1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the visit functions for load, store and alloca.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "InstCombineInternal.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/LLVMContext.h"
20 #include "llvm/IR/IntrinsicInst.h"
21 #include "llvm/IR/MDBuilder.h"
22 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
23 #include "llvm/Transforms/Utils/Local.h"
24 using namespace llvm;
25 
26 #define DEBUG_TYPE "instcombine"
27 
28 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
29 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
30 
31 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
32 /// some part of a constant global variable.  This intentionally only accepts
33 /// constant expressions because we can't rewrite arbitrary instructions.
34 static bool pointsToConstantGlobal(Value *V) {
35   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
36     return GV->isConstant();
37 
38   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
39     if (CE->getOpcode() == Instruction::BitCast ||
40         CE->getOpcode() == Instruction::AddrSpaceCast ||
41         CE->getOpcode() == Instruction::GetElementPtr)
42       return pointsToConstantGlobal(CE->getOperand(0));
43   }
44   return false;
45 }
46 
47 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
48 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
49 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
50 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
51 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
52 /// the alloca, and if the source pointer is a pointer to a constant global, we
53 /// can optimize this.
54 static bool
55 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
56                                SmallVectorImpl<Instruction *> &ToDelete) {
57   // We track lifetime intrinsics as we encounter them.  If we decide to go
58   // ahead and replace the value with the global, this lets the caller quickly
59   // eliminate the markers.
60 
61   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
62   ValuesToInspect.push_back(std::make_pair(V, false));
63   while (!ValuesToInspect.empty()) {
64     auto ValuePair = ValuesToInspect.pop_back_val();
65     const bool IsOffset = ValuePair.second;
66     for (auto &U : ValuePair.first->uses()) {
67       Instruction *I = cast<Instruction>(U.getUser());
68 
69       if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
70         // Ignore non-volatile loads, they are always ok.
71         if (!LI->isSimple()) return false;
72         continue;
73       }
74 
75       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
76         // If uses of the bitcast are ok, we are ok.
77         ValuesToInspect.push_back(std::make_pair(I, IsOffset));
78         continue;
79       }
80       if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) {
81         // If the GEP has all zero indices, it doesn't offset the pointer. If it
82         // doesn't, it does.
83         ValuesToInspect.push_back(
84             std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices()));
85         continue;
86       }
87 
88       if (auto CS = CallSite(I)) {
89         // If this is the function being called then we treat it like a load and
90         // ignore it.
91         if (CS.isCallee(&U))
92           continue;
93 
94         unsigned DataOpNo = CS.getDataOperandNo(&U);
95         bool IsArgOperand = CS.isArgOperand(&U);
96 
97         // Inalloca arguments are clobbered by the call.
98         if (IsArgOperand && CS.isInAllocaArgument(DataOpNo))
99           return false;
100 
101         // If this is a readonly/readnone call site, then we know it is just a
102         // load (but one that potentially returns the value itself), so we can
103         // ignore it if we know that the value isn't captured.
104         if (CS.onlyReadsMemory() &&
105             (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo)))
106           continue;
107 
108         // If this is being passed as a byval argument, the caller is making a
109         // copy, so it is only a read of the alloca.
110         if (IsArgOperand && CS.isByValArgument(DataOpNo))
111           continue;
112       }
113 
114       // Lifetime intrinsics can be handled by the caller.
115       if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
116         if (II->getIntrinsicID() == Intrinsic::lifetime_start ||
117             II->getIntrinsicID() == Intrinsic::lifetime_end) {
118           assert(II->use_empty() && "Lifetime markers have no result to use!");
119           ToDelete.push_back(II);
120           continue;
121         }
122       }
123 
124       // If this is isn't our memcpy/memmove, reject it as something we can't
125       // handle.
126       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
127       if (!MI)
128         return false;
129 
130       // If the transfer is using the alloca as a source of the transfer, then
131       // ignore it since it is a load (unless the transfer is volatile).
132       if (U.getOperandNo() == 1) {
133         if (MI->isVolatile()) return false;
134         continue;
135       }
136 
137       // If we already have seen a copy, reject the second one.
138       if (TheCopy) return false;
139 
140       // If the pointer has been offset from the start of the alloca, we can't
141       // safely handle this.
142       if (IsOffset) return false;
143 
144       // If the memintrinsic isn't using the alloca as the dest, reject it.
145       if (U.getOperandNo() != 0) return false;
146 
147       // If the source of the memcpy/move is not a constant global, reject it.
148       if (!pointsToConstantGlobal(MI->getSource()))
149         return false;
150 
151       // Otherwise, the transform is safe.  Remember the copy instruction.
152       TheCopy = MI;
153     }
154   }
155   return true;
156 }
157 
158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
159 /// modified by a copy from a constant global.  If we can prove this, we can
160 /// replace any uses of the alloca with uses of the global directly.
161 static MemTransferInst *
162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
163                                SmallVectorImpl<Instruction *> &ToDelete) {
164   MemTransferInst *TheCopy = nullptr;
165   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
166     return TheCopy;
167   return nullptr;
168 }
169 
170 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
171   // Check for array size of 1 (scalar allocation).
172   if (!AI.isArrayAllocation()) {
173     // i32 1 is the canonical array size for scalar allocations.
174     if (AI.getArraySize()->getType()->isIntegerTy(32))
175       return nullptr;
176 
177     // Canonicalize it.
