1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 36 37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 38 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 39 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 41 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 42 /// the alloca, and if the source pointer is a pointer to a constant global, we 43 /// can optimize this. 44 static bool 45 isOnlyCopiedFromConstantMemory(AAResults *AA, 46 Value *V, MemTransferInst *&TheCopy, 47 SmallVectorImpl<Instruction *> &ToDelete) { 48 // We track lifetime intrinsics as we encounter them. If we decide to go 49 // ahead and replace the value with the global, this lets the caller quickly 50 // eliminate the markers. 51 52 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 53 ValuesToInspect.emplace_back(V, false); 54 while (!ValuesToInspect.empty()) { 55 auto ValuePair = ValuesToInspect.pop_back_val(); 56 const bool IsOffset = ValuePair.second; 57 for (auto &U : ValuePair.first->uses()) { 58 auto *I = cast<Instruction>(U.getUser()); 59 60 if (auto *LI = dyn_cast<LoadInst>(I)) { 61 // Ignore non-volatile loads, they are always ok. 62 if (!LI->isSimple()) return false; 63 continue; 64 } 65 66 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 67 // If uses of the bitcast are ok, we are ok. 68 ValuesToInspect.emplace_back(I, IsOffset); 69 continue; 70 } 71 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 72 // If the GEP has all zero indices, it doesn't offset the pointer. If it 73 // doesn't, it does. 74 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 75 continue; 76 } 77 78 if (auto *Call = dyn_cast<CallBase>(I)) { 79 // If this is the function being called then we treat it like a load and 80 // ignore it. 81 if (Call->isCallee(&U)) 82 continue; 83 84 unsigned DataOpNo = Call->getDataOperandNo(&U); 85 bool IsArgOperand = Call->isArgOperand(&U); 86 87 // Inalloca arguments are clobbered by the call. 88 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 89 return false; 90 91 // If this is a readonly/readnone call site, then we know it is just a 92 // load (but one that potentially returns the value itself), so we can 93 // ignore it if we know that the value isn't captured. 94 if (Call->onlyReadsMemory() && 95 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 96 continue; 97 98 // If this is being passed as a byval argument, the caller is making a 99 // copy, so it is only a read of the alloca. 100 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 101 continue; 102 } 103 104 // Lifetime intrinsics can be handled by the caller. 105 if (I->isLifetimeStartOrEnd()) { 106 assert(I->use_empty() && "Lifetime markers have no result to use!"); 107 ToDelete.push_back(I); 108 continue; 109 } 110 111 // If this is isn't our memcpy/memmove, reject it as something we can't 112 // handle. 113 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 114 if (!MI) 115 return false; 116 117 // If the transfer is using the alloca as a source of the transfer, then 118 // ignore it since it is a load (unless the transfer is volatile). 119 if (U.getOperandNo() == 1) { 120 if (MI->isVolatile()) return false; 121 continue; 122 } 123 124 // If we already have seen a copy, reject the second one. 125 if (TheCopy) return false; 126 127 // If the pointer has been offset from the start of the alloca, we can't 128 // safely handle this. 129 if (IsOffset) return false; 130 131 // If the memintrinsic isn't using the alloca as the dest, reject it. 132 if (U.getOperandNo() != 0) return false; 133 134 // If the source of the memcpy/move is not a constant global, reject it. 135 if (!AA->pointsToConstantMemory(MI->getSource())) 136 return false; 137 138 // Otherwise, the transform is safe. Remember the copy instruction. 139 TheCopy = MI; 140 } 141 } 142 return true; 143 } 144 145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 146 /// modified by a copy from a constant global. If we can prove this, we can 147 /// replace any uses of the alloca with uses of the global directly. 148 static MemTransferInst * 149 isOnlyCopiedFromConstantMemory(AAResults *AA, 150 AllocaInst *AI, 151 SmallVectorImpl<Instruction *> &ToDelete) { 152 MemTransferInst *TheCopy = nullptr; 153 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) 154 return TheCopy; 155 return nullptr; 156 } 157 158 /// Returns true if V is dereferenceable for size of alloca. 159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 160 const DataLayout &DL) { 161 if (AI->isArrayAllocation()) 162 return false; 163 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 164 if (!AllocaSize) 165 return false; 166 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()), 167 APInt(64, AllocaSize), DL); 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC, 171 AllocaInst &AI) { 172 // Check for array size of 1 (scalar allocation). 173 if (!AI.isArrayAllocation()) { 174 // i32 1 is the canonical array size for scalar allocations. 175 if (AI.getArraySize()->getType()->isIntegerTy(32)) 176 return nullptr; 177 178 // Canonicalize it. 179 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); 180 } 181 182 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 183 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 184 if (C->getValue().getActiveBits() <= 64) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 187 New->setAlignment(AI.getAlign()); 188 189 // Scan to the end of the allocation instructions, to skip over a block of 190 // allocas if possible...also skip interleaved debug info 191 // 192 BasicBlock::iterator It(New); 193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 194 ++It; 195 196 // Now that I is pointing to the first non-allocation-inst in the block, 197 // insert our getelementptr instruction... 198 // 199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 200 Value *NullIdx = Constant::getNullValue(IdxTy); 201 Value *Idx[2] = {NullIdx, NullIdx}; 202 Instruction *GEP = GetElementPtrInst::CreateInBounds( 203 NewTy, New, Idx, New->getName() + ".sub"); 204 IC.InsertNewInstBefore(GEP, *It); 205 206 // Now make everything use the getelementptr instead of the original 207 // allocation. 208 return IC.replaceInstUsesWith(AI, GEP); 209 } 210 } 211 212 if (isa<UndefValue>(AI.getArraySize())) 213 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 214 215 // Ensure that the alloca array size argument has type intptr_t, so that 216 // any casting is exposed early. 217 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 218 if (AI.getArraySize()->getType() != IntPtrTy) { 219 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 220 return IC.replaceOperand(AI, 0, V); 221 } 222 223 return nullptr; 224 } 225 226 namespace { 227 // If I and V are pointers in different address space, it is not allowed to 228 // use replaceAllUsesWith since I and V have different types. A 229 // non-target-specific transformation should not use addrspacecast on V since 230 // the two address space may be disjoint depending on target. 