1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/IR/ConstantRange.h" 19 #include "llvm/IR/DataLayout.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/MDBuilder.h" 23 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 24 #include "llvm/Transforms/Utils/Local.h" 25 using namespace llvm; 26 27 #define DEBUG_TYPE "instcombine" 28 29 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 30 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 31 32 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 33 /// some part of a constant global variable. This intentionally only accepts 34 /// constant expressions because we can't rewrite arbitrary instructions. 35 static bool pointsToConstantGlobal(Value *V) { 36 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 37 return GV->isConstant(); 38 39 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 40 if (CE->getOpcode() == Instruction::BitCast || 41 CE->getOpcode() == Instruction::AddrSpaceCast || 42 CE->getOpcode() == Instruction::GetElementPtr) 43 return pointsToConstantGlobal(CE->getOperand(0)); 44 } 45 return false; 46 } 47 48 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 49 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 50 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 51 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 52 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 53 /// the alloca, and if the source pointer is a pointer to a constant global, we 54 /// can optimize this. 55 static bool 56 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 57 SmallVectorImpl<Instruction *> &ToDelete) { 58 // We track lifetime intrinsics as we encounter them. If we decide to go 59 // ahead and replace the value with the global, this lets the caller quickly 60 // eliminate the markers. 61 62 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 63 ValuesToInspect.emplace_back(V, false); 64 while (!ValuesToInspect.empty()) { 65 auto ValuePair = ValuesToInspect.pop_back_val(); 66 const bool IsOffset = ValuePair.second; 67 for (auto &U : ValuePair.first->uses()) { 68 auto *I = cast<Instruction>(U.getUser()); 69 70 if (auto *LI = dyn_cast<LoadInst>(I)) { 71 // Ignore non-volatile loads, they are always ok. 72 if (!LI->isSimple()) return false; 73 continue; 74 } 75 76 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 77 // If uses of the bitcast are ok, we are ok. 78 ValuesToInspect.emplace_back(I, IsOffset); 79 continue; 80 } 81 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 82 // If the GEP has all zero indices, it doesn't offset the pointer. If it 83 // doesn't, it does. 84 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 85 continue; 86 } 87 88 if (auto CS = CallSite(I)) { 89 // If this is the function being called then we treat it like a load and 90 // ignore it. 91 if (CS.isCallee(&U)) 92 continue; 93 94 unsigned DataOpNo = CS.getDataOperandNo(&U); 95 bool IsArgOperand = CS.isArgOperand(&U); 96 97 // Inalloca arguments are clobbered by the call. 98 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 99 return false; 100 101 // If this is a readonly/readnone call site, then we know it is just a 102 // load (but one that potentially returns the value itself), so we can 103 // ignore it if we know that the value isn't captured. 104 if (CS.onlyReadsMemory() && 105 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 106 continue; 107 108 // If this is being passed as a byval argument, the caller is making a 109 // copy, so it is only a read of the alloca. 110 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 111 continue; 112 } 113 114 // Lifetime intrinsics can be handled by the caller. 115 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 116 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 117 II->getIntrinsicID() == Intrinsic::lifetime_end) { 118 assert(II->use_empty() && "Lifetime markers have no result to use!"); 119 ToDelete.push_back(II); 120 continue; 121 } 122 } 123 124 // If this is isn't our memcpy/memmove, reject it as something we can't 125 // handle. 126 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 127 if (!MI) 128 return false; 129 130 // If the transfer is using the alloca as a source of the transfer, then 131 // ignore it since it is a load (unless the transfer is volatile). 132 if (U.getOperandNo() == 1) { 133 if (MI->isVolatile()) return false; 134 continue; 135 } 136 137 // If we already have seen a copy, reject the second one. 138 if (TheCopy) return false; 139 140 // If the pointer has been offset from the start of the alloca, we can't 141 // safely handle this. 142 if (IsOffset) return false; 143 144 // If the memintrinsic isn't using the alloca as the dest, reject it. 145 if (U.getOperandNo() != 0) return false; 146 147 // If the source of the memcpy/move is not a constant global, reject it. 148 if (!pointsToConstantGlobal(MI->getSource())) 149 return false; 150 151 // Otherwise, the transform is safe. Remember the copy instruction. 152 TheCopy = MI; 153 } 154 } 155 return true; 156 } 157 158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 159 /// modified by a copy from a constant global. If we can prove this, we can 160 /// replace any uses of the alloca with uses of the global directly. 161 static MemTransferInst * 162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 163 SmallVectorImpl<Instruction *> &ToDelete) { 164 MemTransferInst *TheCopy = nullptr; 165 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 166 return TheCopy; 167 return nullptr; 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 171 // Check for array size of 1 (scalar allocation). 172 if (!AI.isArrayAllocation()) { 173 // i32 1 is the canonical array size for scalar allocations. 174 if (AI.getArraySize()->getType()->isIntegerTy(32)) 175 return nullptr; 176 177 // Canonicalize it. 178 Value *V = IC.Builder->getInt32(1); 179 AI.setOperand(0, V); 180 return &AI; 181 } 182 183 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 184 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName()); 187 New->setAlignment(AI.getAlignment()); 188 189 // Scan to the end of the allocation instructions, to skip over a block of 190 // allocas if possible...also skip interleaved debug info 191 // 192 BasicBlock::iterator It(New); 193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 194 ++It; 195 196 // Now that I is pointing to the first non-allocation-inst in the block, 197 // insert our getelementptr instruction... 