1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/MapVector.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/Analysis/Utils/Local.h" 20 #include "llvm/IR/ConstantRange.h" 21 #include "llvm/IR/DataLayout.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "instcombine" 31 32 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 34 35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 36 /// some part of a constant global variable. This intentionally only accepts 37 /// constant expressions because we can't rewrite arbitrary instructions. 38 static bool pointsToConstantGlobal(Value *V) { 39 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 40 return GV->isConstant(); 41 42 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 43 if (CE->getOpcode() == Instruction::BitCast || 44 CE->getOpcode() == Instruction::AddrSpaceCast || 45 CE->getOpcode() == Instruction::GetElementPtr) 46 return pointsToConstantGlobal(CE->getOperand(0)); 47 } 48 return false; 49 } 50 51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 52 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 53 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 55 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 56 /// the alloca, and if the source pointer is a pointer to a constant global, we 57 /// can optimize this. 58 static bool 59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 60 SmallVectorImpl<Instruction *> &ToDelete) { 61 // We track lifetime intrinsics as we encounter them. If we decide to go 62 // ahead and replace the value with the global, this lets the caller quickly 63 // eliminate the markers. 64 65 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 66 ValuesToInspect.emplace_back(V, false); 67 while (!ValuesToInspect.empty()) { 68 auto ValuePair = ValuesToInspect.pop_back_val(); 69 const bool IsOffset = ValuePair.second; 70 for (auto &U : ValuePair.first->uses()) { 71 auto *I = cast<Instruction>(U.getUser()); 72 73 if (auto *LI = dyn_cast<LoadInst>(I)) { 74 // Ignore non-volatile loads, they are always ok. 75 if (!LI->isSimple()) return false; 76 continue; 77 } 78 79 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 80 // If uses of the bitcast are ok, we are ok. 81 ValuesToInspect.emplace_back(I, IsOffset); 82 continue; 83 } 84 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 85 // If the GEP has all zero indices, it doesn't offset the pointer. If it 86 // doesn't, it does. 87 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 88 continue; 89 } 90 91 if (auto CS = CallSite(I)) { 92 // If this is the function being called then we treat it like a load and 93 // ignore it. 94 if (CS.isCallee(&U)) 95 continue; 96 97 unsigned DataOpNo = CS.getDataOperandNo(&U); 98 bool IsArgOperand = CS.isArgOperand(&U); 99 100 // Inalloca arguments are clobbered by the call. 101 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 102 return false; 103 104 // If this is a readonly/readnone call site, then we know it is just a 105 // load (but one that potentially returns the value itself), so we can 106 // ignore it if we know that the value isn't captured. 107 if (CS.onlyReadsMemory() && 108 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 109 continue; 110 111 // If this is being passed as a byval argument, the caller is making a 112 // copy, so it is only a read of the alloca. 113 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 114 continue; 115 } 116 117 // Lifetime intrinsics can be handled by the caller. 118 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 119 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 120 II->getIntrinsicID() == Intrinsic::lifetime_end) { 121 assert(II->use_empty() && "Lifetime markers have no result to use!"); 122 ToDelete.push_back(II); 123 continue; 124 } 125 } 126 127 // If this is isn't our memcpy/memmove, reject it as something we can't 128 // handle. 129 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 130 if (!MI) 131 return false; 132 133 // If the transfer is using the alloca as a source of the transfer, then 134 // ignore it since it is a load (unless the transfer is volatile). 135 if (U.getOperandNo() == 1) { 136 if (MI->isVolatile()) return false; 137 continue; 138 } 139 140 // If we already have seen a copy, reject the second one. 141 if (TheCopy) return false; 142 143 // If the pointer has been offset from the start of the alloca, we can't 144 // safely handle this. 145 if (IsOffset) return false; 146 147 // If the memintrinsic isn't using the alloca as the dest, reject it. 148 if (U.getOperandNo() != 0) return false; 149 150 // If the source of the memcpy/move is not a constant global, reject it. 151 if (!pointsToConstantGlobal(MI->getSource())) 152 return false; 153 154 // Otherwise, the transform is safe. Remember the copy instruction. 155 TheCopy = MI; 156 } 157 } 158 return true; 159 } 160 161 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 162 /// modified by a copy from a constant global. If we can prove this, we can 163 /// replace any uses of the alloca with uses of the global directly. 164 static MemTransferInst * 165 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 166 SmallVectorImpl<Instruction *> &ToDelete) { 167 MemTransferInst *TheCopy = nullptr; 168 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 169 return TheCopy; 170 return nullptr; 171 } 172 173 /// Returns true if V is dereferenceable for size of alloca. 174 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 175 const DataLayout &DL) { 176 if (AI->isArrayAllocation()) 177 return false; 178 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 179 if (!AllocaSize) 180 return false; 181 return isDereferenceableAndAlignedPointer(V, AI->getAlignment(), 182 APInt(64, AllocaSize), DL); 183 } 184 185 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 186 // Check for array size of 1 (scalar allocation). 187 if (!AI.isArrayAllocation()) { 188 // i32 1 is the canonical array size for scalar allocations. 189 if (AI.getArraySize()->getType()->isIntegerTy(32)) 190 return nullptr; 191 192 // Canonicalize it. 193 Value *V = IC.Builder.getInt32(1); 194 AI.setOperand(0, V); 195 return &AI; 196 } 197 198 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 199 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 200 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 201 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 202 New->setAlignment(AI.getAlignment()); 203 204 // Scan to the end of the allocation instructions, to skip over a block of 205 // allocas if possible...also skip interleaved debug info 206 // 207 BasicBlock::iterator It(New); 208 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 209 ++It; 210 211 // Now that I is pointing to the first non-allocation-inst in the block, 212 // insert our getelementptr instruction... 213 // 214 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 215 Value *NullIdx = Constant::getNullValue(IdxTy); 216 Value *Idx[2] = {NullIdx, NullIdx}; 217 Instruction *GEP = 218 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 219 IC.InsertNewInstBefore(GEP, *It); 220 221 // Now make everything use the getelementptr instead of the original 222 // allocation. 223 return IC.replaceInstUsesWith(AI, GEP); 224 } 225 226 if (isa<UndefValue>(AI.getArraySize())) 227 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 228 229 // Ensure that the alloca array size argument has type intptr_t, so that 230 // any casting is exposed early. 