1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Transforms/Utils/Local.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "instcombine"
31 
32 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
34 
35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
36 /// some part of a constant global variable.  This intentionally only accepts
37 /// constant expressions because we can't rewrite arbitrary instructions.
38 static bool pointsToConstantGlobal(Value *V) {
39   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
40     return GV->isConstant();
41 
42   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
43     if (CE->getOpcode() == Instruction::BitCast ||
44         CE->getOpcode() == Instruction::AddrSpaceCast ||
45         CE->getOpcode() == Instruction::GetElementPtr)
46       return pointsToConstantGlobal(CE->getOperand(0));
47   }
48   return false;
49 }
50 
51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
52 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
53 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
55 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
56 /// the alloca, and if the source pointer is a pointer to a constant global, we
57 /// can optimize this.
58 static bool
59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
60                                SmallVectorImpl<Instruction *> &ToDelete) {
61   // We track lifetime intrinsics as we encounter them.  If we decide to go
62   // ahead and replace the value with the global, this lets the caller quickly
63   // eliminate the markers.
64 
65   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
66   ValuesToInspect.emplace_back(V, false);
67   while (!ValuesToInspect.empty()) {
68     auto ValuePair = ValuesToInspect.pop_back_val();
69     const bool IsOffset = ValuePair.second;
70     for (auto &U : ValuePair.first->uses()) {
71       auto *I = cast<Instruction>(U.getUser());
72 
73       if (auto *LI = dyn_cast<LoadInst>(I)) {
74         // Ignore non-volatile loads, they are always ok.
75         if (!LI->isSimple()) return false;
76         continue;
77       }
78 
79       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
80         // If uses of the bitcast are ok, we are ok.
81         ValuesToInspect.emplace_back(I, IsOffset);
82         continue;
83       }
84       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
85         // If the GEP has all zero indices, it doesn't offset the pointer. If it
86         // doesn't, it does.
87         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
88         continue;
89       }
90 
91       if (auto *Call = dyn_cast<CallBase>(I)) {
92         // If this is the function being called then we treat it like a load and
93         // ignore it.
94         if (Call->isCallee(&U))
95           continue;
96 
97         unsigned DataOpNo = Call->getDataOperandNo(&U);
98         bool IsArgOperand = Call->isArgOperand(&U);
99 
100         // Inalloca arguments are clobbered by the call.
101         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
102           return false;
103 
104         // If this is a readonly/readnone call site, then we know it is just a
105         // load (but one that potentially returns the value itself), so we can
106         // ignore it if we know that the value isn't captured.
107         if (Call->onlyReadsMemory() &&
108             (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
109           continue;
110 
111         // If this is being passed as a byval argument, the caller is making a
112         // copy, so it is only a read of the alloca.
113         if (IsArgOperand && Call->isByValArgument(DataOpNo))
114           continue;
115       }
116 
117       // Lifetime intrinsics can be handled by the caller.
118       if (I->isLifetimeStartOrEnd()) {
119         assert(I->use_empty() && "Lifetime markers have no result to use!");
120         ToDelete.push_back(I);
121         continue;
122       }
123 
124       // If this is isn't our memcpy/memmove, reject it as something we can't
125       // handle.
126       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
127       if (!MI)
128         return false;
129 
130       // If the transfer is using the alloca as a source of the transfer, then
131       // ignore it since it is a load (unless the transfer is volatile).
132       if (U.getOperandNo() == 1) {
133         if (MI->isVolatile()) return false;
134         continue;
135       }
136 
137       // If we already have seen a copy, reject the second one.
138       if (TheCopy) return false;
139 
140       // If the pointer has been offset from the start of the alloca, we can't
141       // safely handle this.
142       if (IsOffset) return false;
143 
144       // If the memintrinsic isn't using the alloca as the dest, reject it.
145       if (U.getOperandNo() != 0) return false;
146 
147       // If the source of the memcpy/move is not a constant global, reject it.
148       if (!pointsToConstantGlobal(MI->getSource()))
149         return false;
150 
151       // Otherwise, the transform is safe.  Remember the copy instruction.
152       TheCopy = MI;
153     }
154   }
155   return true;
156 }
157 
158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
159 /// modified by a copy from a constant global.  If we can prove this, we can
160 /// replace any uses of the alloca with uses of the global directly.
161 static MemTransferInst *
162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
163                                SmallVectorImpl<Instruction *> &ToDelete) {
164   MemTransferInst *TheCopy = nullptr;
165   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
166     return TheCopy;
167   return nullptr;
168 }
169 
170 /// Returns true if V is dereferenceable for size of alloca.
171 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
172                                            const DataLayout &DL) {
173   if (AI->isArrayAllocation())
174     return false;
175   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
176   if (!AllocaSize)
177     return false;
178   return isDereferenceableAndAlignedPointer(V, AI->getAlignment(),
179                                             APInt(64, AllocaSize), DL);
180 }
181 
182 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
183   // Check for array size of 1 (scalar allocation).
184   if (!AI.isArrayAllocation()) {
185     // i32 1 is the canonical array size for scalar allocations.
186     if (AI.getArraySize()->getType()->isIntegerTy(32))
187       return nullptr;
188 
189     // Canonicalize it.
190     Value *V = IC.Builder.getInt32(1);
191     AI.setOperand(0, V);
192     return &AI;
193   }
194 
195   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
196   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
197     if (C->getValue().getActiveBits() <= 64) {
198       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
199       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
200       New->setAlignment(AI.getAlignment());
201 
202       // Scan to the end of the allocation instructions, to skip over a block of
203       // allocas if possible...also skip interleaved debug info
204       //
205       BasicBlock::iterator It(New);
206       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
207         ++It;
208 
209       // Now that I is pointing to the first non-allocation-inst in the block,
210       // insert our getelementptr instruction...
211       //
212       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
213       Value *NullIdx = Constant::getNullValue(IdxTy);
214       Value *Idx[2] = {NullIdx, NullIdx};
215       Instruction *GEP = GetElementPtrInst::CreateInBounds(
216           NewTy, New, Idx, New->getName() + ".sub");
217       IC.InsertNewInstBefore(GEP, *It);
218 
219       // Now make everything use the getelementptr instead of the original
220       // allocation.
221       return IC.replaceInstUsesWith(AI, GEP);
222     }
223   }
224 
225   if (isa<UndefValue>(AI.getArraySize()))
226     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
227 
228   // Ensure that the alloca array size argument has type intptr_t, so that
229   // any casting is exposed early.
230   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
231   if (AI.getArraySize()->getType() != IntPtrTy) {
232     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
233     AI.setOperand(0, V);
234     return &AI;
235   }
236 
237   return nullptr;
238 }
239 
240 namespace {
241 // If I and V are pointers in different address space, it is not allowed to
242 // use replaceAllUsesWith since I and V have different types. A
243 // non-target-specific transformation should not use addrspacecast on V since
244 // the two address space may be disjoint depending on target.