198 // 199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 200 Value *NullIdx = Constant::getNullValue(IdxTy); 201 Value *Idx[2] = {NullIdx, NullIdx}; 202 Instruction *GEP = 203 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 204 IC.InsertNewInstBefore(GEP, *It); 205 206 // Now make everything use the getelementptr instead of the original 207 // allocation. 208 return IC.replaceInstUsesWith(AI, GEP); 209 } 210 211 if (isa<UndefValue>(AI.getArraySize())) 212 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 213 214 // Ensure that the alloca array size argument has type intptr_t, so that 215 // any casting is exposed early. 216 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 217 if (AI.getArraySize()->getType() != IntPtrTy) { 218 Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false); 219 AI.setOperand(0, V); 220 return &AI; 221 } 222 223 return nullptr; 224 } 225 226 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 227 if (auto *I = simplifyAllocaArraySize(*this, AI)) 228 return I; 229 230 if (AI.getAllocatedType()->isSized()) { 231 // If the alignment is 0 (unspecified), assign it the preferred alignment. 232 if (AI.getAlignment() == 0) 233 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 234 235 // Move all alloca's of zero byte objects to the entry block and merge them 236 // together. Note that we only do this for alloca's, because malloc should 237 // allocate and return a unique pointer, even for a zero byte allocation. 238 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 239 // For a zero sized alloca there is no point in doing an array allocation. 240 // This is helpful if the array size is a complicated expression not used 241 // elsewhere. 242 if (AI.isArrayAllocation()) { 243 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 244 return &AI; 245 } 246 247 // Get the first instruction in the entry block. 248 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 249 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 250 if (FirstInst != &AI) { 251 // If the entry block doesn't start with a zero-size alloca then move 252 // this one to the start of the entry block. There is no problem with 253 // dominance as the array size was forced to a constant earlier already. 254 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 255 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 256 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 257 AI.moveBefore(FirstInst); 258 return &AI; 259 } 260 261 // If the alignment of the entry block alloca is 0 (unspecified), 262 // assign it the preferred alignment. 263 if (EntryAI->getAlignment() == 0) 264 EntryAI->setAlignment( 265 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 266 // Replace this zero-sized alloca with the one at the start of the entry 267 // block after ensuring that the address will be aligned enough for both 268 // types. 269 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 270 AI.getAlignment()); 271 EntryAI->setAlignment(MaxAlign); 272 if (AI.getType() != EntryAI->getType()) 273 return new BitCastInst(EntryAI, AI.getType()); 274 return replaceInstUsesWith(AI, EntryAI); 275 } 276 } 277 } 278 279 if (AI.getAlignment()) { 280 // Check to see if this allocation is only modified by a memcpy/memmove from 281 // a constant global whose alignment is equal to or exceeds that of the 282 // allocation. If this is the case, we can change all users to use 283 // the constant global instead. This is commonly produced by the CFE by 284 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 285 // is only subsequently read. 286 SmallVector<Instruction *, 4> ToDelete; 287 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 288 unsigned SourceAlign = getOrEnforceKnownAlignment( 289 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 290 if (AI.getAlignment() <= SourceAlign) { 291 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 292 DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 293 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 294 eraseInstFromFunction(*ToDelete[i]); 295 Constant *TheSrc = cast<Constant>(Copy->getSource()); 296 Constant *Cast 297 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType()); 298 Instruction *NewI = replaceInstUsesWith(AI, Cast); 299 eraseInstFromFunction(*Copy); 300 ++NumGlobalCopies; 301 return NewI; 302 } 303 } 304 } 305 306 // At last, use the generic allocation site handler to aggressively remove 307 // unused allocas. 308 return visitAllocSite(AI); 309 } 310 311 // Are we allowed to form a atomic load or store of this type? 312 static bool isSupportedAtomicType(Type *Ty) { 313 return Ty->isIntegerTy() || Ty->isPointerTy() || Ty->isFloatingPointTy(); 314 } 315 316 /// \brief Helper to combine a load to a new type. 317 /// 318 /// This just does the work of combining a load to a new type. It handles 319 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 320 /// loaded *value* type. This will convert it to a pointer, cast the operand to 321 /// that pointer type, load it, etc. 322 /// 323 /// Note that this will create all of the instructions with whatever insert 324 /// point the \c InstCombiner currently is using. 325 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 326 const Twine &Suffix = "") { 327 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 328 "can't fold an atomic load to requested type"); 329 330 Value *Ptr = LI.getPointerOperand(); 331 unsigned AS = LI.getPointerAddressSpace(); 332 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 333 LI.getAllMetadata(MD); 334 335 LoadInst *NewLoad = IC.Builder->CreateAlignedLoad( 336 IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)), 337 LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 338 NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope()); 339 MDBuilder MDB(NewLoad->getContext()); 340 for (const auto &MDPair : MD) { 341 unsigned ID = MDPair.first; 342 MDNode *N = MDPair.second; 343 // Note, essentially every kind of metadata should be preserved here! This 344 // routine is supposed to clone a load instruction changing *only its type*. 345 // The only metadata it makes sense to drop is metadata which is invalidated 346 // when the pointer type changes. This should essentially never be the case 347 // in LLVM, but we explicitly switch over only known metadata to be 348 // conservatively correct. If you are adding metadata to LLVM which pertains 349 // to loads, you almost certainly want to add it here. 350 switch (ID) { 351 case LLVMContext::MD_dbg: 352 case LLVMContext::MD_tbaa: 353 case LLVMContext::MD_prof: 354 case LLVMContext::MD_fpmath: 355 case LLVMContext::MD_tbaa_struct: 356 case LLVMContext::MD_invariant_load: 357 case LLVMContext::MD_alias_scope: 358 case LLVMContext::MD_noalias: 359 case LLVMContext::MD_nontemporal: 360 case LLVMContext::MD_mem_parallel_loop_access: 361 // All of these directly apply. 