 
886   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
887   // also known to be dereferenceable.
888   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
889          IsAllNonNegative();
890 }
891 
892 // If we're indexing into an object with a variable index for the memory
893 // access, but the object has only one element, we can assume that the index
894 // will always be zero. If we replace the GEP, return it.
895 template <typename T>
896 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
897                                           T &MemI) {
898   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
899     unsigned Idx;
900     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
901       Instruction *NewGEPI = GEPI->clone();
902       NewGEPI->setOperand(Idx,
903         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
904       NewGEPI->insertBefore(GEPI);
905       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
906       return NewGEPI;
907     }
908   }
909 
910   return nullptr;
911 }
912 
913 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
914   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
915     return false;
916 
917   auto *Ptr = SI.getPointerOperand();
918   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
919     Ptr = GEPI->getOperand(0);
920   return (isa<ConstantPointerNull>(Ptr) &&
921           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
922 }
923 
924 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
925   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
926     const Value *GEPI0 = GEPI->getOperand(0);
927     if (isa<ConstantPointerNull>(GEPI0) &&
928         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
929       return true;
930   }
931   if (isa<UndefValue>(Op) ||
932       (isa<ConstantPointerNull>(Op) &&
933        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
934     return true;
935   return false;
936 }
937 
938 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
939   Value *Op = LI.getOperand(0);
940 
941   // Try to canonicalize the loaded type.
942   if (Instruction *Res = combineLoadToOperationType(*this, LI))
943     return Res;
944 
945   // Attempt to improve the alignment.
946   Align KnownAlign = getOrEnforceKnownAlignment(
947       Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
948   MaybeAlign LoadAlign = LI.getAlign();
949   Align EffectiveLoadAlign =
950       LoadAlign ? *LoadAlign : DL.getABITypeAlign(LI.getType());
951 
952   if (KnownAlign > EffectiveLoadAlign)
953     LI.setAlignment(KnownAlign);
954   else if (LoadAlign == 0)
955     LI.setAlignment(EffectiveLoadAlign);
956 
957   // Replace GEP indices if possible.
958   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
959       Worklist.push(NewGEPI);
960       return &LI;
961   }
962 
963   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
964     return Res;
965 
966   // Do really simple store-to-load forwarding and load CSE, to catch cases
967   // where there are several consecutive memory accesses to the same location,
968   // separated by a few arithmetic operations.
969   BasicBlock::iterator BBI(LI);
970   bool IsLoadCSE = false;
971   if (Value *AvailableVal = FindAvailableLoadedValue(
972           &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
973     if (IsLoadCSE)
974       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
975 
976     return replaceInstUsesWith(
977         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
978                                            LI.getName() + ".cast"));
979   }
980 
981   // None of the following transforms are legal for volatile/ordered atomic
982   // loads.  Most of them do apply for unordered atomics.
983   if (!LI.isUnordered()) return nullptr;
984 
985   // load(gep null, ...) -> unreachable
986   // load null/undef -> unreachable
987   // TODO: Consider a target hook for valid address spaces for this xforms.
988   if (canSimplifyNullLoadOrGEP(LI, Op)) {
989     // Insert a new store to null instruction before the load to indicate
990     // that this code is not reachable.  We do this instead of inserting
991     // an unreachable instruction directly because we cannot modify the
992     // CFG.
993     StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
994                                   Constant::getNullValue(Op->getType()), &LI);
995     SI->setDebugLoc(LI.getDebugLoc());
996     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
997   }
998 
999   if (Op->hasOneUse()) {
1000     // Change select and PHI nodes to select values instead of addresses: this
1001     // helps alias analysis out a lot, allows many others simplifications, and
1002     // exposes redundancy in the code.
1003     //
1004     // Note that we cannot do the transformation unless we know that the
1005     // introduced loads cannot trap!  Something like this is valid as long as
1006     // the condition is always false: load (select bool %C, int* null, int* %G),
1007     // but it would not be valid if we transformed it to load from null
1008     // unconditionally.
