1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/Transforms/Utils/Local.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "instcombine" 31 32 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 34 35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 36 /// some part of a constant global variable. This intentionally only accepts 37 /// constant expressions because we can't rewrite arbitrary instructions. 38 static bool pointsToConstantGlobal(Value *V) { 39 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 40 return GV->isConstant(); 41 42 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 43 if (CE->getOpcode() == Instruction::BitCast || 44 CE->getOpcode() == Instruction::AddrSpaceCast || 45 CE->getOpcode() == Instruction::GetElementPtr) 46 return pointsToConstantGlobal(CE->getOperand(0)); 47 } 48 return false; 49 } 50 51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 52 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 53 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 55 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 56 /// the alloca, and if the source pointer is a pointer to a constant global, we 57 /// can optimize this. 58 static bool 59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 60 SmallVectorImpl<Instruction *> &ToDelete) { 61 // We track lifetime intrinsics as we encounter them. If we decide to go 62 // ahead and replace the value with the global, this lets the caller quickly 63 // eliminate the markers. 64 65 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 66 ValuesToInspect.emplace_back(V, false); 67 while (!ValuesToInspect.empty()) { 68 auto ValuePair = ValuesToInspect.pop_back_val(); 69 const bool IsOffset = ValuePair.second; 70 for (auto &U : ValuePair.first->uses()) { 71 auto *I = cast<Instruction>(U.getUser()); 72 73 if (auto *LI = dyn_cast<LoadInst>(I)) { 74 // Ignore non-volatile loads, they are always ok. 75 if (!LI->isSimple()) return false; 76 continue; 77 } 78 79 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 80 // If uses of the bitcast are ok, we are ok. 81 ValuesToInspect.emplace_back(I, IsOffset); 82 continue; 83 } 84 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 85 // If the GEP has all zero indices, it doesn't offset the pointer. If it 86 // doesn't, it does. 87 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 88 continue; 89 } 90 91 if (auto *Call = dyn_cast<CallBase>(I)) { 92 // If this is the function being called then we treat it like a load and 93 // ignore it. 94 if (Call->isCallee(&U)) 95 continue; 96 97 unsigned DataOpNo = Call->getDataOperandNo(&U); 98 bool IsArgOperand = Call->isArgOperand(&U); 99 100 // Inalloca arguments are clobbered by the call. 101 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 102 return false; 103 104 // If this is a readonly/readnone call site, then we know it is just a 105 // load (but one that potentially returns the value itself), so we can 106 // ignore it if we know that the value isn't captured. 107 if (Call->onlyReadsMemory() && 108 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 109 continue; 110 111 // If this is being passed as a byval argument, the caller is making a 112 // copy, so it is only a read of the alloca. 113 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 114 continue; 115 } 116 117 // Lifetime intrinsics can be handled by the caller. 118 if (I->isLifetimeStartOrEnd()) { 119 assert(I->use_empty() && "Lifetime markers have no result to use!"); 120 ToDelete.push_back(I); 121 continue; 122 } 123 124 // If this is isn't our memcpy/memmove, reject it as something we can't 125 // handle. 126 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 127 if (!MI) 128 return false; 129 130 // If the transfer is using the alloca as a source of the transfer, then 131 // ignore it since it is a load (unless the transfer is volatile). 132 if (U.getOperandNo() == 1) { 133 if (MI->isVolatile()) return false; 134 continue; 135 } 136 137 // If we already have seen a copy, reject the second one. 138 if (TheCopy) return false; 139 140 // If the pointer has been offset from the start of the alloca, we can't 141 // safely handle this. 142 if (IsOffset) return false; 143 144 // If the memintrinsic isn't using the alloca as the dest, reject it. 145 if (U.getOperandNo() != 0) return false; 146 147 // If the source of the memcpy/move is not a constant global, reject it. 148 if (!pointsToConstantGlobal(MI->getSource())) 149 return false; 150 151 // Otherwise, the transform is safe. Remember the copy instruction. 152 TheCopy = MI; 153 } 154 } 155 return true; 156 } 157 158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 159 /// modified by a copy from a constant global. If we can prove this, we can 160 /// replace any uses of the alloca with uses of the global directly. 161 static MemTransferInst * 162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 163 SmallVectorImpl<Instruction *> &ToDelete) { 164 MemTransferInst *TheCopy = nullptr; 165 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 166 return TheCopy; 167 return nullptr; 168 } 169 170 /// Returns true if V is dereferenceable for size of alloca. 171 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 172 const DataLayout &DL) { 173 if (AI->isArrayAllocation()) 174 return false; 175 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 176 if (!AllocaSize) 177 return false; 178 return isDereferenceableAndAlignedPointer(V, AI->getAlignment(), 179 APInt(64, AllocaSize), DL); 180 } 181 182 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 183 // Check for array size of 1 (scalar allocation). 184 if (!AI.isArrayAllocation()) { 185 // i32 1 is the canonical array size for scalar allocations. 186 if (AI.getArraySize()->getType()->isIntegerTy(32)) 187 return nullptr; 188 189 // Canonicalize it. 190 Value *V = IC.Builder.getInt32(1); 191 AI.setOperand(0, V); 192 return &AI; 193 } 194 195 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 196 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 197 if (C->getValue().getActiveBits() <= 64) { 198 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 199 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 200 New->setAlignment(AI.getAlignment()); 201 202 // Scan to the end of the allocation instructions, to skip over a block of 203 // allocas if possible...also skip interleaved debug info 204 // 205 BasicBlock::iterator It(New); 206 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 207 ++It; 208 209 // Now that I is pointing to the first non-allocation-inst in the block, 210 // insert our getelementptr instruction... 211 // 212 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 213 Value *NullIdx = Constant::getNullValue(IdxTy); 214 Value *Idx[2] = {NullIdx, NullIdx}; 215 Instruction *GEP = GetElementPtrInst::CreateInBounds( 216 NewTy, New, Idx, New->getName() + ".sub"); 217 IC.InsertNewInstBefore(GEP, *It); 218 219 // Now make everything use the getelementptr instead of the original 220 // allocation. 221 return IC.replaceInstUsesWith(AI, GEP); 222 } 223 } 224 225 if (isa<UndefValue>(AI.getArraySize())) 226 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 227 228 // Ensure that the alloca array size argument has type intptr_t, so that 229 // any casting is exposed early. 