1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 36 37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 38 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 39 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 41 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 42 /// the alloca, and if the source pointer is a pointer to a constant global, we 43 /// can optimize this. 44 static bool 45 isOnlyCopiedFromConstantMemory(AAResults *AA, 46 Value *V, MemTransferInst *&TheCopy, 47 SmallVectorImpl<Instruction *> &ToDelete) { 48 // We track lifetime intrinsics as we encounter them. If we decide to go 49 // ahead and replace the value with the global, this lets the caller quickly 50 // eliminate the markers. 51 52 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 53 ValuesToInspect.emplace_back(V, false); 54 while (!ValuesToInspect.empty()) { 55 auto ValuePair = ValuesToInspect.pop_back_val(); 56 const bool IsOffset = ValuePair.second; 57 for (auto &U : ValuePair.first->uses()) { 58 auto *I = cast<Instruction>(U.getUser()); 59 60 if (auto *LI = dyn_cast<LoadInst>(I)) { 61 // Ignore non-volatile loads, they are always ok. 62 if (!LI->isSimple()) return false; 63 continue; 64 } 65 66 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 67 // If uses of the bitcast are ok, we are ok. 68 ValuesToInspect.emplace_back(I, IsOffset); 69 continue; 70 } 71 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 72 // If the GEP has all zero indices, it doesn't offset the pointer. If it 73 // doesn't, it does. 74 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 75 continue; 76 } 77 78 if (auto *Call = dyn_cast<CallBase>(I)) { 79 // If this is the function being called then we treat it like a load and 80 // ignore it. 81 if (Call->isCallee(&U)) 82 continue; 83 84 unsigned DataOpNo = Call->getDataOperandNo(&U); 85 bool IsArgOperand = Call->isArgOperand(&U); 86 87 // Inalloca arguments are clobbered by the call. 88 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 89 return false; 90 91 // If this is a readonly/readnone call site, then we know it is just a 92 // load (but one that potentially returns the value itself), so we can 93 // ignore it if we know that the value isn't captured. 94 if (Call->onlyReadsMemory() && 95 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 96 continue; 97 98 // If this is being passed as a byval argument, the caller is making a 99 // copy, so it is only a read of the alloca. 100 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 101 continue; 102 } 103 104 // Lifetime intrinsics can be handled by the caller. 105 if (I->isLifetimeStartOrEnd()) { 106 assert(I->use_empty() && "Lifetime markers have no result to use!"); 107 ToDelete.push_back(I); 108 continue; 109 } 110 111 // If this is isn't our memcpy/memmove, reject it as something we can't 112 // handle. 113 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 114 if (!MI) 115 return false; 116 117 // If the transfer is using the alloca as a source of the transfer, then 118 // ignore it since it is a load (unless the transfer is volatile). 119 if (U.getOperandNo() == 1) { 120 if (MI->isVolatile()) return false; 121 continue; 122 } 123 124 // If we already have seen a copy, reject the second one. 125 if (TheCopy) return false; 126 127 // If the pointer has been offset from the start of the alloca, we can't 128 // safely handle this. 129 if (IsOffset) return false; 130 131 // If the memintrinsic isn't using the alloca as the dest, reject it. 132 if (U.getOperandNo() != 0) return false; 133 134 // If the source of the memcpy/move is not a constant global, reject it. 135 if (!AA->pointsToConstantMemory(MI->getSource())) 136 return false; 137 138 // Otherwise, the transform is safe. Remember the copy instruction. 139 TheCopy = MI; 140 } 141 } 142 return true; 143 } 144 145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 146 /// modified by a copy from a constant global. If we can prove this, we can 147 /// replace any uses of the alloca with uses of the global directly. 148 static MemTransferInst * 149 isOnlyCopiedFromConstantMemory(AAResults *AA, 150 AllocaInst *AI, 151 SmallVectorImpl<Instruction *> &ToDelete) { 152 MemTransferInst *TheCopy = nullptr; 153 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) 154 return TheCopy; 155 return nullptr; 156 } 157 158 /// Returns true if V is dereferenceable for size of alloca. 159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 160 const DataLayout &DL) { 161 if (AI->isArrayAllocation()) 162 return false; 163 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 164 if (!AllocaSize) 165 return false; 166 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()), 167 APInt(64, AllocaSize), DL); 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC, 171 AllocaInst &AI) { 172 // Check for array size of 1 (scalar allocation). 173 if (!AI.isArrayAllocation()) { 174 // i32 1 is the canonical array size for scalar allocations. 175 if (AI.getArraySize()->getType()->isIntegerTy(32)) 176 return nullptr; 177 178 // Canonicalize it. 179 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); 180 } 181 182 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 183 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 184 if (C->getValue().getActiveBits() <= 64) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 187 New->setAlignment(AI.getAlign()); 188 189 // Scan to the end of the allocation instructions, to skip over a block of 190 // allocas if possible...also skip interleaved debug info 191 // 192 BasicBlock::iterator It(New); 193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 194 ++It; 195 196 // Now that I is pointing to the first non-allocation-inst in the block, 197 // insert our getelementptr instruction... 198 // 199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 200 Value *NullIdx = Constant::getNullValue(IdxTy); 201 Value *Idx[2] = {NullIdx, NullIdx}; 202 Instruction *NewI = GetElementPtrInst::CreateInBounds( 203 NewTy, New, Idx, New->getName() + ".sub"); 204 IC.InsertNewInstBefore(NewI, *It); 205 206 // Gracefully handle allocas in other address spaces. 207 if (AI.getType()->getPointerAddressSpace() != 208 NewI->getType()->getPointerAddressSpace()) { 209 NewI = 210 CastInst::CreatePointerBitCastOrAddrSpaceCast(NewI, AI.getType()); 211 IC.InsertNewInstBefore(NewI, *It); 212 } 213 214 // Now make everything use the getelementptr instead of the original 215 // allocation. 216 return IC.replaceInstUsesWith(AI, NewI); 217 } 218 } 219 220 if (isa<UndefValue>(AI.getArraySize())) 221 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 222 223 // Ensure that the alloca array size argument has type intptr_t, so that 224 // any casting is exposed early. 225 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 226 if (AI.getArraySize()->getType() != IntPtrTy) { 227 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 228 return IC.replaceOperand(AI, 0, V); 229 } 230 231 return nullptr; 232 } 233 234 namespace { 235 // If I and V are pointers in different address space, it is not allowed to 236 // use replaceAllUsesWith since I and V have different types. A 237 // non-target-specific transformation should not use addrspacecast on V since 238 // the two address space may be disjoint depending on target. 