1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/Transforms/Utils/Local.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "instcombine" 31 32 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 34 35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 36 /// some part of a constant global variable. This intentionally only accepts 37 /// constant expressions because we can't rewrite arbitrary instructions. 38 static bool pointsToConstantGlobal(Value *V) { 39 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 40 return GV->isConstant(); 41 42 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 43 if (CE->getOpcode() == Instruction::BitCast || 44 CE->getOpcode() == Instruction::AddrSpaceCast || 45 CE->getOpcode() == Instruction::GetElementPtr) 46 return pointsToConstantGlobal(CE->getOperand(0)); 47 } 48 return false; 49 } 50 51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 52 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 53 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 55 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 56 /// the alloca, and if the source pointer is a pointer to a constant global, we 57 /// can optimize this. 58 static bool 59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 60 SmallVectorImpl<Instruction *> &ToDelete) { 61 // We track lifetime intrinsics as we encounter them. If we decide to go 62 // ahead and replace the value with the global, this lets the caller quickly 63 // eliminate the markers. 64 65 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 66 ValuesToInspect.emplace_back(V, false); 67 while (!ValuesToInspect.empty()) { 68 auto ValuePair = ValuesToInspect.pop_back_val(); 69 const bool IsOffset = ValuePair.second; 70 for (auto &U : ValuePair.first->uses()) { 71 auto *I = cast<Instruction>(U.getUser()); 72 73 if (auto *LI = dyn_cast<LoadInst>(I)) { 74 // Ignore non-volatile loads, they are always ok. 75 if (!LI->isSimple()) return false; 76 continue; 77 } 78 79 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 80 // If uses of the bitcast are ok, we are ok. 81 ValuesToInspect.emplace_back(I, IsOffset); 82 continue; 83 } 84 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 85 // If the GEP has all zero indices, it doesn't offset the pointer. If it 86 // doesn't, it does. 87 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 88 continue; 89 } 90 91 if (auto *Call = dyn_cast<CallBase>(I)) { 92 // If this is the function being called then we treat it like a load and 93 // ignore it. 94 if (Call->isCallee(&U)) 95 continue; 96 97 unsigned DataOpNo = Call->getDataOperandNo(&U); 98 bool IsArgOperand = Call->isArgOperand(&U); 99 100 // Inalloca arguments are clobbered by the call. 101 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 102 return false; 103 104 // If this is a readonly/readnone call site, then we know it is just a 105 // load (but one that potentially returns the value itself), so we can 106 // ignore it if we know that the value isn't captured. 107 if (Call->onlyReadsMemory() && 108 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 109 continue; 110 111 // If this is being passed as a byval argument, the caller is making a 112 // copy, so it is only a read of the alloca. 113 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 114 continue; 115 } 116 117 // Lifetime intrinsics can be handled by the caller. 118 if (I->isLifetimeStartOrEnd()) { 119 assert(I->use_empty() && "Lifetime markers have no result to use!"); 120 ToDelete.push_back(I); 121 continue; 122 } 123 124 // If this is isn't our memcpy/memmove, reject it as something we can't 125 // handle. 126 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 127 if (!MI) 128 return false; 129 130 // If the transfer is using the alloca as a source of the transfer, then 131 // ignore it since it is a load (unless the transfer is volatile). 132 if (U.getOperandNo() == 1) { 133 if (MI->isVolatile()) return false; 134 continue; 135 } 136 137 // If we already have seen a copy, reject the second one. 138 if (TheCopy) return false; 139 140 // If the pointer has been offset from the start of the alloca, we can't 141 // safely handle this. 142 if (IsOffset) return false; 143 144 // If the memintrinsic isn't using the alloca as the dest, reject it. 145 if (U.getOperandNo() != 0) return false; 146 147 // If the source of the memcpy/move is not a constant global, reject it. 148 if (!pointsToConstantGlobal(MI->getSource())) 149 return false; 150 151 // Otherwise, the transform is safe. Remember the copy instruction. 152 TheCopy = MI; 153 } 154 } 155 return true; 156 } 157 158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 159 /// modified by a copy from a constant global. If we can prove this, we can 160 /// replace any uses of the alloca with uses of the global directly. 161 static MemTransferInst * 162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 163 SmallVectorImpl<Instruction *> &ToDelete) { 164 MemTransferInst *TheCopy = nullptr; 165 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 166 return TheCopy; 167 return nullptr; 168 } 169 170 /// Returns true if V is dereferenceable for size of alloca. 171 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 172 const DataLayout &DL) { 173 if (AI->isArrayAllocation()) 174 return false; 175 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 176 if (!AllocaSize) 177 return false; 178 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()), 179 APInt(64, AllocaSize), DL); 180 } 181 182 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 183 // Check for array size of 1 (scalar allocation). 184 if (!AI.isArrayAllocation()) { 185 // i32 1 is the canonical array size for scalar allocations. 186 if (AI.getArraySize()->getType()->isIntegerTy(32)) 187 return nullptr; 188 189 // Canonicalize it. 190 Value *V = IC.Builder.getInt32(1); 191 AI.setOperand(0, V); 192 return &AI; 193 } 194 195 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 196 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 197 if (C->getValue().getActiveBits() <= 64) { 198 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 199 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 200 New->setAlignment(MaybeAlign(AI.getAlignment())); 201 202 // Scan to the end of the allocation instructions, to skip over a block of 203 // allocas if possible...also skip interleaved debug info 204 // 205 BasicBlock::iterator It(New); 206 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 207 ++It; 208 209 // Now that I is pointing to the first non-allocation-inst in the block, 210 // insert our getelementptr instruction... 211 // 212 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 213 Value *NullIdx = Constant::getNullValue(IdxTy); 214 Value *Idx[2] = {NullIdx, NullIdx}; 215 Instruction *GEP = GetElementPtrInst::CreateInBounds( 216 NewTy, New, Idx, New->getName() + ".sub"); 217 IC.InsertNewInstBefore(GEP, *It); 218 219 // Now make everything use the getelementptr instead of the original 220 // allocation. 221 return IC.replaceInstUsesWith(AI, GEP); 222 } 223 } 224 225 if (isa<UndefValue>(AI.getArraySize())) 226 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 227 228 // Ensure that the alloca array size argument has type intptr_t, so that 229 // any casting is exposed early. 