1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 36 37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 38 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 39 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 41 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 42 /// the alloca, and if the source pointer is a pointer to a constant global, we 43 /// can optimize this. 44 static bool 45 isOnlyCopiedFromConstantMemory(AAResults *AA, 46 Value *V, MemTransferInst *&TheCopy, 47 SmallVectorImpl<Instruction *> &ToDelete) { 48 // We track lifetime intrinsics as we encounter them. If we decide to go 49 // ahead and replace the value with the global, this lets the caller quickly 50 // eliminate the markers. 51 52 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 53 ValuesToInspect.emplace_back(V, false); 54 while (!ValuesToInspect.empty()) { 55 auto ValuePair = ValuesToInspect.pop_back_val(); 56 const bool IsOffset = ValuePair.second; 57 for (auto &U : ValuePair.first->uses()) { 58 auto *I = cast<Instruction>(U.getUser()); 59 60 if (auto *LI = dyn_cast<LoadInst>(I)) { 61 // Ignore non-volatile loads, they are always ok. 62 if (!LI->isSimple()) return false; 63 continue; 64 } 65 66 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 67 // If uses of the bitcast are ok, we are ok. 68 ValuesToInspect.emplace_back(I, IsOffset); 69 continue; 70 } 71 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 72 // If the GEP has all zero indices, it doesn't offset the pointer. If it 73 // doesn't, it does. 74 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 75 continue; 76 } 77 78 if (auto *Call = dyn_cast<CallBase>(I)) { 79 // If this is the function being called then we treat it like a load and 80 // ignore it. 81 if (Call->isCallee(&U)) 82 continue; 83 84 unsigned DataOpNo = Call->getDataOperandNo(&U); 85 bool IsArgOperand = Call->isArgOperand(&U); 86 87 // Inalloca arguments are clobbered by the call. 88 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 89 return false; 90 91 // If this is a readonly/readnone call site, then we know it is just a 92 // load (but one that potentially returns the value itself), so we can 93 // ignore it if we know that the value isn't captured. 94 if (Call->onlyReadsMemory() && 95 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 96 continue; 97 98 // If this is being passed as a byval argument, the caller is making a 99 // copy, so it is only a read of the alloca. 100 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 101 continue; 102 } 103 104 // Lifetime intrinsics can be handled by the caller. 105 if (I->isLifetimeStartOrEnd()) { 106 assert(I->use_empty() && "Lifetime markers have no result to use!"); 107 ToDelete.push_back(I); 108 continue; 109 } 110 111 // If this is isn't our memcpy/memmove, reject it as something we can't 112 // handle. 113 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 114 if (!MI) 115 return false; 116 117 // If the transfer is using the alloca as a source of the transfer, then 118 // ignore it since it is a load (unless the transfer is volatile). 119 if (U.getOperandNo() == 1) { 120 if (MI->isVolatile()) return false; 121 continue; 122 } 123 124 // If we already have seen a copy, reject the second one. 125 if (TheCopy) return false; 126 127 // If the pointer has been offset from the start of the alloca, we can't 128 // safely handle this. 129 if (IsOffset) return false; 130 131 // If the memintrinsic isn't using the alloca as the dest, reject it. 132 if (U.getOperandNo() != 0) return false; 133 134 // If the source of the memcpy/move is not a constant global, reject it. 135 if (!AA->pointsToConstantMemory(MI->getSource())) 136 return false; 137 138 // Otherwise, the transform is safe. Remember the copy instruction. 139 TheCopy = MI; 140 } 141 } 142 return true; 143 } 144 145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 146 /// modified by a copy from a constant global. If we can prove this, we can 147 /// replace any uses of the alloca with uses of the global directly. 148 static MemTransferInst * 149 isOnlyCopiedFromConstantMemory(AAResults *AA, 150 AllocaInst *AI, 151 SmallVectorImpl<Instruction *> &ToDelete) { 152 MemTransferInst *TheCopy = nullptr; 153 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) 154 return TheCopy; 155 return nullptr; 156 } 157 158 /// Returns true if V is dereferenceable for size of alloca. 159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 160 const DataLayout &DL) { 161 if (AI->isArrayAllocation()) 162 return false; 163 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 164 if (!AllocaSize) 165 return false; 166 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()), 167 APInt(64, AllocaSize), DL); 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC, 171 AllocaInst &AI) { 172 // Check for array size of 1 (scalar allocation). 173 if (!AI.isArrayAllocation()) { 174 // i32 1 is the canonical array size for scalar allocations. 175 if (AI.getArraySize()->getType()->isIntegerTy(32)) 176 return nullptr; 177 178 // Canonicalize it. 179 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); 180 } 181 182 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 183 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 184 if (C->getValue().getActiveBits() <= 64) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 187 New->setAlignment(AI.getAlign()); 188 189 // Scan to the end of the allocation instructions, to skip over a block of 190 // allocas if possible...also skip interleaved debug info 191 // 192 BasicBlock::iterator It(New); 193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 194 ++It; 195 196 // Now that I is pointing to the first non-allocation-inst in the block, 197 // insert our getelementptr instruction... 198 // 199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 200 Value *NullIdx = Constant::getNullValue(IdxTy); 201 Value *Idx[2] = {NullIdx, NullIdx}; 202 Instruction *NewI = GetElementPtrInst::CreateInBounds( 203 NewTy, New, Idx, New->getName() + ".sub"); 204 IC.InsertNewInstBefore(NewI, *It); 205 206 // Gracefully handle allocas in other address spaces. 207 if (AI.getType()->getPointerAddressSpace() != 208 NewI->getType()->getPointerAddressSpace()) { 209 NewI = 210 CastInst::CreatePointerBitCastOrAddrSpaceCast(NewI, AI.getType()); 211 IC.InsertNewInstBefore(NewI, *It); 212 } 213 214 // Now make everything use the getelementptr instead of the original 215 // allocation. 216 return IC.replaceInstUsesWith(AI, NewI); 217 } 218 } 219 220 if (isa<UndefValue>(AI.getArraySize())) 221 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 222 223 // Ensure that the alloca array size argument has type intptr_t, so that 224 // any casting is exposed early. 225 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 226 if (AI.getArraySize()->getType() != IntPtrTy) { 227 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 228 return IC.replaceOperand(AI, 0, V); 229 } 230 231 return nullptr; 232 } 233 234 namespace { 235 // If I and V are pointers in different address space, it is not allowed to 236 // use replaceAllUsesWith since I and V have different types. A 237 // non-target-specific transformation should not use addrspacecast on V since 238 // the two address space may be disjoint depending on target. 