239 // 240 // This class chases down uses of the old pointer until reaching the load 241 // instructions, then replaces the old pointer in the load instructions with 242 // the new pointer. If during the chasing it sees bitcast or GEP, it will 243 // create new bitcast or GEP with the new pointer and use them in the load 244 // instruction. 245 class PointerReplacer { 246 public: 247 PointerReplacer(InstCombinerImpl &IC) : IC(IC) {} 248 249 bool collectUsers(Instruction &I); 250 void replacePointer(Instruction &I, Value *V); 251 252 private: 253 void replace(Instruction *I); 254 Value *getReplacement(Value *I); 255 256 SmallSetVector<Instruction *, 4> Worklist; 257 MapVector<Value *, Value *> WorkMap; 258 InstCombinerImpl &IC; 259 }; 260 } // end anonymous namespace 261 262 bool PointerReplacer::collectUsers(Instruction &I) { 263 for (auto U : I.users()) { 264 Instruction *Inst = cast<Instruction>(&*U); 265 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 266 if (Load->isVolatile()) 267 return false; 268 Worklist.insert(Load); 269 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 270 Worklist.insert(Inst); 271 if (!collectUsers(*Inst)) 272 return false; 273 } else if (isa<MemTransferInst>(Inst)) { 274 Worklist.insert(Inst); 275 } else if (Inst->isLifetimeStartOrEnd()) { 276 continue; 277 } else { 278 LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n'); 279 return false; 280 } 281 } 282 283 return true; 284 } 285 286 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); } 287 288 void PointerReplacer::replace(Instruction *I) { 289 if (getReplacement(I)) 290 return; 291 292 if (auto *LT = dyn_cast<LoadInst>(I)) { 293 auto *V = getReplacement(LT->getPointerOperand()); 294 assert(V && "Operand not replaced"); 295 auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(), 296 LT->getAlign(), LT->getOrdering(), 297 LT->getSyncScopeID()); 298 NewI->takeName(LT); 299 copyMetadataForLoad(*NewI, *LT); 300 301 IC.InsertNewInstWith(NewI, *LT); 302 IC.replaceInstUsesWith(*LT, NewI); 303 WorkMap[LT] = NewI; 304 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 305 auto *V = getReplacement(GEP->getPointerOperand()); 306 assert(V && "Operand not replaced"); 307 SmallVector<Value *, 8> Indices; 308 Indices.append(GEP->idx_begin(), GEP->idx_end()); 309 auto *NewI = GetElementPtrInst::Create( 310 V->getType()->getPointerElementType(), V, Indices); 311 IC.InsertNewInstWith(NewI, *GEP); 312 NewI->takeName(GEP); 313 WorkMap[GEP] = NewI; 314 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 315 auto *V = getReplacement(BC->getOperand(0)); 316 assert(V && "Operand not replaced"); 317 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 318 V->getType()->getPointerAddressSpace()); 319 auto *NewI = new BitCastInst(V, NewT); 320 IC.InsertNewInstWith(NewI, *BC); 321 NewI->takeName(BC); 322 WorkMap[BC] = NewI; 323 } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) { 324 auto *SrcV = getReplacement(MemCpy->getRawSource()); 325 // The pointer may appear in the destination of a copy, but we don't want to 326 // replace it. 327 if (!SrcV) { 328 assert(getReplacement(MemCpy->getRawDest()) && 329 "destination not in replace list"); 330 return; 331 } 332 333 IC.Builder.SetInsertPoint(MemCpy); 334 auto *NewI = IC.Builder.CreateMemTransferInst( 335 MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(), 336 SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(), 337 MemCpy->isVolatile()); 338 AAMDNodes AAMD; 339 MemCpy->getAAMetadata(AAMD); 340 if (AAMD) 341 NewI->setAAMetadata(AAMD); 342 343 IC.eraseInstFromFunction(*MemCpy); 344 WorkMap[MemCpy] = NewI; 345 } else { 346 llvm_unreachable("should never reach here"); 347 } 348 } 349 350 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 351 #ifndef NDEBUG 352 auto *PT = cast<PointerType>(I.getType()); 353 auto *NT = cast<PointerType>(V->getType()); 354 assert(PT != NT && PT->getElementType() == NT->getElementType() && 355 "Invalid usage"); 356 #endif 357 WorkMap[&I] = V; 358 359 for (Instruction *Workitem : Worklist) 360 replace(Workitem); 361 } 362 363 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) { 364 if (auto *I = simplifyAllocaArraySize(*this, AI)) 365 return I; 366 367 if (AI.getAllocatedType()->isSized()) { 368 // Move all alloca's of zero byte objects to the entry block and merge them 369 // together. Note that we only do this for alloca's, because malloc should 370 // allocate and return a unique pointer, even for a zero byte allocation. 371 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) { 372 // For a zero sized alloca there is no point in doing an array allocation. 373 // This is helpful if the array size is a complicated expression not used 374 // elsewhere. 375 if (AI.isArrayAllocation()) 376 return replaceOperand(AI, 0, 377 ConstantInt::get(AI.getArraySize()->getType(), 1)); 378 379 // Get the first instruction in the entry block. 380 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 381 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 382 if (FirstInst != &AI) { 383 // If the entry block doesn't start with a zero-size alloca then move 384 // this one to the start of the entry block. There is no problem with 385 // dominance as the array size was forced to a constant earlier already. 386 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 387 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 388 DL.getTypeAllocSize(EntryAI->getAllocatedType()) 389 .getKnownMinSize() != 0) { 390 AI.moveBefore(FirstInst); 391 return &AI; 392 } 393 394 // Replace this zero-sized alloca with the one at the start of the entry 395 // block after ensuring that the address will be aligned enough for both 396 // types. 397 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); 398 EntryAI->setAlignment(MaxAlign); 399 if (AI.getType() != EntryAI->getType()) 400 return new BitCastInst(EntryAI, AI.getType()); 401 return replaceInstUsesWith(AI, EntryAI); 402 } 403 } 404 } 405 406 // Check to see if this allocation is only modified by a memcpy/memmove from 407 // a constant whose alignment is equal to or exceeds that of the allocation. 408 // If this is the case, we can change all users to use the constant global 409 // instead. This is commonly produced by the CFE by constructs like "void 410 // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently 411 // read. 412 SmallVector<Instruction *, 4> ToDelete; 413 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { 414 Value *TheSrc = Copy->getSource(); 415 Align AllocaAlign = AI.getAlign(); 416 Align SourceAlign = getOrEnforceKnownAlignment( 417 TheSrc, AllocaAlign, DL, &AI, &AC, &DT); 418 if (AllocaAlign <= SourceAlign && 419 isDereferenceableForAllocaSize(TheSrc, &AI, DL) && 420 !isa<Instruction>(TheSrc)) { 421 // FIXME: Can we sink instructions without violating dominance when TheSrc 422 // is an instruction instead of a constant or argument? 