231 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 232 if (AI.getArraySize()->getType() != IntPtrTy) { 233 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 234 AI.setOperand(0, V); 235 return &AI; 236 } 237 238 return nullptr; 239 } 240 241 namespace { 242 // If I and V are pointers in different address space, it is not allowed to 243 // use replaceAllUsesWith since I and V have different types. A 244 // non-target-specific transformation should not use addrspacecast on V since 245 // the two address space may be disjoint depending on target. 246 // 247 // This class chases down uses of the old pointer until reaching the load 248 // instructions, then replaces the old pointer in the load instructions with 249 // the new pointer. If during the chasing it sees bitcast or GEP, it will 250 // create new bitcast or GEP with the new pointer and use them in the load 251 // instruction. 252 class PointerReplacer { 253 public: 254 PointerReplacer(InstCombiner &IC) : IC(IC) {} 255 void replacePointer(Instruction &I, Value *V); 256 257 private: 258 void findLoadAndReplace(Instruction &I); 259 void replace(Instruction *I); 260 Value *getReplacement(Value *I); 261 262 SmallVector<Instruction *, 4> Path; 263 MapVector<Value *, Value *> WorkMap; 264 InstCombiner &IC; 265 }; 266 } // end anonymous namespace 267 268 void PointerReplacer::findLoadAndReplace(Instruction &I) { 269 for (auto U : I.users()) { 270 auto *Inst = dyn_cast<Instruction>(&*U); 271 if (!Inst) 272 return; 273 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 274 if (isa<LoadInst>(Inst)) { 275 for (auto P : Path) 276 replace(P); 277 replace(Inst); 278 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 279 Path.push_back(Inst); 280 findLoadAndReplace(*Inst); 281 Path.pop_back(); 282 } else { 283 return; 284 } 285 } 286 } 287 288 Value *PointerReplacer::getReplacement(Value *V) { 289 auto Loc = WorkMap.find(V); 290 if (Loc != WorkMap.end()) 291 return Loc->second; 292 return nullptr; 293 } 294 295 void PointerReplacer::replace(Instruction *I) { 296 if (getReplacement(I)) 297 return; 298 299 if (auto *LT = dyn_cast<LoadInst>(I)) { 300 auto *V = getReplacement(LT->getPointerOperand()); 301 assert(V && "Operand not replaced"); 302 auto *NewI = new LoadInst(V); 303 NewI->takeName(LT); 304 IC.InsertNewInstWith(NewI, *LT); 305 IC.replaceInstUsesWith(*LT, NewI); 306 WorkMap[LT] = NewI; 307 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 308 auto *V = getReplacement(GEP->getPointerOperand()); 309 assert(V && "Operand not replaced"); 310 SmallVector<Value *, 8> Indices; 311 Indices.append(GEP->idx_begin(), GEP->idx_end()); 312 auto *NewI = GetElementPtrInst::Create( 313 V->getType()->getPointerElementType(), V, Indices); 314 IC.InsertNewInstWith(NewI, *GEP); 315 NewI->takeName(GEP); 316 WorkMap[GEP] = NewI; 317 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 318 auto *V = getReplacement(BC->getOperand(0)); 319 assert(V && "Operand not replaced"); 320 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 321 V->getType()->getPointerAddressSpace()); 322 auto *NewI = new BitCastInst(V, NewT); 323 IC.InsertNewInstWith(NewI, *BC); 324 NewI->takeName(BC); 325 WorkMap[BC] = NewI; 326 } else { 327 llvm_unreachable("should never reach here"); 328 } 329 } 330 331 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 332 #ifndef NDEBUG 333 auto *PT = cast<PointerType>(I.getType()); 334 auto *NT = cast<PointerType>(V->getType()); 335 assert(PT != NT && PT->getElementType() == NT->getElementType() && 336 "Invalid usage"); 337 #endif 338 WorkMap[&I] = V; 339 findLoadAndReplace(I); 340 } 341 342 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 343 if (auto *I = simplifyAllocaArraySize(*this, AI)) 344 return I; 345 346 if (AI.getAllocatedType()->isSized()) { 347 // If the alignment is 0 (unspecified), assign it the preferred alignment. 348 if (AI.getAlignment() == 0) 349 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 350 351 // Move all alloca's of zero byte objects to the entry block and merge them 352 // together. Note that we only do this for alloca's, because malloc should 353 // allocate and return a unique pointer, even for a zero byte allocation. 354 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 355 // For a zero sized alloca there is no point in doing an array allocation. 356 // This is helpful if the array size is a complicated expression not used 357 // elsewhere. 358 if (AI.isArrayAllocation()) { 359 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 360 return &AI; 361 } 362 363 // Get the first instruction in the entry block. 364 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 365 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 366 if (FirstInst != &AI) { 367 // If the entry block doesn't start with a zero-size alloca then move 368 // this one to the start of the entry block. There is no problem with 369 // dominance as the array size was forced to a constant earlier already. 370 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 371 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 372 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 373 AI.moveBefore(FirstInst); 374 return &AI; 375 } 376 377 // If the alignment of the entry block alloca is 0 (unspecified), 378 // assign it the preferred alignment. 379 if (EntryAI->getAlignment() == 0) 380 EntryAI->setAlignment( 381 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 382 // Replace this zero-sized alloca with the one at the start of the entry 383 // block after ensuring that the address will be aligned enough for both 384 // types. 385 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 386 AI.getAlignment()); 387 EntryAI->setAlignment(MaxAlign); 388 if (AI.getType() != EntryAI->getType()) 389 return new BitCastInst(EntryAI, AI.getType()); 390 return replaceInstUsesWith(AI, EntryAI); 391 } 392 } 393 } 394 395 if (AI.getAlignment()) { 396 // Check to see if this allocation is only modified by a memcpy/memmove from 397 // a constant global whose alignment is equal to or exceeds that of the 398 // allocation. If this is the case, we can change all users to use 399 // the constant global instead. This is commonly produced by the CFE by 400 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 401 // is only subsequently read. 402 SmallVector<Instruction *, 4> ToDelete; 403 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 404 unsigned SourceAlign = getOrEnforceKnownAlignment( 405 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 406 if (AI.getAlignment() <= SourceAlign && 407 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 408 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 409 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 410 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 411 eraseInstFromFunction(*ToDelete[i]); 412 Constant *TheSrc = cast<Constant>(Copy->getSource()); 413 auto *SrcTy = TheSrc->getType(); 414 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 415 SrcTy->getPointerAddressSpace()); 416 Constant *Cast = 417 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 418 if (AI.getType()->getPointerAddressSpace() == 419 SrcTy->getPointerAddressSpace()) { 420 Instruction *NewI = replaceInstUsesWith(AI, Cast); 421 eraseInstFromFunction(*Copy); 422 ++NumGlobalCopies; 423 return NewI; 424 } else { 425 PointerReplacer PtrReplacer(*this); 426 PtrReplacer.replacePointer(AI, Cast); 427 ++NumGlobalCopies; 428 } 429 } 430 } 431 } 432 433 // At last, use the generic allocation site handler to aggressively remove 434 // unused allocas. 