178     Value *V = IC.Builder->getInt32(1);
179     AI.setOperand(0, V);
180     return &AI;
181   }
182 
183   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
184   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
185     Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
186     AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName());
187     New->setAlignment(AI.getAlignment());
188 
189     // Scan to the end of the allocation instructions, to skip over a block of
190     // allocas if possible...also skip interleaved debug info
191     //
192     BasicBlock::iterator It(New);
193     while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
194       ++It;
195 
196     // Now that I is pointing to the first non-allocation-inst in the block,
197     // insert our getelementptr instruction...
198     //
199     Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
200     Value *NullIdx = Constant::getNullValue(IdxTy);
201     Value *Idx[2] = {NullIdx, NullIdx};
202     Instruction *GEP =
203         GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub");
204     IC.InsertNewInstBefore(GEP, *It);
205 
206     // Now make everything use the getelementptr instead of the original
207     // allocation.
208     return IC.replaceInstUsesWith(AI, GEP);
209   }
210 
211   if (isa<UndefValue>(AI.getArraySize()))
212     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
213 
214   // Ensure that the alloca array size argument has type intptr_t, so that
215   // any casting is exposed early.
216   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
217   if (AI.getArraySize()->getType() != IntPtrTy) {
218     Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false);
219     AI.setOperand(0, V);
220     return &AI;
221   }
222 
223   return nullptr;
224 }
225 
226 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
227   if (auto *I = simplifyAllocaArraySize(*this, AI))
228     return I;
229 
230   if (AI.getAllocatedType()->isSized()) {
231     // If the alignment is 0 (unspecified), assign it the preferred alignment.
232     if (AI.getAlignment() == 0)
233       AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType()));
234 
235     // Move all alloca's of zero byte objects to the entry block and merge them
236     // together.  Note that we only do this for alloca's, because malloc should
237     // allocate and return a unique pointer, even for a zero byte allocation.
238     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
239       // For a zero sized alloca there is no point in doing an array allocation.
240       // This is helpful if the array size is a complicated expression not used
241       // elsewhere.
242       if (AI.isArrayAllocation()) {
243         AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1));
244         return &AI;
245       }
246 
247       // Get the first instruction in the entry block.
248       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
249       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
250       if (FirstInst != &AI) {
251         // If the entry block doesn't start with a zero-size alloca then move
252         // this one to the start of the entry block.  There is no problem with
253         // dominance as the array size was forced to a constant earlier already.
254         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
255         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
256             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
257           AI.moveBefore(FirstInst);
258           return &AI;
259         }
260 
261         // If the alignment of the entry block alloca is 0 (unspecified),
262         // assign it the preferred alignment.
263         if (EntryAI->getAlignment() == 0)
264           EntryAI->setAlignment(
265               DL.getPrefTypeAlignment(EntryAI->getAllocatedType()));
266         // Replace this zero-sized alloca with the one at the start of the entry
267         // block after ensuring that the address will be aligned enough for both
268         // types.
269         unsigned MaxAlign = std::max(EntryAI->getAlignment(),
270                                      AI.getAlignment());
271         EntryAI->setAlignment(MaxAlign);
272         if (AI.getType() != EntryAI->getType())
273           return new BitCastInst(EntryAI, AI.getType());
274         return replaceInstUsesWith(AI, EntryAI);
275       }
276     }
277   }
278 
279   if (AI.getAlignment()) {
280     // Check to see if this allocation is only modified by a memcpy/memmove from
281     // a constant global whose alignment is equal to or exceeds that of the
282     // allocation.  If this is the case, we can change all users to use
283     // the constant global instead.  This is commonly produced by the CFE by
284     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
285     // is only subsequently read.
286     SmallVector<Instruction *, 4> ToDelete;
287     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
288       unsigned SourceAlign = getOrEnforceKnownAlignment(
289           Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT);
290       if (AI.getAlignment() <= SourceAlign) {
291         DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
292         DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
293         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
294           eraseInstFromFunction(*ToDelete[i]);
295         Constant *TheSrc = cast<Constant>(Copy->getSource());
296         Constant *Cast
297           = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType());
298         Instruction *NewI = replaceInstUsesWith(AI, Cast);
299         eraseInstFromFunction(*Copy);
300         ++NumGlobalCopies;
301         return NewI;
302       }
303     }
304   }
305 
306   // At last, use the generic allocation site handler to aggressively remove
307   // unused allocas.
308   return visitAllocSite(AI);
309 }
310 
311 /// \brief Helper to combine a load to a new type.
312 ///
313 /// This just does the work of combining a load to a new type. It handles
314 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
315 /// loaded *value* type. This will convert it to a pointer, cast the operand to
316 /// that pointer type, load it, etc.
317 ///
318 /// Note that this will create all of the instructions with whatever insert
319 /// point the \c InstCombiner currently is using.
320 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy,
321                                       const Twine &Suffix = "") {
322   Value *Ptr = LI.getPointerOperand();
323   unsigned AS = LI.getPointerAddressSpace();
324   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
325   LI.getAllMetadata(MD);
326 
327   LoadInst *NewLoad = IC.Builder->CreateAlignedLoad(
328       IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)),
329       LI.getAlignment(), LI.getName() + Suffix);
330   MDBuilder MDB(NewLoad->getContext());
331   for (const auto &MDPair : MD) {
332     unsigned ID = MDPair.first;
333     MDNode *N = MDPair.second;
334     // Note, essentially every kind of metadata should be preserved here! This
335     // routine is supposed to clone a load instruction changing *only its type*.