239 // 240 // This class chases down uses of the old pointer until reaching the load 241 // instructions, then replaces the old pointer in the load instructions with 242 // the new pointer. If during the chasing it sees bitcast or GEP, it will 243 // create new bitcast or GEP with the new pointer and use them in the load 244 // instruction. 245 class PointerReplacer { 246 public: 247 PointerReplacer(InstCombinerImpl &IC) : IC(IC) {} 248 249 bool collectUsers(Instruction &I); 250 void replacePointer(Instruction &I, Value *V); 251 252 private: 253 void replace(Instruction *I); 254 Value *getReplacement(Value *I); 255 256 SmallSetVector<Instruction *, 4> Worklist; 257 MapVector<Value *, Value *> WorkMap; 258 InstCombinerImpl &IC; 259 }; 260 } // end anonymous namespace 261 262 bool PointerReplacer::collectUsers(Instruction &I) { 263 for (auto U : I.users()) { 264 Instruction *Inst = cast<Instruction>(&*U); 265 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 266 if (Load->isVolatile()) 267 return false; 268 Worklist.insert(Load); 269 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 270 Worklist.insert(Inst); 271 if (!collectUsers(*Inst)) 272 return false; 273 } else if (isa<MemTransferInst>(Inst)) { 274 Worklist.insert(Inst); 275 } else { 276 LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n'); 277 return false; 278 } 279 } 280 281 return true; 282 } 283 284 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); } 285 286 void PointerReplacer::replace(Instruction *I) { 287 if (getReplacement(I)) 288 return; 289 290 if (auto *LT = dyn_cast<LoadInst>(I)) { 291 auto *V = getReplacement(LT->getPointerOperand()); 292 assert(V && "Operand not replaced"); 293 auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(), 294 LT->getAlign(), LT->getOrdering(), 295 LT->getSyncScopeID()); 296 NewI->takeName(LT); 297 copyMetadataForLoad(*NewI, *LT); 298 299 IC.InsertNewInstWith(NewI, *LT); 300 IC.replaceInstUsesWith(*LT, NewI); 301 WorkMap[LT] = NewI; 302 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 303 auto *V = getReplacement(GEP->getPointerOperand()); 304 assert(V && "Operand not replaced"); 305 SmallVector<Value *, 8> Indices; 306 Indices.append(GEP->idx_begin(), GEP->idx_end()); 307 auto *NewI = GetElementPtrInst::Create( 308 V->getType()->getPointerElementType(), V, Indices); 309 IC.InsertNewInstWith(NewI, *GEP); 310 NewI->takeName(GEP); 311 WorkMap[GEP] = NewI; 312 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 313 auto *V = getReplacement(BC->getOperand(0)); 314 assert(V && "Operand not replaced"); 315 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 316 V->getType()->getPointerAddressSpace()); 317 auto *NewI = new BitCastInst(V, NewT); 318 IC.InsertNewInstWith(NewI, *BC); 319 NewI->takeName(BC); 320 WorkMap[BC] = NewI; 321 } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) { 322 auto *SrcV = getReplacement(MemCpy->getRawSource()); 323 // The pointer may appear in the destination of a copy, but we don't want to 324 // replace it. 325 if (!SrcV) { 326 assert(getReplacement(MemCpy->getRawDest()) && 327 "destination not in replace list"); 328 return; 329 } 330 331 IC.Builder.SetInsertPoint(MemCpy); 332 auto *NewI = IC.Builder.CreateMemTransferInst( 333 MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(), 334 SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(), 335 MemCpy->isVolatile()); 336 AAMDNodes AAMD; 337 MemCpy->getAAMetadata(AAMD); 338 if (AAMD) 339 NewI->setAAMetadata(AAMD); 340 341 IC.eraseInstFromFunction(*MemCpy); 342 WorkMap[MemCpy] = NewI; 343 } else { 344 llvm_unreachable("should never reach here"); 345 } 346 } 347 348 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 349 #ifndef NDEBUG 350 auto *PT = cast<PointerType>(I.getType()); 351 auto *NT = cast<PointerType>(V->getType()); 352 assert(PT != NT && PT->getElementType() == NT->getElementType() && 353 "Invalid usage"); 354 #endif 355 WorkMap[&I] = V; 356 357 for (Instruction *Workitem : Worklist) 358 replace(Workitem); 359 } 360 361 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) { 362 if (auto *I = simplifyAllocaArraySize(*this, AI)) 363 return I; 364 365 if (AI.getAllocatedType()->isSized()) { 366 // Move all alloca's of zero byte objects to the entry block and merge them 367 // together. Note that we only do this for alloca's, because malloc should 368 // allocate and return a unique pointer, even for a zero byte allocation. 369 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) { 370 // For a zero sized alloca there is no point in doing an array allocation. 371 // This is helpful if the array size is a complicated expression not used 372 // elsewhere. 373 if (AI.isArrayAllocation()) 374 return replaceOperand(AI, 0, 375 ConstantInt::get(AI.getArraySize()->getType(), 1)); 376 377 // Get the first instruction in the entry block. 378 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 379 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 380 if (FirstInst != &AI) { 381 // If the entry block doesn't start with a zero-size alloca then move 382 // this one to the start of the entry block. There is no problem with 383 // dominance as the array size was forced to a constant earlier already. 384 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 385 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 386 DL.getTypeAllocSize(EntryAI->getAllocatedType()) 387 .getKnownMinSize() != 0) { 388 AI.moveBefore(FirstInst); 389 return &AI; 390 } 391 392 // Replace this zero-sized alloca with the one at the start of the entry 393 // block after ensuring that the address will be aligned enough for both 394 // types. 395 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); 396 EntryAI->setAlignment(MaxAlign); 397 if (AI.getType() != EntryAI->getType()) 398 return new BitCastInst(EntryAI, AI.getType()); 399 return replaceInstUsesWith(AI, EntryAI); 400 } 401 } 402 } 403 404 // Check to see if this allocation is only modified by a memcpy/memmove from 405 // a constant whose alignment is equal to or exceeds that of the allocation. 406 // If this is the case, we can change all users to use the constant global 407 // instead. This is commonly produced by the CFE by constructs like "void 408 // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently 409 // read. 410 SmallVector<Instruction *, 4> ToDelete; 411 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { 412 Value *TheSrc = Copy->getSource(); 413 Align AllocaAlign = AI.getAlign(); 414 Align SourceAlign = getOrEnforceKnownAlignment( 415 TheSrc, AllocaAlign, DL, &AI, &AC, &DT); 416 if (AllocaAlign <= SourceAlign && 417 isDereferenceableForAllocaSize(TheSrc, &AI, DL) && 418 !isa<Instruction>(TheSrc)) { 419 // FIXME: Can we sink instructions without violating dominance when TheSrc 420 // is an instruction instead of a constant or argument? 