1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/Loads.h"
18 #include "llvm/Transforms/Utils/Local.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
27 using namespace llvm;
28 using namespace PatternMatch;
29 
30 #define DEBUG_TYPE "instcombine"
31 
32 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
34 
35 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to
36 /// some part of a constant global variable.  This intentionally only accepts
37 /// constant expressions because we can't rewrite arbitrary instructions.
38 static bool pointsToConstantGlobal(Value *V) {
39   if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
40     return GV->isConstant();
41 
42   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
43     if (CE->getOpcode() == Instruction::BitCast ||
44         CE->getOpcode() == Instruction::AddrSpaceCast ||
45         CE->getOpcode() == Instruction::GetElementPtr)
46       return pointsToConstantGlobal(CE->getOperand(0));
47   }
48   return false;
49 }
50 
51 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
52 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
53 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
54 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
55 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
56 /// the alloca, and if the source pointer is a pointer to a constant global, we
57 /// can optimize this.
58 static bool
59 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
60                                SmallVectorImpl<Instruction *> &ToDelete) {
61   // We track lifetime intrinsics as we encounter them.  If we decide to go
62   // ahead and replace the value with the global, this lets the caller quickly
63   // eliminate the markers.
64 
65   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
66   ValuesToInspect.emplace_back(V, false);
67   while (!ValuesToInspect.empty()) {
68     auto ValuePair = ValuesToInspect.pop_back_val();
69     const bool IsOffset = ValuePair.second;
70     for (auto &U : ValuePair.first->uses()) {
71       auto *I = cast<Instruction>(U.getUser());
72 
73       if (auto *LI = dyn_cast<LoadInst>(I)) {
74         // Ignore non-volatile loads, they are always ok.
75         if (!LI->isSimple()) return false;
76         continue;
77       }
78 
79       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
80         // If uses of the bitcast are ok, we are ok.
81         ValuesToInspect.emplace_back(I, IsOffset);
82         continue;
83       }
84       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
85         // If the GEP has all zero indices, it doesn't offset the pointer. If it
86         // doesn't, it does.
87         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
88         continue;
89       }
90 
91       if (auto *Call = dyn_cast<CallBase>(I)) {
92         // If this is the function being called then we treat it like a load and
93         // ignore it.
94         if (Call->isCallee(&U))
95           continue;
96 
97         unsigned DataOpNo = Call->getDataOperandNo(&U);
98         bool IsArgOperand = Call->isArgOperand(&U);
99 
100         // Inalloca arguments are clobbered by the call.
101         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
102           return false;
103 
104         // If this is a readonly/readnone call site, then we know it is just a
105         // load (but one that potentially returns the value itself), so we can
106         // ignore it if we know that the value isn't captured.
107         if (Call->onlyReadsMemory() &&
108             (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
109           continue;
110 
111         // If this is being passed as a byval argument, the caller is making a
112         // copy, so it is only a read of the alloca.
113         if (IsArgOperand && Call->isByValArgument(DataOpNo))
114           continue;
115       }
116 
117       // Lifetime intrinsics can be handled by the caller.
118       if (I->isLifetimeStartOrEnd()) {
119         assert(I->use_empty() && "Lifetime markers have no result to use!");
120         ToDelete.push_back(I);
121         continue;
122       }
123 
124       // If this is isn't our memcpy/memmove, reject it as something we can't
125       // handle.
126       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
127       if (!MI)
128         return false;
129 
130       // If the transfer is using the alloca as a source of the transfer, then
131       // ignore it since it is a load (unless the transfer is volatile).
132       if (U.getOperandNo() == 1) {
133         if (MI->isVolatile()) return false;
134         continue;
135       }
136 
137       // If we already have seen a copy, reject the second one.
138       if (TheCopy) return false;
139 
140       // If the pointer has been offset from the start of the alloca, we can't
141       // safely handle this.
142       if (IsOffset) return false;
143 
144       // If the memintrinsic isn't using the alloca as the dest, reject it.
