1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/Transforms/Utils/Local.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "instcombine" 31 32 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 34 35 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 36 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 37 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 38 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 39 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 40 /// the alloca, and if the source pointer is a pointer to a constant global, we 41 /// can optimize this. 42 static bool 43 isOnlyCopiedFromConstantMemory(AliasAnalysis *AA, 44 Value *V, MemTransferInst *&TheCopy, 45 SmallVectorImpl<Instruction *> &ToDelete) { 46 // We track lifetime intrinsics as we encounter them. If we decide to go 47 // ahead and replace the value with the global, this lets the caller quickly 48 // eliminate the markers. 49 50 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 51 ValuesToInspect.emplace_back(V, false); 52 while (!ValuesToInspect.empty()) { 53 auto ValuePair = ValuesToInspect.pop_back_val(); 54 const bool IsOffset = ValuePair.second; 55 for (auto &U : ValuePair.first->uses()) { 56 auto *I = cast<Instruction>(U.getUser()); 57 58 if (auto *LI = dyn_cast<LoadInst>(I)) { 59 // Ignore non-volatile loads, they are always ok. 60 if (!LI->isSimple()) return false; 61 continue; 62 } 63 64 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 65 // If uses of the bitcast are ok, we are ok. 66 ValuesToInspect.emplace_back(I, IsOffset); 67 continue; 68 } 69 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 70 // If the GEP has all zero indices, it doesn't offset the pointer. If it 71 // doesn't, it does. 72 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 73 continue; 74 } 75 76 if (auto *Call = dyn_cast<CallBase>(I)) { 77 // If this is the function being called then we treat it like a load and 78 // ignore it. 79 if (Call->isCallee(&U)) 80 continue; 81 82 unsigned DataOpNo = Call->getDataOperandNo(&U); 83 bool IsArgOperand = Call->isArgOperand(&U); 84 85 // Inalloca arguments are clobbered by the call. 86 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 87 return false; 88 89 // If this is a readonly/readnone call site, then we know it is just a 90 // load (but one that potentially returns the value itself), so we can 91 // ignore it if we know that the value isn't captured. 92 if (Call->onlyReadsMemory() && 93 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 94 continue; 95 96 // If this is being passed as a byval argument, the caller is making a 97 // copy, so it is only a read of the alloca. 98 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 99 continue; 100 } 101 102 // Lifetime intrinsics can be handled by the caller. 103 if (I->isLifetimeStartOrEnd()) { 104 assert(I->use_empty() && "Lifetime markers have no result to use!"); 105 ToDelete.push_back(I); 106 continue; 107 } 108 109 // If this is isn't our memcpy/memmove, reject it as something we can't 110 // handle. 111 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 112 if (!MI) 113 return false; 114 115 // If the transfer is using the alloca as a source of the transfer, then 116 // ignore it since it is a load (unless the transfer is volatile). 117 if (U.getOperandNo() == 1) { 118 if (MI->isVolatile()) return false; 119 continue; 120 } 121 122 // If we already have seen a copy, reject the second one. 123 if (TheCopy) return false; 124 125 // If the pointer has been offset from the start of the alloca, we can't 126 // safely handle this. 127 if (IsOffset) return false; 128 129 // If the memintrinsic isn't using the alloca as the dest, reject it. 130 if (U.getOperandNo() != 0) return false; 131 132 // If the source of the memcpy/move is not a constant global, reject it. 133 if (!AA->pointsToConstantMemory(MI->getSource())) 134 return false; 135 136 // Otherwise, the transform is safe. Remember the copy instruction. 137 TheCopy = MI; 138 } 139 } 140 return true; 141 } 142 143 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 144 /// modified by a copy from a constant global. If we can prove this, we can 145 /// replace any uses of the alloca with uses of the global directly. 146 static MemTransferInst * 147 isOnlyCopiedFromConstantMemory(AliasAnalysis *AA, 148 AllocaInst *AI, 149 SmallVectorImpl<Instruction *> &ToDelete) { 150 MemTransferInst *TheCopy = nullptr; 151 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) 152 return TheCopy; 153 return nullptr; 154 } 155 156 /// Returns true if V is dereferenceable for size of alloca. 157 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 158 const DataLayout &DL) { 159 if (AI->isArrayAllocation()) 160 return false; 161 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 162 if (!AllocaSize) 163 return false; 164 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()), 165 APInt(64, AllocaSize), DL); 166 } 167 168 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 169 // Check for array size of 1 (scalar allocation). 170 if (!AI.isArrayAllocation()) { 171 // i32 1 is the canonical array size for scalar allocations. 172 if (AI.getArraySize()->getType()->isIntegerTy(32)) 173 return nullptr; 174 175 // Canonicalize it. 176 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); 177 } 178 179 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 180 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 181 if (C->getValue().getActiveBits() <= 64) { 182 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 183 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 184 New->setAlignment(AI.getAlign()); 185 186 // Scan to the end of the allocation instructions, to skip over a block of 187 // allocas if possible...also skip interleaved debug info 188 // 189 BasicBlock::iterator It(New); 190 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 191 ++It; 192 193 // Now that I is pointing to the first non-allocation-inst in the block, 194 // insert our getelementptr instruction... 195 // 196 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 197 Value *NullIdx = Constant::getNullValue(IdxTy); 198 Value *Idx[2] = {NullIdx, NullIdx}; 199 Instruction *GEP = GetElementPtrInst::CreateInBounds( 200 NewTy, New, Idx, New->getName() + ".sub"); 201 IC.InsertNewInstBefore(GEP, *It); 202 203 // Now make everything use the getelementptr instead of the original 204 // allocation. 205 return IC.replaceInstUsesWith(AI, GEP); 206 } 207 } 208 209 if (isa<UndefValue>(AI.getArraySize())) 210 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 211 212 // Ensure that the alloca array size argument has type intptr_t, so that 213 // any casting is exposed early. 214 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 215 if (AI.getArraySize()->getType() != IntPtrTy) { 216 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 217 return IC.replaceOperand(AI, 0, V); 218 } 219 220 return nullptr; 221 } 222 223 namespace { 224 // If I and V are pointers in different address space, it is not allowed to 225 // use replaceAllUsesWith since I and V have different types. A 226 // non-target-specific transformation should not use addrspacecast on V since 227 // the two address space may be disjoint depending on target. 