421 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 422 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 423 unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace(); 424 auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace); 425 if (AI.getType()->getAddressSpace() == SrcAddrSpace) { 426 for (Instruction *Delete : ToDelete) 427 eraseInstFromFunction(*Delete); 428 429 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 430 Instruction *NewI = replaceInstUsesWith(AI, Cast); 431 eraseInstFromFunction(*Copy); 432 ++NumGlobalCopies; 433 return NewI; 434 } 435 436 PointerReplacer PtrReplacer(*this); 437 if (PtrReplacer.collectUsers(AI)) { 438 for (Instruction *Delete : ToDelete) 439 eraseInstFromFunction(*Delete); 440 441 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 442 PtrReplacer.replacePointer(AI, Cast); 443 ++NumGlobalCopies; 444 } 445 } 446 } 447 448 // At last, use the generic allocation site handler to aggressively remove 449 // unused allocas. 450 return visitAllocSite(AI); 451 } 452 453 // Are we allowed to form a atomic load or store of this type? 454 static bool isSupportedAtomicType(Type *Ty) { 455 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 456 } 457 458 /// Helper to combine a load to a new type. 459 /// 460 /// This just does the work of combining a load to a new type. It handles 461 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 462 /// loaded *value* type. This will convert it to a pointer, cast the operand to 463 /// that pointer type, load it, etc. 464 /// 465 /// Note that this will create all of the instructions with whatever insert 466 /// point the \c InstCombinerImpl currently is using. 467 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy, 468 const Twine &Suffix) { 469 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 470 "can't fold an atomic load to requested type"); 471 472 Value *Ptr = LI.getPointerOperand(); 473 unsigned AS = LI.getPointerAddressSpace(); 474 Type *NewPtrTy = NewTy->getPointerTo(AS); 475 Value *NewPtr = nullptr; 476 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 477 NewPtr->getType() == NewPtrTy)) 478 NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy); 479 480 LoadInst *NewLoad = Builder.CreateAlignedLoad( 481 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); 482 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 483 copyMetadataForLoad(*NewLoad, LI); 484 return NewLoad; 485 } 486 487 /// Combine a store to a new type. 488 /// 489 /// Returns the newly created store instruction. 490 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI, 491 Value *V) { 492 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 493 "can't fold an atomic store of requested type"); 494 495 Value *Ptr = SI.getPointerOperand(); 496 unsigned AS = SI.getPointerAddressSpace(); 497 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 498 SI.getAllMetadata(MD); 499 500 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 501 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 502 SI.getAlign(), SI.isVolatile()); 503 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 504 for (const auto &MDPair : MD) { 505 unsigned ID = MDPair.first; 506 MDNode *N = MDPair.second; 507 // Note, essentially every kind of metadata should be preserved here! This 508 // routine is supposed to clone a store instruction changing *only its 509 // type*. The only metadata it makes sense to drop is metadata which is 510 // invalidated when the pointer type changes. This should essentially 511 // never be the case in LLVM, but we explicitly switch over only known 512 // metadata to be conservatively correct. If you are adding metadata to 513 // LLVM which pertains to stores, you almost certainly want to add it 514 // here. 515 switch (ID) { 516 case LLVMContext::MD_dbg: 517 case LLVMContext::MD_tbaa: 518 case LLVMContext::MD_prof: 519 case LLVMContext::MD_fpmath: 520 case LLVMContext::MD_tbaa_struct: 521 case LLVMContext::MD_alias_scope: 522 case LLVMContext::MD_noalias: 523 case LLVMContext::MD_nontemporal: 524 case LLVMContext::MD_mem_parallel_loop_access: 525 case LLVMContext::MD_access_group: 526 // All of these directly apply. 527 NewStore->setMetadata(ID, N); 528 break; 529 case LLVMContext::MD_invariant_load: 530 case LLVMContext::MD_nonnull: 531 case LLVMContext::MD_noundef: 532 case LLVMContext::MD_range: 533 case LLVMContext::MD_align: 534 case LLVMContext::MD_dereferenceable: 535 case LLVMContext::MD_dereferenceable_or_null: 536 // These don't apply for stores. 537 break; 538 } 539 } 540 541 return NewStore; 542 } 543 544 /// Returns true if instruction represent minmax pattern like: 545 /// select ((cmp load V1, load V2), V1, V2). 546 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 547 assert(V->getType()->isPointerTy() && "Expected pointer type."); 548 // Ignore possible ty* to ixx* bitcast. 549 V = InstCombiner::peekThroughBitcast(V); 550 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 551 // pattern. 552 CmpInst::Predicate Pred; 553 Instruction *L1; 554 Instruction *L2; 555 Value *LHS; 556 Value *RHS; 557 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 558 m_Value(LHS), m_Value(RHS)))) 559 return false; 560 LoadTy = L1->getType(); 561 return (match(L1, m_Load(m_Specific(LHS))) && 562 match(L2, m_Load(m_Specific(RHS)))) || 563 (match(L1, m_Load(m_Specific(RHS))) && 564 match(L2, m_Load(m_Specific(LHS)))); 565 } 566 567 /// Combine loads to match the type of their uses' value after looking 568 /// through intervening bitcasts. 569 /// 570 /// The core idea here is that if the result of a load is used in an operation, 571 /// we should load the type most conducive to that operation. For example, when 572 /// loading an integer and converting that immediately to a pointer, we should 573 /// instead directly load a pointer. 574 /// 575 /// However, this routine must never change the width of a load or the number of 576 /// loads as that would introduce a semantic change. This combine is expected to 577 /// be a semantic no-op which just allows loads to more closely model the types 578 /// of their consuming operations. 579 /// 580 /// Currently, we also refuse to change the precise type used for an atomic load 581 /// or a volatile load. This is debatable, and might be reasonable to change 582 /// later. However, it is risky in case some backend or other part of LLVM is 583 /// relying on the exact type loaded to select appropriate atomic operations. 584 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC, 585 LoadInst &LI) { 586 // FIXME: We could probably with some care handle both volatile and ordered 587 // atomic loads here but it isn't clear that this is important. 588 if (!LI.isUnordered()) 589 return nullptr; 590 591 if (LI.use_empty()) 592 return nullptr; 593 594 // swifterror values can't be bitcasted. 595 if (LI.getPointerOperand()->isSwiftError()) 596 return nullptr; 597 598 const DataLayout &DL = IC.getDataLayout(); 599 600 // Fold away bit casts of the loaded value by loading the desired type. 601 // Note that we should not do this for pointer<->integer casts, 602 // because that would result in type punning. 