423 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 424 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 425 unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace(); 426 auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace); 427 if (AI.getType()->getAddressSpace() == SrcAddrSpace) { 428 for (Instruction *Delete : ToDelete) 429 eraseInstFromFunction(*Delete); 430 431 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 432 Instruction *NewI = replaceInstUsesWith(AI, Cast); 433 eraseInstFromFunction(*Copy); 434 ++NumGlobalCopies; 435 return NewI; 436 } 437 438 PointerReplacer PtrReplacer(*this); 439 if (PtrReplacer.collectUsers(AI)) { 440 for (Instruction *Delete : ToDelete) 441 eraseInstFromFunction(*Delete); 442 443 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 444 PtrReplacer.replacePointer(AI, Cast); 445 ++NumGlobalCopies; 446 } 447 } 448 } 449 450 // At last, use the generic allocation site handler to aggressively remove 451 // unused allocas. 452 return visitAllocSite(AI); 453 } 454 455 // Are we allowed to form a atomic load or store of this type? 456 static bool isSupportedAtomicType(Type *Ty) { 457 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 458 } 459 460 /// Helper to combine a load to a new type. 461 /// 462 /// This just does the work of combining a load to a new type. It handles 463 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 464 /// loaded *value* type. This will convert it to a pointer, cast the operand to 465 /// that pointer type, load it, etc. 466 /// 467 /// Note that this will create all of the instructions with whatever insert 468 /// point the \c InstCombinerImpl currently is using. 469 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy, 470 const Twine &Suffix) { 471 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 472 "can't fold an atomic load to requested type"); 473 474 Value *Ptr = LI.getPointerOperand(); 475 unsigned AS = LI.getPointerAddressSpace(); 476 Type *NewPtrTy = NewTy->getPointerTo(AS); 477 Value *NewPtr = nullptr; 478 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 479 NewPtr->getType() == NewPtrTy)) 480 NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy); 481 482 LoadInst *NewLoad = Builder.CreateAlignedLoad( 483 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); 484 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 485 copyMetadataForLoad(*NewLoad, LI); 486 return NewLoad; 487 } 488 489 /// Combine a store to a new type. 490 /// 491 /// Returns the newly created store instruction. 492 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI, 493 Value *V) { 494 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 495 "can't fold an atomic store of requested type"); 496 497 Value *Ptr = SI.getPointerOperand(); 498 unsigned AS = SI.getPointerAddressSpace(); 499 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 500 SI.getAllMetadata(MD); 501 502 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 503 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 504 SI.getAlign(), SI.isVolatile()); 505 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 506 for (const auto &MDPair : MD) { 507 unsigned ID = MDPair.first; 508 MDNode *N = MDPair.second; 509 // Note, essentially every kind of metadata should be preserved here! This 510 // routine is supposed to clone a store instruction changing *only its 511 // type*. The only metadata it makes sense to drop is metadata which is 512 // invalidated when the pointer type changes. This should essentially 513 // never be the case in LLVM, but we explicitly switch over only known 514 // metadata to be conservatively correct. If you are adding metadata to 515 // LLVM which pertains to stores, you almost certainly want to add it 516 // here. 517 switch (ID) { 518 case LLVMContext::MD_dbg: 519 case LLVMContext::MD_tbaa: 520 case LLVMContext::MD_prof: 521 case LLVMContext::MD_fpmath: 522 case LLVMContext::MD_tbaa_struct: 523 case LLVMContext::MD_alias_scope: 524 case LLVMContext::MD_noalias: 525 case LLVMContext::MD_nontemporal: 526 case LLVMContext::MD_mem_parallel_loop_access: 527 case LLVMContext::MD_access_group: 528 // All of these directly apply. 529 NewStore->setMetadata(ID, N); 530 break; 531 case LLVMContext::MD_invariant_load: 532 case LLVMContext::MD_nonnull: 533 case LLVMContext::MD_noundef: 534 case LLVMContext::MD_range: 535 case LLVMContext::MD_align: 536 case LLVMContext::MD_dereferenceable: 537 case LLVMContext::MD_dereferenceable_or_null: 538 // These don't apply for stores. 539 break; 540 } 541 } 542 543 return NewStore; 544 } 545 546 /// Returns true if instruction represent minmax pattern like: 547 /// select ((cmp load V1, load V2), V1, V2). 548 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 549 assert(V->getType()->isPointerTy() && "Expected pointer type."); 550 // Ignore possible ty* to ixx* bitcast. 551 V = InstCombiner::peekThroughBitcast(V); 552 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 553 // pattern. 554 CmpInst::Predicate Pred; 555 Instruction *L1; 556 Instruction *L2; 557 Value *LHS; 558 Value *RHS; 559 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 560 m_Value(LHS), m_Value(RHS)))) 561 return false; 562 LoadTy = L1->getType(); 563 return (match(L1, m_Load(m_Specific(LHS))) && 564 match(L2, m_Load(m_Specific(RHS)))) || 565 (match(L1, m_Load(m_Specific(RHS))) && 566 match(L2, m_Load(m_Specific(LHS)))); 567 } 568 569 /// Combine loads to match the type of their uses' value after looking 570 /// through intervening bitcasts. 571 /// 572 /// The core idea here is that if the result of a load is used in an operation, 573 /// we should load the type most conducive to that operation. For example, when 574 /// loading an integer and converting that immediately to a pointer, we should 575 /// instead directly load a pointer. 576 /// 577 /// However, this routine must never change the width of a load or the number of 578 /// loads as that would introduce a semantic change. This combine is expected to 579 /// be a semantic no-op which just allows loads to more closely model the types 580 /// of their consuming operations. 581 /// 582 /// Currently, we also refuse to change the precise type used for an atomic load 583 /// or a volatile load. This is debatable, and might be reasonable to change 584 /// later. However, it is risky in case some backend or other part of LLVM is 585 /// relying on the exact type loaded to select appropriate atomic operations. 586 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC, 587 LoadInst &LI) { 588 // FIXME: We could probably with some care handle both volatile and ordered 589 // atomic loads here but it isn't clear that this is important. 590 if (!LI.isUnordered()) 591 return nullptr; 592 593 if (LI.use_empty()) 594 return nullptr; 595 596 // swifterror values can't be bitcasted. 597 if (LI.getPointerOperand()->isSwiftError()) 598 return nullptr; 599 600 const DataLayout &DL = IC.getDataLayout(); 601 602 // Fold away bit casts of the loaded value by loading the desired type. 603 // Note that we should not do this for pointer<->integer casts, 604 // because that would result in type punning. 