145       if (U.getOperandNo() != 0) return false;
146 
147       // If the source of the memcpy/move is not a constant global, reject it.
148       if (!pointsToConstantGlobal(MI->getSource()))
149         return false;
150 
151       // Otherwise, the transform is safe.  Remember the copy instruction.
152       TheCopy = MI;
153     }
154   }
155   return true;
156 }
157 
158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
159 /// modified by a copy from a constant global.  If we can prove this, we can
160 /// replace any uses of the alloca with uses of the global directly.
161 static MemTransferInst *
162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI,
163                                SmallVectorImpl<Instruction *> &ToDelete) {
164   MemTransferInst *TheCopy = nullptr;
165   if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete))
166     return TheCopy;
167   return nullptr;
168 }
169 
170 /// Returns true if V is dereferenceable for size of alloca.
171 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
172                                            const DataLayout &DL) {
173   if (AI->isArrayAllocation())
174     return false;
175   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
176   if (!AllocaSize)
177     return false;
178   return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()),
179                                             APInt(64, AllocaSize), DL);
180 }
181 
182 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) {
183   // Check for array size of 1 (scalar allocation).
184   if (!AI.isArrayAllocation()) {
185     // i32 1 is the canonical array size for scalar allocations.
186     if (AI.getArraySize()->getType()->isIntegerTy(32))
187       return nullptr;
188 
189     // Canonicalize it.
190     return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
191   }
192 
193   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
194   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
195     if (C->getValue().getActiveBits() <= 64) {
196       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
197       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
198       New->setAlignment(MaybeAlign(AI.getAlignment()));
199 
200       // Scan to the end of the allocation instructions, to skip over a block of
201       // allocas if possible...also skip interleaved debug info
202       //
203       BasicBlock::iterator It(New);
204       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
205         ++It;
206 
207       // Now that I is pointing to the first non-allocation-inst in the block,
208       // insert our getelementptr instruction...
209       //
210       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
211       Value *NullIdx = Constant::getNullValue(IdxTy);
212       Value *Idx[2] = {NullIdx, NullIdx};
213       Instruction *GEP = GetElementPtrInst::CreateInBounds(
214           NewTy, New, Idx, New->getName() + ".sub");
215       IC.InsertNewInstBefore(GEP, *It);
216 
217       // Now make everything use the getelementptr instead of the original
218       // allocation.
219       return IC.replaceInstUsesWith(AI, GEP);
220     }
221   }
222 
223   if (isa<UndefValue>(AI.getArraySize()))
224     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
225 
226   // Ensure that the alloca array size argument has type intptr_t, so that
227   // any casting is exposed early.
228   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
229   if (AI.getArraySize()->getType() != IntPtrTy) {
230     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
231     return IC.replaceOperand(AI, 0, V);
232   }
233 
234   return nullptr;
235 }
236 
237 namespace {
238 // If I and V are pointers in different address space, it is not allowed to
239 // use replaceAllUsesWith since I and V have different types. A
240 // non-target-specific transformation should not use addrspacecast on V since
241 // the two address space may be disjoint depending on target.
242 //
243 // This class chases down uses of the old pointer until reaching the load
244 // instructions, then replaces the old pointer in the load instructions with
245 // the new pointer. If during the chasing it sees bitcast or GEP, it will
246 // create new bitcast or GEP with the new pointer and use them in the load
247 // instruction.