230 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 231 if (AI.getArraySize()->getType() != IntPtrTy) { 232 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 233 AI.setOperand(0, V); 234 return &AI; 235 } 236 237 return nullptr; 238 } 239 240 namespace { 241 // If I and V are pointers in different address space, it is not allowed to 242 // use replaceAllUsesWith since I and V have different types. A 243 // non-target-specific transformation should not use addrspacecast on V since 244 // the two address space may be disjoint depending on target. 245 // 246 // This class chases down uses of the old pointer until reaching the load 247 // instructions, then replaces the old pointer in the load instructions with 248 // the new pointer. If during the chasing it sees bitcast or GEP, it will 249 // create new bitcast or GEP with the new pointer and use them in the load 250 // instruction. 251 class PointerReplacer { 252 public: 253 PointerReplacer(InstCombiner &IC) : IC(IC) {} 254 void replacePointer(Instruction &I, Value *V); 255 256 private: 257 void findLoadAndReplace(Instruction &I); 258 void replace(Instruction *I); 259 Value *getReplacement(Value *I); 260 261 SmallVector<Instruction *, 4> Path; 262 MapVector<Value *, Value *> WorkMap; 263 InstCombiner &IC; 264 }; 265 } // end anonymous namespace 266 267 void PointerReplacer::findLoadAndReplace(Instruction &I) { 268 for (auto U : I.users()) { 269 auto *Inst = dyn_cast<Instruction>(&*U); 270 if (!Inst) 271 return; 272 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 273 if (isa<LoadInst>(Inst)) { 274 for (auto P : Path) 275 replace(P); 276 replace(Inst); 277 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 278 Path.push_back(Inst); 279 findLoadAndReplace(*Inst); 280 Path.pop_back(); 281 } else { 282 return; 283 } 284 } 285 } 286 287 Value *PointerReplacer::getReplacement(Value *V) { 288 auto Loc = WorkMap.find(V); 289 if (Loc != WorkMap.end()) 290 return Loc->second; 291 return nullptr; 292 } 293 294 void PointerReplacer::replace(Instruction *I) { 295 if (getReplacement(I)) 296 return; 297 298 if (auto *LT = dyn_cast<LoadInst>(I)) { 299 auto *V = getReplacement(LT->getPointerOperand()); 300 assert(V && "Operand not replaced"); 301 auto *NewI = new LoadInst(I->getType(), V); 302 NewI->takeName(LT); 303 IC.InsertNewInstWith(NewI, *LT); 304 IC.replaceInstUsesWith(*LT, NewI); 305 WorkMap[LT] = NewI; 306 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 307 auto *V = getReplacement(GEP->getPointerOperand()); 308 assert(V && "Operand not replaced"); 309 SmallVector<Value *, 8> Indices; 310 Indices.append(GEP->idx_begin(), GEP->idx_end()); 311 auto *NewI = GetElementPtrInst::Create( 312 V->getType()->getPointerElementType(), V, Indices); 313 IC.InsertNewInstWith(NewI, *GEP); 314 NewI->takeName(GEP); 315 WorkMap[GEP] = NewI; 316 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 317 auto *V = getReplacement(BC->getOperand(0)); 318 assert(V && "Operand not replaced"); 319 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 320 V->getType()->getPointerAddressSpace()); 321 auto *NewI = new BitCastInst(V, NewT); 322 IC.InsertNewInstWith(NewI, *BC); 323 NewI->takeName(BC); 324 WorkMap[BC] = NewI; 325 } else { 326 llvm_unreachable("should never reach here"); 327 } 328 } 329 330 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 331 #ifndef NDEBUG 332 auto *PT = cast<PointerType>(I.getType()); 333 auto *NT = cast<PointerType>(V->getType()); 334 assert(PT != NT && PT->getElementType() == NT->getElementType() && 335 "Invalid usage"); 336 #endif 337 WorkMap[&I] = V; 338 findLoadAndReplace(I); 339 } 340 341 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 342 if (auto *I = simplifyAllocaArraySize(*this, AI)) 343 return I; 344 345 if (AI.getAllocatedType()->isSized()) { 346 // If the alignment is 0 (unspecified), assign it the preferred alignment. 347 if (AI.getAlignment() == 0) 348 AI.setAlignment( 349 MaybeAlign(DL.getPrefTypeAlignment(AI.getAllocatedType()))); 350 351 // Move all alloca's of zero byte objects to the entry block and merge them 352 // together. Note that we only do this for alloca's, because malloc should 353 // allocate and return a unique pointer, even for a zero byte allocation. 354 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 355 // For a zero sized alloca there is no point in doing an array allocation. 356 // This is helpful if the array size is a complicated expression not used 357 // elsewhere. 358 if (AI.isArrayAllocation()) { 359 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 360 return &AI; 361 } 362 363 // Get the first instruction in the entry block. 364 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 365 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 366 if (FirstInst != &AI) { 367 // If the entry block doesn't start with a zero-size alloca then move 368 // this one to the start of the entry block. There is no problem with 369 // dominance as the array size was forced to a constant earlier already. 370 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 371 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 372 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 373 AI.moveBefore(FirstInst); 374 return &AI; 375 } 376 377 // If the alignment of the entry block alloca is 0 (unspecified), 378 // assign it the preferred alignment. 379 if (EntryAI->getAlignment() == 0) 380 EntryAI->setAlignment( 381 MaybeAlign(DL.getPrefTypeAlignment(EntryAI->getAllocatedType()))); 382 // Replace this zero-sized alloca with the one at the start of the entry 383 // block after ensuring that the address will be aligned enough for both 384 // types. 385 const MaybeAlign MaxAlign( 386 std::max(EntryAI->getAlignment(), AI.getAlignment())); 387 EntryAI->setAlignment(MaxAlign); 388 if (AI.getType() != EntryAI->getType()) 389 return new BitCastInst(EntryAI, AI.getType()); 390 return replaceInstUsesWith(AI, EntryAI); 391 } 392 } 393 } 394 395 if (AI.getAlignment()) { 396 // Check to see if this allocation is only modified by a memcpy/memmove from 397 // a constant global whose alignment is equal to or exceeds that of the 398 // allocation. If this is the case, we can change all users to use 399 // the constant global instead. This is commonly produced by the CFE by 400 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 401 // is only subsequently read. 402 SmallVector<Instruction *, 4> ToDelete; 403 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 404 unsigned SourceAlign = getOrEnforceKnownAlignment( 405 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 406 if (AI.getAlignment() <= SourceAlign && 407 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 408 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 409 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 410 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 411 eraseInstFromFunction(*ToDelete[i]); 412 Constant *TheSrc = cast<Constant>(Copy->getSource()); 413 auto *SrcTy = TheSrc->getType(); 414 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 415 SrcTy->getPointerAddressSpace()); 416 Constant *Cast = 417 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 418 if (AI.getType()->getPointerAddressSpace() == 419 SrcTy->getPointerAddressSpace()) { 420 Instruction *NewI = replaceInstUsesWith(AI, Cast); 421 eraseInstFromFunction(*Copy); 422 ++NumGlobalCopies; 423 return NewI; 424 } else { 425 PointerReplacer PtrReplacer(*this); 426 PtrReplacer.replacePointer(AI, Cast); 427 ++NumGlobalCopies; 428 } 429 } 430 } 431 } 432 433 // At last, use the generic allocation site handler to aggressively remove 434 // unused allocas. 