605 if (LI.hasOneUse()) { 606 // Don't transform when the type is x86_amx, it makes the pass that lower 607 // x86_amx type happy. 608 if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) { 609 assert(!LI.getType()->isX86_AMXTy() && 610 "load from x86_amx* should not happen!"); 611 if (BC->getType()->isX86_AMXTy()) 612 return nullptr; 613 } 614 615 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 616 if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() == 617 CI->getDestTy()->isPtrOrPtrVectorTy()) 618 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 619 LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy()); 620 CI->replaceAllUsesWith(NewLoad); 621 IC.eraseInstFromFunction(*CI); 622 return &LI; 623 } 624 } 625 626 // FIXME: We should also canonicalize loads of vectors when their elements are 627 // cast to other types. 628 return nullptr; 629 } 630 631 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) { 632 // FIXME: We could probably with some care handle both volatile and atomic 633 // stores here but it isn't clear that this is important. 634 if (!LI.isSimple()) 635 return nullptr; 636 637 Type *T = LI.getType(); 638 if (!T->isAggregateType()) 639 return nullptr; 640 641 StringRef Name = LI.getName(); 642 assert(LI.getAlignment() && "Alignment must be set at this point"); 643 644 if (auto *ST = dyn_cast<StructType>(T)) { 645 // If the struct only have one element, we unpack. 646 auto NumElements = ST->getNumElements(); 647 if (NumElements == 1) { 648 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 649 ".unpack"); 650 AAMDNodes AAMD; 651 LI.getAAMetadata(AAMD); 652 NewLoad->setAAMetadata(AAMD); 653 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 654 UndefValue::get(T), NewLoad, 0, Name)); 655 } 656 657 // We don't want to break loads with padding here as we'd loose 658 // the knowledge that padding exists for the rest of the pipeline. 659 const DataLayout &DL = IC.getDataLayout(); 660 auto *SL = DL.getStructLayout(ST); 661 if (SL->hasPadding()) 662 return nullptr; 663 664 const auto Align = LI.getAlign(); 665 auto *Addr = LI.getPointerOperand(); 666 auto *IdxType = Type::getInt32Ty(T->getContext()); 667 auto *Zero = ConstantInt::get(IdxType, 0); 668 669 Value *V = UndefValue::get(T); 670 for (unsigned i = 0; i < NumElements; i++) { 671 Value *Indices[2] = { 672 Zero, 673 ConstantInt::get(IdxType, i), 674 }; 675 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 676 Name + ".elt"); 677 auto *L = IC.Builder.CreateAlignedLoad( 678 ST->getElementType(i), Ptr, 679 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); 680 // Propagate AA metadata. It'll still be valid on the narrowed load. 681 AAMDNodes AAMD; 682 LI.getAAMetadata(AAMD); 683 L->setAAMetadata(AAMD); 684 V = IC.Builder.CreateInsertValue(V, L, i); 685 } 686 687 V->setName(Name); 688 return IC.replaceInstUsesWith(LI, V); 689 } 690 691 if (auto *AT = dyn_cast<ArrayType>(T)) { 692 auto *ET = AT->getElementType(); 693 auto NumElements = AT->getNumElements(); 694 if (NumElements == 1) { 695 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 696 AAMDNodes AAMD; 697 LI.getAAMetadata(AAMD); 698 NewLoad->setAAMetadata(AAMD); 699 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 700 UndefValue::get(T), NewLoad, 0, Name)); 701 } 702 703 // Bail out if the array is too large. Ideally we would like to optimize 704 // arrays of arbitrary size but this has a terrible impact on compile time. 705 // The threshold here is chosen arbitrarily, maybe needs a little bit of 706 // tuning. 707 if (NumElements > IC.MaxArraySizeForCombine) 708 return nullptr; 709 710 const DataLayout &DL = IC.getDataLayout(); 711 auto EltSize = DL.getTypeAllocSize(ET); 712 const auto Align = LI.getAlign(); 713 714 auto *Addr = LI.getPointerOperand(); 715 auto *IdxType = Type::getInt64Ty(T->getContext()); 716 auto *Zero = ConstantInt::get(IdxType, 0); 717 718 Value *V = UndefValue::get(T); 719 uint64_t Offset = 0; 720 for (uint64_t i = 0; i < NumElements; i++) { 721 Value *Indices[2] = { 722 Zero, 723 ConstantInt::get(IdxType, i), 724 }; 725 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 726 Name + ".elt"); 727 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, 728 commonAlignment(Align, Offset), 729 Name + ".unpack"); 730 AAMDNodes AAMD; 731 LI.getAAMetadata(AAMD); 732 L->setAAMetadata(AAMD); 733 V = IC.Builder.CreateInsertValue(V, L, i); 734 Offset += EltSize; 735 } 736 737 V->setName(Name); 738 return IC.replaceInstUsesWith(LI, V); 739 } 740 741 return nullptr; 742 } 743 744 // If we can determine that all possible objects pointed to by the provided 745 // pointer value are, not only dereferenceable, but also definitively less than 746 // or equal to the provided maximum size, then return true. Otherwise, return 747 // false (constant global values and allocas fall into this category). 748 // 749 // FIXME: This should probably live in ValueTracking (or similar). 750 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 751 const DataLayout &DL) { 752 SmallPtrSet<Value *, 4> Visited; 753 SmallVector<Value *, 4> Worklist(1, V); 754 755 do { 756 Value *P = Worklist.pop_back_val(); 757 P = P->stripPointerCasts(); 758 759 if (!Visited.insert(P).second) 760 continue; 761 762 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 763 Worklist.push_back(SI->getTrueValue()); 764 Worklist.push_back(SI->getFalseValue()); 765 continue; 766 } 767 768 if (PHINode *PN = dyn_cast<PHINode>(P)) { 769 append_range(Worklist, PN->incoming_values()); 770 continue; 771 } 772 773 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 774 if (GA->isInterposable()) 775 return false; 776 Worklist.push_back(GA->getAliasee()); 777 continue; 778 } 779 780 // If we know how big this object is, and it is less than MaxSize, continue 781 // searching. Otherwise, return false. 782 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 783 if (!AI->getAllocatedType()->isSized()) 784 return false; 785 786 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 787 if (!CS) 788 return false; 789 790 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 791 // Make sure that, even if the multiplication below would wrap as an 792 // uint64_t, we still do the right thing. 793 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 794 return false; 795 continue; 796 } 797 798 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 799 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 800 return false; 801 802 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 803 if (InitSize > MaxSize) 804 return false; 805 continue; 806 } 807 808 return false; 809 } while (!Worklist.empty()); 810 811 return true; 812 } 813 814 // If we're indexing into an object of a known size, and the outer index is 815 // not a constant, but having any value but zero would lead to undefined 816 // behavior, replace it with zero. 817 // 818 // For example, if we have: 819 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 820 // ... 