248 class PointerReplacer {
249 public:
250   PointerReplacer(InstCombiner &IC) : IC(IC) {}
251   void replacePointer(Instruction &I, Value *V);
252 
253 private:
254   void findLoadAndReplace(Instruction &I);
255   void replace(Instruction *I);
256   Value *getReplacement(Value *I);
257 
258   SmallVector<Instruction *, 4> Path;
259   MapVector<Value *, Value *> WorkMap;
260   InstCombiner &IC;
261 };
262 } // end anonymous namespace
263 
264 void PointerReplacer::findLoadAndReplace(Instruction &I) {
265   for (auto U : I.users()) {
266     auto *Inst = dyn_cast<Instruction>(&*U);
267     if (!Inst)
268       return;
269     LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n');
270     if (isa<LoadInst>(Inst)) {
271       for (auto P : Path)
272         replace(P);
273       replace(Inst);
274     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
275       Path.push_back(Inst);
276       findLoadAndReplace(*Inst);
277       Path.pop_back();
278     } else {
279       return;
280     }
281   }
282 }
283 
284 Value *PointerReplacer::getReplacement(Value *V) {
285   auto Loc = WorkMap.find(V);
286   if (Loc != WorkMap.end())
287     return Loc->second;
288   return nullptr;
289 }
290 
291 void PointerReplacer::replace(Instruction *I) {
292   if (getReplacement(I))
293     return;
294 
295   if (auto *LT = dyn_cast<LoadInst>(I)) {
296     auto *V = getReplacement(LT->getPointerOperand());
297     assert(V && "Operand not replaced");
298     auto *NewI = new LoadInst(I->getType(), V);
299     NewI->takeName(LT);
300     IC.InsertNewInstWith(NewI, *LT);
301     IC.replaceInstUsesWith(*LT, NewI);
302     WorkMap[LT] = NewI;
303   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
304     auto *V = getReplacement(GEP->getPointerOperand());
305     assert(V && "Operand not replaced");
306     SmallVector<Value *, 8> Indices;
307     Indices.append(GEP->idx_begin(), GEP->idx_end());
308     auto *NewI = GetElementPtrInst::Create(
309         V->getType()->getPointerElementType(), V, Indices);
310     IC.InsertNewInstWith(NewI, *GEP);
311     NewI->takeName(GEP);
312     WorkMap[GEP] = NewI;
313   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
314     auto *V = getReplacement(BC->getOperand(0));
315     assert(V && "Operand not replaced");
316     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
317                                   V->getType()->getPointerAddressSpace());
318     auto *NewI = new BitCastInst(V, NewT);
319     IC.InsertNewInstWith(NewI, *BC);
320     NewI->takeName(BC);
321     WorkMap[BC] = NewI;
322   } else {
323     llvm_unreachable("should never reach here");
324   }
325 }
326 
327 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
328 #ifndef NDEBUG
329   auto *PT = cast<PointerType>(I.getType());
330   auto *NT = cast<PointerType>(V->getType());
331   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
332          "Invalid usage");
333 #endif
334   WorkMap[&I] = V;
335   findLoadAndReplace(I);
336 }
337 
338 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) {
339   if (auto *I = simplifyAllocaArraySize(*this, AI))
340     return I;
341 
342   if (AI.getAllocatedType()->isSized()) {
343     // If the alignment is 0 (unspecified), assign it the preferred alignment.
344     if (AI.getAlignment() == 0)
345       AI.setAlignment(
346           MaybeAlign(DL.getPrefTypeAlignment(AI.getAllocatedType())));
347 
348     // Move all alloca's of zero byte objects to the entry block and merge them
349     // together.  Note that we only do this for alloca's, because malloc should
350     // allocate and return a unique pointer, even for a zero byte allocation.
351     if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) {
352       // For a zero sized alloca there is no point in doing an array allocation.
353       // This is helpful if the array size is a complicated expression not used
354       // elsewhere.
355       if (AI.isArrayAllocation())
356         return replaceOperand(AI, 0,
357             ConstantInt::get(AI.getArraySize()->getType(), 1));
358 
359       // Get the first instruction in the entry block.
360       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
361       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
362       if (FirstInst != &AI) {
363         // If the entry block doesn't start with a zero-size alloca then move
364         // this one to the start of the entry block.  There is no problem with
365         // dominance as the array size was forced to a constant earlier already.
366         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
367         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
368             DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) {
369           AI.moveBefore(FirstInst);
370           return &AI;
371         }
372 
373         // If the alignment of the entry block alloca is 0 (unspecified),
374         // assign it the preferred alignment.