231 // 232 // This class chases down uses of the old pointer until reaching the load 233 // instructions, then replaces the old pointer in the load instructions with 234 // the new pointer. If during the chasing it sees bitcast or GEP, it will 235 // create new bitcast or GEP with the new pointer and use them in the load 236 // instruction. 237 class PointerReplacer { 238 public: 239 PointerReplacer(InstCombinerImpl &IC) : IC(IC) {} 240 void replacePointer(Instruction &I, Value *V); 241 242 private: 243 void findLoadAndReplace(Instruction &I); 244 void replace(Instruction *I); 245 Value *getReplacement(Value *I); 246 247 SmallVector<Instruction *, 4> Path; 248 MapVector<Value *, Value *> WorkMap; 249 InstCombinerImpl &IC; 250 }; 251 } // end anonymous namespace 252 253 void PointerReplacer::findLoadAndReplace(Instruction &I) { 254 for (auto U : I.users()) { 255 auto *Inst = dyn_cast<Instruction>(&*U); 256 if (!Inst) 257 return; 258 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 259 if (isa<LoadInst>(Inst)) { 260 for (auto P : Path) 261 replace(P); 262 replace(Inst); 263 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 264 Path.push_back(Inst); 265 findLoadAndReplace(*Inst); 266 Path.pop_back(); 267 } else { 268 return; 269 } 270 } 271 } 272 273 Value *PointerReplacer::getReplacement(Value *V) { 274 auto Loc = WorkMap.find(V); 275 if (Loc != WorkMap.end()) 276 return Loc->second; 277 return nullptr; 278 } 279 280 void PointerReplacer::replace(Instruction *I) { 281 if (getReplacement(I)) 282 return; 283 284 if (auto *LT = dyn_cast<LoadInst>(I)) { 285 auto *V = getReplacement(LT->getPointerOperand()); 286 assert(V && "Operand not replaced"); 287 auto *NewI = new LoadInst(I->getType(), V, "", false, 288 IC.getDataLayout().getABITypeAlign(I->getType())); 289 NewI->takeName(LT); 290 IC.InsertNewInstWith(NewI, *LT); 291 IC.replaceInstUsesWith(*LT, NewI); 292 WorkMap[LT] = NewI; 293 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 294 auto *V = getReplacement(GEP->getPointerOperand()); 295 assert(V && "Operand not replaced"); 296 SmallVector<Value *, 8> Indices; 297 Indices.append(GEP->idx_begin(), GEP->idx_end()); 298 auto *NewI = GetElementPtrInst::Create( 299 V->getType()->getPointerElementType(), V, Indices); 300 IC.InsertNewInstWith(NewI, *GEP); 301 NewI->takeName(GEP); 302 WorkMap[GEP] = NewI; 303 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 304 auto *V = getReplacement(BC->getOperand(0)); 305 assert(V && "Operand not replaced"); 306 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 307 V->getType()->getPointerAddressSpace()); 308 auto *NewI = new BitCastInst(V, NewT); 309 IC.InsertNewInstWith(NewI, *BC); 310 NewI->takeName(BC); 311 WorkMap[BC] = NewI; 312 } else { 313 llvm_unreachable("should never reach here"); 314 } 315 } 316 317 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 318 #ifndef NDEBUG 319 auto *PT = cast<PointerType>(I.getType()); 320 auto *NT = cast<PointerType>(V->getType()); 321 assert(PT != NT && PT->getElementType() == NT->getElementType() && 322 "Invalid usage"); 323 #endif 324 WorkMap[&I] = V; 325 findLoadAndReplace(I); 326 } 327 328 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) { 329 if (auto *I = simplifyAllocaArraySize(*this, AI)) 330 return I; 331 332 if (AI.getAllocatedType()->isSized()) { 333 // Move all alloca's of zero byte objects to the entry block and merge them 334 // together. Note that we only do this for alloca's, because malloc should 335 // allocate and return a unique pointer, even for a zero byte allocation. 336 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) { 337 // For a zero sized alloca there is no point in doing an array allocation. 338 // This is helpful if the array size is a complicated expression not used 339 // elsewhere. 340 if (AI.isArrayAllocation()) 341 return replaceOperand(AI, 0, 342 ConstantInt::get(AI.getArraySize()->getType(), 1)); 343 344 // Get the first instruction in the entry block. 345 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 346 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 347 if (FirstInst != &AI) { 348 // If the entry block doesn't start with a zero-size alloca then move 349 // this one to the start of the entry block. There is no problem with 350 // dominance as the array size was forced to a constant earlier already. 351 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 352 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 353 DL.getTypeAllocSize(EntryAI->getAllocatedType()) 354 .getKnownMinSize() != 0) { 355 AI.moveBefore(FirstInst); 356 return &AI; 357 } 358 359 // Replace this zero-sized alloca with the one at the start of the entry 360 // block after ensuring that the address will be aligned enough for both 361 // types. 362 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); 363 EntryAI->setAlignment(MaxAlign); 364 if (AI.getType() != EntryAI->getType()) 365 return new BitCastInst(EntryAI, AI.getType()); 366 return replaceInstUsesWith(AI, EntryAI); 367 } 368 } 369 } 370 371 // Check to see if this allocation is only modified by a memcpy/memmove from 372 // a constant whose alignment is equal to or exceeds that of the allocation. 373 // If this is the case, we can change all users to use the constant global 374 // instead. This is commonly produced by the CFE by constructs like "void 375 // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently 376 // read. 377 SmallVector<Instruction *, 4> ToDelete; 378 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { 379 Align AllocaAlign = AI.getAlign(); 380 Align SourceAlign = getOrEnforceKnownAlignment( 381 Copy->getSource(), AllocaAlign, DL, &AI, &AC, &DT); 382 if (AllocaAlign <= SourceAlign && 383 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 384 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 385 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 386 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 387 eraseInstFromFunction(*ToDelete[i]); 388 Value *TheSrc = Copy->getSource(); 389 auto *SrcTy = TheSrc->getType(); 390 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 391 SrcTy->getPointerAddressSpace()); 392 Value *Cast = 393 Builder.CreatePointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 394 if (AI.getType()->getPointerAddressSpace() == 395 SrcTy->getPointerAddressSpace()) { 396 Instruction *NewI = replaceInstUsesWith(AI, Cast); 397 eraseInstFromFunction(*Copy); 398 ++NumGlobalCopies; 399 return NewI; 400 } 401 402 PointerReplacer PtrReplacer(*this); 403 PtrReplacer.replacePointer(AI, Cast); 404 ++NumGlobalCopies; 405 } 406 } 407 408 // At last, use the generic allocation site handler to aggressively remove 409 // unused allocas. 