228 // 229 // This class chases down uses of the old pointer until reaching the load 230 // instructions, then replaces the old pointer in the load instructions with 231 // the new pointer. If during the chasing it sees bitcast or GEP, it will 232 // create new bitcast or GEP with the new pointer and use them in the load 233 // instruction. 234 class PointerReplacer { 235 public: 236 PointerReplacer(InstCombiner &IC) : IC(IC) {} 237 void replacePointer(Instruction &I, Value *V); 238 239 private: 240 void findLoadAndReplace(Instruction &I); 241 void replace(Instruction *I); 242 Value *getReplacement(Value *I); 243 244 SmallVector<Instruction *, 4> Path; 245 MapVector<Value *, Value *> WorkMap; 246 InstCombiner &IC; 247 }; 248 } // end anonymous namespace 249 250 void PointerReplacer::findLoadAndReplace(Instruction &I) { 251 for (auto U : I.users()) { 252 auto *Inst = dyn_cast<Instruction>(&*U); 253 if (!Inst) 254 return; 255 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 256 if (isa<LoadInst>(Inst)) { 257 for (auto P : Path) 258 replace(P); 259 replace(Inst); 260 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 261 Path.push_back(Inst); 262 findLoadAndReplace(*Inst); 263 Path.pop_back(); 264 } else { 265 return; 266 } 267 } 268 } 269 270 Value *PointerReplacer::getReplacement(Value *V) { 271 auto Loc = WorkMap.find(V); 272 if (Loc != WorkMap.end()) 273 return Loc->second; 274 return nullptr; 275 } 276 277 void PointerReplacer::replace(Instruction *I) { 278 if (getReplacement(I)) 279 return; 280 281 if (auto *LT = dyn_cast<LoadInst>(I)) { 282 auto *V = getReplacement(LT->getPointerOperand()); 283 assert(V && "Operand not replaced"); 284 auto *NewI = new LoadInst(I->getType(), V, "", false, 285 IC.getDataLayout().getABITypeAlign(I->getType())); 286 NewI->takeName(LT); 287 IC.InsertNewInstWith(NewI, *LT); 288 IC.replaceInstUsesWith(*LT, NewI); 289 WorkMap[LT] = NewI; 290 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 291 auto *V = getReplacement(GEP->getPointerOperand()); 292 assert(V && "Operand not replaced"); 293 SmallVector<Value *, 8> Indices; 294 Indices.append(GEP->idx_begin(), GEP->idx_end()); 295 auto *NewI = GetElementPtrInst::Create( 296 V->getType()->getPointerElementType(), V, Indices); 297 IC.InsertNewInstWith(NewI, *GEP); 298 NewI->takeName(GEP); 299 WorkMap[GEP] = NewI; 300 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 301 auto *V = getReplacement(BC->getOperand(0)); 302 assert(V && "Operand not replaced"); 303 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 304 V->getType()->getPointerAddressSpace()); 305 auto *NewI = new BitCastInst(V, NewT); 306 IC.InsertNewInstWith(NewI, *BC); 307 NewI->takeName(BC); 308 WorkMap[BC] = NewI; 309 } else { 310 llvm_unreachable("should never reach here"); 311 } 312 } 313 314 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 315 #ifndef NDEBUG 316 auto *PT = cast<PointerType>(I.getType()); 317 auto *NT = cast<PointerType>(V->getType()); 318 assert(PT != NT && PT->getElementType() == NT->getElementType() && 319 "Invalid usage"); 320 #endif 321 WorkMap[&I] = V; 322 findLoadAndReplace(I); 323 } 324 325 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 326 if (auto *I = simplifyAllocaArraySize(*this, AI)) 327 return I; 328 329 if (AI.getAllocatedType()->isSized()) { 330 // Move all alloca's of zero byte objects to the entry block and merge them 331 // together. Note that we only do this for alloca's, because malloc should 332 // allocate and return a unique pointer, even for a zero byte allocation. 333 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) { 334 // For a zero sized alloca there is no point in doing an array allocation. 335 // This is helpful if the array size is a complicated expression not used 336 // elsewhere. 337 if (AI.isArrayAllocation()) 338 return replaceOperand(AI, 0, 339 ConstantInt::get(AI.getArraySize()->getType(), 1)); 340 341 // Get the first instruction in the entry block. 342 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 343 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 344 if (FirstInst != &AI) { 345 // If the entry block doesn't start with a zero-size alloca then move 346 // this one to the start of the entry block. There is no problem with 347 // dominance as the array size was forced to a constant earlier already. 348 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 349 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 350 DL.getTypeAllocSize(EntryAI->getAllocatedType()) 351 .getKnownMinSize() != 0) { 352 AI.moveBefore(FirstInst); 353 return &AI; 354 } 355 356 // Replace this zero-sized alloca with the one at the start of the entry 357 // block after ensuring that the address will be aligned enough for both 358 // types. 359 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); 360 EntryAI->setAlignment(MaxAlign); 361 if (AI.getType() != EntryAI->getType()) 362 return new BitCastInst(EntryAI, AI.getType()); 363 return replaceInstUsesWith(AI, EntryAI); 364 } 365 } 366 } 367 368 if (AI.getAlignment()) { 369 // Check to see if this allocation is only modified by a memcpy/memmove from 370 // a constant whose alignment is equal to or exceeds that of the allocation. 371 // If this is the case, we can change all users to use the constant global 372 // instead. This is commonly produced by the CFE by constructs like "void 373 // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently 374 // read. 375 SmallVector<Instruction *, 4> ToDelete; 376 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { 377 MaybeAlign AllocaAlign = AI.getAlign(); 378 Align SourceAlign = getOrEnforceKnownAlignment( 379 Copy->getSource(), AllocaAlign, DL, &AI, &AC, &DT); 380 if ((!AllocaAlign || *AllocaAlign <= SourceAlign) && 381 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 382 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 383 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 384 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 385 eraseInstFromFunction(*ToDelete[i]); 386 Value *TheSrc = Copy->getSource(); 387 auto *SrcTy = TheSrc->getType(); 388 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 389 SrcTy->getPointerAddressSpace()); 390 Value *Cast = 391 Builder.CreatePointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 392 if (AI.getType()->getPointerAddressSpace() == 393 SrcTy->getPointerAddressSpace()) { 394 Instruction *NewI = replaceInstUsesWith(AI, Cast); 395 eraseInstFromFunction(*Copy); 396 ++NumGlobalCopies; 397 return NewI; 398 } 399 400 PointerReplacer PtrReplacer(*this); 401 PtrReplacer.replacePointer(AI, Cast); 402 ++NumGlobalCopies; 403 } 404 } 405 } 406 407 // At last, use the generic allocation site handler to aggressively remove 408 // unused allocas. 