375         if (EntryAI->getAlignment() == 0)
376           EntryAI->setAlignment(
377               MaybeAlign(DL.getPrefTypeAlignment(EntryAI->getAllocatedType())));
378         // Replace this zero-sized alloca with the one at the start of the entry
379         // block after ensuring that the address will be aligned enough for both
380         // types.
381         const MaybeAlign MaxAlign(
382             std::max(EntryAI->getAlignment(), AI.getAlignment()));
383         EntryAI->setAlignment(MaxAlign);
384         if (AI.getType() != EntryAI->getType())
385           return new BitCastInst(EntryAI, AI.getType());
386         return replaceInstUsesWith(AI, EntryAI);
387       }
388     }
389   }
390 
391   if (AI.getAlignment()) {
392     // Check to see if this allocation is only modified by a memcpy/memmove from
393     // a constant global whose alignment is equal to or exceeds that of the
394     // allocation.  If this is the case, we can change all users to use
395     // the constant global instead.  This is commonly produced by the CFE by
396     // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
397     // is only subsequently read.
398     SmallVector<Instruction *, 4> ToDelete;
399     if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) {
400       unsigned SourceAlign = getOrEnforceKnownAlignment(
401           Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT);
402       if (AI.getAlignment() <= SourceAlign &&
403           isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) {
404         LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
405         LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
406         for (unsigned i = 0, e = ToDelete.size(); i != e; ++i)
407           eraseInstFromFunction(*ToDelete[i]);
408         Constant *TheSrc = cast<Constant>(Copy->getSource());
409         auto *SrcTy = TheSrc->getType();
410         auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(),
411                                         SrcTy->getPointerAddressSpace());
412         Constant *Cast =
413             ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy);
414         if (AI.getType()->getPointerAddressSpace() ==
415             SrcTy->getPointerAddressSpace()) {
416           Instruction *NewI = replaceInstUsesWith(AI, Cast);
417           eraseInstFromFunction(*Copy);
418           ++NumGlobalCopies;
419           return NewI;
420         } else {
421           PointerReplacer PtrReplacer(*this);
422           PtrReplacer.replacePointer(AI, Cast);
423           ++NumGlobalCopies;
424         }
425       }
426     }
427   }
428 
429   // At last, use the generic allocation site handler to aggressively remove
430   // unused allocas.
431   return visitAllocSite(AI);
432 }
433 
434 // Are we allowed to form a atomic load or store of this type?
435 static bool isSupportedAtomicType(Type *Ty) {
436   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
437 }
438 
439 /// Helper to combine a load to a new type.
440 ///
441 /// This just does the work of combining a load to a new type. It handles
442 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
443 /// loaded *value* type. This will convert it to a pointer, cast the operand to
444 /// that pointer type, load it, etc.
445 ///
446 /// Note that this will create all of the instructions with whatever insert
447 /// point the \c InstCombiner currently is using.
448 LoadInst *InstCombiner::combineLoadToNewType(LoadInst &LI, Type *NewTy,
449                                              const Twine &Suffix) {
450   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
451          "can't fold an atomic load to requested type");
452 
453   Value *Ptr = LI.getPointerOperand();
454   unsigned AS = LI.getPointerAddressSpace();
455   Value *NewPtr = nullptr;
456   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
457         NewPtr->getType()->getPointerElementType() == NewTy &&
458         NewPtr->getType()->getPointerAddressSpace() == AS))
459     NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS));
460 
461     // If old load did not have an explicit alignment specified,
462     // manually preserve the implied (ABI) alignment of the load.
463     // Else we may inadvertently incorrectly over-promise alignment.
464   const auto Align =
465       getDataLayout().getValueOrABITypeAlignment(LI.getAlign(), LI.getType());
466 
467   LoadInst *NewLoad = Builder.CreateAlignedLoad(
468       NewTy, NewPtr, Align, LI.isVolatile(), LI.getName() + Suffix);
469   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
470   copyMetadataForLoad(*NewLoad, LI);
471   return NewLoad;
472 }
473 
474 /// Combine a store to a new type.