435 return visitAllocSite(AI); 436 } 437 438 // Are we allowed to form a atomic load or store of this type? 439 static bool isSupportedAtomicType(Type *Ty) { 440 return Ty->isIntegerTy() || Ty->isPointerTy() || Ty->isFloatingPointTy(); 441 } 442 443 /// Helper to combine a load to a new type. 444 /// 445 /// This just does the work of combining a load to a new type. It handles 446 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 447 /// loaded *value* type. This will convert it to a pointer, cast the operand to 448 /// that pointer type, load it, etc. 449 /// 450 /// Note that this will create all of the instructions with whatever insert 451 /// point the \c InstCombiner currently is using. 452 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 453 const Twine &Suffix = "") { 454 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 455 "can't fold an atomic load to requested type"); 456 457 Value *Ptr = LI.getPointerOperand(); 458 unsigned AS = LI.getPointerAddressSpace(); 459 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 460 LI.getAllMetadata(MD); 461 462 Value *NewPtr = nullptr; 463 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 464 NewPtr->getType()->getPointerElementType() == NewTy && 465 NewPtr->getType()->getPointerAddressSpace() == AS)) 466 NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 467 468 LoadInst *NewLoad = IC.Builder.CreateAlignedLoad( 469 NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 470 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 471 MDBuilder MDB(NewLoad->getContext()); 472 for (const auto &MDPair : MD) { 473 unsigned ID = MDPair.first; 474 MDNode *N = MDPair.second; 475 // Note, essentially every kind of metadata should be preserved here! This 476 // routine is supposed to clone a load instruction changing *only its type*. 477 // The only metadata it makes sense to drop is metadata which is invalidated 478 // when the pointer type changes. This should essentially never be the case 479 // in LLVM, but we explicitly switch over only known metadata to be 480 // conservatively correct. If you are adding metadata to LLVM which pertains 481 // to loads, you almost certainly want to add it here. 482 switch (ID) { 483 case LLVMContext::MD_dbg: 484 case LLVMContext::MD_tbaa: 485 case LLVMContext::MD_prof: 486 case LLVMContext::MD_fpmath: 487 case LLVMContext::MD_tbaa_struct: 488 case LLVMContext::MD_invariant_load: 489 case LLVMContext::MD_alias_scope: 490 case LLVMContext::MD_noalias: 491 case LLVMContext::MD_nontemporal: 492 case LLVMContext::MD_mem_parallel_loop_access: 493 // All of these directly apply. 494 NewLoad->setMetadata(ID, N); 495 break; 496 497 case LLVMContext::MD_nonnull: 498 copyNonnullMetadata(LI, N, *NewLoad); 499 break; 500 case LLVMContext::MD_align: 501 case LLVMContext::MD_dereferenceable: 502 case LLVMContext::MD_dereferenceable_or_null: 503 // These only directly apply if the new type is also a pointer. 504 if (NewTy->isPointerTy()) 505 NewLoad->setMetadata(ID, N); 506 break; 507 case LLVMContext::MD_range: 508 copyRangeMetadata(IC.getDataLayout(), LI, N, *NewLoad); 509 break; 510 } 511 } 512 return NewLoad; 513 } 514 515 /// Combine a store to a new type. 516 /// 517 /// Returns the newly created store instruction. 518 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 519 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 520 "can't fold an atomic store of requested type"); 521 522 Value *Ptr = SI.getPointerOperand(); 523 unsigned AS = SI.getPointerAddressSpace(); 524 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 525 SI.getAllMetadata(MD); 526 527 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 528 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 529 SI.getAlignment(), SI.isVolatile()); 530 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 531 for (const auto &MDPair : MD) { 532 unsigned ID = MDPair.first; 533 MDNode *N = MDPair.second; 534 // Note, essentially every kind of metadata should be preserved here! This 535 // routine is supposed to clone a store instruction changing *only its 536 // type*. The only metadata it makes sense to drop is metadata which is 537 // invalidated when the pointer type changes. This should essentially 538 // never be the case in LLVM, but we explicitly switch over only known 539 // metadata to be conservatively correct. If you are adding metadata to 540 // LLVM which pertains to stores, you almost certainly want to add it 541 // here. 542 switch (ID) { 543 case LLVMContext::MD_dbg: 544 case LLVMContext::MD_tbaa: 545 case LLVMContext::MD_prof: 546 case LLVMContext::MD_fpmath: 547 case LLVMContext::MD_tbaa_struct: 548 case LLVMContext::MD_alias_scope: 549 case LLVMContext::MD_noalias: 550 case LLVMContext::MD_nontemporal: 551 case LLVMContext::MD_mem_parallel_loop_access: 552 // All of these directly apply. 553 NewStore->setMetadata(ID, N); 554 break; 555 556 case LLVMContext::MD_invariant_load: 557 case LLVMContext::MD_nonnull: 558 case LLVMContext::MD_range: 559 case LLVMContext::MD_align: 560 case LLVMContext::MD_dereferenceable: 561 case LLVMContext::MD_dereferenceable_or_null: 562 // These don't apply for stores. 563 break; 564 } 565 } 566 567 return NewStore; 568 } 569 570 /// Returns true if instruction represent minmax pattern like: 571 /// select ((cmp load V1, load V2), V1, V2). 572 static bool isMinMaxWithLoads(Value *V) { 573 assert(V->getType()->isPointerTy() && "Expected pointer type."); 574 // Ignore possible ty* to ixx* bitcast. 575 V = peekThroughBitcast(V); 576 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 577 // pattern. 578 CmpInst::Predicate Pred; 579 Instruction *L1; 580 Instruction *L2; 581 Value *LHS; 582 Value *RHS; 583 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 584 m_Value(LHS), m_Value(RHS)))) 585 return false; 586 return (match(L1, m_Load(m_Specific(LHS))) && 587 match(L2, m_Load(m_Specific(RHS)))) || 588 (match(L1, m_Load(m_Specific(RHS))) && 589 match(L2, m_Load(m_Specific(LHS)))); 590 } 591 592 /// Combine loads to match the type of their uses' value after looking 593 /// through intervening bitcasts. 594 /// 595 /// The core idea here is that if the result of a load is used in an operation, 596 /// we should load the type most conducive to that operation. For example, when 597 /// loading an integer and converting that immediately to a pointer, we should 598 /// instead directly load a pointer. 599 /// 600 /// However, this routine must never change the width of a load or the number of 601 /// loads as that would introduce a semantic change. This combine is expected to 602 /// be a semantic no-op which just allows loads to more closely model the types 603 /// of their consuming operations. 604 /// 605 /// Currently, we also refuse to change the precise type used for an atomic load 606 /// or a volatile load. This is debatable, and might be reasonable to change 607 /// later. However, it is risky in case some backend or other part of LLVM is 608 /// relying on the exact type loaded to select appropriate atomic operations. 