362 NewLoad->setMetadata(ID, N); 363 break; 364 365 case LLVMContext::MD_nonnull: 366 // This only directly applies if the new type is also a pointer. 367 if (NewTy->isPointerTy()) { 368 NewLoad->setMetadata(ID, N); 369 break; 370 } 371 // If it's integral now, translate it to !range metadata. 372 if (NewTy->isIntegerTy()) { 373 auto *ITy = cast<IntegerType>(NewTy); 374 auto *NullInt = ConstantExpr::getPtrToInt( 375 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 376 auto *NonNullInt = 377 ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 378 NewLoad->setMetadata(LLVMContext::MD_range, 379 MDB.createRange(NonNullInt, NullInt)); 380 } 381 break; 382 case LLVMContext::MD_align: 383 case LLVMContext::MD_dereferenceable: 384 case LLVMContext::MD_dereferenceable_or_null: 385 // These only directly apply if the new type is also a pointer. 386 if (NewTy->isPointerTy()) 387 NewLoad->setMetadata(ID, N); 388 break; 389 case LLVMContext::MD_range: 390 // FIXME: It would be nice to propagate this in some way, but the type 391 // conversions make it hard. 392 393 // If it's a pointer now and the range does not contain 0, make it !nonnull. 394 if (NewTy->isPointerTy()) { 395 unsigned BitWidth = IC.getDataLayout().getTypeSizeInBits(NewTy); 396 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 397 MDNode *NN = MDNode::get(LI.getContext(), None); 398 NewLoad->setMetadata(LLVMContext::MD_nonnull, NN); 399 } 400 } 401 break; 402 } 403 } 404 return NewLoad; 405 } 406 407 /// \brief Combine a store to a new type. 408 /// 409 /// Returns the newly created store instruction. 410 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 411 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 412 "can't fold an atomic store of requested type"); 413 414 Value *Ptr = SI.getPointerOperand(); 415 unsigned AS = SI.getPointerAddressSpace(); 416 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 417 SI.getAllMetadata(MD); 418 419 StoreInst *NewStore = IC.Builder->CreateAlignedStore( 420 V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 421 SI.getAlignment(), SI.isVolatile()); 422 NewStore->setAtomic(SI.getOrdering(), SI.getSynchScope()); 423 for (const auto &MDPair : MD) { 424 unsigned ID = MDPair.first; 425 MDNode *N = MDPair.second; 426 // Note, essentially every kind of metadata should be preserved here! This 427 // routine is supposed to clone a store instruction changing *only its 428 // type*. The only metadata it makes sense to drop is metadata which is 429 // invalidated when the pointer type changes. This should essentially 430 // never be the case in LLVM, but we explicitly switch over only known 431 // metadata to be conservatively correct. If you are adding metadata to 432 // LLVM which pertains to stores, you almost certainly want to add it 433 // here. 434 switch (ID) { 435 case LLVMContext::MD_dbg: 436 case LLVMContext::MD_tbaa: 437 case LLVMContext::MD_prof: 438 case LLVMContext::MD_fpmath: 439 case LLVMContext::MD_tbaa_struct: 440 case LLVMContext::MD_alias_scope: 441 case LLVMContext::MD_noalias: 442 case LLVMContext::MD_nontemporal: 443 case LLVMContext::MD_mem_parallel_loop_access: 444 // All of these directly apply. 445 NewStore->setMetadata(ID, N); 446 break; 447 448 case LLVMContext::MD_invariant_load: 449 case LLVMContext::MD_nonnull: 450 case LLVMContext::MD_range: 451 case LLVMContext::MD_align: 452 case LLVMContext::MD_dereferenceable: 453 case LLVMContext::MD_dereferenceable_or_null: 454 // These don't apply for stores. 455 break; 456 } 457 } 458 459 return NewStore; 460 } 461 462 /// \brief Combine loads to match the type of their uses' value after looking 463 /// through intervening bitcasts. 464 /// 465 /// The core idea here is that if the result of a load is used in an operation, 466 /// we should load the type most conducive to that operation. For example, when 467 /// loading an integer and converting that immediately to a pointer, we should 468 /// instead directly load a pointer. 469 /// 470 /// However, this routine must never change the width of a load or the number of 471 /// loads as that would introduce a semantic change. This combine is expected to 472 /// be a semantic no-op which just allows loads to more closely model the types 473 /// of their consuming operations. 474 /// 475 /// Currently, we also refuse to change the precise type used for an atomic load 476 /// or a volatile load. This is debatable, and might be reasonable to change 477 /// later. However, it is risky in case some backend or other part of LLVM is 478 /// relying on the exact type loaded to select appropriate atomic operations. 479 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 480 // FIXME: We could probably with some care handle both volatile and ordered 481 // atomic loads here but it isn't clear that this is important. 482 if (!LI.isUnordered()) 483 return nullptr; 484 485 if (LI.use_empty()) 486 return nullptr; 487 488 // swifterror values can't be bitcasted. 489 if (LI.getPointerOperand()->isSwiftError()) 490 return nullptr; 491 492 Type *Ty = LI.getType(); 493 const DataLayout &DL = IC.getDataLayout(); 494 495 // Try to canonicalize loads which are only ever stored to operate over 496 // integers instead of any other type. We only do this when the loaded type 497 // is sized and has a size exactly the same as its store size and the store 498 // size is a legal integer type. 499 if (!Ty->isIntegerTy() && Ty->isSized() && 500 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 501 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) && 502 !DL.isNonIntegralPointerType(Ty)) { 503 if (all_of(LI.users(), [&LI](User *U) { 504 auto *SI = dyn_cast<StoreInst>(U); 505 return SI && SI->getPointerOperand() != &LI; 506 })) { 507 LoadInst *NewLoad = combineLoadToNewType( 508 IC, LI, 509 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 510 // Replace all the stores with stores of the newly loaded value. 511 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 512 auto *SI = cast<StoreInst>(*UI++); 513 IC.Builder->SetInsertPoint(SI); 514 combineStoreToNewValue(IC, *SI, NewLoad); 515 IC.eraseInstFromFunction(*SI); 516 } 517 assert(LI.use_empty() && "Failed to remove all users of the load!"); 518 // Return the old load so the combiner can delete it safely. 