410 return visitAllocSite(AI); 411 } 412 413 // Are we allowed to form a atomic load or store of this type? 414 static bool isSupportedAtomicType(Type *Ty) { 415 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 416 } 417 418 /// Helper to combine a load to a new type. 419 /// 420 /// This just does the work of combining a load to a new type. It handles 421 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 422 /// loaded *value* type. This will convert it to a pointer, cast the operand to 423 /// that pointer type, load it, etc. 424 /// 425 /// Note that this will create all of the instructions with whatever insert 426 /// point the \c InstCombinerImpl currently is using. 427 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy, 428 const Twine &Suffix) { 429 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 430 "can't fold an atomic load to requested type"); 431 432 Value *Ptr = LI.getPointerOperand(); 433 unsigned AS = LI.getPointerAddressSpace(); 434 Value *NewPtr = nullptr; 435 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 436 NewPtr->getType()->getPointerElementType() == NewTy && 437 NewPtr->getType()->getPointerAddressSpace() == AS)) 438 NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 439 440 LoadInst *NewLoad = Builder.CreateAlignedLoad( 441 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); 442 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 443 copyMetadataForLoad(*NewLoad, LI); 444 return NewLoad; 445 } 446 447 /// Combine a store to a new type. 448 /// 449 /// Returns the newly created store instruction. 450 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI, 451 Value *V) { 452 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 453 "can't fold an atomic store of requested type"); 454 455 Value *Ptr = SI.getPointerOperand(); 456 unsigned AS = SI.getPointerAddressSpace(); 457 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 458 SI.getAllMetadata(MD); 459 460 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 461 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 462 SI.getAlign(), SI.isVolatile()); 463 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 464 for (const auto &MDPair : MD) { 465 unsigned ID = MDPair.first; 466 MDNode *N = MDPair.second; 467 // Note, essentially every kind of metadata should be preserved here! This 468 // routine is supposed to clone a store instruction changing *only its 469 // type*. The only metadata it makes sense to drop is metadata which is 470 // invalidated when the pointer type changes. This should essentially 471 // never be the case in LLVM, but we explicitly switch over only known 472 // metadata to be conservatively correct. If you are adding metadata to 473 // LLVM which pertains to stores, you almost certainly want to add it 474 // here. 475 switch (ID) { 476 case LLVMContext::MD_dbg: 477 case LLVMContext::MD_tbaa: 478 case LLVMContext::MD_prof: 479 case LLVMContext::MD_fpmath: 480 case LLVMContext::MD_tbaa_struct: 481 case LLVMContext::MD_alias_scope: 482 case LLVMContext::MD_noalias: 483 case LLVMContext::MD_nontemporal: 484 case LLVMContext::MD_mem_parallel_loop_access: 485 case LLVMContext::MD_access_group: 486 // All of these directly apply. 487 NewStore->setMetadata(ID, N); 488 break; 489 case LLVMContext::MD_invariant_load: 490 case LLVMContext::MD_nonnull: 491 case LLVMContext::MD_range: 492 case LLVMContext::MD_align: 493 case LLVMContext::MD_dereferenceable: 494 case LLVMContext::MD_dereferenceable_or_null: 495 // These don't apply for stores. 496 break; 497 } 498 } 499 500 return NewStore; 501 } 502 503 /// Returns true if instruction represent minmax pattern like: 504 /// select ((cmp load V1, load V2), V1, V2). 505 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 506 assert(V->getType()->isPointerTy() && "Expected pointer type."); 507 // Ignore possible ty* to ixx* bitcast. 508 V = InstCombiner::peekThroughBitcast(V); 509 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 510 // pattern. 511 CmpInst::Predicate Pred; 512 Instruction *L1; 513 Instruction *L2; 514 Value *LHS; 515 Value *RHS; 516 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 517 m_Value(LHS), m_Value(RHS)))) 518 return false; 519 LoadTy = L1->getType(); 520 return (match(L1, m_Load(m_Specific(LHS))) && 521 match(L2, m_Load(m_Specific(RHS)))) || 522 (match(L1, m_Load(m_Specific(RHS))) && 523 match(L2, m_Load(m_Specific(LHS)))); 524 } 525 526 /// Combine loads to match the type of their uses' value after looking 527 /// through intervening bitcasts. 528 /// 529 /// The core idea here is that if the result of a load is used in an operation, 530 /// we should load the type most conducive to that operation. For example, when 531 /// loading an integer and converting that immediately to a pointer, we should 532 /// instead directly load a pointer. 533 /// 534 /// However, this routine must never change the width of a load or the number of 535 /// loads as that would introduce a semantic change. This combine is expected to 536 /// be a semantic no-op which just allows loads to more closely model the types 537 /// of their consuming operations. 538 /// 539 /// Currently, we also refuse to change the precise type used for an atomic load 540 /// or a volatile load. This is debatable, and might be reasonable to change 541 /// later. However, it is risky in case some backend or other part of LLVM is 542 /// relying on the exact type loaded to select appropriate atomic operations. 543 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC, 544 LoadInst &LI) { 545 // FIXME: We could probably with some care handle both volatile and ordered 546 // atomic loads here but it isn't clear that this is important. 547 if (!LI.isUnordered()) 548 return nullptr; 549 550 if (LI.use_empty()) 551 return nullptr; 552 553 // swifterror values can't be bitcasted. 554 if (LI.getPointerOperand()->isSwiftError()) 555 return nullptr; 556 557 Type *Ty = LI.getType(); 558 const DataLayout &DL = IC.getDataLayout(); 559 560 // Try to canonicalize loads which are only ever stored to operate over 561 // integers instead of any other type. We only do this when the loaded type 562 // is sized and has a size exactly the same as its store size and the store 563 // size is a legal integer type. 564 // Do not perform canonicalization if minmax pattern is found (to avoid 565 // infinite loop). 566 Type *Dummy; 567 if (!Ty->isIntegerTy() && Ty->isSized() && !isa<ScalableVectorType>(Ty) && 568 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 569 DL.typeSizeEqualsStoreSize(Ty) && !DL.isNonIntegralPointerType(Ty) && 570 !isMinMaxWithLoads(InstCombiner::peekThroughBitcast( 571 LI.getPointerOperand(), /*OneUseOnly=*/true), 572 Dummy)) { 573 if (all_of(LI.users(), [&LI](User *U) { 574 auto *SI = dyn_cast<StoreInst>(U); 575 return SI && SI->getPointerOperand() != &LI && 576 !SI->getPointerOperand()->isSwiftError(); 577 })) { 578 LoadInst *NewLoad = IC.combineLoadToNewType( 579 LI, Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 580 // Replace all the stores with stores of the newly loaded value. 