609 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 610 // FIXME: We could probably with some care handle both volatile and ordered 611 // atomic loads here but it isn't clear that this is important. 612 if (!LI.isUnordered()) 613 return nullptr; 614 615 if (LI.use_empty()) 616 return nullptr; 617 618 // swifterror values can't be bitcasted. 619 if (LI.getPointerOperand()->isSwiftError()) 620 return nullptr; 621 622 Type *Ty = LI.getType(); 623 const DataLayout &DL = IC.getDataLayout(); 624 625 // Try to canonicalize loads which are only ever stored to operate over 626 // integers instead of any other type. We only do this when the loaded type 627 // is sized and has a size exactly the same as its store size and the store 628 // size is a legal integer type. 629 // Do not perform canonicalization if minmax pattern is found (to avoid 630 // infinite loop). 631 if (!Ty->isIntegerTy() && Ty->isSized() && 632 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 633 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) && 634 !DL.isNonIntegralPointerType(Ty) && 635 !isMinMaxWithLoads( 636 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) { 637 if (all_of(LI.users(), [&LI](User *U) { 638 auto *SI = dyn_cast<StoreInst>(U); 639 return SI && SI->getPointerOperand() != &LI && 640 !SI->getPointerOperand()->isSwiftError(); 641 })) { 642 LoadInst *NewLoad = combineLoadToNewType( 643 IC, LI, 644 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 645 // Replace all the stores with stores of the newly loaded value. 646 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 647 auto *SI = cast<StoreInst>(*UI++); 648 IC.Builder.SetInsertPoint(SI); 649 combineStoreToNewValue(IC, *SI, NewLoad); 650 IC.eraseInstFromFunction(*SI); 651 } 652 assert(LI.use_empty() && "Failed to remove all users of the load!"); 653 // Return the old load so the combiner can delete it safely. 654 return &LI; 655 } 656 } 657 658 // Fold away bit casts of the loaded value by loading the desired type. 659 // We can do this for BitCastInsts as well as casts from and to pointer types, 660 // as long as those are noops (i.e., the source or dest type have the same 661 // bitwidth as the target's pointers). 662 if (LI.hasOneUse()) 663 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 664 if (CI->isNoopCast(DL)) 665 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 666 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 667 CI->replaceAllUsesWith(NewLoad); 668 IC.eraseInstFromFunction(*CI); 669 return &LI; 670 } 671 672 // FIXME: We should also canonicalize loads of vectors when their elements are 673 // cast to other types. 674 return nullptr; 675 } 676 677 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 678 // FIXME: We could probably with some care handle both volatile and atomic 679 // stores here but it isn't clear that this is important. 680 if (!LI.isSimple()) 681 return nullptr; 682 683 Type *T = LI.getType(); 684 if (!T->isAggregateType()) 685 return nullptr; 686 687 StringRef Name = LI.getName(); 688 assert(LI.getAlignment() && "Alignment must be set at this point"); 689 690 if (auto *ST = dyn_cast<StructType>(T)) { 691 // If the struct only have one element, we unpack. 692 auto NumElements = ST->getNumElements(); 693 if (NumElements == 1) { 694 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 695 ".unpack"); 696 AAMDNodes AAMD; 697 LI.getAAMetadata(AAMD); 698 NewLoad->setAAMetadata(AAMD); 699 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 700 UndefValue::get(T), NewLoad, 0, Name)); 701 } 702 703 // We don't want to break loads with padding here as we'd loose 704 // the knowledge that padding exists for the rest of the pipeline. 705 const DataLayout &DL = IC.getDataLayout(); 706 auto *SL = DL.getStructLayout(ST); 707 if (SL->hasPadding()) 708 return nullptr; 709 710 auto Align = LI.getAlignment(); 711 if (!Align) 712 Align = DL.getABITypeAlignment(ST); 713 714 auto *Addr = LI.getPointerOperand(); 715 auto *IdxType = Type::getInt32Ty(T->getContext()); 716 auto *Zero = ConstantInt::get(IdxType, 0); 717 718 Value *V = UndefValue::get(T); 719 for (unsigned i = 0; i < NumElements; i++) { 720 Value *Indices[2] = { 721 Zero, 722 ConstantInt::get(IdxType, i), 723 }; 724 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 725 Name + ".elt"); 726 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 727 auto *L = IC.Builder.CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 728 // Propagate AA metadata. It'll still be valid on the narrowed load. 729 AAMDNodes AAMD; 730 LI.getAAMetadata(AAMD); 731 L->setAAMetadata(AAMD); 732 V = IC.Builder.CreateInsertValue(V, L, i); 733 } 734 735 V->setName(Name); 736 return IC.replaceInstUsesWith(LI, V); 737 } 738 739 if (auto *AT = dyn_cast<ArrayType>(T)) { 740 auto *ET = AT->getElementType(); 741 auto NumElements = AT->getNumElements(); 742 if (NumElements == 1) { 743 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 744 AAMDNodes AAMD; 745 LI.getAAMetadata(AAMD); 746 NewLoad->setAAMetadata(AAMD); 747 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 748 UndefValue::get(T), NewLoad, 0, Name)); 749 } 750 751 // Bail out if the array is too large. Ideally we would like to optimize 752 // arrays of arbitrary size but this has a terrible impact on compile time. 753 // The threshold here is chosen arbitrarily, maybe needs a little bit of 754 // tuning. 755 if (NumElements > IC.MaxArraySizeForCombine) 756 return nullptr; 757 758 const DataLayout &DL = IC.getDataLayout(); 759 auto EltSize = DL.getTypeAllocSize(ET); 760 auto Align = LI.getAlignment(); 761 if (!Align) 762 Align = DL.getABITypeAlignment(T); 763 764 auto *Addr = LI.getPointerOperand(); 765 auto *IdxType = Type::getInt64Ty(T->getContext()); 766 auto *Zero = ConstantInt::get(IdxType, 0); 767 768 Value *V = UndefValue::get(T); 769 uint64_t Offset = 0; 770 for (uint64_t i = 0; i < NumElements; i++) { 771 Value *Indices[2] = { 772 Zero, 773 ConstantInt::get(IdxType, i), 774 }; 775 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 776 Name + ".elt"); 777 auto *L = IC.Builder.CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 778 Name + ".unpack"); 779 AAMDNodes AAMD; 780 LI.getAAMetadata(AAMD); 781 L->setAAMetadata(AAMD); 782 V = IC.Builder.CreateInsertValue(V, L, i); 783 Offset += EltSize; 784 } 785 786 V->setName(Name); 787 return IC.replaceInstUsesWith(LI, V); 788 } 789 790 return nullptr; 791 } 792 793 // If we can determine that all possible objects pointed to by the provided 794 // pointer value are, not only dereferenceable, but also definitively less than 795 // or equal to the provided maximum size, then return true. Otherwise, return 796 // false (constant global values and allocas fall into this category). 797 // 798 // FIXME: This should probably live in ValueTracking (or similar). 799 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 800 const DataLayout &DL) { 801 SmallPtrSet<Value *, 4> Visited; 802 SmallVector<Value *, 4> Worklist(1, V); 803 804 do { 805 Value *P = Worklist.pop_back_val(); 806 P = P->stripPointerCasts(); 807 808 if (!Visited.insert(P).second) 809 continue; 810 811 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 812 Worklist.push_back(SI->getTrueValue()); 813 Worklist.push_back(SI->getFalseValue()); 814 continue; 815 } 816 817 if (PHINode *PN = dyn_cast<PHINode>(P)) { 818 for (Value *IncValue : PN->incoming_values()) 819 Worklist.push_back(IncValue); 820 continue; 821 } 822 823 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 824 if (GA->isInterposable()) 825 return false; 826 Worklist.push_back(GA->getAliasee()); 827 continue; 828 } 829 830 // If we know how big this object is, and it is less than MaxSize, continue 831 // searching. Otherwise, return false. 