245 //
246 // This class chases down uses of the old pointer until reaching the load
247 // instructions, then replaces the old pointer in the load instructions with
248 // the new pointer. If during the chasing it sees bitcast or GEP, it will
249 // create new bitcast or GEP with the new pointer and use them in the load
250 // instruction.
251 class PointerReplacer {
252 public:
253   PointerReplacer(InstCombiner &IC) : IC(IC) {}
254   void replacePointer(Instruction &I, Value *V);
255 
256 private:
257   void findLoadAndReplace(Instruction &I);
258   void replace(Instruction *I);
259   Value *getReplacement(Value *I);
260 
261   SmallVector<Instruction *, 4> Path;
262   MapVector<Value *, Value *> WorkMap;
263   InstCombiner &IC;
264 };
265 } // end anonymous namespace
266 
267 void PointerReplacer::findLoadAndReplace(Instruction &I) {
268   for (auto U : I.users()) {
269     auto *Inst = dyn_cast<Instruction>(&*U);
270     if (!Inst)
271       return;
272     LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n');
273     if (isa<LoadInst>(Inst)) {
274       for (auto P : Path)
275         replace(P);
276       replace(Inst);
277     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
278       Path.push_back(Inst);
279       findLoadAndReplace(*Inst);
280       Path.pop_back();
281     } else {
282       return;
283     }
284   }
285 }
286 
287 Value *PointerReplacer::getReplacement(Value *V) {
288   auto Loc = WorkMap.find(V);
289   if (Loc != WorkMap.end())
290     return Loc->second;
291   return nullptr;
292 }
293 
294 void PointerReplacer::replace(Instruction *I) {
295   if (getReplacement(I))
296     return;
297 
298   if (auto *LT = dyn_cast<LoadInst>(I)) {
299     auto *V = getReplacement(LT->getPointerOperand());
300     assert(V && "Operand not replaced");
301     auto *NewI = new LoadInst(I->getType(), V);
302     NewI->takeName(LT);
303     IC.InsertNewInstWith(NewI, *LT);
304     IC.replaceInstUsesWith(*LT, NewI);
305     WorkMap[LT] = NewI;
306   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
307     auto *V = getReplacement(GEP->getPointerOperand());
308     assert(V && "Operand not replaced");
309     SmallVector<Value *, 8> Indices;
310     Indices.append(GEP->idx_begin(), GEP->idx_end());
311     auto *NewI = GetElementPtrInst::Create(
312         V->getType()->getPointerElementType(), V, Indices);
313     IC.InsertNewInstWith(NewI, *GEP);
314     NewI->takeName(GEP);
315     WorkMap[GEP] = NewI;
316   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
317     auto *V = getReplacement(BC->getOperand(0));
318     assert(V && "Operand not replaced");
319     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
320                                   V->getType()->getPointerAddressSpace());
321     auto *NewI = new BitCastInst(V, NewT);
322     IC.InsertNewInstWith(NewI, *BC);
323     NewI->takeName(BC);
324     WorkMap[BC] = NewI;
325   } else {
326     llvm_unreachable("should never reach here");
327   }
328 }
329 
330 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
331 #ifndef NDEBUG
332   auto *PT = cast<PointerType>(I.getType());
333   auto *NT = cast<PointerType>(V->getType());
334   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
335          "Invalid usage");
336 #endif
337   WorkMap[&I] = V;
338   findLoadAndReplace(I);
339 }
340 
341 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
342   if (auto *I = simplifyAllocaArraySize(*this, AI))
343     return I;
344 
345   if (AI.getAllocatedType()->isSized()) {
346     // If the alignment is 0 (unspecified), assign it the preferred alignment.
347     if (AI.getAlignment() == 0)
348       AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
349 
350     // Move all alloca's of zero byte objects to the entry block and merge them
351     // together.  Note that we only do this for alloca's, because malloc should
352     // allocate and return a unique pointer, even for a zero byte allocation.
353     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
354       // For a zero sized alloca there is no point in doing an array allocation.
355       // This is helpful if the array size is a complicated expression not used
356       // elsewhere.
357       if (AI.isArrayAllocation()) {
358         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
359         return &AI;
360       }
361 
362       // Get the first instruction in the entry block.
363       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
364       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
365       if (FirstInst != &AI) {
366         // If the entry block doesn't start with a zero-size alloca then move
367         // this one to the start of the entry block.  There is no problem with
368         // dominance as the array size was forced to a constant earlier already.
369         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
370         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
371             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
372           AI.moveBefore(FirstInst);
373           return &AI;
374         }
375 
376         // If the alignment of the entry block alloca is 0 (unspecified),
377         // assign it the preferred alignment.
378         if (EntryAI->getAlignment() == 0)
379           EntryAI->setAlignment(
380               DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
381         // Replace this zero-sized alloca with the one at the start of the entry
382         // block after ensuring that the address will be aligned enough for both
383         // types.
384         unsigned MaxAlign = std::max(EntryAI->getAlignment(),
385                                      AI.getAlignment());
386         EntryAI->setAlignment(MaxAlign);
387         if (AI.getType() != EntryAI->getType())
388           return new BitCastInst(EntryAI, AI.getType());
389         return replaceInstUsesWith(AI, EntryAI);
390       }
391     }
392   }
393 
394   if (AI.getAlignment()) {
395     // Check to see if this allocation is only modified by a memcpy/memmove from
396     // a constant global whose alignment is equal to or exceeds that of the
397     // allocation.  If this is the case, we can change all users to use
398     // the constant global instead.  This is commonly produced by the CFE by
399     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
400     // is only subsequently read.
401     SmallVector<Instruction *, 4> ToDelete;
402     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
403       unsigned SourceAlign = getOrEnforceKnownAlignment(
404           Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
405       if (AI.getAlignment() <= SourceAlign &&
406           isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) {
407         LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
408         LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
409         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
410           eraseInstFromFunction(*ToDelete[i]);
411         Constant *TheSrc = cast<Constant>(Copy->getSource());
412         auto *SrcTy = TheSrc->getType();
413         auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(),
414                                         SrcTy->getPointerAddressSpace());
415         Constant *Cast =
416             ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy);
417         if (AI.getType()->getPointerAddressSpace() ==
418             SrcTy->getPointerAddressSpace()) {
419           Instruction *NewI = replaceInstUsesWith(AI, Cast);
420           eraseInstFromFunction(*Copy);
421           ++NumGlobalCopies;
422           return NewI;
423         } else {
424           PointerReplacer PtrReplacer(*this);
425           PtrReplacer.replacePointer(AI, Cast);
426           ++NumGlobalCopies;
427         }
428       }
429     }
430   }
431 
432   // At last, use the generic allocation site handler to aggressively remove
433   // unused allocas.