581 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 582 auto *SI = cast<StoreInst>(*UI++); 583 IC.Builder.SetInsertPoint(SI); 584 combineStoreToNewValue(IC, *SI, NewLoad); 585 IC.eraseInstFromFunction(*SI); 586 } 587 assert(LI.use_empty() && "Failed to remove all users of the load!"); 588 // Return the old load so the combiner can delete it safely. 589 return &LI; 590 } 591 } 592 593 // Fold away bit casts of the loaded value by loading the desired type. 594 // We can do this for BitCastInsts as well as casts from and to pointer types, 595 // as long as those are noops (i.e., the source or dest type have the same 596 // bitwidth as the target's pointers). 597 if (LI.hasOneUse()) 598 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 599 if (CI->isNoopCast(DL)) 600 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 601 LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy()); 602 CI->replaceAllUsesWith(NewLoad); 603 IC.eraseInstFromFunction(*CI); 604 return &LI; 605 } 606 607 // FIXME: We should also canonicalize loads of vectors when their elements are 608 // cast to other types. 609 return nullptr; 610 } 611 612 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) { 613 // FIXME: We could probably with some care handle both volatile and atomic 614 // stores here but it isn't clear that this is important. 615 if (!LI.isSimple()) 616 return nullptr; 617 618 Type *T = LI.getType(); 619 if (!T->isAggregateType()) 620 return nullptr; 621 622 StringRef Name = LI.getName(); 623 assert(LI.getAlignment() && "Alignment must be set at this point"); 624 625 if (auto *ST = dyn_cast<StructType>(T)) { 626 // If the struct only have one element, we unpack. 627 auto NumElements = ST->getNumElements(); 628 if (NumElements == 1) { 629 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 630 ".unpack"); 631 AAMDNodes AAMD; 632 LI.getAAMetadata(AAMD); 633 NewLoad->setAAMetadata(AAMD); 634 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 635 UndefValue::get(T), NewLoad, 0, Name)); 636 } 637 638 // We don't want to break loads with padding here as we'd loose 639 // the knowledge that padding exists for the rest of the pipeline. 640 const DataLayout &DL = IC.getDataLayout(); 641 auto *SL = DL.getStructLayout(ST); 642 if (SL->hasPadding()) 643 return nullptr; 644 645 const auto Align = LI.getAlign(); 646 auto *Addr = LI.getPointerOperand(); 647 auto *IdxType = Type::getInt32Ty(T->getContext()); 648 auto *Zero = ConstantInt::get(IdxType, 0); 649 650 Value *V = UndefValue::get(T); 651 for (unsigned i = 0; i < NumElements; i++) { 652 Value *Indices[2] = { 653 Zero, 654 ConstantInt::get(IdxType, i), 655 }; 656 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 657 Name + ".elt"); 658 auto *L = IC.Builder.CreateAlignedLoad( 659 ST->getElementType(i), Ptr, 660 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); 661 // Propagate AA metadata. It'll still be valid on the narrowed load. 662 AAMDNodes AAMD; 663 LI.getAAMetadata(AAMD); 664 L->setAAMetadata(AAMD); 665 V = IC.Builder.CreateInsertValue(V, L, i); 666 } 667 668 V->setName(Name); 669 return IC.replaceInstUsesWith(LI, V); 670 } 671 672 if (auto *AT = dyn_cast<ArrayType>(T)) { 673 auto *ET = AT->getElementType(); 674 auto NumElements = AT->getNumElements(); 675 if (NumElements == 1) { 676 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 677 AAMDNodes AAMD; 678 LI.getAAMetadata(AAMD); 679 NewLoad->setAAMetadata(AAMD); 680 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 681 UndefValue::get(T), NewLoad, 0, Name)); 682 } 683 684 // Bail out if the array is too large. Ideally we would like to optimize 685 // arrays of arbitrary size but this has a terrible impact on compile time. 686 // The threshold here is chosen arbitrarily, maybe needs a little bit of 687 // tuning. 688 if (NumElements > IC.MaxArraySizeForCombine) 689 return nullptr; 690 691 const DataLayout &DL = IC.getDataLayout(); 692 auto EltSize = DL.getTypeAllocSize(ET); 693 const auto Align = LI.getAlign(); 694 695 auto *Addr = LI.getPointerOperand(); 696 auto *IdxType = Type::getInt64Ty(T->getContext()); 697 auto *Zero = ConstantInt::get(IdxType, 0); 698 699 Value *V = UndefValue::get(T); 700 uint64_t Offset = 0; 701 for (uint64_t i = 0; i < NumElements; i++) { 702 Value *Indices[2] = { 703 Zero, 704 ConstantInt::get(IdxType, i), 705 }; 706 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 707 Name + ".elt"); 708 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, 709 commonAlignment(Align, Offset), 710 Name + ".unpack"); 711 AAMDNodes AAMD; 712 LI.getAAMetadata(AAMD); 713 L->setAAMetadata(AAMD); 714 V = IC.Builder.CreateInsertValue(V, L, i); 715 Offset += EltSize; 716 } 717 718 V->setName(Name); 719 return IC.replaceInstUsesWith(LI, V); 720 } 721 722 return nullptr; 723 } 724 725 // If we can determine that all possible objects pointed to by the provided 726 // pointer value are, not only dereferenceable, but also definitively less than 727 // or equal to the provided maximum size, then return true. Otherwise, return 728 // false (constant global values and allocas fall into this category). 729 // 730 // FIXME: This should probably live in ValueTracking (or similar). 731 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 732 const DataLayout &DL) { 733 SmallPtrSet<Value *, 4> Visited; 734 SmallVector<Value *, 4> Worklist(1, V); 735 736 do { 737 Value *P = Worklist.pop_back_val(); 738 P = P->stripPointerCasts(); 739 740 if (!Visited.insert(P).second) 741 continue; 742 743 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 744 Worklist.push_back(SI->getTrueValue()); 745 Worklist.push_back(SI->getFalseValue()); 746 continue; 747 } 748 749 if (PHINode *PN = dyn_cast<PHINode>(P)) { 750 for (Value *IncValue : PN->incoming_values()) 751 Worklist.push_back(IncValue); 752 continue; 753 } 754 755 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 756 if (GA->isInterposable()) 757 return false; 758 Worklist.push_back(GA->getAliasee()); 759 continue; 760 } 761 762 // If we know how big this object is, and it is less than MaxSize, continue 763 // searching. Otherwise, return false. 764 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 765 if (!AI->getAllocatedType()->isSized()) 766 return false; 767 768 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 769 if (!CS) 770 return false; 771 772 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 773 // Make sure that, even if the multiplication below would wrap as an 774 // uint64_t, we still do the right thing. 775 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 776 return false; 777 continue; 778 } 779 780 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 781 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 782 return false; 783 784 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 785 if (InitSize > MaxSize) 786 return false; 787 continue; 788 } 789 790 return false; 791 } while (!Worklist.empty()); 792 793 return true; 794 } 795 796 // If we're indexing into an object of a known size, and the outer index is 797 // not a constant, but having any value but zero would lead to undefined 798 // behavior, replace it with zero. 799 // 800 // For example, if we have: 801 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 802 // ... 