603 if (LI.hasOneUse()) { 604 // Don't transform when the type is x86_amx, it makes the pass that lower 605 // x86_amx type happy. 606 if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) { 607 assert(!LI.getType()->isX86_AMXTy() && 608 "load from x86_amx* should not happen!"); 609 if (BC->getType()->isX86_AMXTy()) 610 return nullptr; 611 } 612 613 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 614 if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() == 615 CI->getDestTy()->isPtrOrPtrVectorTy()) 616 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 617 LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy()); 618 CI->replaceAllUsesWith(NewLoad); 619 IC.eraseInstFromFunction(*CI); 620 return &LI; 621 } 622 } 623 624 // FIXME: We should also canonicalize loads of vectors when their elements are 625 // cast to other types. 626 return nullptr; 627 } 628 629 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) { 630 // FIXME: We could probably with some care handle both volatile and atomic 631 // stores here but it isn't clear that this is important. 632 if (!LI.isSimple()) 633 return nullptr; 634 635 Type *T = LI.getType(); 636 if (!T->isAggregateType()) 637 return nullptr; 638 639 StringRef Name = LI.getName(); 640 assert(LI.getAlignment() && "Alignment must be set at this point"); 641 642 if (auto *ST = dyn_cast<StructType>(T)) { 643 // If the struct only have one element, we unpack. 644 auto NumElements = ST->getNumElements(); 645 if (NumElements == 1) { 646 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 647 ".unpack"); 648 AAMDNodes AAMD; 649 LI.getAAMetadata(AAMD); 650 NewLoad->setAAMetadata(AAMD); 651 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 652 UndefValue::get(T), NewLoad, 0, Name)); 653 } 654 655 // We don't want to break loads with padding here as we'd loose 656 // the knowledge that padding exists for the rest of the pipeline. 657 const DataLayout &DL = IC.getDataLayout(); 658 auto *SL = DL.getStructLayout(ST); 659 if (SL->hasPadding()) 660 return nullptr; 661 662 const auto Align = LI.getAlign(); 663 auto *Addr = LI.getPointerOperand(); 664 auto *IdxType = Type::getInt32Ty(T->getContext()); 665 auto *Zero = ConstantInt::get(IdxType, 0); 666 667 Value *V = UndefValue::get(T); 668 for (unsigned i = 0; i < NumElements; i++) { 669 Value *Indices[2] = { 670 Zero, 671 ConstantInt::get(IdxType, i), 672 }; 673 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 674 Name + ".elt"); 675 auto *L = IC.Builder.CreateAlignedLoad( 676 ST->getElementType(i), Ptr, 677 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); 678 // Propagate AA metadata. It'll still be valid on the narrowed load. 679 AAMDNodes AAMD; 680 LI.getAAMetadata(AAMD); 681 L->setAAMetadata(AAMD); 682 V = IC.Builder.CreateInsertValue(V, L, i); 683 } 684 685 V->setName(Name); 686 return IC.replaceInstUsesWith(LI, V); 687 } 688 689 if (auto *AT = dyn_cast<ArrayType>(T)) { 690 auto *ET = AT->getElementType(); 691 auto NumElements = AT->getNumElements(); 692 if (NumElements == 1) { 693 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 694 AAMDNodes AAMD; 695 LI.getAAMetadata(AAMD); 696 NewLoad->setAAMetadata(AAMD); 697 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 698 UndefValue::get(T), NewLoad, 0, Name)); 699 } 700 701 // Bail out if the array is too large. Ideally we would like to optimize 702 // arrays of arbitrary size but this has a terrible impact on compile time. 703 // The threshold here is chosen arbitrarily, maybe needs a little bit of 704 // tuning. 705 if (NumElements > IC.MaxArraySizeForCombine) 706 return nullptr; 707 708 const DataLayout &DL = IC.getDataLayout(); 709 auto EltSize = DL.getTypeAllocSize(ET); 710 const auto Align = LI.getAlign(); 711 712 auto *Addr = LI.getPointerOperand(); 713 auto *IdxType = Type::getInt64Ty(T->getContext()); 714 auto *Zero = ConstantInt::get(IdxType, 0); 715 716 Value *V = UndefValue::get(T); 717 uint64_t Offset = 0; 718 for (uint64_t i = 0; i < NumElements; i++) { 719 Value *Indices[2] = { 720 Zero, 721 ConstantInt::get(IdxType, i), 722 }; 723 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 724 Name + ".elt"); 725 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, 726 commonAlignment(Align, Offset), 727 Name + ".unpack"); 728 AAMDNodes AAMD; 729 LI.getAAMetadata(AAMD); 730 L->setAAMetadata(AAMD); 731 V = IC.Builder.CreateInsertValue(V, L, i); 732 Offset += EltSize; 733 } 734 735 V->setName(Name); 736 return IC.replaceInstUsesWith(LI, V); 737 } 738 739 return nullptr; 740 } 741 742 // If we can determine that all possible objects pointed to by the provided 743 // pointer value are, not only dereferenceable, but also definitively less than 744 // or equal to the provided maximum size, then return true. Otherwise, return 745 // false (constant global values and allocas fall into this category). 746 // 747 // FIXME: This should probably live in ValueTracking (or similar). 748 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 749 const DataLayout &DL) { 750 SmallPtrSet<Value *, 4> Visited; 751 SmallVector<Value *, 4> Worklist(1, V); 752 753 do { 754 Value *P = Worklist.pop_back_val(); 755 P = P->stripPointerCasts(); 756 757 if (!Visited.insert(P).second) 758 continue; 759 760 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 761 Worklist.push_back(SI->getTrueValue()); 762 Worklist.push_back(SI->getFalseValue()); 763 continue; 764 } 765 766 if (PHINode *PN = dyn_cast<PHINode>(P)) { 767 append_range(Worklist, PN->incoming_values()); 768 continue; 769 } 770 771 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 772 if (GA->isInterposable()) 773 return false; 774 Worklist.push_back(GA->getAliasee()); 775 continue; 776 } 777 778 // If we know how big this object is, and it is less than MaxSize, continue 779 // searching. Otherwise, return false. 780 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 781 if (!AI->getAllocatedType()->isSized()) 782 return false; 783 784 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 785 if (!CS) 786 return false; 787 788 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 789 // Make sure that, even if the multiplication below would wrap as an 790 // uint64_t, we still do the right thing. 791 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 792 return false; 793 continue; 794 } 795 796 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 797 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 798 return false; 799 800 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 801 if (InitSize > MaxSize) 802 return false; 803 continue; 804 } 805 806 return false; 807 } while (!Worklist.empty()); 808 809 return true; 810 } 811 812 // If we're indexing into an object of a known size, and the outer index is 813 // not a constant, but having any value but zero would lead to undefined 814 // behavior, replace it with zero. 815 // 816 // For example, if we have: 817 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 818 // ... 