434   return visitAllocSite(AI);
435 }
436 
437 // Are we allowed to form a atomic load or store of this type?
438 static bool isSupportedAtomicType(Type *Ty) {
439   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
440 }
441 
442 /// Helper to combine a load to a new type.
443 ///
444 /// This just does the work of combining a load to a new type. It handles
445 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
446 /// loaded *value* type. This will convert it to a pointer, cast the operand to
447 /// that pointer type, load it, etc.
448 ///
449 /// Note that this will create all of the instructions with whatever insert
450 /// point the \c InstCombiner currently is using.
451 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
452                                       const Twine &Suffix = "") {
453   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
454          "can't fold an atomic load to requested type");
455 
456   Value *Ptr = LI.getPointerOperand();
457   unsigned AS = LI.getPointerAddressSpace();
458   Value *NewPtr = nullptr;
459   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
460         NewPtr->getType()->getPointerElementType() == NewTy &&
461         NewPtr->getType()->getPointerAddressSpace() == AS))
462     NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
463 
464   LoadInst *NewLoad = IC.Builder.CreateAlignedLoad(
465       NewTy, NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix);
466   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
467   copyMetadataForLoad(*NewLoad, LI);
468   return NewLoad;
469 }
470 
471 /// Combine a store to a new type.
472 ///
473 /// Returns the newly created store instruction.
474 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
475   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
476          "can't fold an atomic store of requested type");
477 
478   Value *Ptr = SI.getPointerOperand();
479   unsigned AS = SI.getPointerAddressSpace();
480   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
481   SI.getAllMetadata(MD);
482 
483   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
484       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
485       SI.getAlignment(), SI.isVolatile());
486   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
487   for (const auto &MDPair : MD) {
488     unsigned ID = MDPair.first;
489     MDNode *N = MDPair.second;
490     // Note, essentially every kind of metadata should be preserved here! This
491     // routine is supposed to clone a store instruction changing *only its
492     // type*. The only metadata it makes sense to drop is metadata which is
493     // invalidated when the pointer type changes. This should essentially
494     // never be the case in LLVM, but we explicitly switch over only known
495     // metadata to be conservatively correct. If you are adding metadata to
496     // LLVM which pertains to stores, you almost certainly want to add it
497     // here.
498     switch (ID) {
499     case LLVMContext::MD_dbg:
500     case LLVMContext::MD_tbaa:
501     case LLVMContext::MD_prof:
502     case LLVMContext::MD_fpmath:
503     case LLVMContext::MD_tbaa_struct:
504     case LLVMContext::MD_alias_scope:
505     case LLVMContext::MD_noalias:
506     case LLVMContext::MD_nontemporal:
507     case LLVMContext::MD_mem_parallel_loop_access:
508     case LLVMContext::MD_access_group:
509       // All of these directly apply.
510       NewStore->setMetadata(ID, N);
511       break;
512     case LLVMContext::MD_invariant_load:
513     case LLVMContext::MD_nonnull:
514     case LLVMContext::MD_range:
515     case LLVMContext::MD_align:
516     case LLVMContext::MD_dereferenceable:
517     case LLVMContext::MD_dereferenceable_or_null:
518       // These don't apply for stores.
519       break;
520     }
521   }
522 
523   return NewStore;
524 }
525 
526 /// Returns true if instruction represent minmax pattern like:
527 ///   select ((cmp load V1, load V2), V1, V2).
528 static bool isMinMaxWithLoads(Value *V) {
529   assert(V->getType()->isPointerTy() && "Expected pointer type.");
530   // Ignore possible ty* to ixx* bitcast.
531   V = peekThroughBitcast(V);
532   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
533   // pattern.
534   CmpInst::Predicate Pred;
535   Instruction *L1;
536   Instruction *L2;
537   Value *LHS;
538   Value *RHS;
539   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
540                          m_Value(LHS), m_Value(RHS))))
541     return false;
542   return (match(L1, m_Load(m_Specific(LHS))) &&
543           match(L2, m_Load(m_Specific(RHS)))) ||
544          (match(L1, m_Load(m_Specific(RHS))) &&
545           match(L2, m_Load(m_Specific(LHS))));
546 }
547 
548 /// Combine loads to match the type of their uses' value after looking
549 /// through intervening bitcasts.
550 ///
551 /// The core idea here is that if the result of a load is used in an operation,
552 /// we should load the type most conducive to that operation. For example, when
553 /// loading an integer and converting that immediately to a pointer, we should
554 /// instead directly load a pointer.
555 ///
556 /// However, this routine must never change the width of a load or the number of
557 /// loads as that would introduce a semantic change. This combine is expected to
558 /// be a semantic no-op which just allows loads to more closely model the types
559 /// of their consuming operations.
560 ///
561 /// Currently, we also refuse to change the precise type used for an atomic load
562 /// or a volatile load. This is debatable, and might be reasonable to change
563 /// later. However, it is risky in case some backend or other part of LLVM is
564 /// relying on the exact type loaded to select appropriate atomic operations.
565 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
566   // FIXME: We could probably with some care handle both volatile and ordered
567   // atomic loads here but it isn't clear that this is important.
568   if (!LI.isUnordered())
569     return nullptr;
570 
571   if (LI.use_empty())
572     return nullptr;
573 
574   // swifterror values can't be bitcasted.
575   if (LI.getPointerOperand()->isSwiftError())
576     return nullptr;
577 
578   Type *Ty = LI.getType();
579   const DataLayout &DL = IC.getDataLayout();
580 
581   // Try to canonicalize loads which are only ever stored to operate over
582   // integers instead of any other type. We only do this when the loaded type
583   // is sized and has a size exactly the same as its store size and the store
584   // size is a legal integer type.
585   // Do not perform canonicalization if minmax pattern is found (to avoid
586   // infinite loop).
587   if (!Ty->isIntegerTy() && Ty->isSized() &&
588       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
589       DL.typeSizeEqualsStoreSize(Ty) &&
590       !DL.isNonIntegralPointerType(Ty) &&
591       !isMinMaxWithLoads(
592           peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) {
593     if (all_of(LI.users(), [&LI](User *U) {
594           auto *SI = dyn_cast<StoreInst>(U);
595           return SI && SI->getPointerOperand() != &LI &&
596                  !SI->getPointerOperand()->isSwiftError();
597         })) {
598       LoadInst *NewLoad = combineLoadToNewType(
599           IC, LI,
600           Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
601       // Replace all the stores with stores of the newly loaded value.