336     // The only metadata it makes sense to drop is metadata which is invalidated
337     // when the pointer type changes. This should essentially never be the case
338     // in LLVM, but we explicitly switch over only known metadata to be
339     // conservatively correct. If you are adding metadata to LLVM which pertains
340     // to loads, you almost certainly want to add it here.
341     switch (ID) {
342     case LLVMContext::MD_dbg:
343     case LLVMContext::MD_tbaa:
344     case LLVMContext::MD_prof:
345     case LLVMContext::MD_fpmath:
346     case LLVMContext::MD_tbaa_struct:
347     case LLVMContext::MD_invariant_load:
348     case LLVMContext::MD_alias_scope:
349     case LLVMContext::MD_noalias:
350     case LLVMContext::MD_nontemporal:
351     case LLVMContext::MD_mem_parallel_loop_access:
352       // All of these directly apply.
353       NewLoad->setMetadata(ID, N);
354       break;
355 
356     case LLVMContext::MD_nonnull:
357       // This only directly applies if the new type is also a pointer.
358       if (NewTy->isPointerTy()) {
359         NewLoad->setMetadata(ID, N);
360         break;
361       }
362       // If it's integral now, translate it to !range metadata.
363       if (NewTy->isIntegerTy()) {
364         auto *ITy = cast<IntegerType>(NewTy);
365         auto *NullInt = ConstantExpr::getPtrToInt(
366             ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy);
367         auto *NonNullInt =
368             ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1));
369         NewLoad->setMetadata(LLVMContext::MD_range,
370                              MDB.createRange(NonNullInt, NullInt));
371       }
372       break;
373     case LLVMContext::MD_align:
374     case LLVMContext::MD_dereferenceable:
375     case LLVMContext::MD_dereferenceable_or_null:
376       // These only directly apply if the new type is also a pointer.
377       if (NewTy->isPointerTy())
378         NewLoad->setMetadata(ID, N);
379       break;
380     case LLVMContext::MD_range:
381       // FIXME: It would be nice to propagate this in some way, but the type
382       // conversions make it hard. If the new type is a pointer, we could
383       // translate it to !nonnull metadata.
384       break;
385     }
386   }
387   return NewLoad;
388 }
389 
390 /// \brief Combine a store to a new type.
391 ///
392 /// Returns the newly created store instruction.
393 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
394   Value *Ptr = SI.getPointerOperand();
395   unsigned AS = SI.getPointerAddressSpace();
396   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
397   SI.getAllMetadata(MD);
398 
399   StoreInst *NewStore = IC.Builder->CreateAlignedStore(
400       V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
401       SI.getAlignment());
402   for (const auto &MDPair : MD) {
403     unsigned ID = MDPair.first;
404     MDNode *N = MDPair.second;
405     // Note, essentially every kind of metadata should be preserved here! This
406     // routine is supposed to clone a store instruction changing *only its
407     // type*. The only metadata it makes sense to drop is metadata which is
408     // invalidated when the pointer type changes. This should essentially
409     // never be the case in LLVM, but we explicitly switch over only known
410     // metadata to be conservatively correct. If you are adding metadata to
411     // LLVM which pertains to stores, you almost certainly want to add it
412     // here.
413     switch (ID) {
414     case LLVMContext::MD_dbg:
415     case LLVMContext::MD_tbaa:
416     case LLVMContext::MD_prof:
417     case LLVMContext::MD_fpmath:
418     case LLVMContext::MD_tbaa_struct:
419     case LLVMContext::MD_alias_scope:
420     case LLVMContext::MD_noalias:
421     case LLVMContext::MD_nontemporal:
422     case LLVMContext::MD_mem_parallel_loop_access:
423       // All of these directly apply.
424       NewStore->setMetadata(ID, N);
425       break;
426 
427     case LLVMContext::MD_invariant_load:
428     case LLVMContext::MD_nonnull:
429     case LLVMContext::MD_range:
430     case LLVMContext::MD_align:
431     case LLVMContext::MD_dereferenceable:
432     case LLVMContext::MD_dereferenceable_or_null:
433       // These don't apply for stores.
434       break;
435     }
436   }
437 
438   return NewStore;
439 }
440 
441 /// \brief Combine loads to match the type of value their uses after looking
442 /// through intervening bitcasts.
443 ///
444 /// The core idea here is that if the result of a load is used in an operation,
445 /// we should load the type most conducive to that operation. For example, when
446 /// loading an integer and converting that immediately to a pointer, we should
447 /// instead directly load a pointer.
448 ///
449 /// However, this routine must never change the width of a load or the number of
450 /// loads as that would introduce a semantic change. This combine is expected to
451 /// be a semantic no-op which just allows loads to more closely model the types
452 /// of their consuming operations.
453 ///
454 /// Currently, we also refuse to change the precise type used for an atomic load
455 /// or a volatile load. This is debatable, and might be reasonable to change
456 /// later. However, it is risky in case some backend or other part of LLVM is
457 /// relying on the exact type loaded to select appropriate atomic operations.
458 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
459   // FIXME: We could probably with some care handle both volatile and atomic
460   // loads here but it isn't clear that this is important.
461   if (!LI.isSimple())
462     return nullptr;
463 
464   if (LI.use_empty())
465     return nullptr;
466 
467   Type *Ty = LI.getType();
468   const DataLayout &DL = IC.getDataLayout();
469 
470   // Try to canonicalize loads which are only ever stored to operate over
471   // integers instead of any other type. We only do this when the loaded type
472   // is sized and has a size exactly the same as its store size and the store
473   // size is a legal integer type.