819 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 820 // ... = load i32* %arrayidx, align 4 821 // Then we know that we can replace %x in the GEP with i64 0. 822 // 823 // FIXME: We could fold any GEP index to zero that would cause UB if it were 824 // not zero. Currently, we only handle the first such index. Also, we could 825 // also search through non-zero constant indices if we kept track of the 826 // offsets those indices implied. 827 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC, 828 GetElementPtrInst *GEPI, Instruction *MemI, 829 unsigned &Idx) { 830 if (GEPI->getNumOperands() < 2) 831 return false; 832 833 // Find the first non-zero index of a GEP. If all indices are zero, return 834 // one past the last index. 835 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 836 unsigned I = 1; 837 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 838 Value *V = GEPI->getOperand(I); 839 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 840 if (CI->isZero()) 841 continue; 842 843 break; 844 } 845 846 return I; 847 }; 848 849 // Skip through initial 'zero' indices, and find the corresponding pointer 850 // type. See if the next index is not a constant. 851 Idx = FirstNZIdx(GEPI); 852 if (Idx == GEPI->getNumOperands()) 853 return false; 854 if (isa<Constant>(GEPI->getOperand(Idx))) 855 return false; 856 857 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 858 Type *SourceElementType = GEPI->getSourceElementType(); 859 // Size information about scalable vectors is not available, so we cannot 860 // deduce whether indexing at n is undefined behaviour or not. Bail out. 861 if (isa<ScalableVectorType>(SourceElementType)) 862 return false; 863 864 Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops); 865 if (!AllocTy || !AllocTy->isSized()) 866 return false; 867 const DataLayout &DL = IC.getDataLayout(); 868 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize(); 869 870 // If there are more indices after the one we might replace with a zero, make 871 // sure they're all non-negative. If any of them are negative, the overall 872 // address being computed might be before the base address determined by the 873 // first non-zero index. 874 auto IsAllNonNegative = [&]() { 875 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 876 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 877 if (Known.isNonNegative()) 878 continue; 879 return false; 880 } 881 882 return true; 883 }; 884 885 // FIXME: If the GEP is not inbounds, and there are extra indices after the 886 // one we'll replace, those could cause the address computation to wrap 887 // (rendering the IsAllNonNegative() check below insufficient). We can do 888 // better, ignoring zero indices (and other indices we can prove small 889 // enough not to wrap). 890 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 891 return false; 892 893 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 894 // also known to be dereferenceable. 895 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 896 IsAllNonNegative(); 897 } 898 899 // If we're indexing into an object with a variable index for the memory 900 // access, but the object has only one element, we can assume that the index 901 // will always be zero. If we replace the GEP, return it. 902 template <typename T> 903 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr, 904 T &MemI) { 905 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 906 unsigned Idx; 907 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 908 Instruction *NewGEPI = GEPI->clone(); 909 NewGEPI->setOperand(Idx, 910 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 911 NewGEPI->insertBefore(GEPI); 912 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 913 return NewGEPI; 914 } 915 } 916 917 return nullptr; 918 } 919 920 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 921 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 922 return false; 923 924 auto *Ptr = SI.getPointerOperand(); 925 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 926 Ptr = GEPI->getOperand(0); 927 return (isa<ConstantPointerNull>(Ptr) && 928 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 929 } 930 931 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 932 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 933 const Value *GEPI0 = GEPI->getOperand(0); 934 if (isa<ConstantPointerNull>(GEPI0) && 935 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 936 return true; 937 } 938 if (isa<UndefValue>(Op) || 939 (isa<ConstantPointerNull>(Op) && 940 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 941 return true; 942 return false; 943 } 944 945 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) { 946 Value *Op = LI.getOperand(0); 947 948 // Try to canonicalize the loaded type. 949 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 950 return Res; 951 952 // Attempt to improve the alignment. 953 Align KnownAlign = getOrEnforceKnownAlignment( 954 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); 955 if (KnownAlign > LI.getAlign()) 956 LI.setAlignment(KnownAlign); 957 958 // Replace GEP indices if possible. 959 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 960 Worklist.push(NewGEPI); 961 return &LI; 962 } 963 964 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 965 return Res; 966 967 // Do really simple store-to-load forwarding and load CSE, to catch cases 968 // where there are several consecutive memory accesses to the same location, 969 // separated by a few arithmetic operations. 970 bool IsLoadCSE = false; 971 if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) { 972 if (IsLoadCSE) 973 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 974 975 return replaceInstUsesWith( 976 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 977 LI.getName() + ".cast")); 978 } 979 980 // None of the following transforms are legal for volatile/ordered atomic 981 // loads. Most of them do apply for unordered atomics. 982 if (!LI.isUnordered()) return nullptr; 983 984 // load(gep null, ...) -> unreachable 985 // load null/undef -> unreachable 986 // TODO: Consider a target hook for valid address spaces for this xforms. 987 if (canSimplifyNullLoadOrGEP(LI, Op)) { 988 // Insert a new store to null instruction before the load to indicate 989 // that this code is not reachable. We do this instead of inserting 990 // an unreachable instruction directly because we cannot modify the 991 // CFG. 992 StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()), 993 Constant::getNullValue(Op->getType()), &LI); 994 SI->setDebugLoc(LI.getDebugLoc()); 995 return replaceInstUsesWith(LI, PoisonValue::get(LI.getType())); 996 } 997 998 if (Op->hasOneUse()) { 999 // Change select and PHI nodes to select values instead of addresses: this 1000 // helps alias analysis out a lot, allows many others simplifications, and 1001 // exposes redundancy in the code. 1002 // 1003 // Note that we cannot do the transformation unless we know that the 1004 // introduced loads cannot trap! Something like this is valid as long as 1005 // the condition is always false: load (select bool %C, int* null, int* %G), 1006 // but it would not be valid if we transformed it to load from null 1007 // unconditionally. 