1009     //
1010     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1011       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1012       Align Alignment = LI.getAlign();
1013       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1014                                       Alignment, DL, SI) &&
1015           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1016                                       Alignment, DL, SI)) {
1017         LoadInst *V1 =
1018             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1019                                SI->getOperand(1)->getName() + ".val");
1020         LoadInst *V2 =
1021             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1022                                SI->getOperand(2)->getName() + ".val");
1023         assert(LI.isUnordered() && "implied by above");
1024         V1->setAlignment(Alignment);
1025         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1026         V2->setAlignment(Alignment);
1027         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1028         return SelectInst::Create(SI->getCondition(), V1, V2);
1029       }
1030 
1031       // load (select (cond, null, P)) -> load P
1032       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1033           !NullPointerIsDefined(SI->getFunction(),
1034                                 LI.getPointerAddressSpace()))
1035         return replaceOperand(LI, 0, SI->getOperand(2));
1036 
1037       // load (select (cond, P, null)) -> load P
1038       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1039           !NullPointerIsDefined(SI->getFunction(),
1040                                 LI.getPointerAddressSpace()))
1041         return replaceOperand(LI, 0, SI->getOperand(1));
1042     }
1043   }
1044   return nullptr;
1045 }
1046 
1047 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1048 ///
1049 /// \returns underlying value that was "cast", or nullptr otherwise.
1050 ///
1051 /// For example, if we have:
1052 ///
1053 ///     %E0 = extractelement <2 x double> %U, i32 0
1054 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1055 ///     %E1 = extractelement <2 x double> %U, i32 1
1056 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1057 ///
1058 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1059 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1060 /// Note that %U may contain non-undef values where %V1 has undef.
1061 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
1062   Value *U = nullptr;
1063   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1064     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1065     if (!E)
1066       return nullptr;
1067     auto *W = E->getVectorOperand();
1068     if (!U)
1069       U = W;
1070     else if (U != W)
1071       return nullptr;
1072     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1073     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1074       return nullptr;
1075     V = IV->getAggregateOperand();
1076   }
1077   if (!isa<UndefValue>(V) ||!U)
1078     return nullptr;
1079 
1080   auto *UT = cast<VectorType>(U->getType());
1081   auto *VT = V->getType();
1082   // Check that types UT and VT are bitwise isomorphic.
1083   const auto &DL = IC.getDataLayout();
1084   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1085     return nullptr;
1086   }
1087   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1088     if (AT->getNumElements() != UT->getNumElements())
1089       return nullptr;
1090   } else {
1091     auto *ST = cast<StructType>(VT);
1092     if (ST->getNumElements() != UT->getNumElements())
1093       return nullptr;
1094     for (const auto *EltT : ST->elements()) {
1095       if (EltT != UT->getElementType())
1096         return nullptr;
1097     }
1098   }
1099   return U;
1100 }
1101 
1102 /// Combine stores to match the type of value being stored.
1103 ///
1104 /// The core idea here is that the memory does not have any intrinsic type and
1105 /// where we can we should match the type of a store to the type of value being
1106 /// stored.
1107 ///
1108 /// However, this routine must never change the width of a store or the number of
1109 /// stores as that would introduce a semantic change. This combine is expected to
1110 /// be a semantic no-op which just allows stores to more closely model the types
1111 /// of their incoming values.
1112 ///
1113 /// Currently, we also refuse to change the precise type used for an atomic or
1114 /// volatile store. This is debatable, and might be reasonable to change later.
1115 /// However, it is risky in case some backend or other part of LLVM is relying
1116 /// on the exact type stored to select appropriate atomic operations.
1117 ///
1118 /// \returns true if the store was successfully combined away. This indicates
1119 /// the caller must erase the store instruction. We have to let the caller erase
1120 /// the store instruction as otherwise there is no way to signal whether it was
1121 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1122 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
1123   // FIXME: We could probably with some care handle both volatile and ordered
1124   // atomic stores here but it isn't clear that this is important.
1125   if (!SI.isUnordered())
1126     return false;
1127 
1128   // swifterror values can't be bitcasted.
1129   if (SI.getPointerOperand()->isSwiftError())
1130     return false;
1131 
1132   Value *V = SI.getValueOperand();
1133 
1134   // Fold away bit casts of the stored value by storing the original type.