519 return &LI; 520 } 521 } 522 523 // Fold away bit casts of the loaded value by loading the desired type. 524 // We can do this for BitCastInsts as well as casts from and to pointer types, 525 // as long as those are noops (i.e., the source or dest type have the same 526 // bitwidth as the target's pointers). 527 if (LI.hasOneUse()) 528 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 529 if (CI->isNoopCast(DL)) 530 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 531 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 532 CI->replaceAllUsesWith(NewLoad); 533 IC.eraseInstFromFunction(*CI); 534 return &LI; 535 } 536 537 // FIXME: We should also canonicalize loads of vectors when their elements are 538 // cast to other types. 539 return nullptr; 540 } 541 542 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 543 // FIXME: We could probably with some care handle both volatile and atomic 544 // stores here but it isn't clear that this is important. 545 if (!LI.isSimple()) 546 return nullptr; 547 548 Type *T = LI.getType(); 549 if (!T->isAggregateType()) 550 return nullptr; 551 552 StringRef Name = LI.getName(); 553 assert(LI.getAlignment() && "Alignment must be set at this point"); 554 555 if (auto *ST = dyn_cast<StructType>(T)) { 556 // If the struct only have one element, we unpack. 557 auto NumElements = ST->getNumElements(); 558 if (NumElements == 1) { 559 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 560 ".unpack"); 561 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 562 UndefValue::get(T), NewLoad, 0, Name)); 563 } 564 565 // We don't want to break loads with padding here as we'd loose 566 // the knowledge that padding exists for the rest of the pipeline. 567 const DataLayout &DL = IC.getDataLayout(); 568 auto *SL = DL.getStructLayout(ST); 569 if (SL->hasPadding()) 570 return nullptr; 571 572 auto Align = LI.getAlignment(); 573 if (!Align) 574 Align = DL.getABITypeAlignment(ST); 575 576 auto *Addr = LI.getPointerOperand(); 577 auto *IdxType = Type::getInt32Ty(T->getContext()); 578 auto *Zero = ConstantInt::get(IdxType, 0); 579 580 Value *V = UndefValue::get(T); 581 for (unsigned i = 0; i < NumElements; i++) { 582 Value *Indices[2] = { 583 Zero, 584 ConstantInt::get(IdxType, i), 585 }; 586 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 587 Name + ".elt"); 588 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 589 auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 590 V = IC.Builder->CreateInsertValue(V, L, i); 591 } 592 593 V->setName(Name); 594 return IC.replaceInstUsesWith(LI, V); 595 } 596 597 if (auto *AT = dyn_cast<ArrayType>(T)) { 598 auto *ET = AT->getElementType(); 599 auto NumElements = AT->getNumElements(); 600 if (NumElements == 1) { 601 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 602 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 603 UndefValue::get(T), NewLoad, 0, Name)); 604 } 605 606 // Bail out if the array is too large. Ideally we would like to optimize 607 // arrays of arbitrary size but this has a terrible impact on compile time. 608 // The threshold here is chosen arbitrarily, maybe needs a little bit of 609 // tuning. 610 if (NumElements > 1024) 611 return nullptr; 612 613 const DataLayout &DL = IC.getDataLayout(); 614 auto EltSize = DL.getTypeAllocSize(ET); 615 auto Align = LI.getAlignment(); 616 if (!Align) 617 Align = DL.getABITypeAlignment(T); 618 619 auto *Addr = LI.getPointerOperand(); 620 auto *IdxType = Type::getInt64Ty(T->getContext()); 621 auto *Zero = ConstantInt::get(IdxType, 0); 622 623 Value *V = UndefValue::get(T); 624 uint64_t Offset = 0; 625 for (uint64_t i = 0; i < NumElements; i++) { 626 Value *Indices[2] = { 627 Zero, 628 ConstantInt::get(IdxType, i), 629 }; 630 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 631 Name + ".elt"); 632 auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 633 Name + ".unpack"); 634 V = IC.Builder->CreateInsertValue(V, L, i); 635 Offset += EltSize; 636 } 637 638 V->setName(Name); 639 return IC.replaceInstUsesWith(LI, V); 640 } 641 642 return nullptr; 643 } 644 645 // If we can determine that all possible objects pointed to by the provided 646 // pointer value are, not only dereferenceable, but also definitively less than 647 // or equal to the provided maximum size, then return true. Otherwise, return 648 // false (constant global values and allocas fall into this category). 649 // 650 // FIXME: This should probably live in ValueTracking (or similar). 651 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 652 const DataLayout &DL) { 653 SmallPtrSet<Value *, 4> Visited; 654 SmallVector<Value *, 4> Worklist(1, V); 655 656 do { 657 Value *P = Worklist.pop_back_val(); 658 P = P->stripPointerCasts(); 659 660 if (!Visited.insert(P).second) 661 continue; 662 663 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 664 Worklist.push_back(SI->getTrueValue()); 665 Worklist.push_back(SI->getFalseValue()); 666 continue; 667 } 668 669 if (PHINode *PN = dyn_cast<PHINode>(P)) { 670 for (Value *IncValue : PN->incoming_values()) 671 Worklist.push_back(IncValue); 672 continue; 673 } 674 675 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 676 if (GA->isInterposable()) 677 return false; 678 Worklist.push_back(GA->getAliasee()); 679 continue; 680 } 681 682 // If we know how big this object is, and it is less than MaxSize, continue 683 // searching. Otherwise, return false. 684 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 685 if (!AI->getAllocatedType()->isSized()) 686 return false; 687 688 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 689 if (!CS) 690 return false; 691 692 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 693 // Make sure that, even if the multiplication below would wrap as an 694 // uint64_t, we still do the right thing. 695 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 696 return false; 697 continue; 698 } 699 700 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 701 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 702 return false; 703 704 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 705 if (InitSize > MaxSize) 706 return false; 707 continue; 708 } 709 710 return false; 711 } while (!Worklist.empty()); 712 713 return true; 714 } 715 716 // If we're indexing into an object of a known size, and the outer index is 717 // not a constant, but having any value but zero would lead to undefined 718 // behavior, replace it with zero. 719 // 720 // For example, if we have: 721 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 722 // ... 