1008 // 1009 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1010 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1011 Align Alignment = LI.getAlign(); 1012 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 1013 Alignment, DL, SI) && 1014 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 1015 Alignment, DL, SI)) { 1016 LoadInst *V1 = 1017 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 1018 SI->getOperand(1)->getName() + ".val"); 1019 LoadInst *V2 = 1020 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1021 SI->getOperand(2)->getName() + ".val"); 1022 assert(LI.isUnordered() && "implied by above"); 1023 V1->setAlignment(Alignment); 1024 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1025 V2->setAlignment(Alignment); 1026 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1027 return SelectInst::Create(SI->getCondition(), V1, V2); 1028 } 1029 1030 // load (select (cond, null, P)) -> load P 1031 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1032 !NullPointerIsDefined(SI->getFunction(), 1033 LI.getPointerAddressSpace())) 1034 return replaceOperand(LI, 0, SI->getOperand(2)); 1035 1036 // load (select (cond, P, null)) -> load P 1037 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1038 !NullPointerIsDefined(SI->getFunction(), 1039 LI.getPointerAddressSpace())) 1040 return replaceOperand(LI, 0, SI->getOperand(1)); 1041 } 1042 } 1043 return nullptr; 1044 } 1045 1046 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1047 /// 1048 /// \returns underlying value that was "cast", or nullptr otherwise. 1049 /// 1050 /// For example, if we have: 1051 /// 1052 /// %E0 = extractelement <2 x double> %U, i32 0 1053 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1054 /// %E1 = extractelement <2 x double> %U, i32 1 1055 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1056 /// 1057 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1058 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1059 /// Note that %U may contain non-undef values where %V1 has undef. 1060 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) { 1061 Value *U = nullptr; 1062 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1063 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1064 if (!E) 1065 return nullptr; 1066 auto *W = E->getVectorOperand(); 1067 if (!U) 1068 U = W; 1069 else if (U != W) 1070 return nullptr; 1071 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1072 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1073 return nullptr; 1074 V = IV->getAggregateOperand(); 1075 } 1076 if (!match(V, m_Undef()) || !U) 1077 return nullptr; 1078 1079 auto *UT = cast<VectorType>(U->getType()); 1080 auto *VT = V->getType(); 1081 // Check that types UT and VT are bitwise isomorphic. 1082 const auto &DL = IC.getDataLayout(); 1083 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1084 return nullptr; 1085 } 1086 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1087 if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1088 return nullptr; 1089 } else { 1090 auto *ST = cast<StructType>(VT); 1091 if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1092 return nullptr; 1093 for (const auto *EltT : ST->elements()) { 1094 if (EltT != UT->getElementType()) 1095 return nullptr; 1096 } 1097 } 1098 return U; 1099 } 1100 1101 /// Combine stores to match the type of value being stored. 1102 /// 1103 /// The core idea here is that the memory does not have any intrinsic type and 1104 /// where we can we should match the type of a store to the type of value being 1105 /// stored. 1106 /// 1107 /// However, this routine must never change the width of a store or the number of 1108 /// stores as that would introduce a semantic change. This combine is expected to 1109 /// be a semantic no-op which just allows stores to more closely model the types 1110 /// of their incoming values. 1111 /// 1112 /// Currently, we also refuse to change the precise type used for an atomic or 1113 /// volatile store. This is debatable, and might be reasonable to change later. 1114 /// However, it is risky in case some backend or other part of LLVM is relying 1115 /// on the exact type stored to select appropriate atomic operations. 1116 /// 1117 /// \returns true if the store was successfully combined away. This indicates 1118 /// the caller must erase the store instruction. We have to let the caller erase 1119 /// the store instruction as otherwise there is no way to signal whether it was 1120 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1121 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) { 1122 // FIXME: We could probably with some care handle both volatile and ordered 1123 // atomic stores here but it isn't clear that this is important. 1124 if (!SI.isUnordered()) 1125 return false; 1126 1127 // swifterror values can't be bitcasted. 1128 if (SI.getPointerOperand()->isSwiftError()) 1129 return false; 1130 1131 Value *V = SI.getValueOperand(); 1132 1133 // Fold away bit casts of the stored value by storing the original type. 1134 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1135 assert(!BC->getType()->isX86_AMXTy() && 1136 "store to x86_amx* should not happen!"); 1137 V = BC->getOperand(0); 1138 // Don't transform when the type is x86_amx, it makes the pass that lower 1139 // x86_amx type happy. 1140 if (V->getType()->isX86_AMXTy()) 1141 return false; 1142 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1143 combineStoreToNewValue(IC, SI, V); 1144 return true; 1145 } 1146 } 1147 1148 if (Value *U = likeBitCastFromVector(IC, V)) 1149 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1150 combineStoreToNewValue(IC, SI, U); 1151 return true; 1152 } 1153 1154 // FIXME: We should also canonicalize stores of vectors when their elements 1155 // are cast to other types. 1156 return false; 1157 } 1158 1159 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) { 1160 // FIXME: We could probably with some care handle both volatile and atomic 1161 // stores here but it isn't clear that this is important. 1162 if (!SI.isSimple()) 1163 return false; 1164 1165 Value *V = SI.getValueOperand(); 1166 Type *T = V->getType(); 1167 1168 if (!T->isAggregateType()) 1169 return false; 1170 1171 if (auto *ST = dyn_cast<StructType>(T)) { 1172 // If the struct only have one element, we unpack. 1173 unsigned Count = ST->getNumElements(); 1174 if (Count == 1) { 1175 V = IC.Builder.CreateExtractValue(V, 0); 1176 combineStoreToNewValue(IC, SI, V); 1177 return true; 1178 } 1179 1180 // We don't want to break loads with padding here as we'd loose 1181 // the knowledge that padding exists for the rest of the pipeline. 