409 return visitAllocSite(AI); 410 } 411 412 // Are we allowed to form a atomic load or store of this type? 413 static bool isSupportedAtomicType(Type *Ty) { 414 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 415 } 416 417 /// Helper to combine a load to a new type. 418 /// 419 /// This just does the work of combining a load to a new type. It handles 420 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 421 /// loaded *value* type. This will convert it to a pointer, cast the operand to 422 /// that pointer type, load it, etc. 423 /// 424 /// Note that this will create all of the instructions with whatever insert 425 /// point the \c InstCombiner currently is using. 426 LoadInst *InstCombiner::combineLoadToNewType(LoadInst &LI, Type *NewTy, 427 const Twine &Suffix) { 428 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 429 "can't fold an atomic load to requested type"); 430 431 Value *Ptr = LI.getPointerOperand(); 432 unsigned AS = LI.getPointerAddressSpace(); 433 Value *NewPtr = nullptr; 434 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 435 NewPtr->getType()->getPointerElementType() == NewTy && 436 NewPtr->getType()->getPointerAddressSpace() == AS)) 437 NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 438 439 LoadInst *NewLoad = Builder.CreateAlignedLoad( 440 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); 441 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 442 copyMetadataForLoad(*NewLoad, LI); 443 return NewLoad; 444 } 445 446 /// Combine a store to a new type. 447 /// 448 /// Returns the newly created store instruction. 449 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 450 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 451 "can't fold an atomic store of requested type"); 452 453 Value *Ptr = SI.getPointerOperand(); 454 unsigned AS = SI.getPointerAddressSpace(); 455 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 456 SI.getAllMetadata(MD); 457 458 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 459 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 460 SI.getAlign(), SI.isVolatile()); 461 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 462 for (const auto &MDPair : MD) { 463 unsigned ID = MDPair.first; 464 MDNode *N = MDPair.second; 465 // Note, essentially every kind of metadata should be preserved here! This 466 // routine is supposed to clone a store instruction changing *only its 467 // type*. The only metadata it makes sense to drop is metadata which is 468 // invalidated when the pointer type changes. This should essentially 469 // never be the case in LLVM, but we explicitly switch over only known 470 // metadata to be conservatively correct. If you are adding metadata to 471 // LLVM which pertains to stores, you almost certainly want to add it 472 // here. 473 switch (ID) { 474 case LLVMContext::MD_dbg: 475 case LLVMContext::MD_tbaa: 476 case LLVMContext::MD_prof: 477 case LLVMContext::MD_fpmath: 478 case LLVMContext::MD_tbaa_struct: 479 case LLVMContext::MD_alias_scope: 480 case LLVMContext::MD_noalias: 481 case LLVMContext::MD_nontemporal: 482 case LLVMContext::MD_mem_parallel_loop_access: 483 case LLVMContext::MD_access_group: 484 // All of these directly apply. 485 NewStore->setMetadata(ID, N); 486 break; 487 case LLVMContext::MD_invariant_load: 488 case LLVMContext::MD_nonnull: 489 case LLVMContext::MD_range: 490 case LLVMContext::MD_align: 491 case LLVMContext::MD_dereferenceable: 492 case LLVMContext::MD_dereferenceable_or_null: 493 // These don't apply for stores. 494 break; 495 } 496 } 497 498 return NewStore; 499 } 500 501 /// Returns true if instruction represent minmax pattern like: 502 /// select ((cmp load V1, load V2), V1, V2). 503 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 504 assert(V->getType()->isPointerTy() && "Expected pointer type."); 505 // Ignore possible ty* to ixx* bitcast. 506 V = peekThroughBitcast(V); 507 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 508 // pattern. 509 CmpInst::Predicate Pred; 510 Instruction *L1; 511 Instruction *L2; 512 Value *LHS; 513 Value *RHS; 514 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 515 m_Value(LHS), m_Value(RHS)))) 516 return false; 517 LoadTy = L1->getType(); 518 return (match(L1, m_Load(m_Specific(LHS))) && 519 match(L2, m_Load(m_Specific(RHS)))) || 520 (match(L1, m_Load(m_Specific(RHS))) && 521 match(L2, m_Load(m_Specific(LHS)))); 522 } 523 524 /// Combine loads to match the type of their uses' value after looking 525 /// through intervening bitcasts. 526 /// 527 /// The core idea here is that if the result of a load is used in an operation, 528 /// we should load the type most conducive to that operation. For example, when 529 /// loading an integer and converting that immediately to a pointer, we should 530 /// instead directly load a pointer. 531 /// 532 /// However, this routine must never change the width of a load or the number of 533 /// loads as that would introduce a semantic change. This combine is expected to 534 /// be a semantic no-op which just allows loads to more closely model the types 535 /// of their consuming operations. 536 /// 537 /// Currently, we also refuse to change the precise type used for an atomic load 538 /// or a volatile load. This is debatable, and might be reasonable to change 539 /// later. However, it is risky in case some backend or other part of LLVM is 540 /// relying on the exact type loaded to select appropriate atomic operations. 541 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 542 // FIXME: We could probably with some care handle both volatile and ordered 543 // atomic loads here but it isn't clear that this is important. 544 if (!LI.isUnordered()) 545 return nullptr; 546 547 if (LI.use_empty()) 548 return nullptr; 549 550 // swifterror values can't be bitcasted. 551 if (LI.getPointerOperand()->isSwiftError()) 552 return nullptr; 553 554 Type *Ty = LI.getType(); 555 const DataLayout &DL = IC.getDataLayout(); 556 557 // Try to canonicalize loads which are only ever stored to operate over 558 // integers instead of any other type. We only do this when the loaded type 559 // is sized and has a size exactly the same as its store size and the store 560 // size is a legal integer type. 561 // Do not perform canonicalization if minmax pattern is found (to avoid 562 // infinite loop). 563 Type *Dummy; 564 if (!Ty->isIntegerTy() && Ty->isSized() && !isa<ScalableVectorType>(Ty) && 565 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 566 DL.typeSizeEqualsStoreSize(Ty) && !DL.isNonIntegralPointerType(Ty) && 567 !isMinMaxWithLoads( 568 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true), 569 Dummy)) { 570 if (all_of(LI.users(), [&LI](User *U) { 571 auto *SI = dyn_cast<StoreInst>(U); 572 return SI && SI->getPointerOperand() != &LI && 573 !SI->getPointerOperand()->isSwiftError(); 574 })) { 575 LoadInst *NewLoad = IC.combineLoadToNewType( 576 LI, Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 577 // Replace all the stores with stores of the newly loaded value. 