474   if (!Ty->isIntegerTy() && Ty->isSized() &&
475       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
476       DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) {
477     if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) {
478           auto *SI = dyn_cast<StoreInst>(U);
479           return SI && SI->getPointerOperand() != &LI;
480         })) {
481       LoadInst *NewLoad = combineLoadToNewType(
482           IC, LI,
483           Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
484       // Replace all the stores with stores of the newly loaded value.
485       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
486         auto *SI = cast<StoreInst>(*UI++);
487         IC.Builder->SetInsertPoint(SI);
488         combineStoreToNewValue(IC, *SI, NewLoad);
489         IC.eraseInstFromFunction(*SI);
490       }
491       assert(LI.use_empty() && "Failed to remove all users of the load!");
492       // Return the old load so the combiner can delete it safely.
493       return &LI;
494     }
495   }
496 
497   // Fold away bit casts of the loaded value by loading the desired type.
498   if (LI.hasOneUse())
499     if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
500       LoadInst *NewLoad = combineLoadToNewType(IC, LI, BC->getDestTy());
501       BC->replaceAllUsesWith(NewLoad);
502       IC.eraseInstFromFunction(*BC);
503       return &LI;
504     }
505 
506   // FIXME: We should also canonicalize loads of vectors when their elements are
507   // cast to other types.
508   return nullptr;
509 }
510 
511 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
512   // FIXME: We could probably with some care handle both volatile and atomic
513   // stores here but it isn't clear that this is important.
514   if (!LI.isSimple())
515     return nullptr;
516 
517   Type *T = LI.getType();
518   if (!T->isAggregateType())
519     return nullptr;
520 
521   assert(LI.getAlignment() && "Alignment must be set at this point");
522 
523   if (auto *ST = dyn_cast<StructType>(T)) {
524     // If the struct only have one element, we unpack.
525     unsigned Count = ST->getNumElements();
526     if (Count == 1) {
527       LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U),
528                                                ".unpack");
529       return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
530         UndefValue::get(T), NewLoad, 0, LI.getName()));
531     }
532 
533     // We don't want to break loads with padding here as we'd loose
534     // the knowledge that padding exists for the rest of the pipeline.
535     const DataLayout &DL = IC.getDataLayout();
536     auto *SL = DL.getStructLayout(ST);
537     if (SL->hasPadding())
538       return nullptr;
539 
540     auto Name = LI.getName();
541     SmallString<16> LoadName = Name;
542     LoadName += ".unpack";
543     SmallString<16> EltName = Name;
544     EltName += ".elt";
545     auto *Addr = LI.getPointerOperand();
546     Value *V = UndefValue::get(T);
547     auto *IdxType = Type::getInt32Ty(ST->getContext());
548     auto *Zero = ConstantInt::get(IdxType, 0);
549     for (unsigned i = 0; i < Count; i++) {
550       Value *Indices[2] = {
551         Zero,
552         ConstantInt::get(IdxType, i),
553       };
554       auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), EltName);
555       auto *L = IC.Builder->CreateLoad(ST->getTypeAtIndex(i), Ptr, LoadName);
556       V = IC.Builder->CreateInsertValue(V, L, i);
557     }
558 
559     V->setName(Name);
560     return IC.replaceInstUsesWith(LI, V);
561   }
562 
563   if (auto *AT = dyn_cast<ArrayType>(T)) {
564     // If the array only have one element, we unpack.
565     if (AT->getNumElements() == 1) {
566       LoadInst *NewLoad = combineLoadToNewType(IC, LI, AT->getElementType(),
567                                                ".unpack");
568       return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue(
569         UndefValue::get(T), NewLoad, 0, LI.getName()));
570     }
571   }
572 
573   return nullptr;
574 }
575 
576 // If we can determine that all possible objects pointed to by the provided
577 // pointer value are, not only dereferenceable, but also definitively less than
578 // or equal to the provided maximum size, then return true. Otherwise, return
579 // false (constant global values and allocas fall into this category).
580 //
581 // FIXME: This should probably live in ValueTracking (or similar).
582 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
583                                      const DataLayout &DL) {
584   SmallPtrSet<Value *, 4> Visited;
585   SmallVector<Value *, 4> Worklist(1, V);
586 
587   do {
588     Value *P = Worklist.pop_back_val();
589     P = P->stripPointerCasts();
590 
591     if (!Visited.insert(P).second)
592       continue;
593 
594     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
595       Worklist.push_back(SI->getTrueValue());
596       Worklist.push_back(SI->getFalseValue());
597       continue;
598     }
599 
600     if (PHINode *PN = dyn_cast<PHINode>(P)) {
601       for (Value *IncValue : PN->incoming_values())
602         Worklist.push_back(IncValue);
603       continue;
604     }
605 
606     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
607       if (GA->mayBeOverridden())
608         return false;
609       Worklist.push_back(GA->getAliasee());
610       continue;
611     }
612 
613     // If we know how big this object is, and it is less than MaxSize, continue
614     // searching. Otherwise, return false.
615     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
616       if (!AI->getAllocatedType()->isSized())
617         return false;
618 
619       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
620       if (!CS)
621         return false;
622 
623       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
624       // Make sure that, even if the multiplication below would wrap as an
625       // uint64_t, we still do the right thing.