602       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
603         auto *SI = cast<StoreInst>(*UI++);
604         IC.Builder.SetInsertPoint(SI);
605         combineStoreToNewValue(IC, *SI, NewLoad);
606         IC.eraseInstFromFunction(*SI);
607       }
608       assert(LI.use_empty() && "Failed to remove all users of the load!");
609       // Return the old load so the combiner can delete it safely.
610       return &LI;
611     }
612   }
613 
614   // Fold away bit casts of the loaded value by loading the desired type.
615   // We can do this for BitCastInsts as well as casts from and to pointer types,
616   // as long as those are noops (i.e., the source or dest type have the same
617   // bitwidth as the target's pointers).
618   if (LI.hasOneUse())
619     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
620       if (CI->isNoopCast(DL))
621         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
622           LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy());
623           CI->replaceAllUsesWith(NewLoad);
624           IC.eraseInstFromFunction(*CI);
625           return &LI;
626         }
627 
628   // FIXME: We should also canonicalize loads of vectors when their elements are
629   // cast to other types.
630   return nullptr;
631 }
632 
633 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
634   // FIXME: We could probably with some care handle both volatile and atomic
635   // stores here but it isn't clear that this is important.
636   if (!LI.isSimple())
637     return nullptr;
638 
639   Type *T = LI.getType();
640   if (!T->isAggregateType())
641     return nullptr;
642 
643   StringRef Name = LI.getName();
644   assert(LI.getAlignment() && "Alignment must be set at this point");
645 
646   if (auto *ST = dyn_cast<StructType>(T)) {
647     // If the struct only have one element, we unpack.
648     auto NumElements = ST->getNumElements();
649     if (NumElements == 1) {
650       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
651                                                ".unpack");
652       AAMDNodes AAMD;
653       LI.getAAMetadata(AAMD);
654       NewLoad->setAAMetadata(AAMD);
655       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
656         UndefValue::get(T), NewLoad, 0, Name));
657     }
658 
659     // We don't want to break loads with padding here as we'd loose
660     // the knowledge that padding exists for the rest of the pipeline.
661     const DataLayout &DL = IC.getDataLayout();
662     auto *SL = DL.getStructLayout(ST);
663     if (SL->hasPadding())
664       return nullptr;
665 
666     auto Align = LI.getAlignment();
667     if (!Align)
668       Align = DL.getABITypeAlignment(ST);
669 
670     auto *Addr = LI.getPointerOperand();
671     auto *IdxType = Type::getInt32Ty(T->getContext());
672     auto *Zero = ConstantInt::get(IdxType, 0);
673 
674     Value *V = UndefValue::get(T);
675     for (unsigned i = 0; i < NumElements; i++) {
676       Value *Indices[2] = {
677         Zero,
678         ConstantInt::get(IdxType, i),
679       };
680       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
681                                                Name + ".elt");
682       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
683       auto *L = IC.Builder.CreateAlignedLoad(ST->getElementType(i), Ptr,
684                                              EltAlign, Name + ".unpack");
685       // Propagate AA metadata. It'll still be valid on the narrowed load.
686       AAMDNodes AAMD;
687       LI.getAAMetadata(AAMD);
688       L->setAAMetadata(AAMD);
689       V = IC.Builder.CreateInsertValue(V, L, i);
690     }
691 
692     V->setName(Name);
693     return IC.replaceInstUsesWith(LI, V);
694   }
695 
696   if (auto *AT = dyn_cast<ArrayType>(T)) {
697     auto *ET = AT->getElementType();
698     auto NumElements = AT->getNumElements();
699     if (NumElements == 1) {
700       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack");
701       AAMDNodes AAMD;
702       LI.getAAMetadata(AAMD);
703       NewLoad->setAAMetadata(AAMD);
704       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
705         UndefValue::get(T), NewLoad, 0, Name));
706     }
707 
708     // Bail out if the array is too large. Ideally we would like to optimize
709     // arrays of arbitrary size but this has a terrible impact on compile time.
710     // The threshold here is chosen arbitrarily, maybe needs a little bit of
711     // tuning.
712     if (NumElements > IC.MaxArraySizeForCombine)
713       return nullptr;
714 
715     const DataLayout &DL = IC.getDataLayout();
716     auto EltSize = DL.getTypeAllocSize(ET);
717     auto Align = LI.getAlignment();
718     if (!Align)
719       Align = DL.getABITypeAlignment(T);
720 
721     auto *Addr = LI.getPointerOperand();
722     auto *IdxType = Type::getInt64Ty(T->getContext());
723     auto *Zero = ConstantInt::get(IdxType, 0);
724 
725     Value *V = UndefValue::get(T);
726     uint64_t Offset = 0;
727     for (uint64_t i = 0; i < NumElements; i++) {
728       Value *Indices[2] = {
729         Zero,
730         ConstantInt::get(IdxType, i),
731       };
732       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
733                                                Name + ".elt");
734       auto *L = IC.Builder.CreateAlignedLoad(
735           AT->getElementType(), Ptr, MinAlign(Align, Offset), Name + ".unpack");
736       AAMDNodes AAMD;
737       LI.getAAMetadata(AAMD);
738       L->setAAMetadata(AAMD);
739       V = IC.Builder.CreateInsertValue(V, L, i);
740       Offset += EltSize;
741     }
742 
743     V->setName(Name);
744     return IC.replaceInstUsesWith(LI, V);
745   }
746 
747   return nullptr;
748 }
749 
750 // If we can determine that all possible objects pointed to by the provided
751 // pointer value are, not only dereferenceable, but also definitively less than
752 // or equal to the provided maximum size, then return true. Otherwise, return
753 // false (constant global values and allocas fall into this category).
754 //
755 // FIXME: This should probably live in ValueTracking (or similar).
756 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
757                                      const DataLayout &DL) {
758   SmallPtrSet<Value *, 4> Visited;
759   SmallVector<Value *, 4> Worklist(1, V);
760 
761   do {
762     Value *P = Worklist.pop_back_val();
763     P = P->stripPointerCasts();
764 
765     if (!Visited.insert(P).second)
766       continue;
767 
768     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
769       Worklist.push_back(SI->getTrueValue());
770       Worklist.push_back(SI->getFalseValue());
771       continue;
772     }
773 
774     if (PHINode *PN = dyn_cast<PHINode>(P)) {
775       for (Value *IncValue : PN->incoming_values())
776         Worklist.push_back(IncValue);
777       continue;
778     }
779 
780     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
781       if (GA->isInterposable())
782         return false;
783       Worklist.push_back(GA->getAliasee());
784       continue;
785     }
786 
787     // If we know how big this object is, and it is less than MaxSize, continue
788     // searching. Otherwise, return false.