821 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 822 // ... = load i32* %arrayidx, align 4 823 // Then we know that we can replace %x in the GEP with i64 0. 824 // 825 // FIXME: We could fold any GEP index to zero that would cause UB if it were 826 // not zero. Currently, we only handle the first such index. Also, we could 827 // also search through non-zero constant indices if we kept track of the 828 // offsets those indices implied. 829 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC, 830 GetElementPtrInst *GEPI, Instruction *MemI, 831 unsigned &Idx) { 832 if (GEPI->getNumOperands() < 2) 833 return false; 834 835 // Find the first non-zero index of a GEP. If all indices are zero, return 836 // one past the last index. 837 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 838 unsigned I = 1; 839 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 840 Value *V = GEPI->getOperand(I); 841 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 842 if (CI->isZero()) 843 continue; 844 845 break; 846 } 847 848 return I; 849 }; 850 851 // Skip through initial 'zero' indices, and find the corresponding pointer 852 // type. See if the next index is not a constant. 853 Idx = FirstNZIdx(GEPI); 854 if (Idx == GEPI->getNumOperands()) 855 return false; 856 if (isa<Constant>(GEPI->getOperand(Idx))) 857 return false; 858 859 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 860 Type *SourceElementType = GEPI->getSourceElementType(); 861 // Size information about scalable vectors is not available, so we cannot 862 // deduce whether indexing at n is undefined behaviour or not. Bail out. 863 if (isa<ScalableVectorType>(SourceElementType)) 864 return false; 865 866 Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops); 867 if (!AllocTy || !AllocTy->isSized()) 868 return false; 869 const DataLayout &DL = IC.getDataLayout(); 870 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize(); 871 872 // If there are more indices after the one we might replace with a zero, make 873 // sure they're all non-negative. If any of them are negative, the overall 874 // address being computed might be before the base address determined by the 875 // first non-zero index. 876 auto IsAllNonNegative = [&]() { 877 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 878 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 879 if (Known.isNonNegative()) 880 continue; 881 return false; 882 } 883 884 return true; 885 }; 886 887 // FIXME: If the GEP is not inbounds, and there are extra indices after the 888 // one we'll replace, those could cause the address computation to wrap 889 // (rendering the IsAllNonNegative() check below insufficient). We can do 890 // better, ignoring zero indices (and other indices we can prove small 891 // enough not to wrap). 892 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 893 return false; 894 895 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 896 // also known to be dereferenceable. 897 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 898 IsAllNonNegative(); 899 } 900 901 // If we're indexing into an object with a variable index for the memory 902 // access, but the object has only one element, we can assume that the index 903 // will always be zero. If we replace the GEP, return it. 904 template <typename T> 905 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr, 906 T &MemI) { 907 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 908 unsigned Idx; 909 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 910 Instruction *NewGEPI = GEPI->clone(); 911 NewGEPI->setOperand(Idx, 912 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 913 NewGEPI->insertBefore(GEPI); 914 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 915 return NewGEPI; 916 } 917 } 918 919 return nullptr; 920 } 921 922 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 923 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 924 return false; 925 926 auto *Ptr = SI.getPointerOperand(); 927 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 928 Ptr = GEPI->getOperand(0); 929 return (isa<ConstantPointerNull>(Ptr) && 930 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 931 } 932 933 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 934 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 935 const Value *GEPI0 = GEPI->getOperand(0); 936 if (isa<ConstantPointerNull>(GEPI0) && 937 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 938 return true; 939 } 940 if (isa<UndefValue>(Op) || 941 (isa<ConstantPointerNull>(Op) && 942 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 943 return true; 944 return false; 945 } 946 947 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) { 948 Value *Op = LI.getOperand(0); 949 950 // Try to canonicalize the loaded type. 951 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 952 return Res; 953 954 // Attempt to improve the alignment. 955 Align KnownAlign = getOrEnforceKnownAlignment( 956 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); 957 if (KnownAlign > LI.getAlign()) 958 LI.setAlignment(KnownAlign); 959 960 // Replace GEP indices if possible. 961 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 962 Worklist.push(NewGEPI); 963 return &LI; 964 } 965 966 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 967 return Res; 968 969 // Do really simple store-to-load forwarding and load CSE, to catch cases 970 // where there are several consecutive memory accesses to the same location, 971 // separated by a few arithmetic operations. 972 bool IsLoadCSE = false; 973 if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) { 974 if (IsLoadCSE) 975 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 976 977 return replaceInstUsesWith( 978 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 979 LI.getName() + ".cast")); 980 } 981 982 // None of the following transforms are legal for volatile/ordered atomic 983 // loads. Most of them do apply for unordered atomics. 984 if (!LI.isUnordered()) return nullptr; 985 986 // load(gep null, ...) -> unreachable 987 // load null/undef -> unreachable 988 // TODO: Consider a target hook for valid address spaces for this xforms. 989 if (canSimplifyNullLoadOrGEP(LI, Op)) { 990 // Insert a new store to null instruction before the load to indicate 991 // that this code is not reachable. We do this instead of inserting 992 // an unreachable instruction directly because we cannot modify the 993 // CFG. 994 StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()), 995 Constant::getNullValue(Op->getType()), &LI); 996 SI->setDebugLoc(LI.getDebugLoc()); 997 return replaceInstUsesWith(LI, PoisonValue::get(LI.getType())); 998 } 999 1000 if (Op->hasOneUse()) { 1001 // Change select and PHI nodes to select values instead of addresses: this 1002 // helps alias analysis out a lot, allows many others simplifications, and 1003 // exposes redundancy in the code. 1004 // 1005 // Note that we cannot do the transformation unless we know that the 1006 // introduced loads cannot trap! Something like this is valid as long as 1007 // the condition is always false: load (select bool %C, int* null, int* %G), 1008 // but it would not be valid if we transformed it to load from null 1009 // unconditionally. 