435 return visitAllocSite(AI); 436 } 437 438 // Are we allowed to form a atomic load or store of this type? 439 static bool isSupportedAtomicType(Type *Ty) { 440 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 441 } 442 443 /// Helper to combine a load to a new type. 444 /// 445 /// This just does the work of combining a load to a new type. It handles 446 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 447 /// loaded *value* type. This will convert it to a pointer, cast the operand to 448 /// that pointer type, load it, etc. 449 /// 450 /// Note that this will create all of the instructions with whatever insert 451 /// point the \c InstCombiner currently is using. 452 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 453 const Twine &Suffix = "") { 454 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 455 "can't fold an atomic load to requested type"); 456 457 Value *Ptr = LI.getPointerOperand(); 458 unsigned AS = LI.getPointerAddressSpace(); 459 Value *NewPtr = nullptr; 460 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 461 NewPtr->getType()->getPointerElementType() == NewTy && 462 NewPtr->getType()->getPointerAddressSpace() == AS)) 463 NewPtr = IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 464 465 LoadInst *NewLoad = IC.Builder.CreateAlignedLoad( 466 NewTy, NewPtr, LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 467 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 468 copyMetadataForLoad(*NewLoad, LI); 469 return NewLoad; 470 } 471 472 /// Combine a store to a new type. 473 /// 474 /// Returns the newly created store instruction. 475 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 476 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 477 "can't fold an atomic store of requested type"); 478 479 Value *Ptr = SI.getPointerOperand(); 480 unsigned AS = SI.getPointerAddressSpace(); 481 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 482 SI.getAllMetadata(MD); 483 484 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 485 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 486 SI.getAlignment(), SI.isVolatile()); 487 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 488 for (const auto &MDPair : MD) { 489 unsigned ID = MDPair.first; 490 MDNode *N = MDPair.second; 491 // Note, essentially every kind of metadata should be preserved here! This 492 // routine is supposed to clone a store instruction changing *only its 493 // type*. The only metadata it makes sense to drop is metadata which is 494 // invalidated when the pointer type changes. This should essentially 495 // never be the case in LLVM, but we explicitly switch over only known 496 // metadata to be conservatively correct. If you are adding metadata to 497 // LLVM which pertains to stores, you almost certainly want to add it 498 // here. 499 switch (ID) { 500 case LLVMContext::MD_dbg: 501 case LLVMContext::MD_tbaa: 502 case LLVMContext::MD_prof: 503 case LLVMContext::MD_fpmath: 504 case LLVMContext::MD_tbaa_struct: 505 case LLVMContext::MD_alias_scope: 506 case LLVMContext::MD_noalias: 507 case LLVMContext::MD_nontemporal: 508 case LLVMContext::MD_mem_parallel_loop_access: 509 case LLVMContext::MD_access_group: 510 // All of these directly apply. 511 NewStore->setMetadata(ID, N); 512 break; 513 case LLVMContext::MD_invariant_load: 514 case LLVMContext::MD_nonnull: 515 case LLVMContext::MD_range: 516 case LLVMContext::MD_align: 517 case LLVMContext::MD_dereferenceable: 518 case LLVMContext::MD_dereferenceable_or_null: 519 // These don't apply for stores. 520 break; 521 } 522 } 523 524 return NewStore; 525 } 526 527 /// Returns true if instruction represent minmax pattern like: 528 /// select ((cmp load V1, load V2), V1, V2). 529 static bool isMinMaxWithLoads(Value *V) { 530 assert(V->getType()->isPointerTy() && "Expected pointer type."); 531 // Ignore possible ty* to ixx* bitcast. 532 V = peekThroughBitcast(V); 533 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 534 // pattern. 535 CmpInst::Predicate Pred; 536 Instruction *L1; 537 Instruction *L2; 538 Value *LHS; 539 Value *RHS; 540 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 541 m_Value(LHS), m_Value(RHS)))) 542 return false; 543 return (match(L1, m_Load(m_Specific(LHS))) && 544 match(L2, m_Load(m_Specific(RHS)))) || 545 (match(L1, m_Load(m_Specific(RHS))) && 546 match(L2, m_Load(m_Specific(LHS)))); 547 } 548 549 /// Combine loads to match the type of their uses' value after looking 550 /// through intervening bitcasts. 551 /// 552 /// The core idea here is that if the result of a load is used in an operation, 553 /// we should load the type most conducive to that operation. For example, when 554 /// loading an integer and converting that immediately to a pointer, we should 555 /// instead directly load a pointer. 556 /// 557 /// However, this routine must never change the width of a load or the number of 558 /// loads as that would introduce a semantic change. This combine is expected to 559 /// be a semantic no-op which just allows loads to more closely model the types 560 /// of their consuming operations. 561 /// 562 /// Currently, we also refuse to change the precise type used for an atomic load 563 /// or a volatile load. This is debatable, and might be reasonable to change 564 /// later. However, it is risky in case some backend or other part of LLVM is 565 /// relying on the exact type loaded to select appropriate atomic operations. 566 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 567 // FIXME: We could probably with some care handle both volatile and ordered 568 // atomic loads here but it isn't clear that this is important. 569 if (!LI.isUnordered()) 570 return nullptr; 571 572 if (LI.use_empty()) 573 return nullptr; 574 575 // swifterror values can't be bitcasted. 576 if (LI.getPointerOperand()->isSwiftError()) 577 return nullptr; 578 579 Type *Ty = LI.getType(); 580 const DataLayout &DL = IC.getDataLayout(); 581 582 // Try to canonicalize loads which are only ever stored to operate over 583 // integers instead of any other type. We only do this when the loaded type 584 // is sized and has a size exactly the same as its store size and the store 585 // size is a legal integer type. 586 // Do not perform canonicalization if minmax pattern is found (to avoid 587 // infinite loop). 588 if (!Ty->isIntegerTy() && Ty->isSized() && 589 !(Ty->isVectorTy() && Ty->getVectorIsScalable()) && 590 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 591 DL.typeSizeEqualsStoreSize(Ty) && 592 !DL.isNonIntegralPointerType(Ty) && 593 !isMinMaxWithLoads( 594 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true))) { 595 if (all_of(LI.users(), [&LI](User *U) { 596 auto *SI = dyn_cast<StoreInst>(U); 597 return SI && SI->getPointerOperand() != &LI && 598 !SI->getPointerOperand()->isSwiftError(); 599 })) { 600 LoadInst *NewLoad = combineLoadToNewType( 601 IC, LI, 602 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 603 // Replace all the stores with stores of the newly loaded value. 