832 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 833 if (!AI->getAllocatedType()->isSized()) 834 return false; 835 836 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 837 if (!CS) 838 return false; 839 840 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 841 // Make sure that, even if the multiplication below would wrap as an 842 // uint64_t, we still do the right thing. 843 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 844 return false; 845 continue; 846 } 847 848 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 849 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 850 return false; 851 852 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 853 if (InitSize > MaxSize) 854 return false; 855 continue; 856 } 857 858 return false; 859 } while (!Worklist.empty()); 860 861 return true; 862 } 863 864 // If we're indexing into an object of a known size, and the outer index is 865 // not a constant, but having any value but zero would lead to undefined 866 // behavior, replace it with zero. 867 // 868 // For example, if we have: 869 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 870 // ... 871 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 872 // ... = load i32* %arrayidx, align 4 873 // Then we know that we can replace %x in the GEP with i64 0. 874 // 875 // FIXME: We could fold any GEP index to zero that would cause UB if it were 876 // not zero. Currently, we only handle the first such index. Also, we could 877 // also search through non-zero constant indices if we kept track of the 878 // offsets those indices implied. 879 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 880 Instruction *MemI, unsigned &Idx) { 881 if (GEPI->getNumOperands() < 2) 882 return false; 883 884 // Find the first non-zero index of a GEP. If all indices are zero, return 885 // one past the last index. 886 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 887 unsigned I = 1; 888 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 889 Value *V = GEPI->getOperand(I); 890 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 891 if (CI->isZero()) 892 continue; 893 894 break; 895 } 896 897 return I; 898 }; 899 900 // Skip through initial 'zero' indices, and find the corresponding pointer 901 // type. See if the next index is not a constant. 902 Idx = FirstNZIdx(GEPI); 903 if (Idx == GEPI->getNumOperands()) 904 return false; 905 if (isa<Constant>(GEPI->getOperand(Idx))) 906 return false; 907 908 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 909 Type *AllocTy = 910 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 911 if (!AllocTy || !AllocTy->isSized()) 912 return false; 913 const DataLayout &DL = IC.getDataLayout(); 914 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 915 916 // If there are more indices after the one we might replace with a zero, make 917 // sure they're all non-negative. If any of them are negative, the overall 918 // address being computed might be before the base address determined by the 919 // first non-zero index. 920 auto IsAllNonNegative = [&]() { 921 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 922 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 923 if (Known.isNonNegative()) 924 continue; 925 return false; 926 } 927 928 return true; 929 }; 930 931 // FIXME: If the GEP is not inbounds, and there are extra indices after the 932 // one we'll replace, those could cause the address computation to wrap 933 // (rendering the IsAllNonNegative() check below insufficient). We can do 934 // better, ignoring zero indices (and other indices we can prove small 935 // enough not to wrap). 936 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 937 return false; 938 939 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 940 // also known to be dereferenceable. 941 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 942 IsAllNonNegative(); 943 } 944 945 // If we're indexing into an object with a variable index for the memory 946 // access, but the object has only one element, we can assume that the index 947 // will always be zero. If we replace the GEP, return it. 948 template <typename T> 949 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 950 T &MemI) { 951 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 952 unsigned Idx; 953 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 954 Instruction *NewGEPI = GEPI->clone(); 955 NewGEPI->setOperand(Idx, 956 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 957 NewGEPI->insertBefore(GEPI); 958 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 959 return NewGEPI; 960 } 961 } 962 963 return nullptr; 964 } 965 966 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 967 if (SI.getPointerAddressSpace() != 0) 968 return false; 969 970 auto *Ptr = SI.getPointerOperand(); 971 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 972 Ptr = GEPI->getOperand(0); 973 return isa<ConstantPointerNull>(Ptr); 974 } 975 976 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 977 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 978 const Value *GEPI0 = GEPI->getOperand(0); 979 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0) 980 return true; 981 } 982 if (isa<UndefValue>(Op) || 983 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) 984 return true; 985 return false; 986 } 987 988 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 989 Value *Op = LI.getOperand(0); 990 991 // Try to canonicalize the loaded type. 992 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 993 return Res; 994 995 // Attempt to improve the alignment. 996 unsigned KnownAlign = getOrEnforceKnownAlignment( 997 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 998 unsigned LoadAlign = LI.getAlignment(); 999 unsigned EffectiveLoadAlign = 1000 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 1001 1002 if (KnownAlign > EffectiveLoadAlign) 1003 LI.setAlignment(KnownAlign); 1004 else if (LoadAlign == 0) 1005 LI.setAlignment(EffectiveLoadAlign); 1006 1007 // Replace GEP indices if possible. 1008 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 1009 Worklist.Add(NewGEPI); 1010 return &LI; 1011 } 1012 1013 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 1014 return Res; 1015 1016 // Do really simple store-to-load forwarding and load CSE, to catch cases 1017 // where there are several consecutive memory accesses to the same location, 1018 // separated by a few arithmetic operations. 1019 BasicBlock::iterator BBI(LI); 1020 bool IsLoadCSE = false; 1021 if (Value *AvailableVal = FindAvailableLoadedValue( 1022 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 1023 if (IsLoadCSE) 1024 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI); 1025 1026 return replaceInstUsesWith( 1027 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 1028 LI.getName() + ".cast")); 1029 } 1030 1031 // None of the following transforms are legal for volatile/ordered atomic 1032 // loads. Most of them do apply for unordered atomics. 1033 if (!LI.isUnordered()) return nullptr; 1034 1035 // load(gep null, ...) -> unreachable 1036 // load null/undef -> unreachable 1037 // TODO: Consider a target hook for valid address spaces for this xforms. 