1010 // 1011 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1012 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1013 Align Alignment = LI.getAlign(); 1014 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 1015 Alignment, DL, SI) && 1016 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 1017 Alignment, DL, SI)) { 1018 LoadInst *V1 = 1019 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 1020 SI->getOperand(1)->getName() + ".val"); 1021 LoadInst *V2 = 1022 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1023 SI->getOperand(2)->getName() + ".val"); 1024 assert(LI.isUnordered() && "implied by above"); 1025 V1->setAlignment(Alignment); 1026 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1027 V2->setAlignment(Alignment); 1028 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1029 return SelectInst::Create(SI->getCondition(), V1, V2); 1030 } 1031 1032 // load (select (cond, null, P)) -> load P 1033 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1034 !NullPointerIsDefined(SI->getFunction(), 1035 LI.getPointerAddressSpace())) 1036 return replaceOperand(LI, 0, SI->getOperand(2)); 1037 1038 // load (select (cond, P, null)) -> load P 1039 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1040 !NullPointerIsDefined(SI->getFunction(), 1041 LI.getPointerAddressSpace())) 1042 return replaceOperand(LI, 0, SI->getOperand(1)); 1043 } 1044 } 1045 return nullptr; 1046 } 1047 1048 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1049 /// 1050 /// \returns underlying value that was "cast", or nullptr otherwise. 1051 /// 1052 /// For example, if we have: 1053 /// 1054 /// %E0 = extractelement <2 x double> %U, i32 0 1055 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1056 /// %E1 = extractelement <2 x double> %U, i32 1 1057 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1058 /// 1059 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1060 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1061 /// Note that %U may contain non-undef values where %V1 has undef. 1062 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) { 1063 Value *U = nullptr; 1064 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1065 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1066 if (!E) 1067 return nullptr; 1068 auto *W = E->getVectorOperand(); 1069 if (!U) 1070 U = W; 1071 else if (U != W) 1072 return nullptr; 1073 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1074 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1075 return nullptr; 1076 V = IV->getAggregateOperand(); 1077 } 1078 if (!match(V, m_Undef()) || !U) 1079 return nullptr; 1080 1081 auto *UT = cast<VectorType>(U->getType()); 1082 auto *VT = V->getType(); 1083 // Check that types UT and VT are bitwise isomorphic. 1084 const auto &DL = IC.getDataLayout(); 1085 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1086 return nullptr; 1087 } 1088 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1089 if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1090 return nullptr; 1091 } else { 1092 auto *ST = cast<StructType>(VT); 1093 if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1094 return nullptr; 1095 for (const auto *EltT : ST->elements()) { 1096 if (EltT != UT->getElementType()) 1097 return nullptr; 1098 } 1099 } 1100 return U; 1101 } 1102 1103 /// Combine stores to match the type of value being stored. 1104 /// 1105 /// The core idea here is that the memory does not have any intrinsic type and 1106 /// where we can we should match the type of a store to the type of value being 1107 /// stored. 1108 /// 1109 /// However, this routine must never change the width of a store or the number of 1110 /// stores as that would introduce a semantic change. This combine is expected to 1111 /// be a semantic no-op which just allows stores to more closely model the types 1112 /// of their incoming values. 1113 /// 1114 /// Currently, we also refuse to change the precise type used for an atomic or 1115 /// volatile store. This is debatable, and might be reasonable to change later. 1116 /// However, it is risky in case some backend or other part of LLVM is relying 1117 /// on the exact type stored to select appropriate atomic operations. 1118 /// 1119 /// \returns true if the store was successfully combined away. This indicates 1120 /// the caller must erase the store instruction. We have to let the caller erase 1121 /// the store instruction as otherwise there is no way to signal whether it was 1122 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1123 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) { 1124 // FIXME: We could probably with some care handle both volatile and ordered 1125 // atomic stores here but it isn't clear that this is important. 1126 if (!SI.isUnordered()) 1127 return false; 1128 1129 // swifterror values can't be bitcasted. 1130 if (SI.getPointerOperand()->isSwiftError()) 1131 return false; 1132 1133 Value *V = SI.getValueOperand(); 1134 1135 // Fold away bit casts of the stored value by storing the original type. 1136 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1137 assert(!BC->getType()->isX86_AMXTy() && 1138 "store to x86_amx* should not happen!"); 1139 V = BC->getOperand(0); 1140 // Don't transform when the type is x86_amx, it makes the pass that lower 1141 // x86_amx type happy. 1142 if (V->getType()->isX86_AMXTy()) 1143 return false; 1144 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1145 combineStoreToNewValue(IC, SI, V); 1146 return true; 1147 } 1148 } 1149 1150 if (Value *U = likeBitCastFromVector(IC, V)) 1151 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1152 combineStoreToNewValue(IC, SI, U); 1153 return true; 1154 } 1155 1156 // FIXME: We should also canonicalize stores of vectors when their elements 1157 // are cast to other types. 1158 return false; 1159 } 1160 1161 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) { 1162 // FIXME: We could probably with some care handle both volatile and atomic 1163 // stores here but it isn't clear that this is important. 1164 if (!SI.isSimple()) 1165 return false; 1166 1167 Value *V = SI.getValueOperand(); 1168 Type *T = V->getType(); 1169 1170 if (!T->isAggregateType()) 1171 return false; 1172 1173 if (auto *ST = dyn_cast<StructType>(T)) { 1174 // If the struct only have one element, we unpack. 1175 unsigned Count = ST->getNumElements(); 1176 if (Count == 1) { 1177 V = IC.Builder.CreateExtractValue(V, 0); 1178 combineStoreToNewValue(IC, SI, V); 1179 return true; 1180 } 1181 1182 // We don't want to break loads with padding here as we'd loose 1183 // the knowledge that padding exists for the rest of the pipeline. 