604 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 605 auto *SI = cast<StoreInst>(*UI++); 606 IC.Builder.SetInsertPoint(SI); 607 combineStoreToNewValue(IC, *SI, NewLoad); 608 IC.eraseInstFromFunction(*SI); 609 } 610 assert(LI.use_empty() && "Failed to remove all users of the load!"); 611 // Return the old load so the combiner can delete it safely. 612 return &LI; 613 } 614 } 615 616 // Fold away bit casts of the loaded value by loading the desired type. 617 // We can do this for BitCastInsts as well as casts from and to pointer types, 618 // as long as those are noops (i.e., the source or dest type have the same 619 // bitwidth as the target's pointers). 620 if (LI.hasOneUse()) 621 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 622 if (CI->isNoopCast(DL)) 623 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 624 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 625 CI->replaceAllUsesWith(NewLoad); 626 IC.eraseInstFromFunction(*CI); 627 return &LI; 628 } 629 630 // FIXME: We should also canonicalize loads of vectors when their elements are 631 // cast to other types. 632 return nullptr; 633 } 634 635 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 636 // FIXME: We could probably with some care handle both volatile and atomic 637 // stores here but it isn't clear that this is important. 638 if (!LI.isSimple()) 639 return nullptr; 640 641 Type *T = LI.getType(); 642 if (!T->isAggregateType()) 643 return nullptr; 644 645 StringRef Name = LI.getName(); 646 assert(LI.getAlignment() && "Alignment must be set at this point"); 647 648 if (auto *ST = dyn_cast<StructType>(T)) { 649 // If the struct only have one element, we unpack. 650 auto NumElements = ST->getNumElements(); 651 if (NumElements == 1) { 652 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 653 ".unpack"); 654 AAMDNodes AAMD; 655 LI.getAAMetadata(AAMD); 656 NewLoad->setAAMetadata(AAMD); 657 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 658 UndefValue::get(T), NewLoad, 0, Name)); 659 } 660 661 // We don't want to break loads with padding here as we'd loose 662 // the knowledge that padding exists for the rest of the pipeline. 663 const DataLayout &DL = IC.getDataLayout(); 664 auto *SL = DL.getStructLayout(ST); 665 if (SL->hasPadding()) 666 return nullptr; 667 668 auto Align = LI.getAlignment(); 669 if (!Align) 670 Align = DL.getABITypeAlignment(ST); 671 672 auto *Addr = LI.getPointerOperand(); 673 auto *IdxType = Type::getInt32Ty(T->getContext()); 674 auto *Zero = ConstantInt::get(IdxType, 0); 675 676 Value *V = UndefValue::get(T); 677 for (unsigned i = 0; i < NumElements; i++) { 678 Value *Indices[2] = { 679 Zero, 680 ConstantInt::get(IdxType, i), 681 }; 682 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 683 Name + ".elt"); 684 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 685 auto *L = IC.Builder.CreateAlignedLoad(ST->getElementType(i), Ptr, 686 EltAlign, Name + ".unpack"); 687 // Propagate AA metadata. It'll still be valid on the narrowed load. 688 AAMDNodes AAMD; 689 LI.getAAMetadata(AAMD); 690 L->setAAMetadata(AAMD); 691 V = IC.Builder.CreateInsertValue(V, L, i); 692 } 693 694 V->setName(Name); 695 return IC.replaceInstUsesWith(LI, V); 696 } 697 698 if (auto *AT = dyn_cast<ArrayType>(T)) { 699 auto *ET = AT->getElementType(); 700 auto NumElements = AT->getNumElements(); 701 if (NumElements == 1) { 702 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 703 AAMDNodes AAMD; 704 LI.getAAMetadata(AAMD); 705 NewLoad->setAAMetadata(AAMD); 706 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 707 UndefValue::get(T), NewLoad, 0, Name)); 708 } 709 710 // Bail out if the array is too large. Ideally we would like to optimize 711 // arrays of arbitrary size but this has a terrible impact on compile time. 712 // The threshold here is chosen arbitrarily, maybe needs a little bit of 713 // tuning. 714 if (NumElements > IC.MaxArraySizeForCombine) 715 return nullptr; 716 717 const DataLayout &DL = IC.getDataLayout(); 718 auto EltSize = DL.getTypeAllocSize(ET); 719 auto Align = LI.getAlignment(); 720 if (!Align) 721 Align = DL.getABITypeAlignment(T); 722 723 auto *Addr = LI.getPointerOperand(); 724 auto *IdxType = Type::getInt64Ty(T->getContext()); 725 auto *Zero = ConstantInt::get(IdxType, 0); 726 727 Value *V = UndefValue::get(T); 728 uint64_t Offset = 0; 729 for (uint64_t i = 0; i < NumElements; i++) { 730 Value *Indices[2] = { 731 Zero, 732 ConstantInt::get(IdxType, i), 733 }; 734 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 735 Name + ".elt"); 736 auto *L = IC.Builder.CreateAlignedLoad( 737 AT->getElementType(), Ptr, MinAlign(Align, Offset), Name + ".unpack"); 738 AAMDNodes AAMD; 739 LI.getAAMetadata(AAMD); 740 L->setAAMetadata(AAMD); 741 V = IC.Builder.CreateInsertValue(V, L, i); 742 Offset += EltSize; 743 } 744 745 V->setName(Name); 746 return IC.replaceInstUsesWith(LI, V); 747 } 748 749 return nullptr; 750 } 751 752 // If we can determine that all possible objects pointed to by the provided 753 // pointer value are, not only dereferenceable, but also definitively less than 754 // or equal to the provided maximum size, then return true. Otherwise, return 755 // false (constant global values and allocas fall into this category). 756 // 757 // FIXME: This should probably live in ValueTracking (or similar). 758 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 759 const DataLayout &DL) { 760 SmallPtrSet<Value *, 4> Visited; 761 SmallVector<Value *, 4> Worklist(1, V); 762 763 do { 764 Value *P = Worklist.pop_back_val(); 765 P = P->stripPointerCasts(); 766 767 if (!Visited.insert(P).second) 768 continue; 769 770 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 771 Worklist.push_back(SI->getTrueValue()); 772 Worklist.push_back(SI->getFalseValue()); 773 continue; 774 } 775 776 if (PHINode *PN = dyn_cast<PHINode>(P)) { 777 for (Value *IncValue : PN->incoming_values()) 778 Worklist.push_back(IncValue); 779 continue; 780 } 781 782 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 783 if (GA->isInterposable()) 784 return false; 785 Worklist.push_back(GA->getAliasee()); 786 continue; 787 } 788 789 // If we know how big this object is, and it is less than MaxSize, continue 790 // searching. Otherwise, return false. 791 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 792 if (!AI->getAllocatedType()->isSized()) 793 return false; 794 795 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 796 if (!CS) 797 return false; 798 799 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 800 // Make sure that, even if the multiplication below would wrap as an 801 // uint64_t, we still do the right thing. 