578 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 579 auto *SI = cast<StoreInst>(*UI++); 580 IC.Builder.SetInsertPoint(SI); 581 combineStoreToNewValue(IC, *SI, NewLoad); 582 IC.eraseInstFromFunction(*SI); 583 } 584 assert(LI.use_empty() && "Failed to remove all users of the load!"); 585 // Return the old load so the combiner can delete it safely. 586 return &LI; 587 } 588 } 589 590 // Fold away bit casts of the loaded value by loading the desired type. 591 // We can do this for BitCastInsts as well as casts from and to pointer types, 592 // as long as those are noops (i.e., the source or dest type have the same 593 // bitwidth as the target's pointers). 594 if (LI.hasOneUse()) 595 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 596 if (CI->isNoopCast(DL)) 597 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 598 LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy()); 599 CI->replaceAllUsesWith(NewLoad); 600 IC.eraseInstFromFunction(*CI); 601 return &LI; 602 } 603 604 // FIXME: We should also canonicalize loads of vectors when their elements are 605 // cast to other types. 606 return nullptr; 607 } 608 609 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 610 // FIXME: We could probably with some care handle both volatile and atomic 611 // stores here but it isn't clear that this is important. 612 if (!LI.isSimple()) 613 return nullptr; 614 615 Type *T = LI.getType(); 616 if (!T->isAggregateType()) 617 return nullptr; 618 619 StringRef Name = LI.getName(); 620 assert(LI.getAlignment() && "Alignment must be set at this point"); 621 622 if (auto *ST = dyn_cast<StructType>(T)) { 623 // If the struct only have one element, we unpack. 624 auto NumElements = ST->getNumElements(); 625 if (NumElements == 1) { 626 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 627 ".unpack"); 628 AAMDNodes AAMD; 629 LI.getAAMetadata(AAMD); 630 NewLoad->setAAMetadata(AAMD); 631 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 632 UndefValue::get(T), NewLoad, 0, Name)); 633 } 634 635 // We don't want to break loads with padding here as we'd loose 636 // the knowledge that padding exists for the rest of the pipeline. 637 const DataLayout &DL = IC.getDataLayout(); 638 auto *SL = DL.getStructLayout(ST); 639 if (SL->hasPadding()) 640 return nullptr; 641 642 const auto Align = LI.getAlign(); 643 auto *Addr = LI.getPointerOperand(); 644 auto *IdxType = Type::getInt32Ty(T->getContext()); 645 auto *Zero = ConstantInt::get(IdxType, 0); 646 647 Value *V = UndefValue::get(T); 648 for (unsigned i = 0; i < NumElements; i++) { 649 Value *Indices[2] = { 650 Zero, 651 ConstantInt::get(IdxType, i), 652 }; 653 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 654 Name + ".elt"); 655 auto *L = IC.Builder.CreateAlignedLoad( 656 ST->getElementType(i), Ptr, 657 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); 658 // Propagate AA metadata. It'll still be valid on the narrowed load. 659 AAMDNodes AAMD; 660 LI.getAAMetadata(AAMD); 661 L->setAAMetadata(AAMD); 662 V = IC.Builder.CreateInsertValue(V, L, i); 663 } 664 665 V->setName(Name); 666 return IC.replaceInstUsesWith(LI, V); 667 } 668 669 if (auto *AT = dyn_cast<ArrayType>(T)) { 670 auto *ET = AT->getElementType(); 671 auto NumElements = AT->getNumElements(); 672 if (NumElements == 1) { 673 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 674 AAMDNodes AAMD; 675 LI.getAAMetadata(AAMD); 676 NewLoad->setAAMetadata(AAMD); 677 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 678 UndefValue::get(T), NewLoad, 0, Name)); 679 } 680 681 // Bail out if the array is too large. Ideally we would like to optimize 682 // arrays of arbitrary size but this has a terrible impact on compile time. 683 // The threshold here is chosen arbitrarily, maybe needs a little bit of 684 // tuning. 685 if (NumElements > IC.MaxArraySizeForCombine) 686 return nullptr; 687 688 const DataLayout &DL = IC.getDataLayout(); 689 auto EltSize = DL.getTypeAllocSize(ET); 690 const auto Align = LI.getAlign(); 691 692 auto *Addr = LI.getPointerOperand(); 693 auto *IdxType = Type::getInt64Ty(T->getContext()); 694 auto *Zero = ConstantInt::get(IdxType, 0); 695 696 Value *V = UndefValue::get(T); 697 uint64_t Offset = 0; 698 for (uint64_t i = 0; i < NumElements; i++) { 699 Value *Indices[2] = { 700 Zero, 701 ConstantInt::get(IdxType, i), 702 }; 703 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 704 Name + ".elt"); 705 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, 706 commonAlignment(Align, Offset), 707 Name + ".unpack"); 708 AAMDNodes AAMD; 709 LI.getAAMetadata(AAMD); 710 L->setAAMetadata(AAMD); 711 V = IC.Builder.CreateInsertValue(V, L, i); 712 Offset += EltSize; 713 } 714 715 V->setName(Name); 716 return IC.replaceInstUsesWith(LI, V); 717 } 718 719 return nullptr; 720 } 721 722 // If we can determine that all possible objects pointed to by the provided 723 // pointer value are, not only dereferenceable, but also definitively less than 724 // or equal to the provided maximum size, then return true. Otherwise, return 725 // false (constant global values and allocas fall into this category). 726 // 727 // FIXME: This should probably live in ValueTracking (or similar). 728 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 729 const DataLayout &DL) { 730 SmallPtrSet<Value *, 4> Visited; 731 SmallVector<Value *, 4> Worklist(1, V); 732 733 do { 734 Value *P = Worklist.pop_back_val(); 735 P = P->stripPointerCasts(); 736 737 if (!Visited.insert(P).second) 738 continue; 739 740 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 741 Worklist.push_back(SI->getTrueValue()); 742 Worklist.push_back(SI->getFalseValue()); 743 continue; 744 } 745 746 if (PHINode *PN = dyn_cast<PHINode>(P)) { 747 for (Value *IncValue : PN->incoming_values()) 748 Worklist.push_back(IncValue); 749 continue; 750 } 751 752 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 753 if (GA->isInterposable()) 754 return false; 755 Worklist.push_back(GA->getAliasee()); 756 continue; 757 } 758 759 // If we know how big this object is, and it is less than MaxSize, continue 760 // searching. Otherwise, return false. 761 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 762 if (!AI->getAllocatedType()->isSized()) 763 return false; 764 765 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 766 if (!CS) 767 return false; 768 769 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 770 // Make sure that, even if the multiplication below would wrap as an 771 // uint64_t, we still do the right thing. 772 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 773 return false; 774 continue; 775 } 776 777 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 778 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 779 return false; 780 781 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 782 if (InitSize > MaxSize) 783 return false; 784 continue; 785 } 786 787 return false; 788 } while (!Worklist.empty()); 789 790 return true; 791 } 792 793 // If we're indexing into an object of a known size, and the outer index is 794 // not a constant, but having any value but zero would lead to undefined 795 // behavior, replace it with zero. 796 // 797 // For example, if we have: 798 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 799 // ... 