1038 if (canSimplifyNullLoadOrGEP(LI, Op)) { 1039 // Insert a new store to null instruction before the load to indicate 1040 // that this code is not reachable. We do this instead of inserting 1041 // an unreachable instruction directly because we cannot modify the 1042 // CFG. 1043 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 1044 Constant::getNullValue(Op->getType()), &LI); 1045 SI->setDebugLoc(LI.getDebugLoc()); 1046 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 1047 } 1048 1049 if (Op->hasOneUse()) { 1050 // Change select and PHI nodes to select values instead of addresses: this 1051 // helps alias analysis out a lot, allows many others simplifications, and 1052 // exposes redundancy in the code. 1053 // 1054 // Note that we cannot do the transformation unless we know that the 1055 // introduced loads cannot trap! Something like this is valid as long as 1056 // the condition is always false: load (select bool %C, int* null, int* %G), 1057 // but it would not be valid if we transformed it to load from null 1058 // unconditionally. 1059 // 1060 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1061 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1062 unsigned Align = LI.getAlignment(); 1063 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && 1064 isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { 1065 LoadInst *V1 = Builder.CreateLoad(SI->getOperand(1), 1066 SI->getOperand(1)->getName()+".val"); 1067 LoadInst *V2 = Builder.CreateLoad(SI->getOperand(2), 1068 SI->getOperand(2)->getName()+".val"); 1069 assert(LI.isUnordered() && "implied by above"); 1070 V1->setAlignment(Align); 1071 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1072 V2->setAlignment(Align); 1073 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1074 return SelectInst::Create(SI->getCondition(), V1, V2); 1075 } 1076 1077 // load (select (cond, null, P)) -> load P 1078 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1079 LI.getPointerAddressSpace() == 0) { 1080 LI.setOperand(0, SI->getOperand(2)); 1081 return &LI; 1082 } 1083 1084 // load (select (cond, P, null)) -> load P 1085 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1086 LI.getPointerAddressSpace() == 0) { 1087 LI.setOperand(0, SI->getOperand(1)); 1088 return &LI; 1089 } 1090 } 1091 } 1092 return nullptr; 1093 } 1094 1095 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1096 /// 1097 /// \returns underlying value that was "cast", or nullptr otherwise. 1098 /// 1099 /// For example, if we have: 1100 /// 1101 /// %E0 = extractelement <2 x double> %U, i32 0 1102 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1103 /// %E1 = extractelement <2 x double> %U, i32 1 1104 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1105 /// 1106 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1107 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1108 /// Note that %U may contain non-undef values where %V1 has undef. 1109 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1110 Value *U = nullptr; 1111 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1112 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1113 if (!E) 1114 return nullptr; 1115 auto *W = E->getVectorOperand(); 1116 if (!U) 1117 U = W; 1118 else if (U != W) 1119 return nullptr; 1120 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1121 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1122 return nullptr; 1123 V = IV->getAggregateOperand(); 1124 } 1125 if (!isa<UndefValue>(V) ||!U) 1126 return nullptr; 1127 1128 auto *UT = cast<VectorType>(U->getType()); 1129 auto *VT = V->getType(); 1130 // Check that types UT and VT are bitwise isomorphic. 1131 const auto &DL = IC.getDataLayout(); 1132 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1133 return nullptr; 1134 } 1135 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1136 if (AT->getNumElements() != UT->getNumElements()) 1137 return nullptr; 1138 } else { 1139 auto *ST = cast<StructType>(VT); 1140 if (ST->getNumElements() != UT->getNumElements()) 1141 return nullptr; 1142 for (const auto *EltT : ST->elements()) { 1143 if (EltT != UT->getElementType()) 1144 return nullptr; 1145 } 1146 } 1147 return U; 1148 } 1149 1150 /// Combine stores to match the type of value being stored. 1151 /// 1152 /// The core idea here is that the memory does not have any intrinsic type and 1153 /// where we can we should match the type of a store to the type of value being 1154 /// stored. 1155 /// 1156 /// However, this routine must never change the width of a store or the number of 1157 /// stores as that would introduce a semantic change. This combine is expected to 1158 /// be a semantic no-op which just allows stores to more closely model the types 1159 /// of their incoming values. 1160 /// 1161 /// Currently, we also refuse to change the precise type used for an atomic or 1162 /// volatile store. This is debatable, and might be reasonable to change later. 1163 /// However, it is risky in case some backend or other part of LLVM is relying 1164 /// on the exact type stored to select appropriate atomic operations. 1165 /// 1166 /// \returns true if the store was successfully combined away. This indicates 1167 /// the caller must erase the store instruction. We have to let the caller erase 1168 /// the store instruction as otherwise there is no way to signal whether it was 1169 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1170 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1171 // FIXME: We could probably with some care handle both volatile and ordered 1172 // atomic stores here but it isn't clear that this is important. 1173 if (!SI.isUnordered()) 1174 return false; 1175 1176 // swifterror values can't be bitcasted. 1177 if (SI.getPointerOperand()->isSwiftError()) 1178 return false; 1179 1180 Value *V = SI.getValueOperand(); 1181 1182 // Fold away bit casts of the stored value by storing the original type. 1183 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1184 V = BC->getOperand(0); 1185 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1186 combineStoreToNewValue(IC, SI, V); 1187 return true; 1188 } 1189 } 1190 1191 if (Value *U = likeBitCastFromVector(IC, V)) 1192 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1193 combineStoreToNewValue(IC, SI, U); 1194 return true; 1195 } 1196 1197 // FIXME: We should also canonicalize stores of vectors when their elements 1198 // are cast to other types. 1199 return false; 1200 } 1201 1202 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1203 // FIXME: We could probably with some care handle both volatile and atomic 1204 // stores here but it isn't clear that this is important. 1205 if (!SI.isSimple()) 1206 return false; 1207 1208 Value *V = SI.getValueOperand(); 1209 Type *T = V->getType(); 1210 1211 if (!T->isAggregateType()) 1212 return false; 1213 1214 if (auto *ST = dyn_cast<StructType>(T)) { 1215 // If the struct only have one element, we unpack. 1216 unsigned Count = ST->getNumElements(); 1217 if (Count == 1) { 1218 V = IC.Builder.CreateExtractValue(V, 0); 1219 combineStoreToNewValue(IC, SI, V); 1220 return true; 1221 } 1222 1223 // We don't want to break loads with padding here as we'd loose 1224 // the knowledge that padding exists for the rest of the pipeline. 