803 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 804 // ... = load i32* %arrayidx, align 4 805 // Then we know that we can replace %x in the GEP with i64 0. 806 // 807 // FIXME: We could fold any GEP index to zero that would cause UB if it were 808 // not zero. Currently, we only handle the first such index. Also, we could 809 // also search through non-zero constant indices if we kept track of the 810 // offsets those indices implied. 811 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC, 812 GetElementPtrInst *GEPI, Instruction *MemI, 813 unsigned &Idx) { 814 if (GEPI->getNumOperands() < 2) 815 return false; 816 817 // Find the first non-zero index of a GEP. If all indices are zero, return 818 // one past the last index. 819 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 820 unsigned I = 1; 821 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 822 Value *V = GEPI->getOperand(I); 823 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 824 if (CI->isZero()) 825 continue; 826 827 break; 828 } 829 830 return I; 831 }; 832 833 // Skip through initial 'zero' indices, and find the corresponding pointer 834 // type. See if the next index is not a constant. 835 Idx = FirstNZIdx(GEPI); 836 if (Idx == GEPI->getNumOperands()) 837 return false; 838 if (isa<Constant>(GEPI->getOperand(Idx))) 839 return false; 840 841 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 842 Type *AllocTy = 843 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 844 if (!AllocTy || !AllocTy->isSized()) 845 return false; 846 const DataLayout &DL = IC.getDataLayout(); 847 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 848 849 // If there are more indices after the one we might replace with a zero, make 850 // sure they're all non-negative. If any of them are negative, the overall 851 // address being computed might be before the base address determined by the 852 // first non-zero index. 853 auto IsAllNonNegative = [&]() { 854 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 855 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 856 if (Known.isNonNegative()) 857 continue; 858 return false; 859 } 860 861 return true; 862 }; 863 864 // FIXME: If the GEP is not inbounds, and there are extra indices after the 865 // one we'll replace, those could cause the address computation to wrap 866 // (rendering the IsAllNonNegative() check below insufficient). We can do 867 // better, ignoring zero indices (and other indices we can prove small 868 // enough not to wrap). 869 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 870 return false; 871 872 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 873 // also known to be dereferenceable. 874 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 875 IsAllNonNegative(); 876 } 877 878 // If we're indexing into an object with a variable index for the memory 879 // access, but the object has only one element, we can assume that the index 880 // will always be zero. If we replace the GEP, return it. 881 template <typename T> 882 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr, 883 T &MemI) { 884 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 885 unsigned Idx; 886 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 887 Instruction *NewGEPI = GEPI->clone(); 888 NewGEPI->setOperand(Idx, 889 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 890 NewGEPI->insertBefore(GEPI); 891 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 892 return NewGEPI; 893 } 894 } 895 896 return nullptr; 897 } 898 899 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 900 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 901 return false; 902 903 auto *Ptr = SI.getPointerOperand(); 904 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 905 Ptr = GEPI->getOperand(0); 906 return (isa<ConstantPointerNull>(Ptr) && 907 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 908 } 909 910 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 911 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 912 const Value *GEPI0 = GEPI->getOperand(0); 913 if (isa<ConstantPointerNull>(GEPI0) && 914 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 915 return true; 916 } 917 if (isa<UndefValue>(Op) || 918 (isa<ConstantPointerNull>(Op) && 919 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 920 return true; 921 return false; 922 } 923 924 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) { 925 Value *Op = LI.getOperand(0); 926 927 // Try to canonicalize the loaded type. 928 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 929 return Res; 930 931 // Attempt to improve the alignment. 932 Align KnownAlign = getOrEnforceKnownAlignment( 933 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); 934 if (KnownAlign > LI.getAlign()) 935 LI.setAlignment(KnownAlign); 936 937 // Replace GEP indices if possible. 938 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 939 Worklist.push(NewGEPI); 940 return &LI; 941 } 942 943 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 944 return Res; 945 946 // Do really simple store-to-load forwarding and load CSE, to catch cases 947 // where there are several consecutive memory accesses to the same location, 948 // separated by a few arithmetic operations. 949 BasicBlock::iterator BBI(LI); 950 bool IsLoadCSE = false; 951 if (Value *AvailableVal = FindAvailableLoadedValue( 952 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 953 if (IsLoadCSE) 954 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 955 956 return replaceInstUsesWith( 957 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 958 LI.getName() + ".cast")); 959 } 960 961 // None of the following transforms are legal for volatile/ordered atomic 962 // loads. Most of them do apply for unordered atomics. 963 if (!LI.isUnordered()) return nullptr; 964 965 // load(gep null, ...) -> unreachable 966 // load null/undef -> unreachable 967 // TODO: Consider a target hook for valid address spaces for this xforms. 968 if (canSimplifyNullLoadOrGEP(LI, Op)) { 969 // Insert a new store to null instruction before the load to indicate 970 // that this code is not reachable. We do this instead of inserting 971 // an unreachable instruction directly because we cannot modify the 972 // CFG. 973 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 974 Constant::getNullValue(Op->getType()), &LI); 975 SI->setDebugLoc(LI.getDebugLoc()); 976 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 977 } 978 979 if (Op->hasOneUse()) { 980 // Change select and PHI nodes to select values instead of addresses: this 981 // helps alias analysis out a lot, allows many others simplifications, and 982 // exposes redundancy in the code. 983 // 984 // Note that we cannot do the transformation unless we know that the 985 // introduced loads cannot trap! Something like this is valid as long as 986 // the condition is always false: load (select bool %C, int* null, int* %G), 987 // but it would not be valid if we transformed it to load from null 988 // unconditionally. 