800 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 801 // ... = load i32* %arrayidx, align 4 802 // Then we know that we can replace %x in the GEP with i64 0. 803 // 804 // FIXME: We could fold any GEP index to zero that would cause UB if it were 805 // not zero. Currently, we only handle the first such index. Also, we could 806 // also search through non-zero constant indices if we kept track of the 807 // offsets those indices implied. 808 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 809 Instruction *MemI, unsigned &Idx) { 810 if (GEPI->getNumOperands() < 2) 811 return false; 812 813 // Find the first non-zero index of a GEP. If all indices are zero, return 814 // one past the last index. 815 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 816 unsigned I = 1; 817 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 818 Value *V = GEPI->getOperand(I); 819 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 820 if (CI->isZero()) 821 continue; 822 823 break; 824 } 825 826 return I; 827 }; 828 829 // Skip through initial 'zero' indices, and find the corresponding pointer 830 // type. See if the next index is not a constant. 831 Idx = FirstNZIdx(GEPI); 832 if (Idx == GEPI->getNumOperands()) 833 return false; 834 if (isa<Constant>(GEPI->getOperand(Idx))) 835 return false; 836 837 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 838 Type *AllocTy = 839 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 840 if (!AllocTy || !AllocTy->isSized()) 841 return false; 842 const DataLayout &DL = IC.getDataLayout(); 843 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 844 845 // If there are more indices after the one we might replace with a zero, make 846 // sure they're all non-negative. If any of them are negative, the overall 847 // address being computed might be before the base address determined by the 848 // first non-zero index. 849 auto IsAllNonNegative = [&]() { 850 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 851 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 852 if (Known.isNonNegative()) 853 continue; 854 return false; 855 } 856 857 return true; 858 }; 859 860 // FIXME: If the GEP is not inbounds, and there are extra indices after the 861 // one we'll replace, those could cause the address computation to wrap 862 // (rendering the IsAllNonNegative() check below insufficient). We can do 863 // better, ignoring zero indices (and other indices we can prove small 864 // enough not to wrap). 865 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 866 return false; 867 868 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 869 // also known to be dereferenceable. 870 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 871 IsAllNonNegative(); 872 } 873 874 // If we're indexing into an object with a variable index for the memory 875 // access, but the object has only one element, we can assume that the index 876 // will always be zero. If we replace the GEP, return it. 877 template <typename T> 878 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 879 T &MemI) { 880 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 881 unsigned Idx; 882 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 883 Instruction *NewGEPI = GEPI->clone(); 884 NewGEPI->setOperand(Idx, 885 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 886 NewGEPI->insertBefore(GEPI); 887 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 888 return NewGEPI; 889 } 890 } 891 892 return nullptr; 893 } 894 895 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 896 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 897 return false; 898 899 auto *Ptr = SI.getPointerOperand(); 900 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 901 Ptr = GEPI->getOperand(0); 902 return (isa<ConstantPointerNull>(Ptr) && 903 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 904 } 905 906 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 907 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 908 const Value *GEPI0 = GEPI->getOperand(0); 909 if (isa<ConstantPointerNull>(GEPI0) && 910 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 911 return true; 912 } 913 if (isa<UndefValue>(Op) || 914 (isa<ConstantPointerNull>(Op) && 915 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 916 return true; 917 return false; 918 } 919 920 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 921 Value *Op = LI.getOperand(0); 922 923 // Try to canonicalize the loaded type. 924 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 925 return Res; 926 927 // Attempt to improve the alignment. 928 Align KnownAlign = getOrEnforceKnownAlignment( 929 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); 930 if (KnownAlign > LI.getAlign()) 931 LI.setAlignment(KnownAlign); 932 933 // Replace GEP indices if possible. 934 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 935 Worklist.push(NewGEPI); 936 return &LI; 937 } 938 939 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 940 return Res; 941 942 // Do really simple store-to-load forwarding and load CSE, to catch cases 943 // where there are several consecutive memory accesses to the same location, 944 // separated by a few arithmetic operations. 945 BasicBlock::iterator BBI(LI); 946 bool IsLoadCSE = false; 947 if (Value *AvailableVal = FindAvailableLoadedValue( 948 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 949 if (IsLoadCSE) 950 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 951 952 return replaceInstUsesWith( 953 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 954 LI.getName() + ".cast")); 955 } 956 957 // None of the following transforms are legal for volatile/ordered atomic 958 // loads. Most of them do apply for unordered atomics. 959 if (!LI.isUnordered()) return nullptr; 960 961 // load(gep null, ...) -> unreachable 962 // load null/undef -> unreachable 963 // TODO: Consider a target hook for valid address spaces for this xforms. 964 if (canSimplifyNullLoadOrGEP(LI, Op)) { 965 // Insert a new store to null instruction before the load to indicate 966 // that this code is not reachable. We do this instead of inserting 967 // an unreachable instruction directly because we cannot modify the 968 // CFG. 969 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 970 Constant::getNullValue(Op->getType()), &LI); 971 SI->setDebugLoc(LI.getDebugLoc()); 972 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 973 } 974 975 if (Op->hasOneUse()) { 976 // Change select and PHI nodes to select values instead of addresses: this 977 // helps alias analysis out a lot, allows many others simplifications, and 978 // exposes redundancy in the code. 979 // 980 // Note that we cannot do the transformation unless we know that the 981 // introduced loads cannot trap! Something like this is valid as long as 982 // the condition is always false: load (select bool %C, int* null, int* %G), 983 // but it would not be valid if we transformed it to load from null 984 // unconditionally. 