1225 const DataLayout &DL = IC.getDataLayout(); 1226 auto *SL = DL.getStructLayout(ST); 1227 if (SL->hasPadding()) 1228 return false; 1229 1230 auto Align = SI.getAlignment(); 1231 if (!Align) 1232 Align = DL.getABITypeAlignment(ST); 1233 1234 SmallString<16> EltName = V->getName(); 1235 EltName += ".elt"; 1236 auto *Addr = SI.getPointerOperand(); 1237 SmallString<16> AddrName = Addr->getName(); 1238 AddrName += ".repack"; 1239 1240 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1241 auto *Zero = ConstantInt::get(IdxType, 0); 1242 for (unsigned i = 0; i < Count; i++) { 1243 Value *Indices[2] = { 1244 Zero, 1245 ConstantInt::get(IdxType, i), 1246 }; 1247 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1248 AddrName); 1249 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1250 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1251 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1252 AAMDNodes AAMD; 1253 SI.getAAMetadata(AAMD); 1254 NS->setAAMetadata(AAMD); 1255 } 1256 1257 return true; 1258 } 1259 1260 if (auto *AT = dyn_cast<ArrayType>(T)) { 1261 // If the array only have one element, we unpack. 1262 auto NumElements = AT->getNumElements(); 1263 if (NumElements == 1) { 1264 V = IC.Builder.CreateExtractValue(V, 0); 1265 combineStoreToNewValue(IC, SI, V); 1266 return true; 1267 } 1268 1269 // Bail out if the array is too large. Ideally we would like to optimize 1270 // arrays of arbitrary size but this has a terrible impact on compile time. 1271 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1272 // tuning. 1273 if (NumElements > IC.MaxArraySizeForCombine) 1274 return false; 1275 1276 const DataLayout &DL = IC.getDataLayout(); 1277 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1278 auto Align = SI.getAlignment(); 1279 if (!Align) 1280 Align = DL.getABITypeAlignment(T); 1281 1282 SmallString<16> EltName = V->getName(); 1283 EltName += ".elt"; 1284 auto *Addr = SI.getPointerOperand(); 1285 SmallString<16> AddrName = Addr->getName(); 1286 AddrName += ".repack"; 1287 1288 auto *IdxType = Type::getInt64Ty(T->getContext()); 1289 auto *Zero = ConstantInt::get(IdxType, 0); 1290 1291 uint64_t Offset = 0; 1292 for (uint64_t i = 0; i < NumElements; i++) { 1293 Value *Indices[2] = { 1294 Zero, 1295 ConstantInt::get(IdxType, i), 1296 }; 1297 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1298 AddrName); 1299 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1300 auto EltAlign = MinAlign(Align, Offset); 1301 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1302 AAMDNodes AAMD; 1303 SI.getAAMetadata(AAMD); 1304 NS->setAAMetadata(AAMD); 1305 Offset += EltSize; 1306 } 1307 1308 return true; 1309 } 1310 1311 return false; 1312 } 1313 1314 /// equivalentAddressValues - Test if A and B will obviously have the same 1315 /// value. This includes recognizing that %t0 and %t1 will have the same 1316 /// value in code like this: 1317 /// %t0 = getelementptr \@a, 0, 3 1318 /// store i32 0, i32* %t0 1319 /// %t1 = getelementptr \@a, 0, 3 1320 /// %t2 = load i32* %t1 1321 /// 1322 static bool equivalentAddressValues(Value *A, Value *B) { 1323 // Test if the values are trivially equivalent. 1324 if (A == B) return true; 1325 1326 // Test if the values come form identical arithmetic instructions. 1327 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1328 // its only used to compare two uses within the same basic block, which 1329 // means that they'll always either have the same value or one of them 1330 // will have an undefined value. 1331 if (isa<BinaryOperator>(A) || 1332 isa<CastInst>(A) || 1333 isa<PHINode>(A) || 1334 isa<GetElementPtrInst>(A)) 1335 if (Instruction *BI = dyn_cast<Instruction>(B)) 1336 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1337 return true; 1338 1339 // Otherwise they may not be equivalent. 1340 return false; 1341 } 1342 1343 /// Converts store (bitcast (load (bitcast (select ...)))) to 1344 /// store (load (select ...)), where select is minmax: 1345 /// select ((cmp load V1, load V2), V1, V2). 1346 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC, 1347 StoreInst &SI) { 1348 // bitcast? 1349 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1350 return false; 1351 // load? integer? 1352 Value *LoadAddr; 1353 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1354 return false; 1355 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1356 if (!LI->getType()->isIntegerTy()) 1357 return false; 1358 if (!isMinMaxWithLoads(LoadAddr)) 1359 return false; 1360 1361 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1362 auto *SI = dyn_cast<StoreInst>(U); 1363 return SI && SI->getPointerOperand() != LI && 1364 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && 1365 !SI->getPointerOperand()->isSwiftError(); 1366 })) 1367 return false; 1368 1369 IC.Builder.SetInsertPoint(LI); 1370 LoadInst *NewLI = combineLoadToNewType( 1371 IC, *LI, LoadAddr->getType()->getPointerElementType()); 1372 // Replace all the stores with stores of the newly loaded value. 1373 for (auto *UI : LI->users()) { 1374 auto *USI = cast<StoreInst>(UI); 1375 IC.Builder.SetInsertPoint(USI); 1376 combineStoreToNewValue(IC, *USI, NewLI); 1377 } 1378 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1379 IC.eraseInstFromFunction(*LI); 1380 return true; 1381 } 1382 1383 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1384 Value *Val = SI.getOperand(0); 1385 Value *Ptr = SI.getOperand(1); 1386 1387 // Try to canonicalize the stored type. 1388 if (combineStoreToValueType(*this, SI)) 1389 return eraseInstFromFunction(SI); 1390 1391 // Attempt to improve the alignment. 1392 unsigned KnownAlign = getOrEnforceKnownAlignment( 1393 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1394 unsigned StoreAlign = SI.getAlignment(); 1395 unsigned EffectiveStoreAlign = 1396 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1397 1398 if (KnownAlign > EffectiveStoreAlign) 1399 SI.setAlignment(KnownAlign); 1400 else if (StoreAlign == 0) 1401 SI.setAlignment(EffectiveStoreAlign); 1402 1403 // Try to canonicalize the stored type. 1404 if (unpackStoreToAggregate(*this, SI)) 1405 return eraseInstFromFunction(SI); 1406 1407 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1408 return eraseInstFromFunction(SI); 1409 1410 // Replace GEP indices if possible. 1411 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1412 Worklist.Add(NewGEPI); 1413 return &SI; 1414 } 1415 1416 // Don't hack volatile/ordered stores. 1417 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1418 if (!SI.isUnordered()) return nullptr; 1419 1420 // If the RHS is an alloca with a single use, zapify the store, making the 1421 // alloca dead. 1422 if (Ptr->hasOneUse()) { 1423 if (isa<AllocaInst>(Ptr)) 1424 return eraseInstFromFunction(SI); 1425 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1426 if (isa<AllocaInst>(GEP->getOperand(0))) { 1427 if (GEP->getOperand(0)->hasOneUse()) 1428 return eraseInstFromFunction(SI); 1429 } 1430 } 1431 } 1432 1433 // Do really simple DSE, to catch cases where there are several consecutive 1434 // stores to the same location, separated by a few arithmetic operations. This 1435 // situation often occurs with bitfield accesses. 