989 // 990 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 991 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 992 Align Alignment = LI.getAlign(); 993 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 994 Alignment, DL, SI) && 995 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 996 Alignment, DL, SI)) { 997 LoadInst *V1 = 998 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 999 SI->getOperand(1)->getName() + ".val"); 1000 LoadInst *V2 = 1001 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1002 SI->getOperand(2)->getName() + ".val"); 1003 assert(LI.isUnordered() && "implied by above"); 1004 V1->setAlignment(Alignment); 1005 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1006 V2->setAlignment(Alignment); 1007 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1008 return SelectInst::Create(SI->getCondition(), V1, V2); 1009 } 1010 1011 // load (select (cond, null, P)) -> load P 1012 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1013 !NullPointerIsDefined(SI->getFunction(), 1014 LI.getPointerAddressSpace())) 1015 return replaceOperand(LI, 0, SI->getOperand(2)); 1016 1017 // load (select (cond, P, null)) -> load P 1018 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1019 !NullPointerIsDefined(SI->getFunction(), 1020 LI.getPointerAddressSpace())) 1021 return replaceOperand(LI, 0, SI->getOperand(1)); 1022 } 1023 } 1024 return nullptr; 1025 } 1026 1027 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1028 /// 1029 /// \returns underlying value that was "cast", or nullptr otherwise. 1030 /// 1031 /// For example, if we have: 1032 /// 1033 /// %E0 = extractelement <2 x double> %U, i32 0 1034 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1035 /// %E1 = extractelement <2 x double> %U, i32 1 1036 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1037 /// 1038 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1039 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1040 /// Note that %U may contain non-undef values where %V1 has undef. 1041 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) { 1042 Value *U = nullptr; 1043 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1044 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1045 if (!E) 1046 return nullptr; 1047 auto *W = E->getVectorOperand(); 1048 if (!U) 1049 U = W; 1050 else if (U != W) 1051 return nullptr; 1052 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1053 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1054 return nullptr; 1055 V = IV->getAggregateOperand(); 1056 } 1057 if (!isa<UndefValue>(V) ||!U) 1058 return nullptr; 1059 1060 auto *UT = cast<VectorType>(U->getType()); 1061 auto *VT = V->getType(); 1062 // Check that types UT and VT are bitwise isomorphic. 1063 const auto &DL = IC.getDataLayout(); 1064 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1065 return nullptr; 1066 } 1067 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1068 if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1069 return nullptr; 1070 } else { 1071 auto *ST = cast<StructType>(VT); 1072 if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1073 return nullptr; 1074 for (const auto *EltT : ST->elements()) { 1075 if (EltT != UT->getElementType()) 1076 return nullptr; 1077 } 1078 } 1079 return U; 1080 } 1081 1082 /// Combine stores to match the type of value being stored. 1083 /// 1084 /// The core idea here is that the memory does not have any intrinsic type and 1085 /// where we can we should match the type of a store to the type of value being 1086 /// stored. 1087 /// 1088 /// However, this routine must never change the width of a store or the number of 1089 /// stores as that would introduce a semantic change. This combine is expected to 1090 /// be a semantic no-op which just allows stores to more closely model the types 1091 /// of their incoming values. 1092 /// 1093 /// Currently, we also refuse to change the precise type used for an atomic or 1094 /// volatile store. This is debatable, and might be reasonable to change later. 1095 /// However, it is risky in case some backend or other part of LLVM is relying 1096 /// on the exact type stored to select appropriate atomic operations. 1097 /// 1098 /// \returns true if the store was successfully combined away. This indicates 1099 /// the caller must erase the store instruction. We have to let the caller erase 1100 /// the store instruction as otherwise there is no way to signal whether it was 1101 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1102 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) { 1103 // FIXME: We could probably with some care handle both volatile and ordered 1104 // atomic stores here but it isn't clear that this is important. 1105 if (!SI.isUnordered()) 1106 return false; 1107 1108 // swifterror values can't be bitcasted. 1109 if (SI.getPointerOperand()->isSwiftError()) 1110 return false; 1111 1112 Value *V = SI.getValueOperand(); 1113 1114 // Fold away bit casts of the stored value by storing the original type. 1115 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1116 V = BC->getOperand(0); 1117 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1118 combineStoreToNewValue(IC, SI, V); 1119 return true; 1120 } 1121 } 1122 1123 if (Value *U = likeBitCastFromVector(IC, V)) 1124 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1125 combineStoreToNewValue(IC, SI, U); 1126 return true; 1127 } 1128 1129 // FIXME: We should also canonicalize stores of vectors when their elements 1130 // are cast to other types. 1131 return false; 1132 } 1133 1134 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) { 1135 // FIXME: We could probably with some care handle both volatile and atomic 1136 // stores here but it isn't clear that this is important. 1137 if (!SI.isSimple()) 1138 return false; 1139 1140 Value *V = SI.getValueOperand(); 1141 Type *T = V->getType(); 1142 1143 if (!T->isAggregateType()) 1144 return false; 1145 1146 if (auto *ST = dyn_cast<StructType>(T)) { 1147 // If the struct only have one element, we unpack. 1148 unsigned Count = ST->getNumElements(); 1149 if (Count == 1) { 1150 V = IC.Builder.CreateExtractValue(V, 0); 1151 combineStoreToNewValue(IC, SI, V); 1152 return true; 1153 } 1154 1155 // We don't want to break loads with padding here as we'd loose 1156 // the knowledge that padding exists for the rest of the pipeline. 