985 // 986 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 987 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 988 Align Alignment = LI.getAlign(); 989 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 990 Alignment, DL, SI) && 991 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 992 Alignment, DL, SI)) { 993 LoadInst *V1 = 994 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 995 SI->getOperand(1)->getName() + ".val"); 996 LoadInst *V2 = 997 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 998 SI->getOperand(2)->getName() + ".val"); 999 assert(LI.isUnordered() && "implied by above"); 1000 V1->setAlignment(Alignment); 1001 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1002 V2->setAlignment(Alignment); 1003 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1004 return SelectInst::Create(SI->getCondition(), V1, V2); 1005 } 1006 1007 // load (select (cond, null, P)) -> load P 1008 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1009 !NullPointerIsDefined(SI->getFunction(), 1010 LI.getPointerAddressSpace())) 1011 return replaceOperand(LI, 0, SI->getOperand(2)); 1012 1013 // load (select (cond, P, null)) -> load P 1014 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1015 !NullPointerIsDefined(SI->getFunction(), 1016 LI.getPointerAddressSpace())) 1017 return replaceOperand(LI, 0, SI->getOperand(1)); 1018 } 1019 } 1020 return nullptr; 1021 } 1022 1023 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1024 /// 1025 /// \returns underlying value that was "cast", or nullptr otherwise. 1026 /// 1027 /// For example, if we have: 1028 /// 1029 /// %E0 = extractelement <2 x double> %U, i32 0 1030 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1031 /// %E1 = extractelement <2 x double> %U, i32 1 1032 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1033 /// 1034 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1035 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1036 /// Note that %U may contain non-undef values where %V1 has undef. 1037 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1038 Value *U = nullptr; 1039 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1040 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1041 if (!E) 1042 return nullptr; 1043 auto *W = E->getVectorOperand(); 1044 if (!U) 1045 U = W; 1046 else if (U != W) 1047 return nullptr; 1048 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1049 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1050 return nullptr; 1051 V = IV->getAggregateOperand(); 1052 } 1053 if (!isa<UndefValue>(V) ||!U) 1054 return nullptr; 1055 1056 auto *UT = cast<VectorType>(U->getType()); 1057 auto *VT = V->getType(); 1058 // Check that types UT and VT are bitwise isomorphic. 1059 const auto &DL = IC.getDataLayout(); 1060 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1061 return nullptr; 1062 } 1063 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1064 if (AT->getNumElements() != UT->getNumElements()) 1065 return nullptr; 1066 } else { 1067 auto *ST = cast<StructType>(VT); 1068 if (ST->getNumElements() != UT->getNumElements()) 1069 return nullptr; 1070 for (const auto *EltT : ST->elements()) { 1071 if (EltT != UT->getElementType()) 1072 return nullptr; 1073 } 1074 } 1075 return U; 1076 } 1077 1078 /// Combine stores to match the type of value being stored. 1079 /// 1080 /// The core idea here is that the memory does not have any intrinsic type and 1081 /// where we can we should match the type of a store to the type of value being 1082 /// stored. 1083 /// 1084 /// However, this routine must never change the width of a store or the number of 1085 /// stores as that would introduce a semantic change. This combine is expected to 1086 /// be a semantic no-op which just allows stores to more closely model the types 1087 /// of their incoming values. 1088 /// 1089 /// Currently, we also refuse to change the precise type used for an atomic or 1090 /// volatile store. This is debatable, and might be reasonable to change later. 1091 /// However, it is risky in case some backend or other part of LLVM is relying 1092 /// on the exact type stored to select appropriate atomic operations. 1093 /// 1094 /// \returns true if the store was successfully combined away. This indicates 1095 /// the caller must erase the store instruction. We have to let the caller erase 1096 /// the store instruction as otherwise there is no way to signal whether it was 1097 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1098 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1099 // FIXME: We could probably with some care handle both volatile and ordered 1100 // atomic stores here but it isn't clear that this is important. 1101 if (!SI.isUnordered()) 1102 return false; 1103 1104 // swifterror values can't be bitcasted. 1105 if (SI.getPointerOperand()->isSwiftError()) 1106 return false; 1107 1108 Value *V = SI.getValueOperand(); 1109 1110 // Fold away bit casts of the stored value by storing the original type. 1111 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1112 V = BC->getOperand(0); 1113 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1114 combineStoreToNewValue(IC, SI, V); 1115 return true; 1116 } 1117 } 1118 1119 if (Value *U = likeBitCastFromVector(IC, V)) 1120 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1121 combineStoreToNewValue(IC, SI, U); 1122 return true; 1123 } 1124 1125 // FIXME: We should also canonicalize stores of vectors when their elements 1126 // are cast to other types. 1127 return false; 1128 } 1129 1130 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1131 // FIXME: We could probably with some care handle both volatile and atomic 1132 // stores here but it isn't clear that this is important. 1133 if (!SI.isSimple()) 1134 return false; 1135 1136 Value *V = SI.getValueOperand(); 1137 Type *T = V->getType(); 1138 1139 if (!T->isAggregateType()) 1140 return false; 1141 1142 if (auto *ST = dyn_cast<StructType>(T)) { 1143 // If the struct only have one element, we unpack. 1144 unsigned Count = ST->getNumElements(); 1145 if (Count == 1) { 1146 V = IC.Builder.CreateExtractValue(V, 0); 1147 combineStoreToNewValue(IC, SI, V); 1148 return true; 1149 } 1150 1151 // We don't want to break loads with padding here as we'd loose 1152 // the knowledge that padding exists for the rest of the pipeline. 1153 const DataLayout &DL = IC.getDataLayout(); 1154 auto *SL = DL.getStructLayout(ST); 1155 if (SL->hasPadding()) 1156 return false; 1157 1158 const auto Align = SI.getAlign(); 1159 1160 SmallString<16> EltName = V->getName(); 1161 EltName += ".elt"; 1162 auto *Addr = SI.getPointerOperand(); 1163 SmallString<16> AddrName = Addr->getName(); 1164 AddrName += ".repack"; 1165 1166 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1167 auto *Zero = ConstantInt::get(IdxType, 0); 1168 for (unsigned i = 0; i < Count; i++) { 1169 Value *Indices[2] = { 1170 Zero, 1171 ConstantInt::get(IdxType, i), 1172 }; 1173 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1174 AddrName); 1175 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1176 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); 1177 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1178 AAMDNodes AAMD; 1179 SI.getAAMetadata(AAMD); 1180 NS->setAAMetadata(AAMD); 1181 } 1182 1183 return true; 1184 } 1185 1186 if (auto *AT = dyn_cast<ArrayType>(T)) { 1187 // If the array only have one element, we unpack. 