789     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
790       if (!AI->getAllocatedType()->isSized())
791         return false;
792 
793       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
794       if (!CS)
795         return false;
796 
797       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
798       // Make sure that, even if the multiplication below would wrap as an
799       // uint64_t, we still do the right thing.
800       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
801         return false;
802       continue;
803     }
804 
805     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
806       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
807         return false;
808 
809       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
810       if (InitSize > MaxSize)
811         return false;
812       continue;
813     }
814 
815     return false;
816   } while (!Worklist.empty());
817 
818   return true;
819 }
820 
821 // If we're indexing into an object of a known size, and the outer index is
822 // not a constant, but having any value but zero would lead to undefined
823 // behavior, replace it with zero.
824 //
825 // For example, if we have:
826 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
827 // ...
828 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
829 // ... = load i32* %arrayidx, align 4
830 // Then we know that we can replace %x in the GEP with i64 0.
831 //
832 // FIXME: We could fold any GEP index to zero that would cause UB if it were
833 // not zero. Currently, we only handle the first such index. Also, we could
834 // also search through non-zero constant indices if we kept track of the
835 // offsets those indices implied.
836 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
837                                      Instruction *MemI, unsigned &Idx) {
838   if (GEPI->getNumOperands() < 2)
839     return false;
840 
841   // Find the first non-zero index of a GEP. If all indices are zero, return
842   // one past the last index.
843   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
844     unsigned I = 1;
845     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
846       Value *V = GEPI->getOperand(I);
847       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
848         if (CI->isZero())
849           continue;
850 
851       break;
852     }
853 
854     return I;
855   };
856 
857   // Skip through initial 'zero' indices, and find the corresponding pointer
858   // type. See if the next index is not a constant.
859   Idx = FirstNZIdx(GEPI);
860   if (Idx == GEPI->getNumOperands())
861     return false;
862   if (isa<Constant>(GEPI->getOperand(Idx)))
863     return false;
864 
865   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
866   Type *AllocTy =
867     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
868   if (!AllocTy || !AllocTy->isSized())
869     return false;
870   const DataLayout &DL = IC.getDataLayout();
871   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
872 
873   // If there are more indices after the one we might replace with a zero, make
874   // sure they're all non-negative. If any of them are negative, the overall
875   // address being computed might be before the base address determined by the
876   // first non-zero index.
877   auto IsAllNonNegative = [&]() {
878     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
879       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
880       if (Known.isNonNegative())
881         continue;
882       return false;
883     }
884 
885     return true;
886   };
887 
888   // FIXME: If the GEP is not inbounds, and there are extra indices after the
889   // one we'll replace, those could cause the address computation to wrap
890   // (rendering the IsAllNonNegative() check below insufficient). We can do
891   // better, ignoring zero indices (and other indices we can prove small
892   // enough not to wrap).
893   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
894     return false;
895 
896   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
897   // also known to be dereferenceable.
898   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
899          IsAllNonNegative();
900 }
901 
902 // If we're indexing into an object with a variable index for the memory
903 // access, but the object has only one element, we can assume that the index
904 // will always be zero. If we replace the GEP, return it.
905 template <typename T>
906 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
907                                           T &MemI) {
908   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
909     unsigned Idx;
910     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
911       Instruction *NewGEPI = GEPI->clone();
912       NewGEPI->setOperand(Idx,
913         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
914       NewGEPI->insertBefore(GEPI);
915       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
916       return NewGEPI;
917     }
918   }
919 
920   return nullptr;
921 }
922 
923 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
924   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
925     return false;
926 
927   auto *Ptr = SI.getPointerOperand();
928   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
929     Ptr = GEPI->getOperand(0);
930   return (isa<ConstantPointerNull>(Ptr) &&
931           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
932 }
933 
934 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
935   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
936     const Value *GEPI0 = GEPI->getOperand(0);
937     if (isa<ConstantPointerNull>(GEPI0) &&
938         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
939       return true;
940   }
941   if (isa<UndefValue>(Op) ||
942       (isa<ConstantPointerNull>(Op) &&
943        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
944     return true;
945   return false;
946 }
947 
948 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
949   Value *Op = LI.getOperand(0);
950 
951   // Try to canonicalize the loaded type.
952   if (Instruction *Res = combineLoadToOperationType(*this, LI))
953     return Res;
954 
955   // Attempt to improve the alignment.
956   unsigned KnownAlign = getOrEnforceKnownAlignment(
957       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
958   unsigned LoadAlign = LI.getAlignment();
959   unsigned EffectiveLoadAlign =
960       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
961 
962   if (KnownAlign > EffectiveLoadAlign)
963     LI.setAlignment(KnownAlign);
964   else if (LoadAlign == 0)
965     LI.setAlignment(EffectiveLoadAlign);
966 
967   // Replace GEP indices if possible.
968   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
969       Worklist.Add(NewGEPI);
970       return &LI;
971   }
972 
973   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
974     return Res;
975 
976   // Do really simple store-to-load forwarding and load CSE, to catch cases
977   // where there are several consecutive memory accesses to the same location,
978   // separated by a few arithmetic operations.
979   BasicBlock::iterator BBI(LI);
980   bool IsLoadCSE = false;
981   if (Value *AvailableVal = FindAvailableLoadedValue(
982           &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
983     if (IsLoadCSE)
984       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
985 
986     return replaceInstUsesWith(
987         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
988                                            LI.getName() + ".cast"));
989   }
990 
991   // None of the following transforms are legal for volatile/ordered atomic
992   // loads.  Most of them do apply for unordered atomics.
993   if (!LI.isUnordered()) return nullptr;
994 
995   // load(gep null, ...) -> unreachable
996   // load null/undef -> unreachable
997   // TODO: Consider a target hook for valid address spaces for this xforms.
998   if (canSimplifyNullLoadOrGEP(LI, Op)) {
999     // Insert a new store to null instruction before the load to indicate
1000     // that this code is not reachable.  We do this instead of inserting
1001     // an unreachable instruction directly because we cannot modify the
1002     // CFG.
1003     StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
1004                                   Constant::getNullValue(Op->getType()), &LI);
1005     SI->setDebugLoc(LI.getDebugLoc());
1006     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
1007   }
1008 
1009   if (Op->hasOneUse()) {
1010     // Change select and PHI nodes to select values instead of addresses: this
1011     // helps alias analysis out a lot, allows many others simplifications, and
1012     // exposes redundancy in the code.
1013     //
1014     // Note that we cannot do the transformation unless we know that the
1015     // introduced loads cannot trap!  Something like this is valid as long as
1016     // the condition is always false: load (select bool %C, int* null, int* %G),
1017     // but it would not be valid if we transformed it to load from null
1018     // unconditionally.