230 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 231 if (AI.getArraySize()->getType() != IntPtrTy) { 232 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 233 AI.setOperand(0, V); 234 return &AI; 235 } 236 237 return nullptr; 238 } 239 240 namespace { 241 // If I and V are pointers in different address space, it is not allowed to 242 // use replaceAllUsesWith since I and V have different types. A 243 // non-target-specific transformation should not use addrspacecast on V since 244 // the two address space may be disjoint depending on target. 245 // 246 // This class chases down uses of the old pointer until reaching the load 247 // instructions, then replaces the old pointer in the load instructions with 248 // the new pointer. If during the chasing it sees bitcast or GEP, it will 249 // create new bitcast or GEP with the new pointer and use them in the load 250 // instruction. 251 class PointerReplacer { 252 public: 253 PointerReplacer(InstCombiner &IC) : IC(IC) {} 254 void replacePointer(Instruction &I, Value *V); 255 256 private: 257 void findLoadAndReplace(Instruction &I); 258 void replace(Instruction *I); 259 Value *getReplacement(Value *I); 260 261 SmallVector<Instruction *, 4> Path; 262 MapVector<Value *, Value *> WorkMap; 263 InstCombiner &IC; 264 }; 265 } // end anonymous namespace 266 267 void PointerReplacer::findLoadAndReplace(Instruction &I) { 268 for (auto U : I.users()) { 269 auto *Inst = dyn_cast<Instruction>(&*U); 270 if (!Inst) 271 return; 272 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 273 if (isa<LoadInst>(Inst)) { 274 for (auto P : Path) 275 replace(P); 276 replace(Inst); 277 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 278 Path.push_back(Inst); 279 findLoadAndReplace(*Inst); 280 Path.pop_back(); 281 } else { 282 return; 283 } 284 } 285 } 286 287 Value *PointerReplacer::getReplacement(Value *V) { 288 auto Loc = WorkMap.find(V); 289 if (Loc != WorkMap.end()) 290 return Loc->second; 291 return nullptr; 292 } 293 294 void PointerReplacer::replace(Instruction *I) { 295 if (getReplacement(I)) 296 return; 297 298 if (auto *LT = dyn_cast<LoadInst>(I)) { 299 auto *V = getReplacement(LT->getPointerOperand()); 300 assert(V && "Operand not replaced"); 301 auto *NewI = new LoadInst(I->getType(), V); 302 NewI->takeName(LT); 303 IC.InsertNewInstWith(NewI, *LT); 304 IC.replaceInstUsesWith(*LT, NewI); 305 WorkMap[LT] = NewI; 306 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 307 auto *V = getReplacement(GEP->getPointerOperand()); 308 assert(V && "Operand not replaced"); 309 SmallVector<Value *, 8> Indices; 310 Indices.append(GEP->idx_begin(), GEP->idx_end()); 311 auto *NewI = GetElementPtrInst::Create( 312 V->getType()->getPointerElementType(), V, Indices); 313 IC.InsertNewInstWith(NewI, *GEP); 314 NewI->takeName(GEP); 315 WorkMap[GEP] = NewI; 316 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 317 auto *V = getReplacement(BC->getOperand(0)); 318 assert(V && "Operand not replaced"); 319 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 320 V->getType()->getPointerAddressSpace()); 321 auto *NewI = new BitCastInst(V, NewT); 322 IC.InsertNewInstWith(NewI, *BC); 323 NewI->takeName(BC); 324 WorkMap[BC] = NewI; 325 } else { 326 llvm_unreachable("should never reach here"); 327 } 328 } 329 330 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 331 #ifndef NDEBUG 332 auto *PT = cast<PointerType>(I.getType()); 333 auto *NT = cast<PointerType>(V->getType()); 334 assert(PT != NT && PT->getElementType() == NT->getElementType() && 335 "Invalid usage"); 336 #endif 337 WorkMap[&I] = V; 338 findLoadAndReplace(I); 339 } 340 341 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 342 if (auto *I = simplifyAllocaArraySize(*this, AI)) 343 return I; 344 345 if (AI.getAllocatedType()->isSized()) { 346 // If the alignment is 0 (unspecified), assign it the preferred alignment. 347 if (AI.getAlignment() == 0) 348 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 349 350 // Move all alloca's of zero byte objects to the entry block and merge them 351 // together. Note that we only do this for alloca's, because malloc should 352 // allocate and return a unique pointer, even for a zero byte allocation. 353 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 354 // For a zero sized alloca there is no point in doing an array allocation. 355 // This is helpful if the array size is a complicated expression not used 356 // elsewhere. 357 if (AI.isArrayAllocation()) { 358 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 359 return &AI; 360 } 361 362 // Get the first instruction in the entry block. 363 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 364 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 365 if (FirstInst != &AI) { 366 // If the entry block doesn't start with a zero-size alloca then move 367 // this one to the start of the entry block. There is no problem with 368 // dominance as the array size was forced to a constant earlier already. 369 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 370 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 371 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 372 AI.moveBefore(FirstInst); 373 return &AI; 374 } 375 376 // If the alignment of the entry block alloca is 0 (unspecified), 377 // assign it the preferred alignment. 378 if (EntryAI->getAlignment() == 0) 379 EntryAI->setAlignment( 380 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 381 // Replace this zero-sized alloca with the one at the start of the entry 382 // block after ensuring that the address will be aligned enough for both 383 // types. 384 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 385 AI.getAlignment()); 386 EntryAI->setAlignment(MaxAlign); 387 if (AI.getType() != EntryAI->getType()) 388 return new BitCastInst(EntryAI, AI.getType()); 389 return replaceInstUsesWith(AI, EntryAI); 390 } 391 } 392 } 393 394 if (AI.getAlignment()) { 395 // Check to see if this allocation is only modified by a memcpy/memmove from 396 // a constant global whose alignment is equal to or exceeds that of the 397 // allocation. If this is the case, we can change all users to use 398 // the constant global instead. This is commonly produced by the CFE by 399 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 400 // is only subsequently read. 401 SmallVector<Instruction *, 4> ToDelete; 402 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 403 unsigned SourceAlign = getOrEnforceKnownAlignment( 404 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 405 if (AI.getAlignment() <= SourceAlign && 406 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 407 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 408 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 409 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 410 eraseInstFromFunction(*ToDelete[i]); 411 Constant *TheSrc = cast<Constant>(Copy->getSource()); 412 auto *SrcTy = TheSrc->getType(); 413 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 414 SrcTy->getPointerAddressSpace()); 415 Constant *Cast = 416 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 417 if (AI.getType()->getPointerAddressSpace() == 418 SrcTy->getPointerAddressSpace()) { 419 Instruction *NewI = replaceInstUsesWith(AI, Cast); 420 eraseInstFromFunction(*Copy); 421 ++NumGlobalCopies; 422 return NewI; 423 } else { 424 PointerReplacer PtrReplacer(*this); 425 PtrReplacer.replacePointer(AI, Cast); 426 ++NumGlobalCopies; 427 } 428 } 429 } 430 } 431 432 // At last, use the generic allocation site handler to aggressively remove 433 // unused allocas. 