802 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 803 return false; 804 continue; 805 } 806 807 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 808 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 809 return false; 810 811 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 812 if (InitSize > MaxSize) 813 return false; 814 continue; 815 } 816 817 return false; 818 } while (!Worklist.empty()); 819 820 return true; 821 } 822 823 // If we're indexing into an object of a known size, and the outer index is 824 // not a constant, but having any value but zero would lead to undefined 825 // behavior, replace it with zero. 826 // 827 // For example, if we have: 828 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 829 // ... 830 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 831 // ... = load i32* %arrayidx, align 4 832 // Then we know that we can replace %x in the GEP with i64 0. 833 // 834 // FIXME: We could fold any GEP index to zero that would cause UB if it were 835 // not zero. Currently, we only handle the first such index. Also, we could 836 // also search through non-zero constant indices if we kept track of the 837 // offsets those indices implied. 838 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 839 Instruction *MemI, unsigned &Idx) { 840 if (GEPI->getNumOperands() < 2) 841 return false; 842 843 // Find the first non-zero index of a GEP. If all indices are zero, return 844 // one past the last index. 845 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 846 unsigned I = 1; 847 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 848 Value *V = GEPI->getOperand(I); 849 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 850 if (CI->isZero()) 851 continue; 852 853 break; 854 } 855 856 return I; 857 }; 858 859 // Skip through initial 'zero' indices, and find the corresponding pointer 860 // type. See if the next index is not a constant. 861 Idx = FirstNZIdx(GEPI); 862 if (Idx == GEPI->getNumOperands()) 863 return false; 864 if (isa<Constant>(GEPI->getOperand(Idx))) 865 return false; 866 867 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 868 Type *AllocTy = 869 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 870 if (!AllocTy || !AllocTy->isSized()) 871 return false; 872 const DataLayout &DL = IC.getDataLayout(); 873 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 874 875 // If there are more indices after the one we might replace with a zero, make 876 // sure they're all non-negative. If any of them are negative, the overall 877 // address being computed might be before the base address determined by the 878 // first non-zero index. 879 auto IsAllNonNegative = [&]() { 880 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 881 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 882 if (Known.isNonNegative()) 883 continue; 884 return false; 885 } 886 887 return true; 888 }; 889 890 // FIXME: If the GEP is not inbounds, and there are extra indices after the 891 // one we'll replace, those could cause the address computation to wrap 892 // (rendering the IsAllNonNegative() check below insufficient). We can do 893 // better, ignoring zero indices (and other indices we can prove small 894 // enough not to wrap). 895 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 896 return false; 897 898 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 899 // also known to be dereferenceable. 900 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 901 IsAllNonNegative(); 902 } 903 904 // If we're indexing into an object with a variable index for the memory 905 // access, but the object has only one element, we can assume that the index 906 // will always be zero. If we replace the GEP, return it. 907 template <typename T> 908 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 909 T &MemI) { 910 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 911 unsigned Idx; 912 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 913 Instruction *NewGEPI = GEPI->clone(); 914 NewGEPI->setOperand(Idx, 915 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 916 NewGEPI->insertBefore(GEPI); 917 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 918 return NewGEPI; 919 } 920 } 921 922 return nullptr; 923 } 924 925 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 926 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 927 return false; 928 929 auto *Ptr = SI.getPointerOperand(); 930 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 931 Ptr = GEPI->getOperand(0); 932 return (isa<ConstantPointerNull>(Ptr) && 933 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 934 } 935 936 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 937 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 938 const Value *GEPI0 = GEPI->getOperand(0); 939 if (isa<ConstantPointerNull>(GEPI0) && 940 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 941 return true; 942 } 943 if (isa<UndefValue>(Op) || 944 (isa<ConstantPointerNull>(Op) && 945 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 946 return true; 947 return false; 948 } 949 950 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 951 Value *Op = LI.getOperand(0); 952 953 // Try to canonicalize the loaded type. 954 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 955 return Res; 956 957 // Attempt to improve the alignment. 958 unsigned KnownAlign = getOrEnforceKnownAlignment( 959 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 960 unsigned LoadAlign = LI.getAlignment(); 961 unsigned EffectiveLoadAlign = 962 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 963 964 if (KnownAlign > EffectiveLoadAlign) 965 LI.setAlignment(MaybeAlign(KnownAlign)); 966 else if (LoadAlign == 0) 967 LI.setAlignment(MaybeAlign(EffectiveLoadAlign)); 968 969 // Replace GEP indices if possible. 970 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 971 Worklist.Add(NewGEPI); 972 return &LI; 973 } 974 975 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 976 return Res; 977 978 // Do really simple store-to-load forwarding and load CSE, to catch cases 979 // where there are several consecutive memory accesses to the same location, 980 // separated by a few arithmetic operations. 981 BasicBlock::iterator BBI(LI); 982 bool IsLoadCSE = false; 983 if (Value *AvailableVal = FindAvailableLoadedValue( 984 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 985 if (IsLoadCSE) 986 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 987 988 return replaceInstUsesWith( 989 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 990 LI.getName() + ".cast")); 991 } 992 993 // None of the following transforms are legal for volatile/ordered atomic 994 // loads. Most of them do apply for unordered atomics. 995 if (!LI.isUnordered()) return nullptr; 996 997 // load(gep null, ...) -> unreachable 998 // load null/undef -> unreachable 999 // TODO: Consider a target hook for valid address spaces for this xforms. 