723 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 724 // ... = load i32* %arrayidx, align 4 725 // Then we know that we can replace %x in the GEP with i64 0. 726 // 727 // FIXME: We could fold any GEP index to zero that would cause UB if it were 728 // not zero. Currently, we only handle the first such index. Also, we could 729 // also search through non-zero constant indices if we kept track of the 730 // offsets those indices implied. 731 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 732 Instruction *MemI, unsigned &Idx) { 733 if (GEPI->getNumOperands() < 2) 734 return false; 735 736 // Find the first non-zero index of a GEP. If all indices are zero, return 737 // one past the last index. 738 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 739 unsigned I = 1; 740 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 741 Value *V = GEPI->getOperand(I); 742 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 743 if (CI->isZero()) 744 continue; 745 746 break; 747 } 748 749 return I; 750 }; 751 752 // Skip through initial 'zero' indices, and find the corresponding pointer 753 // type. See if the next index is not a constant. 754 Idx = FirstNZIdx(GEPI); 755 if (Idx == GEPI->getNumOperands()) 756 return false; 757 if (isa<Constant>(GEPI->getOperand(Idx))) 758 return false; 759 760 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 761 Type *AllocTy = 762 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 763 if (!AllocTy || !AllocTy->isSized()) 764 return false; 765 const DataLayout &DL = IC.getDataLayout(); 766 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 767 768 // If there are more indices after the one we might replace with a zero, make 769 // sure they're all non-negative. If any of them are negative, the overall 770 // address being computed might be before the base address determined by the 771 // first non-zero index. 772 auto IsAllNonNegative = [&]() { 773 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 774 bool KnownNonNegative, KnownNegative; 775 IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative, 776 KnownNegative, 0, MemI); 777 if (KnownNonNegative) 778 continue; 779 return false; 780 } 781 782 return true; 783 }; 784 785 // FIXME: If the GEP is not inbounds, and there are extra indices after the 786 // one we'll replace, those could cause the address computation to wrap 787 // (rendering the IsAllNonNegative() check below insufficient). We can do 788 // better, ignoring zero indices (and other indices we can prove small 789 // enough not to wrap). 790 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 791 return false; 792 793 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 794 // also known to be dereferenceable. 795 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 796 IsAllNonNegative(); 797 } 798 799 // If we're indexing into an object with a variable index for the memory 800 // access, but the object has only one element, we can assume that the index 801 // will always be zero. If we replace the GEP, return it. 802 template <typename T> 803 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 804 T &MemI) { 805 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 806 unsigned Idx; 807 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 808 Instruction *NewGEPI = GEPI->clone(); 809 NewGEPI->setOperand(Idx, 810 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 811 NewGEPI->insertBefore(GEPI); 812 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 813 return NewGEPI; 814 } 815 } 816 817 return nullptr; 818 } 819 820 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 821 Value *Op = LI.getOperand(0); 822 823 // Try to canonicalize the loaded type. 824 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 825 return Res; 826 827 // Attempt to improve the alignment. 828 unsigned KnownAlign = getOrEnforceKnownAlignment( 829 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 830 unsigned LoadAlign = LI.getAlignment(); 831 unsigned EffectiveLoadAlign = 832 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 833 834 if (KnownAlign > EffectiveLoadAlign) 835 LI.setAlignment(KnownAlign); 836 else if (LoadAlign == 0) 837 LI.setAlignment(EffectiveLoadAlign); 838 839 // Replace GEP indices if possible. 840 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 841 Worklist.Add(NewGEPI); 842 return &LI; 843 } 844 845 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 846 return Res; 847 848 // Do really simple store-to-load forwarding and load CSE, to catch cases 849 // where there are several consecutive memory accesses to the same location, 850 // separated by a few arithmetic operations. 851 BasicBlock::iterator BBI(LI); 852 bool IsLoadCSE = false; 853 if (Value *AvailableVal = FindAvailableLoadedValue( 854 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 855 if (IsLoadCSE) 856 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI); 857 858 return replaceInstUsesWith( 859 LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(), 860 LI.getName() + ".cast")); 861 } 862 863 // None of the following transforms are legal for volatile/ordered atomic 864 // loads. Most of them do apply for unordered atomics. 865 if (!LI.isUnordered()) return nullptr; 866 867 // load(gep null, ...) -> unreachable 868 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 869 const Value *GEPI0 = GEPI->getOperand(0); 870 // TODO: Consider a target hook for valid address spaces for this xform. 871 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ 872 // Insert a new store to null instruction before the load to indicate 873 // that this code is not reachable. We do this instead of inserting 874 // an unreachable instruction directly because we cannot modify the 875 // CFG. 876 new StoreInst(UndefValue::get(LI.getType()), 877 Constant::getNullValue(Op->getType()), &LI); 878 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 879 } 880 } 881 882 // load null/undef -> unreachable 883 // TODO: Consider a target hook for valid address spaces for this xform. 