434 return visitAllocSite(AI); 435 } 436 437 // Are we allowed to form a atomic load or store of this type? 438 static bool isSupportedAtomicType(Type *Ty) { 439 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 440 } 441 442 /// Helper to combine a load to a new type. 443 /// 444 /// This just does the work of combining a load to a new type. It handles 445 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 446 /// loaded *value* type. This will convert it to a pointer, cast the operand to 447 /// that pointer type, load it, etc. 448 /// 449 /// Note that this will create all of the instructions with whatever insert 450 /// point the \c InstCombiner currently is using. 451 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 452 const Twine &Suffix = "") { 453 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 454 "can't fold an atomic load to requested type"); 455 456 Value *Ptr = LI.getPointerOperand(); 457 unsigned AS = LI.getPointerAddressSpace(); 458 Value *NewPtr = nullptr; 459 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 460 NewPtr->getType()->getPointerElementType() == NewTy && 461 NewPtr->getType()->getPointerAddressSpace() == AS)) 462 NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 463 464 LoadInst *NewLoad = IC.Builder.CreateAlignedLoad( 465 NewTy, NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 466 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 467 copyMetadataForLoad(*NewLoad, LI); 468 return NewLoad; 469 } 470 471 /// Combine a store to a new type. 472 /// 473 /// Returns the newly created store instruction. 474 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 475 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 476 "can't fold an atomic store of requested type"); 477 478 Value *Ptr = SI.getPointerOperand(); 479 unsigned AS = SI.getPointerAddressSpace(); 480 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 481 SI.getAllMetadata(MD); 482 483 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 484 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 485 SI.getAlignment(), SI.isVolatile()); 486 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 487 for (const auto &MDPair : MD) { 488 unsigned ID = MDPair.first; 489 MDNode *N = MDPair.second; 490 // Note, essentially every kind of metadata should be preserved here! This 491 // routine is supposed to clone a store instruction changing *only its 492 // type*. The only metadata it makes sense to drop is metadata which is 493 // invalidated when the pointer type changes. This should essentially 494 // never be the case in LLVM, but we explicitly switch over only known 495 // metadata to be conservatively correct. If you are adding metadata to 496 // LLVM which pertains to stores, you almost certainly want to add it 497 // here. 498 switch (ID) { 499 case LLVMContext::MD_dbg: 500 case LLVMContext::MD_tbaa: 501 case LLVMContext::MD_prof: 502 case LLVMContext::MD_fpmath: 503 case LLVMContext::MD_tbaa_struct: 504 case LLVMContext::MD_alias_scope: 505 case LLVMContext::MD_noalias: 506 case LLVMContext::MD_nontemporal: 507 case LLVMContext::MD_mem_parallel_loop_access: 508 case LLVMContext::MD_access_group: 509 // All of these directly apply. 510 NewStore->setMetadata(ID, N); 511 break; 512 case LLVMContext::MD_invariant_load: 513 case LLVMContext::MD_nonnull: 514 case LLVMContext::MD_range: 515 case LLVMContext::MD_align: 516 case LLVMContext::MD_dereferenceable: 517 case LLVMContext::MD_dereferenceable_or_null: 518 // These don't apply for stores. 519 break; 520 } 521 } 522 523 return NewStore; 524 } 525 526 /// Returns true if instruction represent minmax pattern like: 527 /// select ((cmp load V1, load V2), V1, V2). 528 static bool isMinMaxWithLoads(Value *V) { 529 assert(V->getType()->isPointerTy() && "Expected pointer type."); 530 // Ignore possible ty* to ixx* bitcast. 531 V = peekThroughBitcast(V); 532 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 533 // pattern. 534 CmpInst::Predicate Pred; 535 Instruction *L1; 536 Instruction *L2; 537 Value *LHS; 538 Value *RHS; 539 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 540 m_Value(LHS), m_Value(RHS)))) 541 return false; 542 return (match(L1, m_Load(m_Specific(LHS))) && 543 match(L2, m_Load(m_Specific(RHS)))) || 544 (match(L1, m_Load(m_Specific(RHS))) && 545 match(L2, m_Load(m_Specific(LHS)))); 546 } 547 548 /// Combine loads to match the type of their uses' value after looking 549 /// through intervening bitcasts. 550 /// 551 /// The core idea here is that if the result of a load is used in an operation, 552 /// we should load the type most conducive to that operation. For example, when 553 /// loading an integer and converting that immediately to a pointer, we should 554 /// instead directly load a pointer. 555 /// 556 /// However, this routine must never change the width of a load or the number of 557 /// loads as that would introduce a semantic change. This combine is expected to 558 /// be a semantic no-op which just allows loads to more closely model the types 559 /// of their consuming operations. 560 /// 561 /// Currently, we also refuse to change the precise type used for an atomic load 562 /// or a volatile load. This is debatable, and might be reasonable to change 563 /// later. However, it is risky in case some backend or other part of LLVM is 564 /// relying on the exact type loaded to select appropriate atomic operations. 565 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 566 // FIXME: We could probably with some care handle both volatile and ordered 567 // atomic loads here but it isn't clear that this is important. 568 if (!LI.isUnordered()) 569 return nullptr; 570 571 if (LI.use_empty()) 572 return nullptr; 573 574 // swifterror values can't be bitcasted. 575 if (LI.getPointerOperand()->isSwiftError()) 576 return nullptr; 577 578 Type *Ty = LI.getType(); 579 const DataLayout &DL = IC.getDataLayout(); 580 581 // Try to canonicalize loads which are only ever stored to operate over 582 // integers instead of any other type. We only do this when the loaded type 583 // is sized and has a size exactly the same as its store size and the store 584 // size is a legal integer type. 585 // Do not perform canonicalization if minmax pattern is found (to avoid 586 // infinite loop). 587 if (!Ty->isIntegerTy() && Ty->isSized() && 588 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 589 DL.typeSizeEqualsStoreSize(Ty) && 590 !DL.isNonIntegralPointerType(Ty) && 591 !isMinMaxWithLoads( 592 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) { 593 if (all_of(LI.users(), [&LI](User *U) { 594 auto *SI = dyn_cast<StoreInst>(U); 595 return SI && SI->getPointerOperand() != &LI && 596 !SI->getPointerOperand()->isSwiftError(); 597 })) { 598 LoadInst *NewLoad = combineLoadToNewType( 599 IC, LI, 600 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 601 // Replace all the stores with stores of the newly loaded value. 