1157 const DataLayout &DL = IC.getDataLayout(); 1158 auto *SL = DL.getStructLayout(ST); 1159 if (SL->hasPadding()) 1160 return false; 1161 1162 const auto Align = SI.getAlign(); 1163 1164 SmallString<16> EltName = V->getName(); 1165 EltName += ".elt"; 1166 auto *Addr = SI.getPointerOperand(); 1167 SmallString<16> AddrName = Addr->getName(); 1168 AddrName += ".repack"; 1169 1170 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1171 auto *Zero = ConstantInt::get(IdxType, 0); 1172 for (unsigned i = 0; i < Count; i++) { 1173 Value *Indices[2] = { 1174 Zero, 1175 ConstantInt::get(IdxType, i), 1176 }; 1177 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1178 AddrName); 1179 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1180 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); 1181 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1182 AAMDNodes AAMD; 1183 SI.getAAMetadata(AAMD); 1184 NS->setAAMetadata(AAMD); 1185 } 1186 1187 return true; 1188 } 1189 1190 if (auto *AT = dyn_cast<ArrayType>(T)) { 1191 // If the array only have one element, we unpack. 1192 auto NumElements = AT->getNumElements(); 1193 if (NumElements == 1) { 1194 V = IC.Builder.CreateExtractValue(V, 0); 1195 combineStoreToNewValue(IC, SI, V); 1196 return true; 1197 } 1198 1199 // Bail out if the array is too large. Ideally we would like to optimize 1200 // arrays of arbitrary size but this has a terrible impact on compile time. 1201 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1202 // tuning. 1203 if (NumElements > IC.MaxArraySizeForCombine) 1204 return false; 1205 1206 const DataLayout &DL = IC.getDataLayout(); 1207 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1208 const auto Align = SI.getAlign(); 1209 1210 SmallString<16> EltName = V->getName(); 1211 EltName += ".elt"; 1212 auto *Addr = SI.getPointerOperand(); 1213 SmallString<16> AddrName = Addr->getName(); 1214 AddrName += ".repack"; 1215 1216 auto *IdxType = Type::getInt64Ty(T->getContext()); 1217 auto *Zero = ConstantInt::get(IdxType, 0); 1218 1219 uint64_t Offset = 0; 1220 for (uint64_t i = 0; i < NumElements; i++) { 1221 Value *Indices[2] = { 1222 Zero, 1223 ConstantInt::get(IdxType, i), 1224 }; 1225 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1226 AddrName); 1227 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1228 auto EltAlign = commonAlignment(Align, Offset); 1229 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1230 AAMDNodes AAMD; 1231 SI.getAAMetadata(AAMD); 1232 NS->setAAMetadata(AAMD); 1233 Offset += EltSize; 1234 } 1235 1236 return true; 1237 } 1238 1239 return false; 1240 } 1241 1242 /// equivalentAddressValues - Test if A and B will obviously have the same 1243 /// value. This includes recognizing that %t0 and %t1 will have the same 1244 /// value in code like this: 1245 /// %t0 = getelementptr \@a, 0, 3 1246 /// store i32 0, i32* %t0 1247 /// %t1 = getelementptr \@a, 0, 3 1248 /// %t2 = load i32* %t1 1249 /// 1250 static bool equivalentAddressValues(Value *A, Value *B) { 1251 // Test if the values are trivially equivalent. 1252 if (A == B) return true; 1253 1254 // Test if the values come form identical arithmetic instructions. 1255 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1256 // its only used to compare two uses within the same basic block, which 1257 // means that they'll always either have the same value or one of them 1258 // will have an undefined value. 1259 if (isa<BinaryOperator>(A) || 1260 isa<CastInst>(A) || 1261 isa<PHINode>(A) || 1262 isa<GetElementPtrInst>(A)) 1263 if (Instruction *BI = dyn_cast<Instruction>(B)) 1264 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1265 return true; 1266 1267 // Otherwise they may not be equivalent. 1268 return false; 1269 } 1270 1271 /// Converts store (bitcast (load (bitcast (select ...)))) to 1272 /// store (load (select ...)), where select is minmax: 1273 /// select ((cmp load V1, load V2), V1, V2). 1274 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC, 1275 StoreInst &SI) { 1276 // bitcast? 1277 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1278 return false; 1279 // load? integer? 1280 Value *LoadAddr; 1281 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1282 return false; 1283 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1284 if (!LI->getType()->isIntegerTy()) 1285 return false; 1286 Type *CmpLoadTy; 1287 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1288 return false; 1289 1290 // Make sure the type would actually change. 1291 // This condition can be hit with chains of bitcasts. 1292 if (LI->getType() == CmpLoadTy) 1293 return false; 1294 1295 // Make sure we're not changing the size of the load/store. 1296 const auto &DL = IC.getDataLayout(); 1297 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1298 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1299 return false; 1300 1301 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1302 auto *SI = dyn_cast<StoreInst>(U); 1303 return SI && SI->getPointerOperand() != LI && 1304 InstCombiner::peekThroughBitcast(SI->getPointerOperand()) != 1305 LoadAddr && 1306 !SI->getPointerOperand()->isSwiftError(); 1307 })) 1308 return false; 1309 1310 IC.Builder.SetInsertPoint(LI); 1311 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1312 // Replace all the stores with stores of the newly loaded value. 1313 for (auto *UI : LI->users()) { 1314 auto *USI = cast<StoreInst>(UI); 1315 IC.Builder.SetInsertPoint(USI); 1316 combineStoreToNewValue(IC, *USI, NewLI); 1317 } 1318 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1319 IC.eraseInstFromFunction(*LI); 1320 return true; 1321 } 1322 1323 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) { 1324 Value *Val = SI.getOperand(0); 1325 Value *Ptr = SI.getOperand(1); 1326 1327 // Try to canonicalize the stored type. 1328 if (combineStoreToValueType(*this, SI)) 1329 return eraseInstFromFunction(SI); 1330 1331 // Attempt to improve the alignment. 1332 const Align KnownAlign = getOrEnforceKnownAlignment( 1333 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); 1334 if (KnownAlign > SI.getAlign()) 1335 SI.setAlignment(KnownAlign); 1336 1337 // Try to canonicalize the stored type. 1338 if (unpackStoreToAggregate(*this, SI)) 1339 return eraseInstFromFunction(SI); 1340 1341 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1342 return eraseInstFromFunction(SI); 1343 1344 // Replace GEP indices if possible. 1345 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1346 Worklist.push(NewGEPI); 1347 return &SI; 1348 } 1349 1350 // Don't hack volatile/ordered stores. 1351 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1352 if (!SI.isUnordered()) return nullptr; 1353 1354 // If the RHS is an alloca with a single use, zapify the store, making the 1355 // alloca dead. 1356 if (Ptr->hasOneUse()) { 1357 if (isa<AllocaInst>(Ptr)) 1358 return eraseInstFromFunction(SI); 1359 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1360 if (isa<AllocaInst>(GEP->getOperand(0))) { 1361 if (GEP->getOperand(0)->hasOneUse()) 1362 return eraseInstFromFunction(SI); 1363 } 1364 } 1365 } 1366 1367 // If we have a store to a location which is known constant, we can conclude 1368 // that the store must be storing the constant value (else the memory 1369 // wouldn't be constant), and this must be a noop. 1370 if (AA->pointsToConstantMemory(Ptr)) 1371 return eraseInstFromFunction(SI); 1372 1373 // Do really simple DSE, to catch cases where there are several consecutive 1374 // stores to the same location, separated by a few arithmetic operations. This 1375 // situation often occurs with bitfield accesses. 