884 if (isa<UndefValue>(Op) || 885 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { 886 // Insert a new store to null instruction before the load to indicate that 887 // this code is not reachable. We do this instead of inserting an 888 // unreachable instruction directly because we cannot modify the CFG. 889 new StoreInst(UndefValue::get(LI.getType()), 890 Constant::getNullValue(Op->getType()), &LI); 891 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 892 } 893 894 if (Op->hasOneUse()) { 895 // Change select and PHI nodes to select values instead of addresses: this 896 // helps alias analysis out a lot, allows many others simplifications, and 897 // exposes redundancy in the code. 898 // 899 // Note that we cannot do the transformation unless we know that the 900 // introduced loads cannot trap! Something like this is valid as long as 901 // the condition is always false: load (select bool %C, int* null, int* %G), 902 // but it would not be valid if we transformed it to load from null 903 // unconditionally. 904 // 905 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 906 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 907 unsigned Align = LI.getAlignment(); 908 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && 909 isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { 910 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), 911 SI->getOperand(1)->getName()+".val"); 912 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), 913 SI->getOperand(2)->getName()+".val"); 914 assert(LI.isUnordered() && "implied by above"); 915 V1->setAlignment(Align); 916 V1->setAtomic(LI.getOrdering(), LI.getSynchScope()); 917 V2->setAlignment(Align); 918 V2->setAtomic(LI.getOrdering(), LI.getSynchScope()); 919 return SelectInst::Create(SI->getCondition(), V1, V2); 920 } 921 922 // load (select (cond, null, P)) -> load P 923 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 924 LI.getPointerAddressSpace() == 0) { 925 LI.setOperand(0, SI->getOperand(2)); 926 return &LI; 927 } 928 929 // load (select (cond, P, null)) -> load P 930 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 931 LI.getPointerAddressSpace() == 0) { 932 LI.setOperand(0, SI->getOperand(1)); 933 return &LI; 934 } 935 } 936 } 937 return nullptr; 938 } 939 940 /// \brief Look for extractelement/insertvalue sequence that acts like a bitcast. 941 /// 942 /// \returns underlying value that was "cast", or nullptr otherwise. 943 /// 944 /// For example, if we have: 945 /// 946 /// %E0 = extractelement <2 x double> %U, i32 0 947 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 948 /// %E1 = extractelement <2 x double> %U, i32 1 949 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 950 /// 951 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 952 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 953 /// Note that %U may contain non-undef values where %V1 has undef. 954 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 955 Value *U = nullptr; 956 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 957 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 958 if (!E) 959 return nullptr; 960 auto *W = E->getVectorOperand(); 961 if (!U) 962 U = W; 963 else if (U != W) 964 return nullptr; 965 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 966 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 967 return nullptr; 968 V = IV->getAggregateOperand(); 969 } 970 if (!isa<UndefValue>(V) ||!U) 971 return nullptr; 972 973 auto *UT = cast<VectorType>(U->getType()); 974 auto *VT = V->getType(); 975 // Check that types UT and VT are bitwise isomorphic. 976 const auto &DL = IC.getDataLayout(); 977 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 978 return nullptr; 979 } 980 if (auto *AT = dyn_cast<ArrayType>(VT)) { 981 if (AT->getNumElements() != UT->getNumElements()) 982 return nullptr; 983 } else { 984 auto *ST = cast<StructType>(VT); 985 if (ST->getNumElements() != UT->getNumElements()) 986 return nullptr; 987 for (const auto *EltT : ST->elements()) { 988 if (EltT != UT->getElementType()) 989 return nullptr; 990 } 991 } 992 return U; 993 } 994 995 /// \brief Combine stores to match the type of value being stored. 996 /// 997 /// The core idea here is that the memory does not have any intrinsic type and 998 /// where we can we should match the type of a store to the type of value being 999 /// stored. 1000 /// 1001 /// However, this routine must never change the width of a store or the number of 1002 /// stores as that would introduce a semantic change. This combine is expected to 1003 /// be a semantic no-op which just allows stores to more closely model the types 1004 /// of their incoming values. 1005 /// 1006 /// Currently, we also refuse to change the precise type used for an atomic or 1007 /// volatile store. This is debatable, and might be reasonable to change later. 1008 /// However, it is risky in case some backend or other part of LLVM is relying 1009 /// on the exact type stored to select appropriate atomic operations. 1010 /// 1011 /// \returns true if the store was successfully combined away. This indicates 1012 /// the caller must erase the store instruction. We have to let the caller erase 1013 /// the store instruction as otherwise there is no way to signal whether it was 1014 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1015 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1016 // FIXME: We could probably with some care handle both volatile and ordered 1017 // atomic stores here but it isn't clear that this is important. 1018 if (!SI.isUnordered()) 1019 return false; 1020 1021 // swifterror values can't be bitcasted. 1022 if (SI.getPointerOperand()->isSwiftError()) 1023 return false; 1024 1025 Value *V = SI.getValueOperand(); 1026 1027 // Fold away bit casts of the stored value by storing the original type. 1028 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1029 V = BC->getOperand(0); 1030 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1031 combineStoreToNewValue(IC, SI, V); 1032 return true; 1033 } 1034 } 1035 1036 if (Value *U = likeBitCastFromVector(IC, V)) 1037 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1038 combineStoreToNewValue(IC, SI, U); 1039 return true; 1040 } 1041 1042 // FIXME: We should also canonicalize stores of vectors when their elements 1043 // are cast to other types. 1044 return false; 1045 } 1046 1047 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1048 // FIXME: We could probably with some care handle both volatile and atomic 1049 // stores here but it isn't clear that this is important. 1050 if (!SI.isSimple()) 1051 return false; 1052 1053 Value *V = SI.getValueOperand(); 1054 Type *T = V->getType(); 1055 1056 if (!T->isAggregateType()) 1057 return false; 1058 1059 if (auto *ST = dyn_cast<StructType>(T)) { 1060 // If the struct only have one element, we unpack. 