602 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 603 auto *SI = cast<StoreInst>(*UI++); 604 IC.Builder.SetInsertPoint(SI); 605 combineStoreToNewValue(IC, *SI, NewLoad); 606 IC.eraseInstFromFunction(*SI); 607 } 608 assert(LI.use_empty() && "Failed to remove all users of the load!"); 609 // Return the old load so the combiner can delete it safely. 610 return &LI; 611 } 612 } 613 614 // Fold away bit casts of the loaded value by loading the desired type. 615 // We can do this for BitCastInsts as well as casts from and to pointer types, 616 // as long as those are noops (i.e., the source or dest type have the same 617 // bitwidth as the target's pointers). 618 if (LI.hasOneUse()) 619 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 620 if (CI->isNoopCast(DL)) 621 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 622 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 623 CI->replaceAllUsesWith(NewLoad); 624 IC.eraseInstFromFunction(*CI); 625 return &LI; 626 } 627 628 // FIXME: We should also canonicalize loads of vectors when their elements are 629 // cast to other types. 630 return nullptr; 631 } 632 633 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 634 // FIXME: We could probably with some care handle both volatile and atomic 635 // stores here but it isn't clear that this is important. 636 if (!LI.isSimple()) 637 return nullptr; 638 639 Type *T = LI.getType(); 640 if (!T->isAggregateType()) 641 return nullptr; 642 643 StringRef Name = LI.getName(); 644 assert(LI.getAlignment() && "Alignment must be set at this point"); 645 646 if (auto *ST = dyn_cast<StructType>(T)) { 647 // If the struct only have one element, we unpack. 648 auto NumElements = ST->getNumElements(); 649 if (NumElements == 1) { 650 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 651 ".unpack"); 652 AAMDNodes AAMD; 653 LI.getAAMetadata(AAMD); 654 NewLoad->setAAMetadata(AAMD); 655 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 656 UndefValue::get(T), NewLoad, 0, Name)); 657 } 658 659 // We don't want to break loads with padding here as we'd loose 660 // the knowledge that padding exists for the rest of the pipeline. 661 const DataLayout &DL = IC.getDataLayout(); 662 auto *SL = DL.getStructLayout(ST); 663 if (SL->hasPadding()) 664 return nullptr; 665 666 auto Align = LI.getAlignment(); 667 if (!Align) 668 Align = DL.getABITypeAlignment(ST); 669 670 auto *Addr = LI.getPointerOperand(); 671 auto *IdxType = Type::getInt32Ty(T->getContext()); 672 auto *Zero = ConstantInt::get(IdxType, 0); 673 674 Value *V = UndefValue::get(T); 675 for (unsigned i = 0; i < NumElements; i++) { 676 Value *Indices[2] = { 677 Zero, 678 ConstantInt::get(IdxType, i), 679 }; 680 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 681 Name + ".elt"); 682 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 683 auto *L = IC.Builder.CreateAlignedLoad(ST->getElementType(i), Ptr, 684 EltAlign, Name + ".unpack"); 685 // Propagate AA metadata. It'll still be valid on the narrowed load. 686 AAMDNodes AAMD; 687 LI.getAAMetadata(AAMD); 688 L->setAAMetadata(AAMD); 689 V = IC.Builder.CreateInsertValue(V, L, i); 690 } 691 692 V->setName(Name); 693 return IC.replaceInstUsesWith(LI, V); 694 } 695 696 if (auto *AT = dyn_cast<ArrayType>(T)) { 697 auto *ET = AT->getElementType(); 698 auto NumElements = AT->getNumElements(); 699 if (NumElements == 1) { 700 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 701 AAMDNodes AAMD; 702 LI.getAAMetadata(AAMD); 703 NewLoad->setAAMetadata(AAMD); 704 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 705 UndefValue::get(T), NewLoad, 0, Name)); 706 } 707 708 // Bail out if the array is too large. Ideally we would like to optimize 709 // arrays of arbitrary size but this has a terrible impact on compile time. 710 // The threshold here is chosen arbitrarily, maybe needs a little bit of 711 // tuning. 712 if (NumElements > IC.MaxArraySizeForCombine) 713 return nullptr; 714 715 const DataLayout &DL = IC.getDataLayout(); 716 auto EltSize = DL.getTypeAllocSize(ET); 717 auto Align = LI.getAlignment(); 718 if (!Align) 719 Align = DL.getABITypeAlignment(T); 720 721 auto *Addr = LI.getPointerOperand(); 722 auto *IdxType = Type::getInt64Ty(T->getContext()); 723 auto *Zero = ConstantInt::get(IdxType, 0); 724 725 Value *V = UndefValue::get(T); 726 uint64_t Offset = 0; 727 for (uint64_t i = 0; i < NumElements; i++) { 728 Value *Indices[2] = { 729 Zero, 730 ConstantInt::get(IdxType, i), 731 }; 732 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 733 Name + ".elt"); 734 auto *L = IC.Builder.CreateAlignedLoad( 735 AT->getElementType(), Ptr, MinAlign(Align, Offset), Name + ".unpack"); 736 AAMDNodes AAMD; 737 LI.getAAMetadata(AAMD); 738 L->setAAMetadata(AAMD); 739 V = IC.Builder.CreateInsertValue(V, L, i); 740 Offset += EltSize; 741 } 742 743 V->setName(Name); 744 return IC.replaceInstUsesWith(LI, V); 745 } 746 747 return nullptr; 748 } 749 750 // If we can determine that all possible objects pointed to by the provided 751 // pointer value are, not only dereferenceable, but also definitively less than 752 // or equal to the provided maximum size, then return true. Otherwise, return 753 // false (constant global values and allocas fall into this category). 754 // 755 // FIXME: This should probably live in ValueTracking (or similar). 756 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 757 const DataLayout &DL) { 758 SmallPtrSet<Value *, 4> Visited; 759 SmallVector<Value *, 4> Worklist(1, V); 760 761 do { 762 Value *P = Worklist.pop_back_val(); 763 P = P->stripPointerCasts(); 764 765 if (!Visited.insert(P).second) 766 continue; 767 768 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 769 Worklist.push_back(SI->getTrueValue()); 770 Worklist.push_back(SI->getFalseValue()); 771 continue; 772 } 773 774 if (PHINode *PN = dyn_cast<PHINode>(P)) { 775 for (Value *IncValue : PN->incoming_values()) 776 Worklist.push_back(IncValue); 777 continue; 778 } 779 780 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 781 if (GA->isInterposable()) 782 return false; 783 Worklist.push_back(GA->getAliasee()); 784 continue; 785 } 786 787 // If we know how big this object is, and it is less than MaxSize, continue 788 // searching. Otherwise, return false. 789 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 790 if (!AI->getAllocatedType()->isSized()) 791 return false; 792 793 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 794 if (!CS) 795 return false; 796 797 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 798 // Make sure that, even if the multiplication below would wrap as an 799 // uint64_t, we still do the right thing. 