626       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
627         return false;
628       continue;
629     }
630 
631     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
632       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
633         return false;
634 
635       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
636       if (InitSize > MaxSize)
637         return false;
638       continue;
639     }
640 
641     return false;
642   } while (!Worklist.empty());
643 
644   return true;
645 }
646 
647 // If we're indexing into an object of a known size, and the outer index is
648 // not a constant, but having any value but zero would lead to undefined
649 // behavior, replace it with zero.
650 //
651 // For example, if we have:
652 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
653 // ...
654 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
655 // ... = load i32* %arrayidx, align 4
656 // Then we know that we can replace %x in the GEP with i64 0.
657 //
658 // FIXME: We could fold any GEP index to zero that would cause UB if it were
659 // not zero. Currently, we only handle the first such index. Also, we could
660 // also search through non-zero constant indices if we kept track of the
661 // offsets those indices implied.
662 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
663                                      Instruction *MemI, unsigned &Idx) {
664   if (GEPI->getNumOperands() < 2)
665     return false;
666 
667   // Find the first non-zero index of a GEP. If all indices are zero, return
668   // one past the last index.
669   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
670     unsigned I = 1;
671     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
672       Value *V = GEPI->getOperand(I);
673       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
674         if (CI->isZero())
675           continue;
676 
677       break;
678     }
679 
680     return I;
681   };
682 
683   // Skip through initial 'zero' indices, and find the corresponding pointer
684   // type. See if the next index is not a constant.
685   Idx = FirstNZIdx(GEPI);
686   if (Idx == GEPI->getNumOperands())
687     return false;
688   if (isa<Constant>(GEPI->getOperand(Idx)))
689     return false;
690 
691   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
692   Type *AllocTy =
693     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
694   if (!AllocTy || !AllocTy->isSized())
695     return false;
696   const DataLayout &DL = IC.getDataLayout();
697   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
698 
699   // If there are more indices after the one we might replace with a zero, make
700   // sure they're all non-negative. If any of them are negative, the overall
701   // address being computed might be before the base address determined by the
702   // first non-zero index.
703   auto IsAllNonNegative = [&]() {
704     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
705       bool KnownNonNegative, KnownNegative;
706       IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative,
707                         KnownNegative, 0, MemI);
708       if (KnownNonNegative)
709         continue;
710       return false;
711     }
712 
713     return true;
714   };
715 
716   // FIXME: If the GEP is not inbounds, and there are extra indices after the
717   // one we'll replace, those could cause the address computation to wrap
718   // (rendering the IsAllNonNegative() check below insufficient). We can do
719   // better, ignoring zero indices (and other indices we can prove small
720   // enough not to wrap).
721   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
722     return false;
723 
724   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
725   // also known to be dereferenceable.
726   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
727          IsAllNonNegative();
728 }
729 
730 // If we're indexing into an object with a variable index for the memory
731 // access, but the object has only one element, we can assume that the index
732 // will always be zero. If we replace the GEP, return it.
733 template <typename T>
734 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
735                                           T &MemI) {
736   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
737     unsigned Idx;
738     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
739       Instruction *NewGEPI = GEPI->clone();
740       NewGEPI->setOperand(Idx,
741         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
742       NewGEPI->insertBefore(GEPI);
743       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
744       return NewGEPI;
745     }
746   }
747 
748   return nullptr;
749 }
750 
751 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
752   Value *Op = LI.getOperand(0);
753 
754   // Try to canonicalize the loaded type.
755   if (Instruction *Res = combineLoadToOperationType(*this, LI))
756     return Res;
757 
758   // Attempt to improve the alignment.
759   unsigned KnownAlign = getOrEnforceKnownAlignment(
760       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT);
761   unsigned LoadAlign = LI.getAlignment();
762   unsigned EffectiveLoadAlign =
763       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
764 
765   if (KnownAlign > EffectiveLoadAlign)
766     LI.setAlignment(KnownAlign);
767   else if (LoadAlign == 0)
768     LI.setAlignment(EffectiveLoadAlign);
769 
770   // Replace GEP indices if possible.
771   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
772       Worklist.Add(NewGEPI);
773       return &LI;
774   }
775 
776   // None of the following transforms are legal for volatile/atomic loads.
777   // FIXME: Some of it is okay for atomic loads; needs refactoring.
778   if (!LI.isSimple()) return nullptr;
779 
780   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
781     return Res;
782 
783   // Do really simple store-to-load forwarding and load CSE, to catch cases
784   // where there are several consecutive memory accesses to the same location,
785   // separated by a few arithmetic operations.
786   BasicBlock::iterator BBI(LI);
787   AAMDNodes AATags;
788   if (Value *AvailableVal =
789       FindAvailableLoadedValue(&LI, LI.getParent(), BBI,
790                                DefMaxInstsToScan, AA, &AATags)) {
791     if (LoadInst *NLI = dyn_cast<LoadInst>(AvailableVal)) {
792       unsigned KnownIDs[] = {
793           LLVMContext::MD_tbaa,            LLVMContext::MD_alias_scope,
794           LLVMContext::MD_noalias,         LLVMContext::MD_range,
795           LLVMContext::MD_invariant_load,  LLVMContext::MD_nonnull,
796           LLVMContext::MD_invariant_group, LLVMContext::MD_align,
797           LLVMContext::MD_dereferenceable,
798           LLVMContext::MD_dereferenceable_or_null};
799       combineMetadata(NLI, &LI, KnownIDs);
800     };
801 
802     return replaceInstUsesWith(
803         LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(),
804                                             LI.getName() + ".cast"));
805   }
806 
807   // load(gep null, ...) -> unreachable
808   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
809     const Value *GEPI0 = GEPI->getOperand(0);
810     // TODO: Consider a target hook for valid address spaces for this xform.