1188 auto NumElements = AT->getNumElements(); 1189 if (NumElements == 1) { 1190 V = IC.Builder.CreateExtractValue(V, 0); 1191 combineStoreToNewValue(IC, SI, V); 1192 return true; 1193 } 1194 1195 // Bail out if the array is too large. Ideally we would like to optimize 1196 // arrays of arbitrary size but this has a terrible impact on compile time. 1197 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1198 // tuning. 1199 if (NumElements > IC.MaxArraySizeForCombine) 1200 return false; 1201 1202 const DataLayout &DL = IC.getDataLayout(); 1203 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1204 const auto Align = SI.getAlign(); 1205 1206 SmallString<16> EltName = V->getName(); 1207 EltName += ".elt"; 1208 auto *Addr = SI.getPointerOperand(); 1209 SmallString<16> AddrName = Addr->getName(); 1210 AddrName += ".repack"; 1211 1212 auto *IdxType = Type::getInt64Ty(T->getContext()); 1213 auto *Zero = ConstantInt::get(IdxType, 0); 1214 1215 uint64_t Offset = 0; 1216 for (uint64_t i = 0; i < NumElements; i++) { 1217 Value *Indices[2] = { 1218 Zero, 1219 ConstantInt::get(IdxType, i), 1220 }; 1221 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1222 AddrName); 1223 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1224 auto EltAlign = commonAlignment(Align, Offset); 1225 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1226 AAMDNodes AAMD; 1227 SI.getAAMetadata(AAMD); 1228 NS->setAAMetadata(AAMD); 1229 Offset += EltSize; 1230 } 1231 1232 return true; 1233 } 1234 1235 return false; 1236 } 1237 1238 /// equivalentAddressValues - Test if A and B will obviously have the same 1239 /// value. This includes recognizing that %t0 and %t1 will have the same 1240 /// value in code like this: 1241 /// %t0 = getelementptr \@a, 0, 3 1242 /// store i32 0, i32* %t0 1243 /// %t1 = getelementptr \@a, 0, 3 1244 /// %t2 = load i32* %t1 1245 /// 1246 static bool equivalentAddressValues(Value *A, Value *B) { 1247 // Test if the values are trivially equivalent. 1248 if (A == B) return true; 1249 1250 // Test if the values come form identical arithmetic instructions. 1251 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1252 // its only used to compare two uses within the same basic block, which 1253 // means that they'll always either have the same value or one of them 1254 // will have an undefined value. 1255 if (isa<BinaryOperator>(A) || 1256 isa<CastInst>(A) || 1257 isa<PHINode>(A) || 1258 isa<GetElementPtrInst>(A)) 1259 if (Instruction *BI = dyn_cast<Instruction>(B)) 1260 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1261 return true; 1262 1263 // Otherwise they may not be equivalent. 1264 return false; 1265 } 1266 1267 /// Converts store (bitcast (load (bitcast (select ...)))) to 1268 /// store (load (select ...)), where select is minmax: 1269 /// select ((cmp load V1, load V2), V1, V2). 1270 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC, 1271 StoreInst &SI) { 1272 // bitcast? 1273 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1274 return false; 1275 // load? integer? 1276 Value *LoadAddr; 1277 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1278 return false; 1279 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1280 if (!LI->getType()->isIntegerTy()) 1281 return false; 1282 Type *CmpLoadTy; 1283 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1284 return false; 1285 1286 // Make sure the type would actually change. 1287 // This condition can be hit with chains of bitcasts. 1288 if (LI->getType() == CmpLoadTy) 1289 return false; 1290 1291 // Make sure we're not changing the size of the load/store. 1292 const auto &DL = IC.getDataLayout(); 1293 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1294 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1295 return false; 1296 1297 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1298 auto *SI = dyn_cast<StoreInst>(U); 1299 return SI && SI->getPointerOperand() != LI && 1300 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && 1301 !SI->getPointerOperand()->isSwiftError(); 1302 })) 1303 return false; 1304 1305 IC.Builder.SetInsertPoint(LI); 1306 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1307 // Replace all the stores with stores of the newly loaded value. 1308 for (auto *UI : LI->users()) { 1309 auto *USI = cast<StoreInst>(UI); 1310 IC.Builder.SetInsertPoint(USI); 1311 combineStoreToNewValue(IC, *USI, NewLI); 1312 } 1313 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1314 IC.eraseInstFromFunction(*LI); 1315 return true; 1316 } 1317 1318 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1319 Value *Val = SI.getOperand(0); 1320 Value *Ptr = SI.getOperand(1); 1321 1322 // Try to canonicalize the stored type. 1323 if (combineStoreToValueType(*this, SI)) 1324 return eraseInstFromFunction(SI); 1325 1326 // Attempt to improve the alignment. 1327 const Align KnownAlign = getOrEnforceKnownAlignment( 1328 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); 1329 if (KnownAlign > SI.getAlign()) 1330 SI.setAlignment(KnownAlign); 1331 1332 // Try to canonicalize the stored type. 1333 if (unpackStoreToAggregate(*this, SI)) 1334 return eraseInstFromFunction(SI); 1335 1336 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1337 return eraseInstFromFunction(SI); 1338 1339 // Replace GEP indices if possible. 1340 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1341 Worklist.push(NewGEPI); 1342 return &SI; 1343 } 1344 1345 // Don't hack volatile/ordered stores. 1346 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1347 if (!SI.isUnordered()) return nullptr; 1348 1349 // If the RHS is an alloca with a single use, zapify the store, making the 1350 // alloca dead. 1351 if (Ptr->hasOneUse()) { 1352 if (isa<AllocaInst>(Ptr)) 1353 return eraseInstFromFunction(SI); 1354 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1355 if (isa<AllocaInst>(GEP->getOperand(0))) { 1356 if (GEP->getOperand(0)->hasOneUse()) 1357 return eraseInstFromFunction(SI); 1358 } 1359 } 1360 } 1361 1362 // If we have a store to a location which is known constant, we can conclude 1363 // that the store must be storing the constant value (else the memory 1364 // wouldn't be constant), and this must be a noop. 1365 if (AA->pointsToConstantMemory(Ptr)) 1366 return eraseInstFromFunction(SI); 1367 1368 // Do really simple DSE, to catch cases where there are several consecutive 1369 // stores to the same location, separated by a few arithmetic operations. This 1370 // situation often occurs with bitfield accesses. 