1019     //
1020     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1021       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1022       unsigned Align = LI.getAlignment();
1023       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), Align,
1024                                       DL, SI) &&
1025           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), Align,
1026                                       DL, SI)) {
1027         LoadInst *V1 =
1028             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1029                                SI->getOperand(1)->getName() + ".val");
1030         LoadInst *V2 =
1031             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1032                                SI->getOperand(2)->getName() + ".val");
1033         assert(LI.isUnordered() && "implied by above");
1034         V1->setAlignment(Align);
1035         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1036         V2->setAlignment(Align);
1037         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1038         return SelectInst::Create(SI->getCondition(), V1, V2);
1039       }
1040 
1041       // load (select (cond, null, P)) -> load P
1042       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1043           !NullPointerIsDefined(SI->getFunction(),
1044                                 LI.getPointerAddressSpace())) {
1045         LI.setOperand(0, SI->getOperand(2));
1046         return &LI;
1047       }
1048 
1049       // load (select (cond, P, null)) -> load P
1050       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1051           !NullPointerIsDefined(SI->getFunction(),
1052                                 LI.getPointerAddressSpace())) {
1053         LI.setOperand(0, SI->getOperand(1));
1054         return &LI;
1055       }
1056     }
1057   }
1058   return nullptr;
1059 }
1060 
1061 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1062 ///
1063 /// \returns underlying value that was "cast", or nullptr otherwise.
1064 ///
1065 /// For example, if we have:
1066 ///
1067 ///     %E0 = extractelement <2 x double> %U, i32 0
1068 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1069 ///     %E1 = extractelement <2 x double> %U, i32 1
1070 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1071 ///
1072 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1073 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1074 /// Note that %U may contain non-undef values where %V1 has undef.
1075 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
1076   Value *U = nullptr;
1077   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1078     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1079     if (!E)
1080       return nullptr;
1081     auto *W = E->getVectorOperand();
1082     if (!U)
1083       U = W;
1084     else if (U != W)
1085       return nullptr;
1086     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1087     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1088       return nullptr;
1089     V = IV->getAggregateOperand();
1090   }
1091   if (!isa<UndefValue>(V) ||!U)
1092     return nullptr;
1093 
1094   auto *UT = cast<VectorType>(U->getType());
1095   auto *VT = V->getType();
1096   // Check that types UT and VT are bitwise isomorphic.
1097   const auto &DL = IC.getDataLayout();
1098   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1099     return nullptr;
1100   }
1101   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1102     if (AT->getNumElements() != UT->getNumElements())
1103       return nullptr;
1104   } else {
1105     auto *ST = cast<StructType>(VT);
1106     if (ST->getNumElements() != UT->getNumElements())
1107       return nullptr;
1108     for (const auto *EltT : ST->elements()) {
1109       if (EltT != UT->getElementType())
1110         return nullptr;
1111     }
1112   }
1113   return U;
1114 }
1115 
1116 /// Combine stores to match the type of value being stored.
1117 ///
1118 /// The core idea here is that the memory does not have any intrinsic type and
1119 /// where we can we should match the type of a store to the type of value being
1120 /// stored.
1121 ///
1122 /// However, this routine must never change the width of a store or the number of
1123 /// stores as that would introduce a semantic change. This combine is expected to
1124 /// be a semantic no-op which just allows stores to more closely model the types
1125 /// of their incoming values.
1126 ///
1127 /// Currently, we also refuse to change the precise type used for an atomic or
1128 /// volatile store. This is debatable, and might be reasonable to change later.
1129 /// However, it is risky in case some backend or other part of LLVM is relying
1130 /// on the exact type stored to select appropriate atomic operations.
1131 ///
1132 /// \returns true if the store was successfully combined away. This indicates
1133 /// the caller must erase the store instruction. We have to let the caller erase
1134 /// the store instruction as otherwise there is no way to signal whether it was
1135 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1136 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
1137   // FIXME: We could probably with some care handle both volatile and ordered
1138   // atomic stores here but it isn't clear that this is important.
1139   if (!SI.isUnordered())
1140     return false;
1141 
1142   // swifterror values can't be bitcasted.
1143   if (SI.getPointerOperand()->isSwiftError())
1144     return false;
1145 
1146   Value *V = SI.getValueOperand();
1147 
1148   // Fold away bit casts of the stored value by storing the original type.
1149   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1150     V = BC->getOperand(0);
1151     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1152       combineStoreToNewValue(IC, SI, V);
1153       return true;
1154     }
1155   }
1156 
1157   if (Value *U = likeBitCastFromVector(IC, V))
1158     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1159       combineStoreToNewValue(IC, SI, U);
1160       return true;
1161     }
1162 
1163   // FIXME: We should also canonicalize stores of vectors when their elements
1164   // are cast to other types.
1165   return false;
1166 }
1167 
1168 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1169   // FIXME: We could probably with some care handle both volatile and atomic
1170   // stores here but it isn't clear that this is important.
1171   if (!SI.isSimple())
1172     return false;
1173 
1174   Value *V = SI.getValueOperand();
1175   Type *T = V->getType();
1176 
1177   if (!T->isAggregateType())
1178     return false;
1179 
1180   if (auto *ST = dyn_cast<StructType>(T)) {
1181     // If the struct only have one element, we unpack.
1182     unsigned Count = ST->getNumElements();
1183     if (Count == 1) {
1184       V = IC.Builder.CreateExtractValue(V, 0);
1185       combineStoreToNewValue(IC, SI, V);
1186       return true;
1187     }
1188 
1189     // We don't want to break loads with padding here as we'd loose
1190     // the knowledge that padding exists for the rest of the pipeline.
1191     const DataLayout &DL = IC.getDataLayout();
1192     auto *SL = DL.getStructLayout(ST);
1193     if (SL->hasPadding())
1194       return false;
1195 
1196     auto Align = SI.getAlignment();
1197     if (!Align)
1198       Align = DL.getABITypeAlignment(ST);
1199 
1200     SmallString<16> EltName = V->getName();
1201     EltName += ".elt";
1202     auto *Addr = SI.getPointerOperand();
1203     SmallString<16> AddrName = Addr->getName();
1204     AddrName += ".repack";
1205 
1206     auto *IdxType = Type::getInt32Ty(ST->getContext());
1207     auto *Zero = ConstantInt::get(IdxType, 0);
1208     for (unsigned i = 0; i < Count; i++) {
1209       Value *Indices[2] = {
1210         Zero,
1211         ConstantInt::get(IdxType, i),
1212       };
1213       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1214                                                AddrName);
1215       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1216       auto EltAlign = MinAlign(Align, SL->getElementOffset(i));
1217       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1218       AAMDNodes AAMD;
1219       SI.getAAMetadata(AAMD);
1220       NS->setAAMetadata(AAMD);
1221     }
1222 
1223     return true;
1224   }
1225 
1226   if (auto *AT = dyn_cast<ArrayType>(T)) {
1227     // If the array only have one element, we unpack.