811     if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){
812       // Insert a new store to null instruction before the load to indicate
813       // that this code is not reachable.  We do this instead of inserting
814       // an unreachable instruction directly because we cannot modify the
815       // CFG.
816       new StoreInst(UndefValue::get(LI.getType()),
817                     Constant::getNullValue(Op->getType()), &LI);
818       return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
819     }
820   }
821 
822   // load null/undef -> unreachable
823   // TODO: Consider a target hook for valid address spaces for this xform.
824   if (isa<UndefValue>(Op) ||
825       (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) {
826     // Insert a new store to null instruction before the load to indicate that
827     // this code is not reachable.  We do this instead of inserting an
828     // unreachable instruction directly because we cannot modify the CFG.
829     new StoreInst(UndefValue::get(LI.getType()),
830                   Constant::getNullValue(Op->getType()), &LI);
831     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
832   }
833 
834   if (Op->hasOneUse()) {
835     // Change select and PHI nodes to select values instead of addresses: this
836     // helps alias analysis out a lot, allows many others simplifications, and
837     // exposes redundancy in the code.
838     //
839     // Note that we cannot do the transformation unless we know that the
840     // introduced loads cannot trap!  Something like this is valid as long as
841     // the condition is always false: load (select bool %C, int* null, int* %G),
842     // but it would not be valid if we transformed it to load from null
843     // unconditionally.
844     //
845     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
846       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
847       unsigned Align = LI.getAlignment();
848       if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, SI) &&
849           isSafeToLoadUnconditionally(SI->getOperand(2), Align, SI)) {
850         LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1),
851                                            SI->getOperand(1)->getName()+".val");
852         LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2),
853                                            SI->getOperand(2)->getName()+".val");
854         V1->setAlignment(Align);
855         V2->setAlignment(Align);
856         return SelectInst::Create(SI->getCondition(), V1, V2);
857       }
858 
859       // load (select (cond, null, P)) -> load P
860       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
861           LI.getPointerAddressSpace() == 0) {
862         LI.setOperand(0, SI->getOperand(2));
863         return &LI;
864       }
865 
866       // load (select (cond, P, null)) -> load P
867       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
868           LI.getPointerAddressSpace() == 0) {
869         LI.setOperand(0, SI->getOperand(1));
870         return &LI;
871       }
872     }
873   }
874   return nullptr;
875 }
876 
877 /// \brief Combine stores to match the type of value being stored.
878 ///
879 /// The core idea here is that the memory does not have any intrinsic type and
880 /// where we can we should match the type of a store to the type of value being
881 /// stored.
882 ///
883 /// However, this routine must never change the width of a store or the number of
884 /// stores as that would introduce a semantic change. This combine is expected to
885 /// be a semantic no-op which just allows stores to more closely model the types
886 /// of their incoming values.
887 ///
888 /// Currently, we also refuse to change the precise type used for an atomic or
889 /// volatile store. This is debatable, and might be reasonable to change later.
890 /// However, it is risky in case some backend or other part of LLVM is relying
891 /// on the exact type stored to select appropriate atomic operations.
892 ///
893 /// \returns true if the store was successfully combined away. This indicates
894 /// the caller must erase the store instruction. We have to let the caller erase
895 /// the store instruction as otherwise there is no way to signal whether it was
896 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
897 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
898   // FIXME: We could probably with some care handle both volatile and atomic
899   // stores here but it isn't clear that this is important.
900   if (!SI.isSimple())
901     return false;
902 
903   Value *V = SI.getValueOperand();
904 
905   // Fold away bit casts of the stored value by storing the original type.
906   if (auto *BC = dyn_cast<BitCastInst>(V)) {
907     V = BC->getOperand(0);
908     combineStoreToNewValue(IC, SI, V);
909     return true;
910   }
911 
912   // FIXME: We should also canonicalize loads of vectors when their elements are
913   // cast to other types.
914   return false;
915 }
916 
917 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
918   // FIXME: We could probably with some care handle both volatile and atomic
919   // stores here but it isn't clear that this is important.
920   if (!SI.isSimple())
921     return false;
922 
923   Value *V = SI.getValueOperand();
924   Type *T = V->getType();
925 
926   if (!T->isAggregateType())
927     return false;
928 
929   if (auto *ST = dyn_cast<StructType>(T)) {
930     // If the struct only have one element, we unpack.
931     unsigned Count = ST->getNumElements();
932     if (Count == 1) {
933       V = IC.Builder->CreateExtractValue(V, 0);
934       combineStoreToNewValue(IC, SI, V);
935       return true;
936     }
937 
938     // We don't want to break loads with padding here as we'd loose
939     // the knowledge that padding exists for the rest of the pipeline.
940     const DataLayout &DL = IC.getDataLayout();
941     auto *SL = DL.getStructLayout(ST);
942     if (SL->hasPadding())
943       return false;
944 
945     SmallString<16> EltName = V->getName();
946     EltName += ".elt";
947     auto *Addr = SI.getPointerOperand();
948     SmallString<16> AddrName = Addr->getName();
949     AddrName += ".repack";
950     auto *IdxType = Type::getInt32Ty(ST->getContext());
951     auto *Zero = ConstantInt::get(IdxType, 0);
952     for (unsigned i = 0; i < Count; i++) {
953       Value *Indices[2] = {
954         Zero,
955         ConstantInt::get(IdxType, i),
956       };
957       auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), AddrName);
958       auto *Val = IC.Builder->CreateExtractValue(V, i, EltName);
959       IC.Builder->CreateStore(Val, Ptr);
960     }
961 
962     return true;
963   }
964 
965   if (auto *AT = dyn_cast<ArrayType>(T)) {
966     // If the array only have one element, we unpack.