1184 const DataLayout &DL = IC.getDataLayout(); 1185 auto *SL = DL.getStructLayout(ST); 1186 if (SL->hasPadding()) 1187 return false; 1188 1189 const auto Align = SI.getAlign(); 1190 1191 SmallString<16> EltName = V->getName(); 1192 EltName += ".elt"; 1193 auto *Addr = SI.getPointerOperand(); 1194 SmallString<16> AddrName = Addr->getName(); 1195 AddrName += ".repack"; 1196 1197 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1198 auto *Zero = ConstantInt::get(IdxType, 0); 1199 for (unsigned i = 0; i < Count; i++) { 1200 Value *Indices[2] = { 1201 Zero, 1202 ConstantInt::get(IdxType, i), 1203 }; 1204 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1205 AddrName); 1206 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1207 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); 1208 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1209 AAMDNodes AAMD; 1210 SI.getAAMetadata(AAMD); 1211 NS->setAAMetadata(AAMD); 1212 } 1213 1214 return true; 1215 } 1216 1217 if (auto *AT = dyn_cast<ArrayType>(T)) { 1218 // If the array only have one element, we unpack. 1219 auto NumElements = AT->getNumElements(); 1220 if (NumElements == 1) { 1221 V = IC.Builder.CreateExtractValue(V, 0); 1222 combineStoreToNewValue(IC, SI, V); 1223 return true; 1224 } 1225 1226 // Bail out if the array is too large. Ideally we would like to optimize 1227 // arrays of arbitrary size but this has a terrible impact on compile time. 1228 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1229 // tuning. 1230 if (NumElements > IC.MaxArraySizeForCombine) 1231 return false; 1232 1233 const DataLayout &DL = IC.getDataLayout(); 1234 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1235 const auto Align = SI.getAlign(); 1236 1237 SmallString<16> EltName = V->getName(); 1238 EltName += ".elt"; 1239 auto *Addr = SI.getPointerOperand(); 1240 SmallString<16> AddrName = Addr->getName(); 1241 AddrName += ".repack"; 1242 1243 auto *IdxType = Type::getInt64Ty(T->getContext()); 1244 auto *Zero = ConstantInt::get(IdxType, 0); 1245 1246 uint64_t Offset = 0; 1247 for (uint64_t i = 0; i < NumElements; i++) { 1248 Value *Indices[2] = { 1249 Zero, 1250 ConstantInt::get(IdxType, i), 1251 }; 1252 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1253 AddrName); 1254 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1255 auto EltAlign = commonAlignment(Align, Offset); 1256 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1257 AAMDNodes AAMD; 1258 SI.getAAMetadata(AAMD); 1259 NS->setAAMetadata(AAMD); 1260 Offset += EltSize; 1261 } 1262 1263 return true; 1264 } 1265 1266 return false; 1267 } 1268 1269 /// equivalentAddressValues - Test if A and B will obviously have the same 1270 /// value. This includes recognizing that %t0 and %t1 will have the same 1271 /// value in code like this: 1272 /// %t0 = getelementptr \@a, 0, 3 1273 /// store i32 0, i32* %t0 1274 /// %t1 = getelementptr \@a, 0, 3 1275 /// %t2 = load i32* %t1 1276 /// 1277 static bool equivalentAddressValues(Value *A, Value *B) { 1278 // Test if the values are trivially equivalent. 1279 if (A == B) return true; 1280 1281 // Test if the values come form identical arithmetic instructions. 1282 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1283 // its only used to compare two uses within the same basic block, which 1284 // means that they'll always either have the same value or one of them 1285 // will have an undefined value. 1286 if (isa<BinaryOperator>(A) || 1287 isa<CastInst>(A) || 1288 isa<PHINode>(A) || 1289 isa<GetElementPtrInst>(A)) 1290 if (Instruction *BI = dyn_cast<Instruction>(B)) 1291 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1292 return true; 1293 1294 // Otherwise they may not be equivalent. 1295 return false; 1296 } 1297 1298 /// Converts store (bitcast (load (bitcast (select ...)))) to 1299 /// store (load (select ...)), where select is minmax: 1300 /// select ((cmp load V1, load V2), V1, V2). 1301 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC, 1302 StoreInst &SI) { 1303 // bitcast? 1304 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1305 return false; 1306 // load? integer? 1307 Value *LoadAddr; 1308 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1309 return false; 1310 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1311 if (!LI->getType()->isIntegerTy()) 1312 return false; 1313 Type *CmpLoadTy; 1314 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1315 return false; 1316 1317 // Make sure the type would actually change. 1318 // This condition can be hit with chains of bitcasts. 1319 if (LI->getType() == CmpLoadTy) 1320 return false; 1321 1322 // Make sure we're not changing the size of the load/store. 1323 const auto &DL = IC.getDataLayout(); 1324 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1325 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1326 return false; 1327 1328 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1329 auto *SI = dyn_cast<StoreInst>(U); 1330 return SI && SI->getPointerOperand() != LI && 1331 InstCombiner::peekThroughBitcast(SI->getPointerOperand()) != 1332 LoadAddr && 1333 !SI->getPointerOperand()->isSwiftError(); 1334 })) 1335 return false; 1336 1337 IC.Builder.SetInsertPoint(LI); 1338 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1339 // Replace all the stores with stores of the newly loaded value. 1340 for (auto *UI : LI->users()) { 1341 auto *USI = cast<StoreInst>(UI); 1342 IC.Builder.SetInsertPoint(USI); 1343 combineStoreToNewValue(IC, *USI, NewLI); 1344 } 1345 IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType())); 1346 IC.eraseInstFromFunction(*LI); 1347 return true; 1348 } 1349 1350 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) { 1351 Value *Val = SI.getOperand(0); 1352 Value *Ptr = SI.getOperand(1); 1353 1354 // Try to canonicalize the stored type. 1355 if (combineStoreToValueType(*this, SI)) 1356 return eraseInstFromFunction(SI); 1357 1358 // Attempt to improve the alignment. 1359 const Align KnownAlign = getOrEnforceKnownAlignment( 1360 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); 1361 if (KnownAlign > SI.getAlign()) 1362 SI.setAlignment(KnownAlign); 1363 1364 // Try to canonicalize the stored type. 1365 if (unpackStoreToAggregate(*this, SI)) 1366 return eraseInstFromFunction(SI); 1367 1368 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1369 return eraseInstFromFunction(SI); 1370 1371 // Replace GEP indices if possible. 1372 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1373 Worklist.push(NewGEPI); 1374 return &SI; 1375 } 1376 1377 // Don't hack volatile/ordered stores. 1378 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1379 if (!SI.isUnordered()) return nullptr; 1380 1381 // If the RHS is an alloca with a single use, zapify the store, making the 1382 // alloca dead. 1383 if (Ptr->hasOneUse()) { 1384 if (isa<AllocaInst>(Ptr)) 1385 return eraseInstFromFunction(SI); 1386 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1387 if (isa<AllocaInst>(GEP->getOperand(0))) { 1388 if (GEP->getOperand(0)->hasOneUse()) 1389 return eraseInstFromFunction(SI); 1390 } 1391 } 1392 } 1393 1394 // If we have a store to a location which is known constant, we can conclude 1395 // that the store must be storing the constant value (else the memory 1396 // wouldn't be constant), and this must be a noop. 1397 if (AA->pointsToConstantMemory(Ptr)) 1398 return eraseInstFromFunction(SI); 1399 1400 // Do really simple DSE, to catch cases where there are several consecutive 1401 // stores to the same location, separated by a few arithmetic operations. This 1402 // situation often occurs with bitfield accesses. 