800 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 801 return false; 802 continue; 803 } 804 805 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 806 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 807 return false; 808 809 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 810 if (InitSize > MaxSize) 811 return false; 812 continue; 813 } 814 815 return false; 816 } while (!Worklist.empty()); 817 818 return true; 819 } 820 821 // If we're indexing into an object of a known size, and the outer index is 822 // not a constant, but having any value but zero would lead to undefined 823 // behavior, replace it with zero. 824 // 825 // For example, if we have: 826 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 827 // ... 828 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 829 // ... = load i32* %arrayidx, align 4 830 // Then we know that we can replace %x in the GEP with i64 0. 831 // 832 // FIXME: We could fold any GEP index to zero that would cause UB if it were 833 // not zero. Currently, we only handle the first such index. Also, we could 834 // also search through non-zero constant indices if we kept track of the 835 // offsets those indices implied. 836 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 837 Instruction *MemI, unsigned &Idx) { 838 if (GEPI->getNumOperands() < 2) 839 return false; 840 841 // Find the first non-zero index of a GEP. If all indices are zero, return 842 // one past the last index. 843 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 844 unsigned I = 1; 845 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 846 Value *V = GEPI->getOperand(I); 847 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 848 if (CI->isZero()) 849 continue; 850 851 break; 852 } 853 854 return I; 855 }; 856 857 // Skip through initial 'zero' indices, and find the corresponding pointer 858 // type. See if the next index is not a constant. 859 Idx = FirstNZIdx(GEPI); 860 if (Idx == GEPI->getNumOperands()) 861 return false; 862 if (isa<Constant>(GEPI->getOperand(Idx))) 863 return false; 864 865 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 866 Type *AllocTy = 867 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 868 if (!AllocTy || !AllocTy->isSized()) 869 return false; 870 const DataLayout &DL = IC.getDataLayout(); 871 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 872 873 // If there are more indices after the one we might replace with a zero, make 874 // sure they're all non-negative. If any of them are negative, the overall 875 // address being computed might be before the base address determined by the 876 // first non-zero index. 877 auto IsAllNonNegative = [&]() { 878 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 879 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 880 if (Known.isNonNegative()) 881 continue; 882 return false; 883 } 884 885 return true; 886 }; 887 888 // FIXME: If the GEP is not inbounds, and there are extra indices after the 889 // one we'll replace, those could cause the address computation to wrap 890 // (rendering the IsAllNonNegative() check below insufficient). We can do 891 // better, ignoring zero indices (and other indices we can prove small 892 // enough not to wrap). 893 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 894 return false; 895 896 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 897 // also known to be dereferenceable. 898 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 899 IsAllNonNegative(); 900 } 901 902 // If we're indexing into an object with a variable index for the memory 903 // access, but the object has only one element, we can assume that the index 904 // will always be zero. If we replace the GEP, return it. 905 template <typename T> 906 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 907 T &MemI) { 908 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 909 unsigned Idx; 910 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 911 Instruction *NewGEPI = GEPI->clone(); 912 NewGEPI->setOperand(Idx, 913 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 914 NewGEPI->insertBefore(GEPI); 915 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 916 return NewGEPI; 917 } 918 } 919 920 return nullptr; 921 } 922 923 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 924 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 925 return false; 926 927 auto *Ptr = SI.getPointerOperand(); 928 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 929 Ptr = GEPI->getOperand(0); 930 return (isa<ConstantPointerNull>(Ptr) && 931 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 932 } 933 934 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 935 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 936 const Value *GEPI0 = GEPI->getOperand(0); 937 if (isa<ConstantPointerNull>(GEPI0) && 938 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 939 return true; 940 } 941 if (isa<UndefValue>(Op) || 942 (isa<ConstantPointerNull>(Op) && 943 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 944 return true; 945 return false; 946 } 947 948 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 949 Value *Op = LI.getOperand(0); 950 951 // Try to canonicalize the loaded type. 952 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 953 return Res; 954 955 // Attempt to improve the alignment. 956 unsigned KnownAlign = getOrEnforceKnownAlignment( 957 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 958 unsigned LoadAlign = LI.getAlignment(); 959 unsigned EffectiveLoadAlign = 960 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 961 962 if (KnownAlign > EffectiveLoadAlign) 963 LI.setAlignment(KnownAlign); 964 else if (LoadAlign == 0) 965 LI.setAlignment(EffectiveLoadAlign); 966 967 // Replace GEP indices if possible. 968 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 969 Worklist.Add(NewGEPI); 970 return &LI; 971 } 972 973 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 974 return Res; 975 976 // Do really simple store-to-load forwarding and load CSE, to catch cases 977 // where there are several consecutive memory accesses to the same location, 978 // separated by a few arithmetic operations. 979 BasicBlock::iterator BBI(LI); 980 bool IsLoadCSE = false; 981 if (Value *AvailableVal = FindAvailableLoadedValue( 982 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 983 if (IsLoadCSE) 984 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 985 986 return replaceInstUsesWith( 987 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 988 LI.getName() + ".cast")); 989 } 990 991 // None of the following transforms are legal for volatile/ordered atomic 992 // loads. Most of them do apply for unordered atomics. 993 if (!LI.isUnordered()) return nullptr; 994 995 // load(gep null, ...) -> unreachable 996 // load null/undef -> unreachable 997 // TODO: Consider a target hook for valid address spaces for this xforms. 