1135   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1136     V = BC->getOperand(0);
1137     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1138       combineStoreToNewValue(IC, SI, V);
1139       return true;
1140     }
1141   }
1142 
1143   if (Value *U = likeBitCastFromVector(IC, V))
1144     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1145       combineStoreToNewValue(IC, SI, U);
1146       return true;
1147     }
1148 
1149   // FIXME: We should also canonicalize stores of vectors when their elements
1150   // are cast to other types.
1151   return false;
1152 }
1153 
1154 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1155   // FIXME: We could probably with some care handle both volatile and atomic
1156   // stores here but it isn't clear that this is important.
1157   if (!SI.isSimple())
1158     return false;
1159 
1160   Value *V = SI.getValueOperand();
1161   Type *T = V->getType();
1162 
1163   if (!T->isAggregateType())
1164     return false;
1165 
1166   if (auto *ST = dyn_cast<StructType>(T)) {
1167     // If the struct only have one element, we unpack.
1168     unsigned Count = ST->getNumElements();
1169     if (Count == 1) {
1170       V = IC.Builder.CreateExtractValue(V, 0);
1171       combineStoreToNewValue(IC, SI, V);
1172       return true;
1173     }
1174 
1175     // We don't want to break loads with padding here as we'd loose
1176     // the knowledge that padding exists for the rest of the pipeline.
1177     const DataLayout &DL = IC.getDataLayout();
1178     auto *SL = DL.getStructLayout(ST);
1179     if (SL->hasPadding())
1180       return false;
1181 
1182     const auto Align = DL.getValueOrABITypeAlignment(SI.getAlign(), ST);
1183 
1184     SmallString<16> EltName = V->getName();
1185     EltName += ".elt";
1186     auto *Addr = SI.getPointerOperand();
1187     SmallString<16> AddrName = Addr->getName();
1188     AddrName += ".repack";
1189 
1190     auto *IdxType = Type::getInt32Ty(ST->getContext());
1191     auto *Zero = ConstantInt::get(IdxType, 0);
1192     for (unsigned i = 0; i < Count; i++) {
1193       Value *Indices[2] = {
1194         Zero,
1195         ConstantInt::get(IdxType, i),
1196       };
1197       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1198                                                AddrName);
1199       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1200       auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1201       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1202       AAMDNodes AAMD;
1203       SI.getAAMetadata(AAMD);
1204       NS->setAAMetadata(AAMD);
1205     }
1206 
1207     return true;
1208   }
1209 
1210   if (auto *AT = dyn_cast<ArrayType>(T)) {
1211     // If the array only have one element, we unpack.
1212     auto NumElements = AT->getNumElements();
1213     if (NumElements == 1) {
1214       V = IC.Builder.CreateExtractValue(V, 0);
1215       combineStoreToNewValue(IC, SI, V);
1216       return true;
1217     }
1218 
1219     // Bail out if the array is too large. Ideally we would like to optimize
1220     // arrays of arbitrary size but this has a terrible impact on compile time.
1221     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1222     // tuning.
1223     if (NumElements > IC.MaxArraySizeForCombine)
1224       return false;
1225 
1226     const DataLayout &DL = IC.getDataLayout();
1227     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1228     const auto Align = DL.getValueOrABITypeAlignment(SI.getAlign(), T);
1229 
1230     SmallString<16> EltName = V->getName();
1231     EltName += ".elt";
1232     auto *Addr = SI.getPointerOperand();
1233     SmallString<16> AddrName = Addr->getName();
1234     AddrName += ".repack";
1235 
1236     auto *IdxType = Type::getInt64Ty(T->getContext());
1237     auto *Zero = ConstantInt::get(IdxType, 0);
1238 
1239     uint64_t Offset = 0;
1240     for (uint64_t i = 0; i < NumElements; i++) {
1241       Value *Indices[2] = {
1242         Zero,
1243         ConstantInt::get(IdxType, i),
1244       };
1245       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1246                                                AddrName);
1247       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1248       auto EltAlign = commonAlignment(Align, Offset);
1249       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1250       AAMDNodes AAMD;
1251       SI.getAAMetadata(AAMD);
1252       NS->setAAMetadata(AAMD);
1253       Offset += EltSize;
1254     }
1255 
1256     return true;
1257   }
1258 
1259   return false;
1260 }
1261 
1262 /// equivalentAddressValues - Test if A and B will obviously have the same
1263 /// value. This includes recognizing that %t0 and %t1 will have the same
1264 /// value in code like this:
1265 ///   %t0 = getelementptr \@a, 0, 3
1266 ///   store i32 0, i32* %t0
1267 ///   %t1 = getelementptr \@a, 0, 3
1268 ///   %t2 = load i32* %t1
1269 ///
1270 static bool equivalentAddressValues(Value *A, Value *B) {
1271   // Test if the values are trivially equivalent.