1228     auto NumElements = AT->getNumElements();
1229     if (NumElements == 1) {
1230       V = IC.Builder.CreateExtractValue(V, 0);
1231       combineStoreToNewValue(IC, SI, V);
1232       return true;
1233     }
1234 
1235     // Bail out if the array is too large. Ideally we would like to optimize
1236     // arrays of arbitrary size but this has a terrible impact on compile time.
1237     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1238     // tuning.
1239     if (NumElements > IC.MaxArraySizeForCombine)
1240       return false;
1241 
1242     const DataLayout &DL = IC.getDataLayout();
1243     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1244     auto Align = SI.getAlignment();
1245     if (!Align)
1246       Align = DL.getABITypeAlignment(T);
1247 
1248     SmallString<16> EltName = V->getName();
1249     EltName += ".elt";
1250     auto *Addr = SI.getPointerOperand();
1251     SmallString<16> AddrName = Addr->getName();
1252     AddrName += ".repack";
1253 
1254     auto *IdxType = Type::getInt64Ty(T->getContext());
1255     auto *Zero = ConstantInt::get(IdxType, 0);
1256 
1257     uint64_t Offset = 0;
1258     for (uint64_t i = 0; i < NumElements; i++) {
1259       Value *Indices[2] = {
1260         Zero,
1261         ConstantInt::get(IdxType, i),
1262       };
1263       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1264                                                AddrName);
1265       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1266       auto EltAlign = MinAlign(Align, Offset);
1267       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1268       AAMDNodes AAMD;
1269       SI.getAAMetadata(AAMD);
1270       NS->setAAMetadata(AAMD);
1271       Offset += EltSize;
1272     }
1273 
1274     return true;
1275   }
1276 
1277   return false;
1278 }
1279 
1280 /// equivalentAddressValues - Test if A and B will obviously have the same
1281 /// value. This includes recognizing that %t0 and %t1 will have the same
1282 /// value in code like this:
1283 ///   %t0 = getelementptr \@a, 0, 3
1284 ///   store i32 0, i32* %t0
1285 ///   %t1 = getelementptr \@a, 0, 3
1286 ///   %t2 = load i32* %t1
1287 ///
1288 static bool equivalentAddressValues(Value *A, Value *B) {
1289   // Test if the values are trivially equivalent.
1290   if (A == B) return true;
1291 
1292   // Test if the values come form identical arithmetic instructions.
1293   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1294   // its only used to compare two uses within the same basic block, which
1295   // means that they'll always either have the same value or one of them
1296   // will have an undefined value.
1297   if (isa<BinaryOperator>(A) ||
1298       isa<CastInst>(A) ||
1299       isa<PHINode>(A) ||
1300       isa<GetElementPtrInst>(A))
1301     if (Instruction *BI = dyn_cast<Instruction>(B))
1302       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1303         return true;
1304 
1305   // Otherwise they may not be equivalent.
1306   return false;
1307 }
1308 
1309 /// Converts store (bitcast (load (bitcast (select ...)))) to
1310 /// store (load (select ...)), where select is minmax:
1311 /// select ((cmp load V1, load V2), V1, V2).
1312 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC,
1313                                                 StoreInst &SI) {
1314   // bitcast?
1315   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1316     return false;
1317   // load? integer?
1318   Value *LoadAddr;
1319   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1320     return false;
1321   auto *LI = cast<LoadInst>(SI.getValueOperand());
1322   if (!LI->getType()->isIntegerTy())
1323     return false;
1324   if (!isMinMaxWithLoads(LoadAddr))
1325     return false;
1326 
1327   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1328         auto *SI = dyn_cast<StoreInst>(U);
1329         return SI && SI->getPointerOperand() != LI &&
1330                peekThroughBitcast(SI->getPointerOperand()) != LoadAddr &&
1331                !SI->getPointerOperand()->isSwiftError();
1332       }))
1333     return false;
1334 
1335   IC.Builder.SetInsertPoint(LI);
1336   LoadInst *NewLI = combineLoadToNewType(
1337       IC, *LI, LoadAddr->getType()->getPointerElementType());
1338   // Replace all the stores with stores of the newly loaded value.
1339   for (auto *UI : LI->users()) {
1340     auto *USI = cast<StoreInst>(UI);
1341     IC.Builder.SetInsertPoint(USI);
1342     combineStoreToNewValue(IC, *USI, NewLI);
1343   }
1344   IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1345   IC.eraseInstFromFunction(*LI);
1346   return true;
1347 }
1348 
1349 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1350   Value *Val = SI.getOperand(0);
1351   Value *Ptr = SI.getOperand(1);
1352 
1353   // Try to canonicalize the stored type.
1354   if (combineStoreToValueType(*this, SI))
1355     return eraseInstFromFunction(SI);
1356 
1357   // Attempt to improve the alignment.
1358   unsigned KnownAlign = getOrEnforceKnownAlignment(
1359       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT);
1360   unsigned StoreAlign = SI.getAlignment();
1361   unsigned EffectiveStoreAlign =
1362       StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
1363 
1364   if (KnownAlign > EffectiveStoreAlign)
1365     SI.setAlignment(KnownAlign);
1366   else if (StoreAlign == 0)
1367     SI.setAlignment(EffectiveStoreAlign);
1368 
1369   // Try to canonicalize the stored type.
1370   if (unpackStoreToAggregate(*this, SI))
1371     return eraseInstFromFunction(SI);
1372 
1373   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1374     return eraseInstFromFunction(SI);
1375 
1376   // Replace GEP indices if possible.
1377   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1378       Worklist.Add(NewGEPI);
1379       return &SI;
1380   }
1381 
1382   // Don't hack volatile/ordered stores.
1383   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1384   if (!SI.isUnordered()) return nullptr;
1385 
1386   // If the RHS is an alloca with a single use, zapify the store, making the
1387   // alloca dead.
1388   if (Ptr->hasOneUse()) {
1389     if (isa<AllocaInst>(Ptr))
1390       return eraseInstFromFunction(SI);
1391     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1392       if (isa<AllocaInst>(GEP->getOperand(0))) {
1393         if (GEP->getOperand(0)->hasOneUse())
1394           return eraseInstFromFunction(SI);
1395       }
1396     }
1397   }
1398 
1399   // If we have a store to a location which is known constant, we can conclude
1400   // that the store must be storing the constant value (else the memory
1401   // wouldn't be constant), and this must be a noop.
1402   if (AA->pointsToConstantMemory(Ptr))
1403     return eraseInstFromFunction(SI);
1404 
1405   // Do really simple DSE, to catch cases where there are several consecutive
1406   // stores to the same location, separated by a few arithmetic operations. This
1407   // situation often occurs with bitfield accesses.