1403 BasicBlock::iterator BBI(SI); 1404 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1405 --ScanInsts) { 1406 --BBI; 1407 // Don't count debug info directives, lest they affect codegen, 1408 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1409 if (BBI->isDebugOrPseudoInst() || 1410 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1411 ScanInsts++; 1412 continue; 1413 } 1414 1415 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1416 // Prev store isn't volatile, and stores to the same location? 1417 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1418 SI.getOperand(1))) { 1419 ++NumDeadStore; 1420 // Manually add back the original store to the worklist now, so it will 1421 // be processed after the operands of the removed store, as this may 1422 // expose additional DSE opportunities. 1423 Worklist.push(&SI); 1424 eraseInstFromFunction(*PrevSI); 1425 return nullptr; 1426 } 1427 break; 1428 } 1429 1430 // If this is a load, we have to stop. However, if the loaded value is from 1431 // the pointer we're loading and is producing the pointer we're storing, 1432 // then *this* store is dead (X = load P; store X -> P). 1433 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1434 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1435 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1436 return eraseInstFromFunction(SI); 1437 } 1438 1439 // Otherwise, this is a load from some other location. Stores before it 1440 // may not be dead. 1441 break; 1442 } 1443 1444 // Don't skip over loads, throws or things that can modify memory. 1445 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1446 break; 1447 } 1448 1449 // store X, null -> turns into 'unreachable' in SimplifyCFG 1450 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1451 if (canSimplifyNullStoreOrGEP(SI)) { 1452 if (!isa<PoisonValue>(Val)) 1453 return replaceOperand(SI, 0, PoisonValue::get(Val->getType())); 1454 return nullptr; // Do not modify these! 1455 } 1456 1457 // store undef, Ptr -> noop 1458 if (isa<UndefValue>(Val)) 1459 return eraseInstFromFunction(SI); 1460 1461 return nullptr; 1462 } 1463 1464 /// Try to transform: 1465 /// if () { *P = v1; } else { *P = v2 } 1466 /// or: 1467 /// *P = v1; if () { *P = v2; } 1468 /// into a phi node with a store in the successor. 1469 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) { 1470 if (!SI.isUnordered()) 1471 return false; // This code has not been audited for volatile/ordered case. 1472 1473 // Check if the successor block has exactly 2 incoming edges. 1474 BasicBlock *StoreBB = SI.getParent(); 1475 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1476 if (!DestBB->hasNPredecessors(2)) 1477 return false; 1478 1479 // Capture the other block (the block that doesn't contain our store). 1480 pred_iterator PredIter = pred_begin(DestBB); 1481 if (*PredIter == StoreBB) 1482 ++PredIter; 1483 BasicBlock *OtherBB = *PredIter; 1484 1485 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1486 // for example, if SI is in an infinite loop. 1487 if (StoreBB == DestBB || OtherBB == DestBB) 1488 return false; 1489 1490 // Verify that the other block ends in a branch and is not otherwise empty. 1491 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1492 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1493 if (!OtherBr || BBI == OtherBB->begin()) 1494 return false; 1495 1496 // If the other block ends in an unconditional branch, check for the 'if then 1497 // else' case. There is an instruction before the branch. 1498 StoreInst *OtherStore = nullptr; 1499 if (OtherBr->isUnconditional()) { 1500 --BBI; 1501 // Skip over debugging info. 1502 while (isa<DbgInfoIntrinsic>(BBI) || 1503 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1504 if (BBI==OtherBB->begin()) 1505 return false; 1506 --BBI; 1507 } 1508 // If this isn't a store, isn't a store to the same location, or is not the 1509 // right kind of store, bail out. 1510 OtherStore = dyn_cast<StoreInst>(BBI); 1511 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1512 !SI.isSameOperationAs(OtherStore)) 1513 return false; 1514 } else { 1515 // Otherwise, the other block ended with a conditional branch. If one of the 1516 // destinations is StoreBB, then we have the if/then case. 1517 if (OtherBr->getSuccessor(0) != StoreBB && 1518 OtherBr->getSuccessor(1) != StoreBB) 1519 return false; 1520 1521 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1522 // if/then triangle. See if there is a store to the same ptr as SI that 1523 // lives in OtherBB. 1524 for (;; --BBI) { 1525 // Check to see if we find the matching store. 1526 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1527 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1528 !SI.isSameOperationAs(OtherStore)) 1529 return false; 1530 break; 1531 } 1532 // If we find something that may be using or overwriting the stored 1533 // value, or if we run out of instructions, we can't do the transform. 1534 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1535 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1536 return false; 1537 } 1538 1539 // In order to eliminate the store in OtherBr, we have to make sure nothing 1540 // reads or overwrites the stored value in StoreBB. 1541 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1542 // FIXME: This should really be AA driven. 1543 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1544 return false; 1545 } 1546 } 1547 1548 // Insert a PHI node now if we need it. 1549 Value *MergedVal = OtherStore->getOperand(0); 1550 // The debug locations of the original instructions might differ. Merge them. 1551 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1552 OtherStore->getDebugLoc()); 1553 if (MergedVal != SI.getOperand(0)) { 1554 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1555 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1556 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1557 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1558 PN->setDebugLoc(MergedLoc); 1559 } 1560 1561 // Advance to a place where it is safe to insert the new store and insert it. 1562 BBI = DestBB->getFirstInsertionPt(); 1563 StoreInst *NewSI = 1564 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), 1565 SI.getOrdering(), SI.getSyncScopeID()); 1566 InsertNewInstBefore(NewSI, *BBI); 1567 NewSI->setDebugLoc(MergedLoc); 1568 1569 // If the two stores had AA tags, merge them. 1570 AAMDNodes AATags; 1571 SI.getAAMetadata(AATags); 1572 if (AATags) { 1573 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1574 NewSI->setAAMetadata(AATags); 1575 } 1576 1577 // Nuke the old stores. 1578 eraseInstFromFunction(SI); 1579 eraseInstFromFunction(*OtherStore); 1580 return true; 1581 } 1582