967     if (AT->getNumElements() == 1) {
968       V = IC.Builder->CreateExtractValue(V, 0);
969       combineStoreToNewValue(IC, SI, V);
970       return true;
971     }
972   }
973 
974   return false;
975 }
976 
977 /// equivalentAddressValues - Test if A and B will obviously have the same
978 /// value. This includes recognizing that %t0 and %t1 will have the same
979 /// value in code like this:
980 ///   %t0 = getelementptr \@a, 0, 3
981 ///   store i32 0, i32* %t0
982 ///   %t1 = getelementptr \@a, 0, 3
983 ///   %t2 = load i32* %t1
984 ///
985 static bool equivalentAddressValues(Value *A, Value *B) {
986   // Test if the values are trivially equivalent.
987   if (A == B) return true;
988 
989   // Test if the values come form identical arithmetic instructions.
990   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
991   // its only used to compare two uses within the same basic block, which
992   // means that they'll always either have the same value or one of them
993   // will have an undefined value.
994   if (isa<BinaryOperator>(A) ||
995       isa<CastInst>(A) ||
996       isa<PHINode>(A) ||
997       isa<GetElementPtrInst>(A))
998     if (Instruction *BI = dyn_cast<Instruction>(B))
999       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1000         return true;
1001 
1002   // Otherwise they may not be equivalent.
1003   return false;
1004 }
1005 
1006 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1007   Value *Val = SI.getOperand(0);
1008   Value *Ptr = SI.getOperand(1);
1009 
1010   // Try to canonicalize the stored type.
1011   if (combineStoreToValueType(*this, SI))
1012     return eraseInstFromFunction(SI);
1013 
1014   // Attempt to improve the alignment.
1015   unsigned KnownAlign = getOrEnforceKnownAlignment(
1016       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT);
1017   unsigned StoreAlign = SI.getAlignment();
1018   unsigned EffectiveStoreAlign =
1019       StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType());
1020 
1021   if (KnownAlign > EffectiveStoreAlign)
1022     SI.setAlignment(KnownAlign);
1023   else if (StoreAlign == 0)
1024     SI.setAlignment(EffectiveStoreAlign);
1025 
1026   // Try to canonicalize the stored type.
1027   if (unpackStoreToAggregate(*this, SI))
1028     return eraseInstFromFunction(SI);
1029 
1030   // Replace GEP indices if possible.
1031   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1032       Worklist.Add(NewGEPI);
1033       return &SI;
1034   }
1035 
1036   // Don't hack volatile/ordered stores.
1037   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1038   if (!SI.isUnordered()) return nullptr;
1039 
1040   // If the RHS is an alloca with a single use, zapify the store, making the
1041   // alloca dead.
1042   if (Ptr->hasOneUse()) {
1043     if (isa<AllocaInst>(Ptr))
1044       return eraseInstFromFunction(SI);
1045     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1046       if (isa<AllocaInst>(GEP->getOperand(0))) {
1047         if (GEP->getOperand(0)->hasOneUse())
1048           return eraseInstFromFunction(SI);
1049       }
1050     }
1051   }
1052 
1053   // Do really simple DSE, to catch cases where there are several consecutive
1054   // stores to the same location, separated by a few arithmetic operations. This
1055   // situation often occurs with bitfield accesses.
1056   BasicBlock::iterator BBI(SI);
1057   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1058        --ScanInsts) {
1059     --BBI;
1060     // Don't count debug info directives, lest they affect codegen,
1061     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1062     if (isa<DbgInfoIntrinsic>(BBI) ||
1063         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1064       ScanInsts++;
1065       continue;
1066     }
1067 
1068     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1069       // Prev store isn't volatile, and stores to the same location?
1070       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1071                                                         SI.getOperand(1))) {
1072         ++NumDeadStore;
1073         ++BBI;
1074         eraseInstFromFunction(*PrevSI);
1075         continue;
1076       }
1077       break;
1078     }
1079 
1080     // If this is a load, we have to stop.  However, if the loaded value is from
1081     // the pointer we're loading and is producing the pointer we're storing,
1082     // then *this* store is dead (X = load P; store X -> P).
1083     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1084       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1085         assert(SI.isUnordered() && "can't eliminate ordering operation");
1086         return eraseInstFromFunction(SI);
1087       }
1088 
1089       // Otherwise, this is a load from some other location.  Stores before it
1090       // may not be dead.
1091       break;
1092     }
1093 
1094     // Don't skip over loads or things that can modify memory.
1095     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory())
1096       break;
1097   }
1098 
1099   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1100   if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) {
1101     if (!isa<UndefValue>(Val)) {
1102       SI.setOperand(0, UndefValue::get(Val->getType()));
1103       if (Instruction *U = dyn_cast<Instruction>(Val))
1104         Worklist.Add(U);  // Dropped a use.
1105     }
1106     return nullptr;  // Do not modify these!
1107   }
1108 
1109   // store undef, Ptr -> noop
1110   if (isa<UndefValue>(Val))
1111     return eraseInstFromFunction(SI);
1112 
1113   // The code below needs to be audited and adjusted for unordered atomics
1114   if (!SI.isSimple())
1115     return nullptr;
1116 
1117   // If this store is the last instruction in the basic block (possibly
1118   // excepting debug info instructions), and if the block ends with an
1119   // unconditional branch, try to move it to the successor block.