1061 unsigned Count = ST->getNumElements(); 1062 if (Count == 1) { 1063 V = IC.Builder->CreateExtractValue(V, 0); 1064 combineStoreToNewValue(IC, SI, V); 1065 return true; 1066 } 1067 1068 // We don't want to break loads with padding here as we'd loose 1069 // the knowledge that padding exists for the rest of the pipeline. 1070 const DataLayout &DL = IC.getDataLayout(); 1071 auto *SL = DL.getStructLayout(ST); 1072 if (SL->hasPadding()) 1073 return false; 1074 1075 auto Align = SI.getAlignment(); 1076 if (!Align) 1077 Align = DL.getABITypeAlignment(ST); 1078 1079 SmallString<16> EltName = V->getName(); 1080 EltName += ".elt"; 1081 auto *Addr = SI.getPointerOperand(); 1082 SmallString<16> AddrName = Addr->getName(); 1083 AddrName += ".repack"; 1084 1085 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1086 auto *Zero = ConstantInt::get(IdxType, 0); 1087 for (unsigned i = 0; i < Count; i++) { 1088 Value *Indices[2] = { 1089 Zero, 1090 ConstantInt::get(IdxType, i), 1091 }; 1092 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1093 AddrName); 1094 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1095 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1096 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1097 } 1098 1099 return true; 1100 } 1101 1102 if (auto *AT = dyn_cast<ArrayType>(T)) { 1103 // If the array only have one element, we unpack. 1104 auto NumElements = AT->getNumElements(); 1105 if (NumElements == 1) { 1106 V = IC.Builder->CreateExtractValue(V, 0); 1107 combineStoreToNewValue(IC, SI, V); 1108 return true; 1109 } 1110 1111 // Bail out if the array is too large. Ideally we would like to optimize 1112 // arrays of arbitrary size but this has a terrible impact on compile time. 1113 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1114 // tuning. 1115 if (NumElements > 1024) 1116 return false; 1117 1118 const DataLayout &DL = IC.getDataLayout(); 1119 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1120 auto Align = SI.getAlignment(); 1121 if (!Align) 1122 Align = DL.getABITypeAlignment(T); 1123 1124 SmallString<16> EltName = V->getName(); 1125 EltName += ".elt"; 1126 auto *Addr = SI.getPointerOperand(); 1127 SmallString<16> AddrName = Addr->getName(); 1128 AddrName += ".repack"; 1129 1130 auto *IdxType = Type::getInt64Ty(T->getContext()); 1131 auto *Zero = ConstantInt::get(IdxType, 0); 1132 1133 uint64_t Offset = 0; 1134 for (uint64_t i = 0; i < NumElements; i++) { 1135 Value *Indices[2] = { 1136 Zero, 1137 ConstantInt::get(IdxType, i), 1138 }; 1139 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1140 AddrName); 1141 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1142 auto EltAlign = MinAlign(Align, Offset); 1143 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1144 Offset += EltSize; 1145 } 1146 1147 return true; 1148 } 1149 1150 return false; 1151 } 1152 1153 /// equivalentAddressValues - Test if A and B will obviously have the same 1154 /// value. This includes recognizing that %t0 and %t1 will have the same 1155 /// value in code like this: 1156 /// %t0 = getelementptr \@a, 0, 3 1157 /// store i32 0, i32* %t0 1158 /// %t1 = getelementptr \@a, 0, 3 1159 /// %t2 = load i32* %t1 1160 /// 1161 static bool equivalentAddressValues(Value *A, Value *B) { 1162 // Test if the values are trivially equivalent. 1163 if (A == B) return true; 1164 1165 // Test if the values come form identical arithmetic instructions. 1166 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1167 // its only used to compare two uses within the same basic block, which 1168 // means that they'll always either have the same value or one of them 1169 // will have an undefined value. 1170 if (isa<BinaryOperator>(A) || 1171 isa<CastInst>(A) || 1172 isa<PHINode>(A) || 1173 isa<GetElementPtrInst>(A)) 1174 if (Instruction *BI = dyn_cast<Instruction>(B)) 1175 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1176 return true; 1177 1178 // Otherwise they may not be equivalent. 1179 return false; 1180 } 1181 1182 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1183 Value *Val = SI.getOperand(0); 1184 Value *Ptr = SI.getOperand(1); 1185 1186 // Try to canonicalize the stored type. 1187 if (combineStoreToValueType(*this, SI)) 1188 return eraseInstFromFunction(SI); 1189 1190 // Attempt to improve the alignment. 1191 unsigned KnownAlign = getOrEnforceKnownAlignment( 1192 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1193 unsigned StoreAlign = SI.getAlignment(); 1194 unsigned EffectiveStoreAlign = 1195 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1196 1197 if (KnownAlign > EffectiveStoreAlign) 1198 SI.setAlignment(KnownAlign); 1199 else if (StoreAlign == 0) 1200 SI.setAlignment(EffectiveStoreAlign); 1201 1202 // Try to canonicalize the stored type. 1203 if (unpackStoreToAggregate(*this, SI)) 1204 return eraseInstFromFunction(SI); 1205 1206 // Replace GEP indices if possible. 1207 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1208 Worklist.Add(NewGEPI); 1209 return &SI; 1210 } 1211 1212 // Don't hack volatile/ordered stores. 1213 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1214 if (!SI.isUnordered()) return nullptr; 1215 1216 // If the RHS is an alloca with a single use, zapify the store, making the 1217 // alloca dead. 1218 if (Ptr->hasOneUse()) { 1219 if (isa<AllocaInst>(Ptr)) 1220 return eraseInstFromFunction(SI); 1221 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1222 if (isa<AllocaInst>(GEP->getOperand(0))) { 1223 if (GEP->getOperand(0)->hasOneUse()) 1224 return eraseInstFromFunction(SI); 1225 } 1226 } 1227 } 1228 1229 // Do really simple DSE, to catch cases where there are several consecutive 1230 // stores to the same location, separated by a few arithmetic operations. This 1231 // situation often occurs with bitfield accesses. 1232 BasicBlock::iterator BBI(SI); 1233 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1234 --ScanInsts) { 1235 --BBI; 1236 // Don't count debug info directives, lest they affect codegen, 1237 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1238 if (isa<DbgInfoIntrinsic>(BBI) || 1239 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1240 ScanInsts++; 1241 continue; 1242 } 1243 1244 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1245 // Prev store isn't volatile, and stores to the same location? 1246 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1247 SI.getOperand(1))) { 1248 ++NumDeadStore; 1249 ++BBI; 1250 eraseInstFromFunction(*PrevSI); 1251 continue; 1252 } 1253 break; 1254 } 1255 1256 // If this is a load, we have to stop. However, if the loaded value is from 1257 // the pointer we're loading and is producing the pointer we're storing, 1258 // then *this* store is dead (X = load P; store X -> P). 