1408   BasicBlock::iterator BBI(SI);
1409   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1410        --ScanInsts) {
1411     --BBI;
1412     // Don't count debug info directives, lest they affect codegen,
1413     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1414     if (isa<DbgInfoIntrinsic>(BBI) ||
1415         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1416       ScanInsts++;
1417       continue;
1418     }
1419 
1420     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1421       // Prev store isn't volatile, and stores to the same location?
1422       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1423                                                         SI.getOperand(1))) {
1424         ++NumDeadStore;
1425         ++BBI;
1426         eraseInstFromFunction(*PrevSI);
1427         continue;
1428       }
1429       break;
1430     }
1431 
1432     // If this is a load, we have to stop.  However, if the loaded value is from
1433     // the pointer we're loading and is producing the pointer we're storing,
1434     // then *this* store is dead (X = load P; store X -> P).
1435     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1436       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1437         assert(SI.isUnordered() && "can't eliminate ordering operation");
1438         return eraseInstFromFunction(SI);
1439       }
1440 
1441       // Otherwise, this is a load from some other location.  Stores before it
1442       // may not be dead.
1443       break;
1444     }
1445 
1446     // Don't skip over loads, throws or things that can modify memory.
1447     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1448       break;
1449   }
1450 
1451   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1452   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1453   if (canSimplifyNullStoreOrGEP(SI)) {
1454     if (!isa<UndefValue>(Val)) {
1455       SI.setOperand(0, UndefValue::get(Val->getType()));
1456       if (Instruction *U = dyn_cast<Instruction>(Val))
1457         Worklist.Add(U);  // Dropped a use.
1458     }
1459     return nullptr;  // Do not modify these!
1460   }
1461 
1462   // store undef, Ptr -> noop
1463   if (isa<UndefValue>(Val))
1464     return eraseInstFromFunction(SI);
1465 
1466   // If this store is the second-to-last instruction in the basic block
1467   // (excluding debug info and bitcasts of pointers) and if the block ends with
1468   // an unconditional branch, try to move the store to the successor block.
1469   BBI = SI.getIterator();
1470   do {
1471     ++BBI;
1472   } while (isa<DbgInfoIntrinsic>(BBI) ||
1473            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1474 
1475   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1476     if (BI->isUnconditional())
1477       mergeStoreIntoSuccessor(SI);
1478 
1479   return nullptr;
1480 }
1481 
1482 /// Try to transform:
1483 ///   if () { *P = v1; } else { *P = v2 }
1484 /// or:
1485 ///   *P = v1; if () { *P = v2; }
1486 /// into a phi node with a store in the successor.
1487 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) {
1488   assert(SI.isUnordered() &&
1489          "This code has not been audited for volatile or ordered store case.");
1490 
1491   // Check if the successor block has exactly 2 incoming edges.
1492   BasicBlock *StoreBB = SI.getParent();
1493   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1494   if (!DestBB->hasNPredecessors(2))
1495     return false;
1496 
1497   // Capture the other block (the block that doesn't contain our store).
1498   pred_iterator PredIter = pred_begin(DestBB);
1499   if (*PredIter == StoreBB)
1500     ++PredIter;
1501   BasicBlock *OtherBB = *PredIter;
1502 
1503   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1504   // for example, if SI is in an infinite loop.
1505   if (StoreBB == DestBB || OtherBB == DestBB)
1506     return false;
1507 
1508   // Verify that the other block ends in a branch and is not otherwise empty.
1509   BasicBlock::iterator BBI(OtherBB->getTerminator());
1510   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1511   if (!OtherBr || BBI == OtherBB->begin())
1512     return false;
1513 
1514   // If the other block ends in an unconditional branch, check for the 'if then
1515   // else' case. There is an instruction before the branch.
1516   StoreInst *OtherStore = nullptr;
1517   if (OtherBr->isUnconditional()) {
1518     --BBI;
1519     // Skip over debugging info.
1520     while (isa<DbgInfoIntrinsic>(BBI) ||
1521            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1522       if (BBI==OtherBB->begin())
1523         return false;
1524       --BBI;
1525     }
1526     // If this isn't a store, isn't a store to the same location, or is not the
1527     // right kind of store, bail out.
1528     OtherStore = dyn_cast<StoreInst>(BBI);
1529     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1530         !SI.isSameOperationAs(OtherStore))
1531       return false;
1532   } else {
1533     // Otherwise, the other block ended with a conditional branch. If one of the
1534     // destinations is StoreBB, then we have the if/then case.
1535     if (OtherBr->getSuccessor(0) != StoreBB &&
1536         OtherBr->getSuccessor(1) != StoreBB)
1537       return false;
1538 
1539     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1540     // if/then triangle. See if there is a store to the same ptr as SI that
1541     // lives in OtherBB.
1542     for (;; --BBI) {
1543       // Check to see if we find the matching store.
1544       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1545         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1546             !SI.isSameOperationAs(OtherStore))
1547           return false;
1548         break;
1549       }
1550       // If we find something that may be using or overwriting the stored
1551       // value, or if we run out of instructions, we can't do the transform.
1552       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1553           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1554         return false;
1555     }
1556 
1557     // In order to eliminate the store in OtherBr, we have to make sure nothing
1558     // reads or overwrites the stored value in StoreBB.
1559     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1560       // FIXME: This should really be AA driven.
1561       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1562         return false;
1563     }
1564   }
1565 
1566   // Insert a PHI node now if we need it.
1567   Value *MergedVal = OtherStore->getOperand(0);
1568   // The debug locations of the original instructions might differ. Merge them.
1569   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1570                                                      OtherStore->getDebugLoc());
1571   if (MergedVal != SI.getOperand(0)) {
1572     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1573     PN->addIncoming(SI.getOperand(0), SI.getParent());
1574     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1575     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1576     PN->setDebugLoc(MergedLoc);
1577   }
1578 
1579   // Advance to a place where it is safe to insert the new store and insert it.
1580   BBI = DestBB->getFirstInsertionPt();
1581   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
1582                                    SI.isVolatile(), SI.getAlignment(),
1583                                    SI.getOrdering(), SI.getSyncScopeID());
1584   InsertNewInstBefore(NewSI, *BBI);
1585   NewSI->setDebugLoc(MergedLoc);
1586 
1587   // If the two stores had AA tags, merge them.
1588   AAMDNodes AATags;
1589   SI.getAAMetadata(AATags);
1590   if (AATags) {
1591     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1592     NewSI->setAAMetadata(AATags);
1593   }
1594 
1595   // Nuke the old stores.
1596   eraseInstFromFunction(SI);
1597   eraseInstFromFunction(*OtherStore);
1598   return true;
1599 }
1600