998 if (canSimplifyNullLoadOrGEP(LI, Op)) { 999 // Insert a new store to null instruction before the load to indicate 1000 // that this code is not reachable. We do this instead of inserting 1001 // an unreachable instruction directly because we cannot modify the 1002 // CFG. 1003 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 1004 Constant::getNullValue(Op->getType()), &LI); 1005 SI->setDebugLoc(LI.getDebugLoc()); 1006 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 1007 } 1008 1009 if (Op->hasOneUse()) { 1010 // Change select and PHI nodes to select values instead of addresses: this 1011 // helps alias analysis out a lot, allows many others simplifications, and 1012 // exposes redundancy in the code. 1013 // 1014 // Note that we cannot do the transformation unless we know that the 1015 // introduced loads cannot trap! Something like this is valid as long as 1016 // the condition is always false: load (select bool %C, int* null, int* %G), 1017 // but it would not be valid if we transformed it to load from null 1018 // unconditionally. 1019 // 1020 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1021 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1022 unsigned Align = LI.getAlignment(); 1023 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), Align, 1024 DL, SI) && 1025 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), Align, 1026 DL, SI)) { 1027 LoadInst *V1 = 1028 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 1029 SI->getOperand(1)->getName() + ".val"); 1030 LoadInst *V2 = 1031 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1032 SI->getOperand(2)->getName() + ".val"); 1033 assert(LI.isUnordered() && "implied by above"); 1034 V1->setAlignment(Align); 1035 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1036 V2->setAlignment(Align); 1037 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1038 return SelectInst::Create(SI->getCondition(), V1, V2); 1039 } 1040 1041 // load (select (cond, null, P)) -> load P 1042 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1043 !NullPointerIsDefined(SI->getFunction(), 1044 LI.getPointerAddressSpace())) { 1045 LI.setOperand(0, SI->getOperand(2)); 1046 return &LI; 1047 } 1048 1049 // load (select (cond, P, null)) -> load P 1050 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1051 !NullPointerIsDefined(SI->getFunction(), 1052 LI.getPointerAddressSpace())) { 1053 LI.setOperand(0, SI->getOperand(1)); 1054 return &LI; 1055 } 1056 } 1057 } 1058 return nullptr; 1059 } 1060 1061 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1062 /// 1063 /// \returns underlying value that was "cast", or nullptr otherwise. 1064 /// 1065 /// For example, if we have: 1066 /// 1067 /// %E0 = extractelement <2 x double> %U, i32 0 1068 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1069 /// %E1 = extractelement <2 x double> %U, i32 1 1070 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1071 /// 1072 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1073 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1074 /// Note that %U may contain non-undef values where %V1 has undef. 1075 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1076 Value *U = nullptr; 1077 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1078 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1079 if (!E) 1080 return nullptr; 1081 auto *W = E->getVectorOperand(); 1082 if (!U) 1083 U = W; 1084 else if (U != W) 1085 return nullptr; 1086 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1087 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1088 return nullptr; 1089 V = IV->getAggregateOperand(); 1090 } 1091 if (!isa<UndefValue>(V) ||!U) 1092 return nullptr; 1093 1094 auto *UT = cast<VectorType>(U->getType()); 1095 auto *VT = V->getType(); 1096 // Check that types UT and VT are bitwise isomorphic. 1097 const auto &DL = IC.getDataLayout(); 1098 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1099 return nullptr; 1100 } 1101 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1102 if (AT->getNumElements() != UT->getNumElements()) 1103 return nullptr; 1104 } else { 1105 auto *ST = cast<StructType>(VT); 1106 if (ST->getNumElements() != UT->getNumElements()) 1107 return nullptr; 1108 for (const auto *EltT : ST->elements()) { 1109 if (EltT != UT->getElementType()) 1110 return nullptr; 1111 } 1112 } 1113 return U; 1114 } 1115 1116 /// Combine stores to match the type of value being stored. 1117 /// 1118 /// The core idea here is that the memory does not have any intrinsic type and 1119 /// where we can we should match the type of a store to the type of value being 1120 /// stored. 1121 /// 1122 /// However, this routine must never change the width of a store or the number of 1123 /// stores as that would introduce a semantic change. This combine is expected to 1124 /// be a semantic no-op which just allows stores to more closely model the types 1125 /// of their incoming values. 1126 /// 1127 /// Currently, we also refuse to change the precise type used for an atomic or 1128 /// volatile store. This is debatable, and might be reasonable to change later. 1129 /// However, it is risky in case some backend or other part of LLVM is relying 1130 /// on the exact type stored to select appropriate atomic operations. 1131 /// 1132 /// \returns true if the store was successfully combined away. This indicates 1133 /// the caller must erase the store instruction. We have to let the caller erase 1134 /// the store instruction as otherwise there is no way to signal whether it was 1135 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1136 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1137 // FIXME: We could probably with some care handle both volatile and ordered 1138 // atomic stores here but it isn't clear that this is important. 1139 if (!SI.isUnordered()) 1140 return false; 1141 1142 // swifterror values can't be bitcasted. 1143 if (SI.getPointerOperand()->isSwiftError()) 1144 return false; 1145 1146 Value *V = SI.getValueOperand(); 1147 1148 // Fold away bit casts of the stored value by storing the original type. 1149 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1150 V = BC->getOperand(0); 1151 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1152 combineStoreToNewValue(IC, SI, V); 1153 return true; 1154 } 1155 } 1156 1157 if (Value *U = likeBitCastFromVector(IC, V)) 1158 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1159 combineStoreToNewValue(IC, SI, U); 1160 return true; 1161 } 1162 1163 // FIXME: We should also canonicalize stores of vectors when their elements 1164 // are cast to other types. 1165 return false; 1166 } 1167 1168 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1169 // FIXME: We could probably with some care handle both volatile and atomic 1170 // stores here but it isn't clear that this is important. 1171 if (!SI.isSimple()) 1172 return false; 1173 1174 Value *V = SI.getValueOperand(); 1175 Type *T = V->getType(); 1176 1177 if (!T->isAggregateType()) 1178 return false; 1179 1180 if (auto *ST = dyn_cast<StructType>(T)) { 1181 // If the struct only have one element, we unpack. 1182 unsigned Count = ST->getNumElements(); 1183 if (Count == 1) { 1184 V = IC.Builder.CreateExtractValue(V, 0); 1185 combineStoreToNewValue(IC, SI, V); 1186 return true; 1187 } 1188 1189 // We don't want to break loads with padding here as we'd loose 1190 // the knowledge that padding exists for the rest of the pipeline. 