1182 const DataLayout &DL = IC.getDataLayout(); 1183 auto *SL = DL.getStructLayout(ST); 1184 if (SL->hasPadding()) 1185 return false; 1186 1187 const auto Align = SI.getAlign(); 1188 1189 SmallString<16> EltName = V->getName(); 1190 EltName += ".elt"; 1191 auto *Addr = SI.getPointerOperand(); 1192 SmallString<16> AddrName = Addr->getName(); 1193 AddrName += ".repack"; 1194 1195 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1196 auto *Zero = ConstantInt::get(IdxType, 0); 1197 for (unsigned i = 0; i < Count; i++) { 1198 Value *Indices[2] = { 1199 Zero, 1200 ConstantInt::get(IdxType, i), 1201 }; 1202 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1203 AddrName); 1204 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1205 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); 1206 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1207 AAMDNodes AAMD; 1208 SI.getAAMetadata(AAMD); 1209 NS->setAAMetadata(AAMD); 1210 } 1211 1212 return true; 1213 } 1214 1215 if (auto *AT = dyn_cast<ArrayType>(T)) { 1216 // If the array only have one element, we unpack. 1217 auto NumElements = AT->getNumElements(); 1218 if (NumElements == 1) { 1219 V = IC.Builder.CreateExtractValue(V, 0); 1220 combineStoreToNewValue(IC, SI, V); 1221 return true; 1222 } 1223 1224 // Bail out if the array is too large. Ideally we would like to optimize 1225 // arrays of arbitrary size but this has a terrible impact on compile time. 1226 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1227 // tuning. 1228 if (NumElements > IC.MaxArraySizeForCombine) 1229 return false; 1230 1231 const DataLayout &DL = IC.getDataLayout(); 1232 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1233 const auto Align = SI.getAlign(); 1234 1235 SmallString<16> EltName = V->getName(); 1236 EltName += ".elt"; 1237 auto *Addr = SI.getPointerOperand(); 1238 SmallString<16> AddrName = Addr->getName(); 1239 AddrName += ".repack"; 1240 1241 auto *IdxType = Type::getInt64Ty(T->getContext()); 1242 auto *Zero = ConstantInt::get(IdxType, 0); 1243 1244 uint64_t Offset = 0; 1245 for (uint64_t i = 0; i < NumElements; i++) { 1246 Value *Indices[2] = { 1247 Zero, 1248 ConstantInt::get(IdxType, i), 1249 }; 1250 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1251 AddrName); 1252 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1253 auto EltAlign = commonAlignment(Align, Offset); 1254 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1255 AAMDNodes AAMD; 1256 SI.getAAMetadata(AAMD); 1257 NS->setAAMetadata(AAMD); 1258 Offset += EltSize; 1259 } 1260 1261 return true; 1262 } 1263 1264 return false; 1265 } 1266 1267 /// equivalentAddressValues - Test if A and B will obviously have the same 1268 /// value. This includes recognizing that %t0 and %t1 will have the same 1269 /// value in code like this: 1270 /// %t0 = getelementptr \@a, 0, 3 1271 /// store i32 0, i32* %t0 1272 /// %t1 = getelementptr \@a, 0, 3 1273 /// %t2 = load i32* %t1 1274 /// 1275 static bool equivalentAddressValues(Value *A, Value *B) { 1276 // Test if the values are trivially equivalent. 1277 if (A == B) return true; 1278 1279 // Test if the values come form identical arithmetic instructions. 1280 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1281 // its only used to compare two uses within the same basic block, which 1282 // means that they'll always either have the same value or one of them 1283 // will have an undefined value. 1284 if (isa<BinaryOperator>(A) || 1285 isa<CastInst>(A) || 1286 isa<PHINode>(A) || 1287 isa<GetElementPtrInst>(A)) 1288 if (Instruction *BI = dyn_cast<Instruction>(B)) 1289 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1290 return true; 1291 1292 // Otherwise they may not be equivalent. 1293 return false; 1294 } 1295 1296 /// Converts store (bitcast (load (bitcast (select ...)))) to 1297 /// store (load (select ...)), where select is minmax: 1298 /// select ((cmp load V1, load V2), V1, V2). 1299 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC, 1300 StoreInst &SI) { 1301 // bitcast? 1302 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1303 return false; 1304 // load? integer? 1305 Value *LoadAddr; 1306 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1307 return false; 1308 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1309 if (!LI->getType()->isIntegerTy()) 1310 return false; 1311 Type *CmpLoadTy; 1312 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1313 return false; 1314 1315 // Make sure the type would actually change. 1316 // This condition can be hit with chains of bitcasts. 1317 if (LI->getType() == CmpLoadTy) 1318 return false; 1319 1320 // Make sure we're not changing the size of the load/store. 1321 const auto &DL = IC.getDataLayout(); 1322 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1323 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1324 return false; 1325 1326 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1327 auto *SI = dyn_cast<StoreInst>(U); 1328 return SI && SI->getPointerOperand() != LI && 1329 InstCombiner::peekThroughBitcast(SI->getPointerOperand()) != 1330 LoadAddr && 1331 !SI->getPointerOperand()->isSwiftError(); 1332 })) 1333 return false; 1334 1335 IC.Builder.SetInsertPoint(LI); 1336 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1337 // Replace all the stores with stores of the newly loaded value. 1338 for (auto *UI : LI->users()) { 1339 auto *USI = cast<StoreInst>(UI); 1340 IC.Builder.SetInsertPoint(USI); 1341 combineStoreToNewValue(IC, *USI, NewLI); 1342 } 1343 IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 1344 IC.eraseInstFromFunction(*LI); 1345 return true; 1346 } 1347 1348 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) { 1349 Value *Val = SI.getOperand(0); 1350 Value *Ptr = SI.getOperand(1); 1351 1352 // Try to canonicalize the stored type. 1353 if (combineStoreToValueType(*this, SI)) 1354 return eraseInstFromFunction(SI); 1355 1356 // Attempt to improve the alignment. 1357 const Align KnownAlign = getOrEnforceKnownAlignment( 1358 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); 1359 if (KnownAlign > SI.getAlign()) 1360 SI.setAlignment(KnownAlign); 1361 1362 // Try to canonicalize the stored type. 1363 if (unpackStoreToAggregate(*this, SI)) 1364 return eraseInstFromFunction(SI); 1365 1366 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1367 return eraseInstFromFunction(SI); 1368 1369 // Replace GEP indices if possible. 1370 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1371 Worklist.push(NewGEPI); 1372 return &SI; 1373 } 1374 1375 // Don't hack volatile/ordered stores. 1376 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1377 if (!SI.isUnordered()) return nullptr; 1378 1379 // If the RHS is an alloca with a single use, zapify the store, making the 1380 // alloca dead. 1381 if (Ptr->hasOneUse()) { 1382 if (isa<AllocaInst>(Ptr)) 1383 return eraseInstFromFunction(SI); 1384 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1385 if (isa<AllocaInst>(GEP->getOperand(0))) { 1386 if (GEP->getOperand(0)->hasOneUse()) 1387 return eraseInstFromFunction(SI); 1388 } 1389 } 1390 } 1391 1392 // If we have a store to a location which is known constant, we can conclude 1393 // that the store must be storing the constant value (else the memory 1394 // wouldn't be constant), and this must be a noop. 1395 if (AA->pointsToConstantMemory(Ptr)) 1396 return eraseInstFromFunction(SI); 1397 1398 // Do really simple DSE, to catch cases where there are several consecutive 1399 // stores to the same location, separated by a few arithmetic operations. This 1400 // situation often occurs with bitfield accesses. 