1371 BasicBlock::iterator BBI(SI); 1372 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1373 --ScanInsts) { 1374 --BBI; 1375 // Don't count debug info directives, lest they affect codegen, 1376 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1377 if (isa<DbgInfoIntrinsic>(BBI) || 1378 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1379 ScanInsts++; 1380 continue; 1381 } 1382 1383 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1384 // Prev store isn't volatile, and stores to the same location? 1385 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1386 SI.getOperand(1))) { 1387 ++NumDeadStore; 1388 // Manually add back the original store to the worklist now, so it will 1389 // be processed after the operands of the removed store, as this may 1390 // expose additional DSE opportunities. 1391 Worklist.push(&SI); 1392 eraseInstFromFunction(*PrevSI); 1393 return nullptr; 1394 } 1395 break; 1396 } 1397 1398 // If this is a load, we have to stop. However, if the loaded value is from 1399 // the pointer we're loading and is producing the pointer we're storing, 1400 // then *this* store is dead (X = load P; store X -> P). 1401 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1402 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1403 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1404 return eraseInstFromFunction(SI); 1405 } 1406 1407 // Otherwise, this is a load from some other location. Stores before it 1408 // may not be dead. 1409 break; 1410 } 1411 1412 // Don't skip over loads, throws or things that can modify memory. 1413 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1414 break; 1415 } 1416 1417 // store X, null -> turns into 'unreachable' in SimplifyCFG 1418 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1419 if (canSimplifyNullStoreOrGEP(SI)) { 1420 if (!isa<UndefValue>(Val)) 1421 return replaceOperand(SI, 0, UndefValue::get(Val->getType())); 1422 return nullptr; // Do not modify these! 1423 } 1424 1425 // store undef, Ptr -> noop 1426 if (isa<UndefValue>(Val)) 1427 return eraseInstFromFunction(SI); 1428 1429 // If this store is the second-to-last instruction in the basic block 1430 // (excluding debug info and bitcasts of pointers) and if the block ends with 1431 // an unconditional branch, try to move the store to the successor block. 1432 BBI = SI.getIterator(); 1433 do { 1434 ++BBI; 1435 } while (isa<DbgInfoIntrinsic>(BBI) || 1436 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1437 1438 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1439 if (BI->isUnconditional()) 1440 mergeStoreIntoSuccessor(SI); 1441 1442 return nullptr; 1443 } 1444 1445 /// Try to transform: 1446 /// if () { *P = v1; } else { *P = v2 } 1447 /// or: 1448 /// *P = v1; if () { *P = v2; } 1449 /// into a phi node with a store in the successor. 1450 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) { 1451 assert(SI.isUnordered() && 1452 "This code has not been audited for volatile or ordered store case."); 1453 1454 // Check if the successor block has exactly 2 incoming edges. 1455 BasicBlock *StoreBB = SI.getParent(); 1456 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1457 if (!DestBB->hasNPredecessors(2)) 1458 return false; 1459 1460 // Capture the other block (the block that doesn't contain our store). 1461 pred_iterator PredIter = pred_begin(DestBB); 1462 if (*PredIter == StoreBB) 1463 ++PredIter; 1464 BasicBlock *OtherBB = *PredIter; 1465 1466 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1467 // for example, if SI is in an infinite loop. 1468 if (StoreBB == DestBB || OtherBB == DestBB) 1469 return false; 1470 1471 // Verify that the other block ends in a branch and is not otherwise empty. 1472 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1473 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1474 if (!OtherBr || BBI == OtherBB->begin()) 1475 return false; 1476 1477 // If the other block ends in an unconditional branch, check for the 'if then 1478 // else' case. There is an instruction before the branch. 1479 StoreInst *OtherStore = nullptr; 1480 if (OtherBr->isUnconditional()) { 1481 --BBI; 1482 // Skip over debugging info. 1483 while (isa<DbgInfoIntrinsic>(BBI) || 1484 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1485 if (BBI==OtherBB->begin()) 1486 return false; 1487 --BBI; 1488 } 1489 // If this isn't a store, isn't a store to the same location, or is not the 1490 // right kind of store, bail out. 1491 OtherStore = dyn_cast<StoreInst>(BBI); 1492 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1493 !SI.isSameOperationAs(OtherStore)) 1494 return false; 1495 } else { 1496 // Otherwise, the other block ended with a conditional branch. If one of the 1497 // destinations is StoreBB, then we have the if/then case. 1498 if (OtherBr->getSuccessor(0) != StoreBB && 1499 OtherBr->getSuccessor(1) != StoreBB) 1500 return false; 1501 1502 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1503 // if/then triangle. See if there is a store to the same ptr as SI that 1504 // lives in OtherBB. 1505 for (;; --BBI) { 1506 // Check to see if we find the matching store. 1507 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1508 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1509 !SI.isSameOperationAs(OtherStore)) 1510 return false; 1511 break; 1512 } 1513 // If we find something that may be using or overwriting the stored 1514 // value, or if we run out of instructions, we can't do the transform. 1515 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1516 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1517 return false; 1518 } 1519 1520 // In order to eliminate the store in OtherBr, we have to make sure nothing 1521 // reads or overwrites the stored value in StoreBB. 1522 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1523 // FIXME: This should really be AA driven. 1524 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1525 return false; 1526 } 1527 } 1528 1529 // Insert a PHI node now if we need it. 1530 Value *MergedVal = OtherStore->getOperand(0); 1531 // The debug locations of the original instructions might differ. Merge them. 1532 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1533 OtherStore->getDebugLoc()); 1534 if (MergedVal != SI.getOperand(0)) { 1535 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1536 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1537 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1538 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1539 PN->setDebugLoc(MergedLoc); 1540 } 1541 1542 // Advance to a place where it is safe to insert the new store and insert it. 1543 BBI = DestBB->getFirstInsertionPt(); 1544 StoreInst *NewSI = 1545 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), 1546 SI.getOrdering(), SI.getSyncScopeID()); 1547 InsertNewInstBefore(NewSI, *BBI); 1548 NewSI->setDebugLoc(MergedLoc); 1549 1550 // If the two stores had AA tags, merge them. 1551 AAMDNodes AATags; 1552 SI.getAAMetadata(AATags); 1553 if (AATags) { 1554 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1555 NewSI->setAAMetadata(AATags); 1556 } 1557 1558 // Nuke the old stores. 1559 eraseInstFromFunction(SI); 1560 eraseInstFromFunction(*OtherStore); 1561 return true; 1562 } 1563