1191 const DataLayout &DL = IC.getDataLayout(); 1192 auto *SL = DL.getStructLayout(ST); 1193 if (SL->hasPadding()) 1194 return false; 1195 1196 auto Align = SI.getAlignment(); 1197 if (!Align) 1198 Align = DL.getABITypeAlignment(ST); 1199 1200 SmallString<16> EltName = V->getName(); 1201 EltName += ".elt"; 1202 auto *Addr = SI.getPointerOperand(); 1203 SmallString<16> AddrName = Addr->getName(); 1204 AddrName += ".repack"; 1205 1206 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1207 auto *Zero = ConstantInt::get(IdxType, 0); 1208 for (unsigned i = 0; i < Count; i++) { 1209 Value *Indices[2] = { 1210 Zero, 1211 ConstantInt::get(IdxType, i), 1212 }; 1213 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1214 AddrName); 1215 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1216 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1217 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1218 AAMDNodes AAMD; 1219 SI.getAAMetadata(AAMD); 1220 NS->setAAMetadata(AAMD); 1221 } 1222 1223 return true; 1224 } 1225 1226 if (auto *AT = dyn_cast<ArrayType>(T)) { 1227 // If the array only have one element, we unpack. 1228 auto NumElements = AT->getNumElements(); 1229 if (NumElements == 1) { 1230 V = IC.Builder.CreateExtractValue(V, 0); 1231 combineStoreToNewValue(IC, SI, V); 1232 return true; 1233 } 1234 1235 // Bail out if the array is too large. Ideally we would like to optimize 1236 // arrays of arbitrary size but this has a terrible impact on compile time. 1237 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1238 // tuning. 1239 if (NumElements > IC.MaxArraySizeForCombine) 1240 return false; 1241 1242 const DataLayout &DL = IC.getDataLayout(); 1243 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1244 auto Align = SI.getAlignment(); 1245 if (!Align) 1246 Align = DL.getABITypeAlignment(T); 1247 1248 SmallString<16> EltName = V->getName(); 1249 EltName += ".elt"; 1250 auto *Addr = SI.getPointerOperand(); 1251 SmallString<16> AddrName = Addr->getName(); 1252 AddrName += ".repack"; 1253 1254 auto *IdxType = Type::getInt64Ty(T->getContext()); 1255 auto *Zero = ConstantInt::get(IdxType, 0); 1256 1257 uint64_t Offset = 0; 1258 for (uint64_t i = 0; i < NumElements; i++) { 1259 Value *Indices[2] = { 1260 Zero, 1261 ConstantInt::get(IdxType, i), 1262 }; 1263 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1264 AddrName); 1265 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1266 auto EltAlign = MinAlign(Align, Offset); 1267 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1268 AAMDNodes AAMD; 1269 SI.getAAMetadata(AAMD); 1270 NS->setAAMetadata(AAMD); 1271 Offset += EltSize; 1272 } 1273 1274 return true; 1275 } 1276 1277 return false; 1278 } 1279 1280 /// equivalentAddressValues - Test if A and B will obviously have the same 1281 /// value. This includes recognizing that %t0 and %t1 will have the same 1282 /// value in code like this: 1283 /// %t0 = getelementptr \@a, 0, 3 1284 /// store i32 0, i32* %t0 1285 /// %t1 = getelementptr \@a, 0, 3 1286 /// %t2 = load i32* %t1 1287 /// 1288 static bool equivalentAddressValues(Value *A, Value *B) { 1289 // Test if the values are trivially equivalent. 1290 if (A == B) return true; 1291 1292 // Test if the values come form identical arithmetic instructions. 1293 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1294 // its only used to compare two uses within the same basic block, which 1295 // means that they'll always either have the same value or one of them 1296 // will have an undefined value. 1297 if (isa<BinaryOperator>(A) || 1298 isa<CastInst>(A) || 1299 isa<PHINode>(A) || 1300 isa<GetElementPtrInst>(A)) 1301 if (Instruction *BI = dyn_cast<Instruction>(B)) 1302 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1303 return true; 1304 1305 // Otherwise they may not be equivalent. 1306 return false; 1307 } 1308 1309 /// Converts store (bitcast (load (bitcast (select ...)))) to 1310 /// store (load (select ...)), where select is minmax: 1311 /// select ((cmp load V1, load V2), V1, V2). 1312 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC, 1313 StoreInst &SI) { 1314 // bitcast? 1315 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1316 return false; 1317 // load? integer? 1318 Value *LoadAddr; 1319 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1320 return false; 1321 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1322 if (!LI->getType()->isIntegerTy()) 1323 return false; 1324 if (!isMinMaxWithLoads(LoadAddr)) 1325 return false; 1326 1327 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1328 auto *SI = dyn_cast<StoreInst>(U); 1329 return SI && SI->getPointerOperand() != LI && 1330 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && 1331 !SI->getPointerOperand()->isSwiftError(); 1332 })) 1333 return false; 1334 1335 IC.Builder.SetInsertPoint(LI); 1336 LoadInst *NewLI = combineLoadToNewType( 1337 IC, *LI, LoadAddr->getType()->getPointerElementType()); 1338 // Replace all the stores with stores of the newly loaded value. 1339 for (auto *UI : LI->users()) { 1340 auto *USI = cast<StoreInst>(UI); 1341 IC.Builder.SetInsertPoint(USI); 1342 combineStoreToNewValue(IC, *USI, NewLI); 1343 } 1344 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1345 IC.eraseInstFromFunction(*LI); 1346 return true; 1347 } 1348 1349 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1350 Value *Val = SI.getOperand(0); 1351 Value *Ptr = SI.getOperand(1); 1352 1353 // Try to canonicalize the stored type. 1354 if (combineStoreToValueType(*this, SI)) 1355 return eraseInstFromFunction(SI); 1356 1357 // Attempt to improve the alignment. 1358 unsigned KnownAlign = getOrEnforceKnownAlignment( 1359 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1360 unsigned StoreAlign = SI.getAlignment(); 1361 unsigned EffectiveStoreAlign = 1362 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1363 1364 if (KnownAlign > EffectiveStoreAlign) 1365 SI.setAlignment(KnownAlign); 1366 else if (StoreAlign == 0) 1367 SI.setAlignment(EffectiveStoreAlign); 1368 1369 // Try to canonicalize the stored type. 1370 if (unpackStoreToAggregate(*this, SI)) 1371 return eraseInstFromFunction(SI); 1372 1373 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1374 return eraseInstFromFunction(SI); 1375 1376 // Replace GEP indices if possible. 1377 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1378 Worklist.Add(NewGEPI); 1379 return &SI; 1380 } 1381 1382 // Don't hack volatile/ordered stores. 1383 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1384 if (!SI.isUnordered()) return nullptr; 1385 1386 // If the RHS is an alloca with a single use, zapify the store, making the 1387 // alloca dead. 1388 if (Ptr->hasOneUse()) { 1389 if (isa<AllocaInst>(Ptr)) 1390 return eraseInstFromFunction(SI); 1391 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1392 if (isa<AllocaInst>(GEP->getOperand(0))) { 1393 if (GEP->getOperand(0)->hasOneUse()) 1394 return eraseInstFromFunction(SI); 1395 } 1396 } 1397 } 1398 1399 // If we have a store to a location which is known constant, we can conclude 1400 // that the store must be storing the constant value (else the memory 1401 // wouldn't be constant), and this must be a noop. 1402 if (AA->pointsToConstantMemory(Ptr)) 1403 return eraseInstFromFunction(SI); 1404 1405 // Do really simple DSE, to catch cases where there are several consecutive 1406 // stores to the same location, separated by a few arithmetic operations. This 1407 // situation often occurs with bitfield accesses. 