1272   if (A == B) return true;
1273 
1274   // Test if the values come form identical arithmetic instructions.
1275   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1276   // its only used to compare two uses within the same basic block, which
1277   // means that they'll always either have the same value or one of them
1278   // will have an undefined value.
1279   if (isa<BinaryOperator>(A) ||
1280       isa<CastInst>(A) ||
1281       isa<PHINode>(A) ||
1282       isa<GetElementPtrInst>(A))
1283     if (Instruction *BI = dyn_cast<Instruction>(B))
1284       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1285         return true;
1286 
1287   // Otherwise they may not be equivalent.
1288   return false;
1289 }
1290 
1291 /// Converts store (bitcast (load (bitcast (select ...)))) to
1292 /// store (load (select ...)), where select is minmax:
1293 /// select ((cmp load V1, load V2), V1, V2).
1294 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC,
1295                                                 StoreInst &SI) {
1296   // bitcast?
1297   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1298     return false;
1299   // load? integer?
1300   Value *LoadAddr;
1301   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1302     return false;
1303   auto *LI = cast<LoadInst>(SI.getValueOperand());
1304   if (!LI->getType()->isIntegerTy())
1305     return false;
1306   Type *CmpLoadTy;
1307   if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
1308     return false;
1309 
1310   // Make sure the type would actually change.
1311   // This condition can be hit with chains of bitcasts.
1312   if (LI->getType() == CmpLoadTy)
1313     return false;
1314 
1315   // Make sure we're not changing the size of the load/store.
1316   const auto &DL = IC.getDataLayout();
1317   if (DL.getTypeStoreSizeInBits(LI->getType()) !=
1318       DL.getTypeStoreSizeInBits(CmpLoadTy))
1319     return false;
1320 
1321   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1322         auto *SI = dyn_cast<StoreInst>(U);
1323         return SI && SI->getPointerOperand() != LI &&
1324                peekThroughBitcast(SI->getPointerOperand()) != LoadAddr &&
1325                !SI->getPointerOperand()->isSwiftError();
1326       }))
1327     return false;
1328 
1329   IC.Builder.SetInsertPoint(LI);
1330   LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
1331   // Replace all the stores with stores of the newly loaded value.
1332   for (auto *UI : LI->users()) {
1333     auto *USI = cast<StoreInst>(UI);
1334     IC.Builder.SetInsertPoint(USI);
1335     combineStoreToNewValue(IC, *USI, NewLI);
1336   }
1337   IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1338   IC.eraseInstFromFunction(*LI);
1339   return true;
1340 }
1341 
1342 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1343   Value *Val = SI.getOperand(0);
1344   Value *Ptr = SI.getOperand(1);
1345 
1346   // Try to canonicalize the stored type.
1347   if (combineStoreToValueType(*this, SI))
1348     return eraseInstFromFunction(SI);
1349 
1350   // Attempt to improve the alignment.
1351   const Align KnownAlign = getOrEnforceKnownAlignment(
1352       Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
1353   const MaybeAlign StoreAlign = SI.getAlign();
1354   const Align EffectiveStoreAlign =
1355       StoreAlign ? *StoreAlign : DL.getABITypeAlign(Val->getType());
1356 
1357   if (KnownAlign > EffectiveStoreAlign)
1358     SI.setAlignment(KnownAlign);
1359   else if (!StoreAlign)
1360     SI.setAlignment(EffectiveStoreAlign);
1361 
1362   // Try to canonicalize the stored type.