1436 BasicBlock::iterator BBI(SI); 1437 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1438 --ScanInsts) { 1439 --BBI; 1440 // Don't count debug info directives, lest they affect codegen, 1441 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1442 if (isa<DbgInfoIntrinsic>(BBI) || 1443 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1444 ScanInsts++; 1445 continue; 1446 } 1447 1448 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1449 // Prev store isn't volatile, and stores to the same location? 1450 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1451 SI.getOperand(1))) { 1452 ++NumDeadStore; 1453 ++BBI; 1454 eraseInstFromFunction(*PrevSI); 1455 continue; 1456 } 1457 break; 1458 } 1459 1460 // If this is a load, we have to stop. However, if the loaded value is from 1461 // the pointer we're loading and is producing the pointer we're storing, 1462 // then *this* store is dead (X = load P; store X -> P). 1463 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1464 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1465 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1466 return eraseInstFromFunction(SI); 1467 } 1468 1469 // Otherwise, this is a load from some other location. Stores before it 1470 // may not be dead. 1471 break; 1472 } 1473 1474 // Don't skip over loads, throws or things that can modify memory. 1475 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1476 break; 1477 } 1478 1479 // store X, null -> turns into 'unreachable' in SimplifyCFG 1480 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1481 if (canSimplifyNullStoreOrGEP(SI)) { 1482 if (!isa<UndefValue>(Val)) { 1483 SI.setOperand(0, UndefValue::get(Val->getType())); 1484 if (Instruction *U = dyn_cast<Instruction>(Val)) 1485 Worklist.Add(U); // Dropped a use. 1486 } 1487 return nullptr; // Do not modify these! 1488 } 1489 1490 // store undef, Ptr -> noop 1491 if (isa<UndefValue>(Val)) 1492 return eraseInstFromFunction(SI); 1493 1494 // If this store is the last instruction in the basic block (possibly 1495 // excepting debug info instructions), and if the block ends with an 1496 // unconditional branch, try to move it to the successor block. 1497 BBI = SI.getIterator(); 1498 do { 1499 ++BBI; 1500 } while (isa<DbgInfoIntrinsic>(BBI) || 1501 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1502 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1503 if (BI->isUnconditional()) 1504 if (SimplifyStoreAtEndOfBlock(SI)) 1505 return nullptr; // xform done! 1506 1507 return nullptr; 1508 } 1509 1510 /// SimplifyStoreAtEndOfBlock - Turn things like: 1511 /// if () { *P = v1; } else { *P = v2 } 1512 /// into a phi node with a store in the successor. 1513 /// 1514 /// Simplify things like: 1515 /// *P = v1; if () { *P = v2; } 1516 /// into a phi node with a store in the successor. 1517 /// 1518 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1519 assert(SI.isUnordered() && 1520 "this code has not been auditted for volatile or ordered store case"); 1521 1522 BasicBlock *StoreBB = SI.getParent(); 1523 1524 // Check to see if the successor block has exactly two incoming edges. If 1525 // so, see if the other predecessor contains a store to the same location. 1526 // if so, insert a PHI node (if needed) and move the stores down. 1527 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1528 1529 // Determine whether Dest has exactly two predecessors and, if so, compute 1530 // the other predecessor. 1531 pred_iterator PI = pred_begin(DestBB); 1532 BasicBlock *P = *PI; 1533 BasicBlock *OtherBB = nullptr; 1534 1535 if (P != StoreBB) 1536 OtherBB = P; 1537 1538 if (++PI == pred_end(DestBB)) 1539 return false; 1540 1541 P = *PI; 1542 if (P != StoreBB) { 1543 if (OtherBB) 1544 return false; 1545 OtherBB = P; 1546 } 1547 if (++PI != pred_end(DestBB)) 1548 return false; 1549 1550 // Bail out if all the relevant blocks aren't distinct (this can happen, 1551 // for example, if SI is in an infinite loop) 1552 if (StoreBB == DestBB || OtherBB == DestBB) 1553 return false; 1554 1555 // Verify that the other block ends in a branch and is not otherwise empty. 1556 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1557 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1558 if (!OtherBr || BBI == OtherBB->begin()) 1559 return false; 1560 1561 // If the other block ends in an unconditional branch, check for the 'if then 1562 // else' case. there is an instruction before the branch. 1563 StoreInst *OtherStore = nullptr; 1564 if (OtherBr->isUnconditional()) { 1565 --BBI; 1566 // Skip over debugging info. 1567 while (isa<DbgInfoIntrinsic>(BBI) || 1568 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1569 if (BBI==OtherBB->begin()) 1570 return false; 1571 --BBI; 1572 } 1573 // If this isn't a store, isn't a store to the same location, or is not the 1574 // right kind of store, bail out. 1575 OtherStore = dyn_cast<StoreInst>(BBI); 1576 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1577 !SI.isSameOperationAs(OtherStore)) 1578 return false; 1579 } else { 1580 // Otherwise, the other block ended with a conditional branch. If one of the 1581 // destinations is StoreBB, then we have the if/then case. 1582 if (OtherBr->getSuccessor(0) != StoreBB && 1583 OtherBr->getSuccessor(1) != StoreBB) 1584 return false; 1585 1586 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1587 // if/then triangle. See if there is a store to the same ptr as SI that 1588 // lives in OtherBB. 1589 for (;; --BBI) { 1590 // Check to see if we find the matching store. 1591 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1592 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1593 !SI.isSameOperationAs(OtherStore)) 1594 return false; 1595 break; 1596 } 1597 // If we find something that may be using or overwriting the stored 1598 // value, or if we run out of instructions, we can't do the xform. 1599 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1600 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1601 return false; 1602 } 1603 1604 // In order to eliminate the store in OtherBr, we have to 1605 // make sure nothing reads or overwrites the stored value in 1606 // StoreBB. 1607 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1608 // FIXME: This should really be AA driven. 1609 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1610 return false; 1611 } 1612 } 1613 1614 // Insert a PHI node now if we need it. 1615 Value *MergedVal = OtherStore->getOperand(0); 1616 if (MergedVal != SI.getOperand(0)) { 1617 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1618 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1619 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1620 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1621 } 1622 1623 // Advance to a place where it is safe to insert the new store and 1624 // insert it. 1625 BBI = DestBB->getFirstInsertionPt(); 1626 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1627 SI.isVolatile(), 1628 SI.getAlignment(), 1629 SI.getOrdering(), 1630 SI.getSyncScopeID()); 1631 InsertNewInstBefore(NewSI, *BBI); 1632 // The debug locations of the original instructions might differ; merge them. 1633 NewSI->applyMergedLocation(SI.getDebugLoc(), OtherStore->getDebugLoc()); 1634 1635 // If the two stores had AA tags, merge them. 1636 AAMDNodes AATags; 1637 SI.getAAMetadata(AATags); 1638 if (AATags) { 1639 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1640 NewSI->setAAMetadata(AATags); 1641 } 1642 1643 // Nuke the old stores. 1644 eraseInstFromFunction(SI); 1645 eraseInstFromFunction(*OtherStore); 1646 return true; 1647 } 1648