1408 BasicBlock::iterator BBI(SI); 1409 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1410 --ScanInsts) { 1411 --BBI; 1412 // Don't count debug info directives, lest they affect codegen, 1413 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1414 if (isa<DbgInfoIntrinsic>(BBI) || 1415 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1416 ScanInsts++; 1417 continue; 1418 } 1419 1420 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1421 // Prev store isn't volatile, and stores to the same location? 1422 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1423 SI.getOperand(1))) { 1424 ++NumDeadStore; 1425 ++BBI; 1426 eraseInstFromFunction(*PrevSI); 1427 continue; 1428 } 1429 break; 1430 } 1431 1432 // If this is a load, we have to stop. However, if the loaded value is from 1433 // the pointer we're loading and is producing the pointer we're storing, 1434 // then *this* store is dead (X = load P; store X -> P). 1435 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1436 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1437 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1438 return eraseInstFromFunction(SI); 1439 } 1440 1441 // Otherwise, this is a load from some other location. Stores before it 1442 // may not be dead. 1443 break; 1444 } 1445 1446 // Don't skip over loads, throws or things that can modify memory. 1447 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1448 break; 1449 } 1450 1451 // store X, null -> turns into 'unreachable' in SimplifyCFG 1452 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1453 if (canSimplifyNullStoreOrGEP(SI)) { 1454 if (!isa<UndefValue>(Val)) { 1455 SI.setOperand(0, UndefValue::get(Val->getType())); 1456 if (Instruction *U = dyn_cast<Instruction>(Val)) 1457 Worklist.Add(U); // Dropped a use. 1458 } 1459 return nullptr; // Do not modify these! 1460 } 1461 1462 // store undef, Ptr -> noop 1463 if (isa<UndefValue>(Val)) 1464 return eraseInstFromFunction(SI); 1465 1466 // If this store is the second-to-last instruction in the basic block 1467 // (excluding debug info and bitcasts of pointers) and if the block ends with 1468 // an unconditional branch, try to move the store to the successor block. 1469 BBI = SI.getIterator(); 1470 do { 1471 ++BBI; 1472 } while (isa<DbgInfoIntrinsic>(BBI) || 1473 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1474 1475 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1476 if (BI->isUnconditional()) 1477 mergeStoreIntoSuccessor(SI); 1478 1479 return nullptr; 1480 } 1481 1482 /// Try to transform: 1483 /// if () { *P = v1; } else { *P = v2 } 1484 /// or: 1485 /// *P = v1; if () { *P = v2; } 1486 /// into a phi node with a store in the successor. 1487 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) { 1488 assert(SI.isUnordered() && 1489 "This code has not been audited for volatile or ordered store case."); 1490 1491 // Check if the successor block has exactly 2 incoming edges. 1492 BasicBlock *StoreBB = SI.getParent(); 1493 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1494 if (!DestBB->hasNPredecessors(2)) 1495 return false; 1496 1497 // Capture the other block (the block that doesn't contain our store). 1498 pred_iterator PredIter = pred_begin(DestBB); 1499 if (*PredIter == StoreBB) 1500 ++PredIter; 1501 BasicBlock *OtherBB = *PredIter; 1502 1503 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1504 // for example, if SI is in an infinite loop. 1505 if (StoreBB == DestBB || OtherBB == DestBB) 1506 return false; 1507 1508 // Verify that the other block ends in a branch and is not otherwise empty. 1509 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1510 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1511 if (!OtherBr || BBI == OtherBB->begin()) 1512 return false; 1513 1514 // If the other block ends in an unconditional branch, check for the 'if then 1515 // else' case. There is an instruction before the branch. 1516 StoreInst *OtherStore = nullptr; 1517 if (OtherBr->isUnconditional()) { 1518 --BBI; 1519 // Skip over debugging info. 1520 while (isa<DbgInfoIntrinsic>(BBI) || 1521 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1522 if (BBI==OtherBB->begin()) 1523 return false; 1524 --BBI; 1525 } 1526 // If this isn't a store, isn't a store to the same location, or is not the 1527 // right kind of store, bail out. 1528 OtherStore = dyn_cast<StoreInst>(BBI); 1529 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1530 !SI.isSameOperationAs(OtherStore)) 1531 return false; 1532 } else { 1533 // Otherwise, the other block ended with a conditional branch. If one of the 1534 // destinations is StoreBB, then we have the if/then case. 1535 if (OtherBr->getSuccessor(0) != StoreBB && 1536 OtherBr->getSuccessor(1) != StoreBB) 1537 return false; 1538 1539 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1540 // if/then triangle. See if there is a store to the same ptr as SI that 1541 // lives in OtherBB. 1542 for (;; --BBI) { 1543 // Check to see if we find the matching store. 1544 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1545 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1546 !SI.isSameOperationAs(OtherStore)) 1547 return false; 1548 break; 1549 } 1550 // If we find something that may be using or overwriting the stored 1551 // value, or if we run out of instructions, we can't do the transform. 1552 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1553 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1554 return false; 1555 } 1556 1557 // In order to eliminate the store in OtherBr, we have to make sure nothing 1558 // reads or overwrites the stored value in StoreBB. 1559 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1560 // FIXME: This should really be AA driven. 1561 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1562 return false; 1563 } 1564 } 1565 1566 // Insert a PHI node now if we need it. 1567 Value *MergedVal = OtherStore->getOperand(0); 1568 // The debug locations of the original instructions might differ. Merge them. 1569 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1570 OtherStore->getDebugLoc()); 1571 if (MergedVal != SI.getOperand(0)) { 1572 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1573 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1574 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1575 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1576 PN->setDebugLoc(MergedLoc); 1577 } 1578 1579 // Advance to a place where it is safe to insert the new store and insert it. 1580 BBI = DestBB->getFirstInsertionPt(); 1581 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1582 SI.isVolatile(), SI.getAlignment(), 1583 SI.getOrdering(), SI.getSyncScopeID()); 1584 InsertNewInstBefore(NewSI, *BBI); 1585 NewSI->setDebugLoc(MergedLoc); 1586 1587 // If the two stores had AA tags, merge them. 1588 AAMDNodes AATags; 1589 SI.getAAMetadata(AATags); 1590 if (AATags) { 1591 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1592 NewSI->setAAMetadata(AATags); 1593 } 1594 1595 // Nuke the old stores. 1596 eraseInstFromFunction(SI); 1597 eraseInstFromFunction(*OtherStore); 1598 return true; 1599 } 1600