1363   if (unpackStoreToAggregate(*this, SI))
1364     return eraseInstFromFunction(SI);
1365 
1366   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1367     return eraseInstFromFunction(SI);
1368 
1369   // Replace GEP indices if possible.
1370   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1371       Worklist.push(NewGEPI);
1372       return &SI;
1373   }
1374 
1375   // Don't hack volatile/ordered stores.
1376   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1377   if (!SI.isUnordered()) return nullptr;
1378 
1379   // If the RHS is an alloca with a single use, zapify the store, making the
1380   // alloca dead.
1381   if (Ptr->hasOneUse()) {
1382     if (isa<AllocaInst>(Ptr))
1383       return eraseInstFromFunction(SI);
1384     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1385       if (isa<AllocaInst>(GEP->getOperand(0))) {
1386         if (GEP->getOperand(0)->hasOneUse())
1387           return eraseInstFromFunction(SI);
1388       }
1389     }
1390   }
1391 
1392   // If we have a store to a location which is known constant, we can conclude
1393   // that the store must be storing the constant value (else the memory
1394   // wouldn't be constant), and this must be a noop.
1395   if (AA->pointsToConstantMemory(Ptr))
1396     return eraseInstFromFunction(SI);
1397 
1398   // Do really simple DSE, to catch cases where there are several consecutive
1399   // stores to the same location, separated by a few arithmetic operations. This
1400   // situation often occurs with bitfield accesses.
1401   BasicBlock::iterator BBI(SI);
1402   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1403        --ScanInsts) {
1404     --BBI;
1405     // Don't count debug info directives, lest they affect codegen,
1406     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1407     if (isa<DbgInfoIntrinsic>(BBI) ||
1408         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1409       ScanInsts++;
1410       continue;
1411     }
1412 
1413     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1414       // Prev store isn't volatile, and stores to the same location?
1415       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1416                                                         SI.getOperand(1))) {
1417         ++NumDeadStore;
1418         // Manually add back the original store to the worklist now, so it will
1419         // be processed after the operands of the removed store, as this may
1420         // expose additional DSE opportunities.
1421         Worklist.push(&SI);
1422         eraseInstFromFunction(*PrevSI);
1423         return nullptr;
1424       }
1425       break;
1426     }
1427 
1428     // If this is a load, we have to stop.  However, if the loaded value is from
1429     // the pointer we're loading and is producing the pointer we're storing,
1430     // then *this* store is dead (X = load P; store X -> P).
1431     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1432       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1433         assert(SI.isUnordered() && "can't eliminate ordering operation");
1434         return eraseInstFromFunction(SI);
1435       }
1436 
1437       // Otherwise, this is a load from some other location.  Stores before it
1438       // may not be dead.
1439       break;
1440     }
1441 
1442     // Don't skip over loads, throws or things that can modify memory.
1443     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1444       break;
1445   }
1446 
1447   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1448   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1449   if (canSimplifyNullStoreOrGEP(SI)) {
1450     if (!isa<UndefValue>(Val))
1451       return replaceOperand(SI, 0, UndefValue::get(Val->getType()));
1452     return nullptr;  // Do not modify these!
1453   }
1454 
1455   // store undef, Ptr -> noop
1456   if (isa<UndefValue>(Val))
1457     return eraseInstFromFunction(SI);
1458 
1459   // If this store is the second-to-last instruction in the basic block
1460   // (excluding debug info and bitcasts of pointers) and if the block ends with
1461   // an unconditional branch, try to move the store to the successor block.
1462   BBI = SI.getIterator();
1463   do {
1464     ++BBI;
1465   } while (isa<DbgInfoIntrinsic>(BBI) ||
1466            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1467 
1468   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1469     if (BI->isUnconditional())
1470       mergeStoreIntoSuccessor(SI);
1471 
1472   return nullptr;
1473 }
1474 
1475 /// Try to transform:
1476 ///   if () { *P = v1; } else { *P = v2 }
1477 /// or:
1478 ///   *P = v1; if () { *P = v2; }
1479 /// into a phi node with a store in the successor.