1000 if (canSimplifyNullLoadOrGEP(LI, Op)) { 1001 // Insert a new store to null instruction before the load to indicate 1002 // that this code is not reachable. We do this instead of inserting 1003 // an unreachable instruction directly because we cannot modify the 1004 // CFG. 1005 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 1006 Constant::getNullValue(Op->getType()), &LI); 1007 SI->setDebugLoc(LI.getDebugLoc()); 1008 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 1009 } 1010 1011 if (Op->hasOneUse()) { 1012 // Change select and PHI nodes to select values instead of addresses: this 1013 // helps alias analysis out a lot, allows many others simplifications, and 1014 // exposes redundancy in the code. 1015 // 1016 // Note that we cannot do the transformation unless we know that the 1017 // introduced loads cannot trap! Something like this is valid as long as 1018 // the condition is always false: load (select bool %C, int* null, int* %G), 1019 // but it would not be valid if we transformed it to load from null 1020 // unconditionally. 1021 // 1022 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1023 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1024 const MaybeAlign Alignment(LI.getAlignment()); 1025 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 1026 Alignment, DL, SI) && 1027 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 1028 Alignment, DL, SI)) { 1029 LoadInst *V1 = 1030 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 1031 SI->getOperand(1)->getName() + ".val"); 1032 LoadInst *V2 = 1033 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1034 SI->getOperand(2)->getName() + ".val"); 1035 assert(LI.isUnordered() && "implied by above"); 1036 V1->setAlignment(Alignment); 1037 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1038 V2->setAlignment(Alignment); 1039 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1040 return SelectInst::Create(SI->getCondition(), V1, V2); 1041 } 1042 1043 // load (select (cond, null, P)) -> load P 1044 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1045 !NullPointerIsDefined(SI->getFunction(), 1046 LI.getPointerAddressSpace())) { 1047 LI.setOperand(0, SI->getOperand(2)); 1048 return &LI; 1049 } 1050 1051 // load (select (cond, P, null)) -> load P 1052 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1053 !NullPointerIsDefined(SI->getFunction(), 1054 LI.getPointerAddressSpace())) { 1055 LI.setOperand(0, SI->getOperand(1)); 1056 return &LI; 1057 } 1058 } 1059 } 1060 return nullptr; 1061 } 1062 1063 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1064 /// 1065 /// \returns underlying value that was "cast", or nullptr otherwise. 1066 /// 1067 /// For example, if we have: 1068 /// 1069 /// %E0 = extractelement <2 x double> %U, i32 0 1070 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1071 /// %E1 = extractelement <2 x double> %U, i32 1 1072 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1073 /// 1074 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1075 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1076 /// Note that %U may contain non-undef values where %V1 has undef. 1077 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1078 Value *U = nullptr; 1079 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1080 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1081 if (!E) 1082 return nullptr; 1083 auto *W = E->getVectorOperand(); 1084 if (!U) 1085 U = W; 1086 else if (U != W) 1087 return nullptr; 1088 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1089 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1090 return nullptr; 1091 V = IV->getAggregateOperand(); 1092 } 1093 if (!isa<UndefValue>(V) ||!U) 1094 return nullptr; 1095 1096 auto *UT = cast<VectorType>(U->getType()); 1097 auto *VT = V->getType(); 1098 // Check that types UT and VT are bitwise isomorphic. 1099 const auto &DL = IC.getDataLayout(); 1100 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1101 return nullptr; 1102 } 1103 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1104 if (AT->getNumElements() != UT->getNumElements()) 1105 return nullptr; 1106 } else { 1107 auto *ST = cast<StructType>(VT); 1108 if (ST->getNumElements() != UT->getNumElements()) 1109 return nullptr; 1110 for (const auto *EltT : ST->elements()) { 1111 if (EltT != UT->getElementType()) 1112 return nullptr; 1113 } 1114 } 1115 return U; 1116 } 1117 1118 /// Combine stores to match the type of value being stored. 1119 /// 1120 /// The core idea here is that the memory does not have any intrinsic type and 1121 /// where we can we should match the type of a store to the type of value being 1122 /// stored. 1123 /// 1124 /// However, this routine must never change the width of a store or the number of 1125 /// stores as that would introduce a semantic change. This combine is expected to 1126 /// be a semantic no-op which just allows stores to more closely model the types 1127 /// of their incoming values. 1128 /// 1129 /// Currently, we also refuse to change the precise type used for an atomic or 1130 /// volatile store. This is debatable, and might be reasonable to change later. 1131 /// However, it is risky in case some backend or other part of LLVM is relying 1132 /// on the exact type stored to select appropriate atomic operations. 1133 /// 1134 /// \returns true if the store was successfully combined away. This indicates 1135 /// the caller must erase the store instruction. We have to let the caller erase 1136 /// the store instruction as otherwise there is no way to signal whether it was 1137 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1138 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1139 // FIXME: We could probably with some care handle both volatile and ordered 1140 // atomic stores here but it isn't clear that this is important. 1141 if (!SI.isUnordered()) 1142 return false; 1143 1144 // swifterror values can't be bitcasted. 1145 if (SI.getPointerOperand()->isSwiftError()) 1146 return false; 1147 1148 Value *V = SI.getValueOperand(); 1149 1150 // Fold away bit casts of the stored value by storing the original type. 1151 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1152 V = BC->getOperand(0); 1153 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1154 combineStoreToNewValue(IC, SI, V); 1155 return true; 1156 } 1157 } 1158 1159 if (Value *U = likeBitCastFromVector(IC, V)) 1160 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1161 combineStoreToNewValue(IC, SI, U); 1162 return true; 1163 } 1164 1165 // FIXME: We should also canonicalize stores of vectors when their elements 1166 // are cast to other types. 1167 return false; 1168 } 1169 1170 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1171 // FIXME: We could probably with some care handle both volatile and atomic 1172 // stores here but it isn't clear that this is important. 1173 if (!SI.isSimple()) 1174 return false; 1175 1176 Value *V = SI.getValueOperand(); 1177 Type *T = V->getType(); 1178 1179 if (!T->isAggregateType()) 1180 return false; 1181 1182 if (auto *ST = dyn_cast<StructType>(T)) { 1183 // If the struct only have one element, we unpack. 1184 unsigned Count = ST->getNumElements(); 1185 if (Count == 1) { 1186 V = IC.Builder.CreateExtractValue(V, 0); 1187 combineStoreToNewValue(IC, SI, V); 1188 return true; 1189 } 1190 1191 // We don't want to break loads with padding here as we'd loose 1192 // the knowledge that padding exists for the rest of the pipeline. 