1401 BasicBlock::iterator BBI(SI); 1402 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1403 --ScanInsts) { 1404 --BBI; 1405 // Don't count debug info directives, lest they affect codegen, 1406 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1407 if (BBI->isDebugOrPseudoInst() || 1408 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1409 ScanInsts++; 1410 continue; 1411 } 1412 1413 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1414 // Prev store isn't volatile, and stores to the same location? 1415 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1416 SI.getOperand(1))) { 1417 ++NumDeadStore; 1418 // Manually add back the original store to the worklist now, so it will 1419 // be processed after the operands of the removed store, as this may 1420 // expose additional DSE opportunities. 1421 Worklist.push(&SI); 1422 eraseInstFromFunction(*PrevSI); 1423 return nullptr; 1424 } 1425 break; 1426 } 1427 1428 // If this is a load, we have to stop. However, if the loaded value is from 1429 // the pointer we're loading and is producing the pointer we're storing, 1430 // then *this* store is dead (X = load P; store X -> P). 1431 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1432 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1433 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1434 return eraseInstFromFunction(SI); 1435 } 1436 1437 // Otherwise, this is a load from some other location. Stores before it 1438 // may not be dead. 1439 break; 1440 } 1441 1442 // Don't skip over loads, throws or things that can modify memory. 1443 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1444 break; 1445 } 1446 1447 // store X, null -> turns into 'unreachable' in SimplifyCFG 1448 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1449 if (canSimplifyNullStoreOrGEP(SI)) { 1450 if (!isa<PoisonValue>(Val)) 1451 return replaceOperand(SI, 0, PoisonValue::get(Val->getType())); 1452 return nullptr; // Do not modify these! 1453 } 1454 1455 // store undef, Ptr -> noop 1456 if (isa<UndefValue>(Val)) 1457 return eraseInstFromFunction(SI); 1458 1459 return nullptr; 1460 } 1461 1462 /// Try to transform: 1463 /// if () { *P = v1; } else { *P = v2 } 1464 /// or: 1465 /// *P = v1; if () { *P = v2; } 1466 /// into a phi node with a store in the successor. 1467 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) { 1468 if (!SI.isUnordered()) 1469 return false; // This code has not been audited for volatile/ordered case. 1470 1471 // Check if the successor block has exactly 2 incoming edges. 1472 BasicBlock *StoreBB = SI.getParent(); 1473 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1474 if (!DestBB->hasNPredecessors(2)) 1475 return false; 1476 1477 // Capture the other block (the block that doesn't contain our store). 1478 pred_iterator PredIter = pred_begin(DestBB); 1479 if (*PredIter == StoreBB) 1480 ++PredIter; 1481 BasicBlock *OtherBB = *PredIter; 1482 1483 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1484 // for example, if SI is in an infinite loop. 1485 if (StoreBB == DestBB || OtherBB == DestBB) 1486 return false; 1487 1488 // Verify that the other block ends in a branch and is not otherwise empty. 1489 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1490 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1491 if (!OtherBr || BBI == OtherBB->begin()) 1492 return false; 1493 1494 // If the other block ends in an unconditional branch, check for the 'if then 1495 // else' case. There is an instruction before the branch. 1496 StoreInst *OtherStore = nullptr; 1497 if (OtherBr->isUnconditional()) { 1498 --BBI; 1499 // Skip over debugging info. 1500 while (isa<DbgInfoIntrinsic>(BBI) || 1501 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1502 if (BBI==OtherBB->begin()) 1503 return false; 1504 --BBI; 1505 } 1506 // If this isn't a store, isn't a store to the same location, or is not the 1507 // right kind of store, bail out. 1508 OtherStore = dyn_cast<StoreInst>(BBI); 1509 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1510 !SI.isSameOperationAs(OtherStore)) 1511 return false; 1512 } else { 1513 // Otherwise, the other block ended with a conditional branch. If one of the 1514 // destinations is StoreBB, then we have the if/then case. 1515 if (OtherBr->getSuccessor(0) != StoreBB && 1516 OtherBr->getSuccessor(1) != StoreBB) 1517 return false; 1518 1519 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1520 // if/then triangle. See if there is a store to the same ptr as SI that 1521 // lives in OtherBB. 1522 for (;; --BBI) { 1523 // Check to see if we find the matching store. 1524 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1525 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1526 !SI.isSameOperationAs(OtherStore)) 1527 return false; 1528 break; 1529 } 1530 // If we find something that may be using or overwriting the stored 1531 // value, or if we run out of instructions, we can't do the transform. 1532 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1533 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1534 return false; 1535 } 1536 1537 // In order to eliminate the store in OtherBr, we have to make sure nothing 1538 // reads or overwrites the stored value in StoreBB. 1539 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1540 // FIXME: This should really be AA driven. 1541 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1542 return false; 1543 } 1544 } 1545 1546 // Insert a PHI node now if we need it. 1547 Value *MergedVal = OtherStore->getOperand(0); 1548 // The debug locations of the original instructions might differ. Merge them. 1549 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1550 OtherStore->getDebugLoc()); 1551 if (MergedVal != SI.getOperand(0)) { 1552 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1553 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1554 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1555 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1556 PN->setDebugLoc(MergedLoc); 1557 } 1558 1559 // Advance to a place where it is safe to insert the new store and insert it. 1560 BBI = DestBB->getFirstInsertionPt(); 1561 StoreInst *NewSI = 1562 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), 1563 SI.getOrdering(), SI.getSyncScopeID()); 1564 InsertNewInstBefore(NewSI, *BBI); 1565 NewSI->setDebugLoc(MergedLoc); 1566 1567 // If the two stores had AA tags, merge them. 1568 AAMDNodes AATags; 1569 SI.getAAMetadata(AATags); 1570 if (AATags) { 1571 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1572 NewSI->setAAMetadata(AATags); 1573 } 1574 1575 // Nuke the old stores. 1576 eraseInstFromFunction(SI); 1577 eraseInstFromFunction(*OtherStore); 1578 return true; 1579 } 1580