1376 BasicBlock::iterator BBI(SI); 1377 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1378 --ScanInsts) { 1379 --BBI; 1380 // Don't count debug info directives, lest they affect codegen, 1381 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1382 if (isa<DbgInfoIntrinsic>(BBI) || 1383 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1384 ScanInsts++; 1385 continue; 1386 } 1387 1388 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1389 // Prev store isn't volatile, and stores to the same location? 1390 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1391 SI.getOperand(1))) { 1392 ++NumDeadStore; 1393 // Manually add back the original store to the worklist now, so it will 1394 // be processed after the operands of the removed store, as this may 1395 // expose additional DSE opportunities. 1396 Worklist.push(&SI); 1397 eraseInstFromFunction(*PrevSI); 1398 return nullptr; 1399 } 1400 break; 1401 } 1402 1403 // If this is a load, we have to stop. However, if the loaded value is from 1404 // the pointer we're loading and is producing the pointer we're storing, 1405 // then *this* store is dead (X = load P; store X -> P). 1406 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1407 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1408 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1409 return eraseInstFromFunction(SI); 1410 } 1411 1412 // Otherwise, this is a load from some other location. Stores before it 1413 // may not be dead. 1414 break; 1415 } 1416 1417 // Don't skip over loads, throws or things that can modify memory. 1418 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1419 break; 1420 } 1421 1422 // store X, null -> turns into 'unreachable' in SimplifyCFG 1423 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1424 if (canSimplifyNullStoreOrGEP(SI)) { 1425 if (!isa<UndefValue>(Val)) 1426 return replaceOperand(SI, 0, UndefValue::get(Val->getType())); 1427 return nullptr; // Do not modify these! 1428 } 1429 1430 // store undef, Ptr -> noop 1431 if (isa<UndefValue>(Val)) 1432 return eraseInstFromFunction(SI); 1433 1434 return nullptr; 1435 } 1436 1437 /// Try to transform: 1438 /// if () { *P = v1; } else { *P = v2 } 1439 /// or: 1440 /// *P = v1; if () { *P = v2; } 1441 /// into a phi node with a store in the successor. 1442 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) { 1443 if (!SI.isUnordered()) 1444 return false; // This code has not been audited for volatile/ordered case. 1445 1446 // Check if the successor block has exactly 2 incoming edges. 1447 BasicBlock *StoreBB = SI.getParent(); 1448 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1449 if (!DestBB->hasNPredecessors(2)) 1450 return false; 1451 1452 // Capture the other block (the block that doesn't contain our store). 1453 pred_iterator PredIter = pred_begin(DestBB); 1454 if (*PredIter == StoreBB) 1455 ++PredIter; 1456 BasicBlock *OtherBB = *PredIter; 1457 1458 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1459 // for example, if SI is in an infinite loop. 1460 if (StoreBB == DestBB || OtherBB == DestBB) 1461 return false; 1462 1463 // Verify that the other block ends in a branch and is not otherwise empty. 1464 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1465 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1466 if (!OtherBr || BBI == OtherBB->begin()) 1467 return false; 1468 1469 // If the other block ends in an unconditional branch, check for the 'if then 1470 // else' case. There is an instruction before the branch. 1471 StoreInst *OtherStore = nullptr; 1472 if (OtherBr->isUnconditional()) { 1473 --BBI; 1474 // Skip over debugging info. 1475 while (isa<DbgInfoIntrinsic>(BBI) || 1476 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1477 if (BBI==OtherBB->begin()) 1478 return false; 1479 --BBI; 1480 } 1481 // If this isn't a store, isn't a store to the same location, or is not the 1482 // right kind of store, bail out. 1483 OtherStore = dyn_cast<StoreInst>(BBI); 1484 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1485 !SI.isSameOperationAs(OtherStore)) 1486 return false; 1487 } else { 1488 // Otherwise, the other block ended with a conditional branch. If one of the 1489 // destinations is StoreBB, then we have the if/then case. 1490 if (OtherBr->getSuccessor(0) != StoreBB && 1491 OtherBr->getSuccessor(1) != StoreBB) 1492 return false; 1493 1494 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1495 // if/then triangle. See if there is a store to the same ptr as SI that 1496 // lives in OtherBB. 1497 for (;; --BBI) { 1498 // Check to see if we find the matching store. 1499 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1500 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1501 !SI.isSameOperationAs(OtherStore)) 1502 return false; 1503 break; 1504 } 1505 // If we find something that may be using or overwriting the stored 1506 // value, or if we run out of instructions, we can't do the transform. 1507 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1508 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1509 return false; 1510 } 1511 1512 // In order to eliminate the store in OtherBr, we have to make sure nothing 1513 // reads or overwrites the stored value in StoreBB. 1514 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1515 // FIXME: This should really be AA driven. 1516 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1517 return false; 1518 } 1519 } 1520 1521 // Insert a PHI node now if we need it. 1522 Value *MergedVal = OtherStore->getOperand(0); 1523 // The debug locations of the original instructions might differ. Merge them. 1524 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1525 OtherStore->getDebugLoc()); 1526 if (MergedVal != SI.getOperand(0)) { 1527 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1528 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1529 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1530 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1531 PN->setDebugLoc(MergedLoc); 1532 } 1533 1534 // Advance to a place where it is safe to insert the new store and insert it. 1535 BBI = DestBB->getFirstInsertionPt(); 1536 StoreInst *NewSI = 1537 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), 1538 SI.getOrdering(), SI.getSyncScopeID()); 1539 InsertNewInstBefore(NewSI, *BBI); 1540 NewSI->setDebugLoc(MergedLoc); 1541 1542 // If the two stores had AA tags, merge them. 1543 AAMDNodes AATags; 1544 SI.getAAMetadata(AATags); 1545 if (AATags) { 1546 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1547 NewSI->setAAMetadata(AATags); 1548 } 1549 1550 // Nuke the old stores. 1551 eraseInstFromFunction(SI); 1552 eraseInstFromFunction(*OtherStore); 1553 return true; 1554 } 1555