1193 const DataLayout &DL = IC.getDataLayout(); 1194 auto *SL = DL.getStructLayout(ST); 1195 if (SL->hasPadding()) 1196 return false; 1197 1198 auto Align = SI.getAlignment(); 1199 if (!Align) 1200 Align = DL.getABITypeAlignment(ST); 1201 1202 SmallString<16> EltName = V->getName(); 1203 EltName += ".elt"; 1204 auto *Addr = SI.getPointerOperand(); 1205 SmallString<16> AddrName = Addr->getName(); 1206 AddrName += ".repack"; 1207 1208 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1209 auto *Zero = ConstantInt::get(IdxType, 0); 1210 for (unsigned i = 0; i < Count; i++) { 1211 Value *Indices[2] = { 1212 Zero, 1213 ConstantInt::get(IdxType, i), 1214 }; 1215 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1216 AddrName); 1217 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1218 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1219 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1220 AAMDNodes AAMD; 1221 SI.getAAMetadata(AAMD); 1222 NS->setAAMetadata(AAMD); 1223 } 1224 1225 return true; 1226 } 1227 1228 if (auto *AT = dyn_cast<ArrayType>(T)) { 1229 // If the array only have one element, we unpack. 1230 auto NumElements = AT->getNumElements(); 1231 if (NumElements == 1) { 1232 V = IC.Builder.CreateExtractValue(V, 0); 1233 combineStoreToNewValue(IC, SI, V); 1234 return true; 1235 } 1236 1237 // Bail out if the array is too large. Ideally we would like to optimize 1238 // arrays of arbitrary size but this has a terrible impact on compile time. 1239 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1240 // tuning. 1241 if (NumElements > IC.MaxArraySizeForCombine) 1242 return false; 1243 1244 const DataLayout &DL = IC.getDataLayout(); 1245 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1246 auto Align = SI.getAlignment(); 1247 if (!Align) 1248 Align = DL.getABITypeAlignment(T); 1249 1250 SmallString<16> EltName = V->getName(); 1251 EltName += ".elt"; 1252 auto *Addr = SI.getPointerOperand(); 1253 SmallString<16> AddrName = Addr->getName(); 1254 AddrName += ".repack"; 1255 1256 auto *IdxType = Type::getInt64Ty(T->getContext()); 1257 auto *Zero = ConstantInt::get(IdxType, 0); 1258 1259 uint64_t Offset = 0; 1260 for (uint64_t i = 0; i < NumElements; i++) { 1261 Value *Indices[2] = { 1262 Zero, 1263 ConstantInt::get(IdxType, i), 1264 }; 1265 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1266 AddrName); 1267 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1268 auto EltAlign = MinAlign(Align, Offset); 1269 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1270 AAMDNodes AAMD; 1271 SI.getAAMetadata(AAMD); 1272 NS->setAAMetadata(AAMD); 1273 Offset += EltSize; 1274 } 1275 1276 return true; 1277 } 1278 1279 return false; 1280 } 1281 1282 /// equivalentAddressValues - Test if A and B will obviously have the same 1283 /// value. This includes recognizing that %t0 and %t1 will have the same 1284 /// value in code like this: 1285 /// %t0 = getelementptr \@a, 0, 3 1286 /// store i32 0, i32* %t0 1287 /// %t1 = getelementptr \@a, 0, 3 1288 /// %t2 = load i32* %t1 1289 /// 1290 static bool equivalentAddressValues(Value *A, Value *B) { 1291 // Test if the values are trivially equivalent. 1292 if (A == B) return true; 1293 1294 // Test if the values come form identical arithmetic instructions. 1295 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1296 // its only used to compare two uses within the same basic block, which 1297 // means that they'll always either have the same value or one of them 1298 // will have an undefined value. 1299 if (isa<BinaryOperator>(A) || 1300 isa<CastInst>(A) || 1301 isa<PHINode>(A) || 1302 isa<GetElementPtrInst>(A)) 1303 if (Instruction *BI = dyn_cast<Instruction>(B)) 1304 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1305 return true; 1306 1307 // Otherwise they may not be equivalent. 1308 return false; 1309 } 1310 1311 /// Converts store (bitcast (load (bitcast (select ...)))) to 1312 /// store (load (select ...)), where select is minmax: 1313 /// select ((cmp load V1, load V2), V1, V2). 1314 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC, 1315 StoreInst &SI) { 1316 // bitcast? 1317 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1318 return false; 1319 // load? integer? 1320 Value *LoadAddr; 1321 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1322 return false; 1323 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1324 if (!LI->getType()->isIntegerTy()) 1325 return false; 1326 if (!isMinMaxWithLoads(LoadAddr)) 1327 return false; 1328 1329 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1330 auto *SI = dyn_cast<StoreInst>(U); 1331 return SI && SI->getPointerOperand() != LI && 1332 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && 1333 !SI->getPointerOperand()->isSwiftError(); 1334 })) 1335 return false; 1336 1337 IC.Builder.SetInsertPoint(LI); 1338 LoadInst *NewLI = combineLoadToNewType( 1339 IC, *LI, LoadAddr->getType()->getPointerElementType()); 1340 // Replace all the stores with stores of the newly loaded value. 1341 for (auto *UI : LI->users()) { 1342 auto *USI = cast<StoreInst>(UI); 1343 IC.Builder.SetInsertPoint(USI); 1344 combineStoreToNewValue(IC, *USI, NewLI); 1345 } 1346 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1347 IC.eraseInstFromFunction(*LI); 1348 return true; 1349 } 1350 1351 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1352 Value *Val = SI.getOperand(0); 1353 Value *Ptr = SI.getOperand(1); 1354 1355 // Try to canonicalize the stored type. 1356 if (combineStoreToValueType(*this, SI)) 1357 return eraseInstFromFunction(SI); 1358 1359 // Attempt to improve the alignment. 1360 const Align KnownAlign = Align(getOrEnforceKnownAlignment( 1361 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT)); 1362 const MaybeAlign StoreAlign = MaybeAlign(SI.getAlignment()); 1363 const Align EffectiveStoreAlign = 1364 StoreAlign ? *StoreAlign : Align(DL.getABITypeAlignment(Val->getType())); 1365 1366 if (KnownAlign > EffectiveStoreAlign) 1367 SI.setAlignment(KnownAlign); 1368 else if (!StoreAlign) 1369 SI.setAlignment(EffectiveStoreAlign); 1370 1371 // Try to canonicalize the stored type. 1372 if (unpackStoreToAggregate(*this, SI)) 1373 return eraseInstFromFunction(SI); 1374 1375 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1376 return eraseInstFromFunction(SI); 1377 1378 // Replace GEP indices if possible. 1379 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1380 Worklist.Add(NewGEPI); 1381 return &SI; 1382 } 1383 1384 // Don't hack volatile/ordered stores. 1385 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1386 if (!SI.isUnordered()) return nullptr; 1387 1388 // If the RHS is an alloca with a single use, zapify the store, making the 1389 // alloca dead. 1390 if (Ptr->hasOneUse()) { 1391 if (isa<AllocaInst>(Ptr)) 1392 return eraseInstFromFunction(SI); 1393 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1394 if (isa<AllocaInst>(GEP->getOperand(0))) { 1395 if (GEP->getOperand(0)->hasOneUse()) 1396 return eraseInstFromFunction(SI); 1397 } 1398 } 1399 } 1400 1401 // If we have a store to a location which is known constant, we can conclude 1402 // that the store must be storing the constant value (else the memory 1403 // wouldn't be constant), and this must be a noop. 1404 if (AA->pointsToConstantMemory(Ptr)) 1405 return eraseInstFromFunction(SI); 1406 1407 // Do really simple DSE, to catch cases where there are several consecutive 1408 // stores to the same location, separated by a few arithmetic operations. This 1409 // situation often occurs with bitfield accesses. 