1480 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) {
1481   assert(SI.isUnordered() &&
1482          "This code has not been audited for volatile or ordered store case.");
1483 
1484   // Check if the successor block has exactly 2 incoming edges.
1485   BasicBlock *StoreBB = SI.getParent();
1486   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1487   if (!DestBB->hasNPredecessors(2))
1488     return false;
1489 
1490   // Capture the other block (the block that doesn't contain our store).
1491   pred_iterator PredIter = pred_begin(DestBB);
1492   if (*PredIter == StoreBB)
1493     ++PredIter;
1494   BasicBlock *OtherBB = *PredIter;
1495 
1496   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1497   // for example, if SI is in an infinite loop.
1498   if (StoreBB == DestBB || OtherBB == DestBB)
1499     return false;
1500 
1501   // Verify that the other block ends in a branch and is not otherwise empty.
1502   BasicBlock::iterator BBI(OtherBB->getTerminator());
1503   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1504   if (!OtherBr || BBI == OtherBB->begin())
1505     return false;
1506 
1507   // If the other block ends in an unconditional branch, check for the 'if then
1508   // else' case. There is an instruction before the branch.
1509   StoreInst *OtherStore = nullptr;
1510   if (OtherBr->isUnconditional()) {
1511     --BBI;
1512     // Skip over debugging info.
1513     while (isa<DbgInfoIntrinsic>(BBI) ||
1514            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1515       if (BBI==OtherBB->begin())
1516         return false;
1517       --BBI;
1518     }
1519     // If this isn't a store, isn't a store to the same location, or is not the
1520     // right kind of store, bail out.
1521     OtherStore = dyn_cast<StoreInst>(BBI);
1522     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1523         !SI.isSameOperationAs(OtherStore))
1524       return false;
1525   } else {
1526     // Otherwise, the other block ended with a conditional branch. If one of the
1527     // destinations is StoreBB, then we have the if/then case.
1528     if (OtherBr->getSuccessor(0) != StoreBB &&
1529         OtherBr->getSuccessor(1) != StoreBB)
1530       return false;
1531 
1532     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1533     // if/then triangle. See if there is a store to the same ptr as SI that
1534     // lives in OtherBB.
1535     for (;; --BBI) {
1536       // Check to see if we find the matching store.
1537       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1538         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1539             !SI.isSameOperationAs(OtherStore))
1540           return false;
1541         break;
1542       }
1543       // If we find something that may be using or overwriting the stored
1544       // value, or if we run out of instructions, we can't do the transform.
1545       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1546           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1547         return false;
1548     }
1549 
1550     // In order to eliminate the store in OtherBr, we have to make sure nothing
1551     // reads or overwrites the stored value in StoreBB.
1552     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1553       // FIXME: This should really be AA driven.
1554       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1555         return false;
1556     }
1557   }
1558 
1559   // Insert a PHI node now if we need it.
1560   Value *MergedVal = OtherStore->getOperand(0);
1561   // The debug locations of the original instructions might differ. Merge them.
1562   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1563                                                      OtherStore->getDebugLoc());
1564   if (MergedVal != SI.getOperand(0)) {
1565     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1566     PN->addIncoming(SI.getOperand(0), SI.getParent());
1567     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1568     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1569     PN->setDebugLoc(MergedLoc);
1570   }
1571 
1572   // Advance to a place where it is safe to insert the new store and insert it.
1573   BBI = DestBB->getFirstInsertionPt();
1574   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(),
1575                                    MaybeAlign(SI.getAlignment()),
1576                                    SI.getOrdering(), SI.getSyncScopeID());
1577   InsertNewInstBefore(NewSI, *BBI);
1578   NewSI->setDebugLoc(MergedLoc);
1579 
1580   // If the two stores had AA tags, merge them.
1581   AAMDNodes AATags;
1582   SI.getAAMetadata(AATags);
1583   if (AATags) {
1584     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1585     NewSI->setAAMetadata(AATags);
1586   }
1587 
1588   // Nuke the old stores.
1589   eraseInstFromFunction(SI);
1590   eraseInstFromFunction(*OtherStore);
1591   return true;
1592 }
1593