1120   BBI = SI.getIterator();
1121   do {
1122     ++BBI;
1123   } while (isa<DbgInfoIntrinsic>(BBI) ||
1124            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1125   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1126     if (BI->isUnconditional())
1127       if (SimplifyStoreAtEndOfBlock(SI))
1128         return nullptr;  // xform done!
1129 
1130   return nullptr;
1131 }
1132 
1133 /// SimplifyStoreAtEndOfBlock - Turn things like:
1134 ///   if () { *P = v1; } else { *P = v2 }
1135 /// into a phi node with a store in the successor.
1136 ///
1137 /// Simplify things like:
1138 ///   *P = v1; if () { *P = v2; }
1139 /// into a phi node with a store in the successor.
1140 ///
1141 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
1142   BasicBlock *StoreBB = SI.getParent();
1143 
1144   // Check to see if the successor block has exactly two incoming edges.  If
1145   // so, see if the other predecessor contains a store to the same location.
1146   // if so, insert a PHI node (if needed) and move the stores down.
1147   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1148 
1149   // Determine whether Dest has exactly two predecessors and, if so, compute
1150   // the other predecessor.
1151   pred_iterator PI = pred_begin(DestBB);
1152   BasicBlock *P = *PI;
1153   BasicBlock *OtherBB = nullptr;
1154 
1155   if (P != StoreBB)
1156     OtherBB = P;
1157 
1158   if (++PI == pred_end(DestBB))
1159     return false;
1160 
1161   P = *PI;
1162   if (P != StoreBB) {
1163     if (OtherBB)
1164       return false;
1165     OtherBB = P;
1166   }
1167   if (++PI != pred_end(DestBB))
1168     return false;
1169 
1170   // Bail out if all the relevant blocks aren't distinct (this can happen,
1171   // for example, if SI is in an infinite loop)
1172   if (StoreBB == DestBB || OtherBB == DestBB)
1173     return false;
1174 
1175   // Verify that the other block ends in a branch and is not otherwise empty.
1176   BasicBlock::iterator BBI(OtherBB->getTerminator());
1177   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1178   if (!OtherBr || BBI == OtherBB->begin())
1179     return false;
1180 
1181   // If the other block ends in an unconditional branch, check for the 'if then
1182   // else' case.  there is an instruction before the branch.
1183   StoreInst *OtherStore = nullptr;
1184   if (OtherBr->isUnconditional()) {
1185     --BBI;
1186     // Skip over debugging info.
1187     while (isa<DbgInfoIntrinsic>(BBI) ||
1188            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1189       if (BBI==OtherBB->begin())
1190         return false;
1191       --BBI;
1192     }
1193     // If this isn't a store, isn't a store to the same location, or is not the
1194     // right kind of store, bail out.
1195     OtherStore = dyn_cast<StoreInst>(BBI);
1196     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1197         !SI.isSameOperationAs(OtherStore))
1198       return false;
1199   } else {
1200     // Otherwise, the other block ended with a conditional branch. If one of the
1201     // destinations is StoreBB, then we have the if/then case.
1202     if (OtherBr->getSuccessor(0) != StoreBB &&
1203         OtherBr->getSuccessor(1) != StoreBB)
1204       return false;
1205 
1206     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1207     // if/then triangle.  See if there is a store to the same ptr as SI that
1208     // lives in OtherBB.
1209     for (;; --BBI) {
1210       // Check to see if we find the matching store.
1211       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1212         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1213             !SI.isSameOperationAs(OtherStore))
1214           return false;
1215         break;
1216       }
1217       // If we find something that may be using or overwriting the stored
1218       // value, or if we run out of instructions, we can't do the xform.
1219       if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() ||
1220           BBI == OtherBB->begin())
1221         return false;
1222     }
1223 
1224     // In order to eliminate the store in OtherBr, we have to
1225     // make sure nothing reads or overwrites the stored value in
1226     // StoreBB.
1227     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1228       // FIXME: This should really be AA driven.
1229       if (I->mayReadFromMemory() || I->mayWriteToMemory())
1230         return false;
1231     }
1232   }
1233 
1234   // Insert a PHI node now if we need it.
1235   Value *MergedVal = OtherStore->getOperand(0);
1236   if (MergedVal != SI.getOperand(0)) {
1237     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1238     PN->addIncoming(SI.getOperand(0), SI.getParent());
1239     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1240     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1241   }
1242 
1243   // Advance to a place where it is safe to insert the new store and
1244   // insert it.
1245   BBI = DestBB->getFirstInsertionPt();
1246   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1),
1247                                    SI.isVolatile(),
1248                                    SI.getAlignment(),
1249                                    SI.getOrdering(),
1250                                    SI.getSynchScope());
1251   InsertNewInstBefore(NewSI, *BBI);
1252   NewSI->setDebugLoc(OtherStore->getDebugLoc());
1253 
1254   // If the two stores had AA tags, merge them.
1255   AAMDNodes AATags;
1256   SI.getAAMetadata(AATags);
1257   if (AATags) {
1258     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1259     NewSI->setAAMetadata(AATags);
1260   }
1261 
1262   // Nuke the old stores.
1263   eraseInstFromFunction(SI);
1264   eraseInstFromFunction(*OtherStore);
1265   return true;
1266 }
1267