1410 BasicBlock::iterator BBI(SI); 1411 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1412 --ScanInsts) { 1413 --BBI; 1414 // Don't count debug info directives, lest they affect codegen, 1415 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1416 if (isa<DbgInfoIntrinsic>(BBI) || 1417 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1418 ScanInsts++; 1419 continue; 1420 } 1421 1422 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1423 // Prev store isn't volatile, and stores to the same location? 1424 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1425 SI.getOperand(1))) { 1426 ++NumDeadStore; 1427 ++BBI; 1428 eraseInstFromFunction(*PrevSI); 1429 continue; 1430 } 1431 break; 1432 } 1433 1434 // If this is a load, we have to stop. However, if the loaded value is from 1435 // the pointer we're loading and is producing the pointer we're storing, 1436 // then *this* store is dead (X = load P; store X -> P). 1437 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1438 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1439 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1440 return eraseInstFromFunction(SI); 1441 } 1442 1443 // Otherwise, this is a load from some other location. Stores before it 1444 // may not be dead. 1445 break; 1446 } 1447 1448 // Don't skip over loads, throws or things that can modify memory. 1449 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1450 break; 1451 } 1452 1453 // store X, null -> turns into 'unreachable' in SimplifyCFG 1454 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1455 if (canSimplifyNullStoreOrGEP(SI)) { 1456 if (!isa<UndefValue>(Val)) { 1457 SI.setOperand(0, UndefValue::get(Val->getType())); 1458 if (Instruction *U = dyn_cast<Instruction>(Val)) 1459 Worklist.Add(U); // Dropped a use. 1460 } 1461 return nullptr; // Do not modify these! 1462 } 1463 1464 // store undef, Ptr -> noop 1465 if (isa<UndefValue>(Val)) 1466 return eraseInstFromFunction(SI); 1467 1468 // If this store is the second-to-last instruction in the basic block 1469 // (excluding debug info and bitcasts of pointers) and if the block ends with 1470 // an unconditional branch, try to move the store to the successor block. 1471 BBI = SI.getIterator(); 1472 do { 1473 ++BBI; 1474 } while (isa<DbgInfoIntrinsic>(BBI) || 1475 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1476 1477 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1478 if (BI->isUnconditional()) 1479 mergeStoreIntoSuccessor(SI); 1480 1481 return nullptr; 1482 } 1483 1484 /// Try to transform: 1485 /// if () { *P = v1; } else { *P = v2 } 1486 /// or: 1487 /// *P = v1; if () { *P = v2; } 1488 /// into a phi node with a store in the successor. 1489 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) { 1490 assert(SI.isUnordered() && 1491 "This code has not been audited for volatile or ordered store case."); 1492 1493 // Check if the successor block has exactly 2 incoming edges. 1494 BasicBlock *StoreBB = SI.getParent(); 1495 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1496 if (!DestBB->hasNPredecessors(2)) 1497 return false; 1498 1499 // Capture the other block (the block that doesn't contain our store). 1500 pred_iterator PredIter = pred_begin(DestBB); 1501 if (*PredIter == StoreBB) 1502 ++PredIter; 1503 BasicBlock *OtherBB = *PredIter; 1504 1505 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1506 // for example, if SI is in an infinite loop. 1507 if (StoreBB == DestBB || OtherBB == DestBB) 1508 return false; 1509 1510 // Verify that the other block ends in a branch and is not otherwise empty. 1511 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1512 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1513 if (!OtherBr || BBI == OtherBB->begin()) 1514 return false; 1515 1516 // If the other block ends in an unconditional branch, check for the 'if then 1517 // else' case. There is an instruction before the branch. 1518 StoreInst *OtherStore = nullptr; 1519 if (OtherBr->isUnconditional()) { 1520 --BBI; 1521 // Skip over debugging info. 1522 while (isa<DbgInfoIntrinsic>(BBI) || 1523 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1524 if (BBI==OtherBB->begin()) 1525 return false; 1526 --BBI; 1527 } 1528 // If this isn't a store, isn't a store to the same location, or is not the 1529 // right kind of store, bail out. 1530 OtherStore = dyn_cast<StoreInst>(BBI); 1531 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1532 !SI.isSameOperationAs(OtherStore)) 1533 return false; 1534 } else { 1535 // Otherwise, the other block ended with a conditional branch. If one of the 1536 // destinations is StoreBB, then we have the if/then case. 1537 if (OtherBr->getSuccessor(0) != StoreBB && 1538 OtherBr->getSuccessor(1) != StoreBB) 1539 return false; 1540 1541 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1542 // if/then triangle. See if there is a store to the same ptr as SI that 1543 // lives in OtherBB. 1544 for (;; --BBI) { 1545 // Check to see if we find the matching store. 1546 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1547 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1548 !SI.isSameOperationAs(OtherStore)) 1549 return false; 1550 break; 1551 } 1552 // If we find something that may be using or overwriting the stored 1553 // value, or if we run out of instructions, we can't do the transform. 1554 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1555 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1556 return false; 1557 } 1558 1559 // In order to eliminate the store in OtherBr, we have to make sure nothing 1560 // reads or overwrites the stored value in StoreBB. 1561 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1562 // FIXME: This should really be AA driven. 1563 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1564 return false; 1565 } 1566 } 1567 1568 // Insert a PHI node now if we need it. 1569 Value *MergedVal = OtherStore->getOperand(0); 1570 // The debug locations of the original instructions might differ. Merge them. 1571 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1572 OtherStore->getDebugLoc()); 1573 if (MergedVal != SI.getOperand(0)) { 1574 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1575 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1576 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1577 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1578 PN->setDebugLoc(MergedLoc); 1579 } 1580 1581 // Advance to a place where it is safe to insert the new store and insert it. 1582 BBI = DestBB->getFirstInsertionPt(); 1583 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), 1584 MaybeAlign(SI.getAlignment()), 1585 SI.getOrdering(), SI.getSyncScopeID()); 1586 InsertNewInstBefore(NewSI, *BBI); 1587 NewSI->setDebugLoc(MergedLoc); 1588 1589 // If the two stores had AA tags, merge them. 1590 AAMDNodes AATags; 1591 SI.getAAMetadata(AATags); 1592 if (AATags) { 1593 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1594 NewSI->setAAMetadata(AATags); 1595 } 1596 1597 // Nuke the old stores. 1598 eraseInstFromFunction(SI); 1599 eraseInstFromFunction(*OtherStore); 1600 return true; 1601 } 1602