1259 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1260 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1261 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1262 return eraseInstFromFunction(SI); 1263 } 1264 1265 // Otherwise, this is a load from some other location. Stores before it 1266 // may not be dead. 1267 break; 1268 } 1269 1270 // Don't skip over loads, throws or things that can modify memory. 1271 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1272 break; 1273 } 1274 1275 // store X, null -> turns into 'unreachable' in SimplifyCFG 1276 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { 1277 if (!isa<UndefValue>(Val)) { 1278 SI.setOperand(0, UndefValue::get(Val->getType())); 1279 if (Instruction *U = dyn_cast<Instruction>(Val)) 1280 Worklist.Add(U); // Dropped a use. 1281 } 1282 return nullptr; // Do not modify these! 1283 } 1284 1285 // store undef, Ptr -> noop 1286 if (isa<UndefValue>(Val)) 1287 return eraseInstFromFunction(SI); 1288 1289 // If this store is the last instruction in the basic block (possibly 1290 // excepting debug info instructions), and if the block ends with an 1291 // unconditional branch, try to move it to the successor block. 1292 BBI = SI.getIterator(); 1293 do { 1294 ++BBI; 1295 } while (isa<DbgInfoIntrinsic>(BBI) || 1296 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1297 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1298 if (BI->isUnconditional()) 1299 if (SimplifyStoreAtEndOfBlock(SI)) 1300 return nullptr; // xform done! 1301 1302 return nullptr; 1303 } 1304 1305 /// SimplifyStoreAtEndOfBlock - Turn things like: 1306 /// if () { *P = v1; } else { *P = v2 } 1307 /// into a phi node with a store in the successor. 1308 /// 1309 /// Simplify things like: 1310 /// *P = v1; if () { *P = v2; } 1311 /// into a phi node with a store in the successor. 1312 /// 1313 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1314 assert(SI.isUnordered() && 1315 "this code has not been auditted for volatile or ordered store case"); 1316 1317 BasicBlock *StoreBB = SI.getParent(); 1318 1319 // Check to see if the successor block has exactly two incoming edges. If 1320 // so, see if the other predecessor contains a store to the same location. 1321 // if so, insert a PHI node (if needed) and move the stores down. 1322 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1323 1324 // Determine whether Dest has exactly two predecessors and, if so, compute 1325 // the other predecessor. 1326 pred_iterator PI = pred_begin(DestBB); 1327 BasicBlock *P = *PI; 1328 BasicBlock *OtherBB = nullptr; 1329 1330 if (P != StoreBB) 1331 OtherBB = P; 1332 1333 if (++PI == pred_end(DestBB)) 1334 return false; 1335 1336 P = *PI; 1337 if (P != StoreBB) { 1338 if (OtherBB) 1339 return false; 1340 OtherBB = P; 1341 } 1342 if (++PI != pred_end(DestBB)) 1343 return false; 1344 1345 // Bail out if all the relevant blocks aren't distinct (this can happen, 1346 // for example, if SI is in an infinite loop) 1347 if (StoreBB == DestBB || OtherBB == DestBB) 1348 return false; 1349 1350 // Verify that the other block ends in a branch and is not otherwise empty. 1351 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1352 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1353 if (!OtherBr || BBI == OtherBB->begin()) 1354 return false; 1355 1356 // If the other block ends in an unconditional branch, check for the 'if then 1357 // else' case. there is an instruction before the branch. 1358 StoreInst *OtherStore = nullptr; 1359 if (OtherBr->isUnconditional()) { 1360 --BBI; 1361 // Skip over debugging info. 1362 while (isa<DbgInfoIntrinsic>(BBI) || 1363 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1364 if (BBI==OtherBB->begin()) 1365 return false; 1366 --BBI; 1367 } 1368 // If this isn't a store, isn't a store to the same location, or is not the 1369 // right kind of store, bail out. 1370 OtherStore = dyn_cast<StoreInst>(BBI); 1371 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1372 !SI.isSameOperationAs(OtherStore)) 1373 return false; 1374 } else { 1375 // Otherwise, the other block ended with a conditional branch. If one of the 1376 // destinations is StoreBB, then we have the if/then case. 1377 if (OtherBr->getSuccessor(0) != StoreBB && 1378 OtherBr->getSuccessor(1) != StoreBB) 1379 return false; 1380 1381 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1382 // if/then triangle. See if there is a store to the same ptr as SI that 1383 // lives in OtherBB. 1384 for (;; --BBI) { 1385 // Check to see if we find the matching store. 1386 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1387 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1388 !SI.isSameOperationAs(OtherStore)) 1389 return false; 1390 break; 1391 } 1392 // If we find something that may be using or overwriting the stored 1393 // value, or if we run out of instructions, we can't do the xform. 1394 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1395 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1396 return false; 1397 } 1398 1399 // In order to eliminate the store in OtherBr, we have to 1400 // make sure nothing reads or overwrites the stored value in 1401 // StoreBB. 1402 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1403 // FIXME: This should really be AA driven. 1404 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1405 return false; 1406 } 1407 } 1408 1409 // Insert a PHI node now if we need it. 1410 Value *MergedVal = OtherStore->getOperand(0); 1411 if (MergedVal != SI.getOperand(0)) { 1412 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1413 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1414 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1415 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1416 } 1417 1418 // Advance to a place where it is safe to insert the new store and 1419 // insert it. 1420 BBI = DestBB->getFirstInsertionPt(); 1421 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1422 SI.isVolatile(), 1423 SI.getAlignment(), 1424 SI.getOrdering(), 1425 SI.getSynchScope()); 1426 InsertNewInstBefore(NewSI, *BBI); 1427 NewSI->setDebugLoc(OtherStore->getDebugLoc()); 1428 1429 // If the two stores had AA tags, merge them. 1430 AAMDNodes AATags; 1431 SI.getAAMetadata(AATags); 1432 if (AATags) { 1433 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1434 NewSI->setAAMetadata(AATags); 1435 } 1436 1437 // Nuke the old stores. 1438 eraseInstFromFunction(SI); 1439 eraseInstFromFunction(*OtherStore); 1440 return true; 1441 } 1442