475 ///
476 /// Returns the newly created store instruction.
477 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) {
478   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
479          "can't fold an atomic store of requested type");
480 
481   Value *Ptr = SI.getPointerOperand();
482   unsigned AS = SI.getPointerAddressSpace();
483   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
484   SI.getAllMetadata(MD);
485 
486   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
487       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
488       SI.getAlign(), SI.isVolatile());
489   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
490   for (const auto &MDPair : MD) {
491     unsigned ID = MDPair.first;
492     MDNode *N = MDPair.second;
493     // Note, essentially every kind of metadata should be preserved here! This
494     // routine is supposed to clone a store instruction changing *only its
495     // type*. The only metadata it makes sense to drop is metadata which is
496     // invalidated when the pointer type changes. This should essentially
497     // never be the case in LLVM, but we explicitly switch over only known
498     // metadata to be conservatively correct. If you are adding metadata to
499     // LLVM which pertains to stores, you almost certainly want to add it
500     // here.
501     switch (ID) {
502     case LLVMContext::MD_dbg:
503     case LLVMContext::MD_tbaa:
504     case LLVMContext::MD_prof:
505     case LLVMContext::MD_fpmath:
506     case LLVMContext::MD_tbaa_struct:
507     case LLVMContext::MD_alias_scope:
508     case LLVMContext::MD_noalias:
509     case LLVMContext::MD_nontemporal:
510     case LLVMContext::MD_mem_parallel_loop_access:
511     case LLVMContext::MD_access_group:
512       // All of these directly apply.
513       NewStore->setMetadata(ID, N);
514       break;
515     case LLVMContext::MD_invariant_load:
516     case LLVMContext::MD_nonnull:
517     case LLVMContext::MD_range:
518     case LLVMContext::MD_align:
519     case LLVMContext::MD_dereferenceable:
520     case LLVMContext::MD_dereferenceable_or_null:
521       // These don't apply for stores.
522       break;
523     }
524   }
525 
526   return NewStore;
527 }
528 
529 /// Returns true if instruction represent minmax pattern like:
530 ///   select ((cmp load V1, load V2), V1, V2).
531 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
532   assert(V->getType()->isPointerTy() && "Expected pointer type.");
533   // Ignore possible ty* to ixx* bitcast.
534   V = peekThroughBitcast(V);
535   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
536   // pattern.
537   CmpInst::Predicate Pred;
538   Instruction *L1;
539   Instruction *L2;
540   Value *LHS;
541   Value *RHS;
542   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
543                          m_Value(LHS), m_Value(RHS))))
544     return false;
545   LoadTy = L1->getType();
546   return (match(L1, m_Load(m_Specific(LHS))) &&
547           match(L2, m_Load(m_Specific(RHS)))) ||
548          (match(L1, m_Load(m_Specific(RHS))) &&
549           match(L2, m_Load(m_Specific(LHS))));
550 }
551 
552 /// Combine loads to match the type of their uses' value after looking
553 /// through intervening bitcasts.
554 ///
555 /// The core idea here is that if the result of a load is used in an operation,
556 /// we should load the type most conducive to that operation. For example, when
557 /// loading an integer and converting that immediately to a pointer, we should
558 /// instead directly load a pointer.
559 ///
560 /// However, this routine must never change the width of a load or the number of
561 /// loads as that would introduce a semantic change. This combine is expected to
562 /// be a semantic no-op which just allows loads to more closely model the types
563 /// of their consuming operations.
564 ///
565 /// Currently, we also refuse to change the precise type used for an atomic load
566 /// or a volatile load. This is debatable, and might be reasonable to change
567 /// later. However, it is risky in case some backend or other part of LLVM is
568 /// relying on the exact type loaded to select appropriate atomic operations.
569 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) {
570   // FIXME: We could probably with some care handle both volatile and ordered
571   // atomic loads here but it isn't clear that this is important.
572   if (!LI.isUnordered())
573     return nullptr;
574 
575   if (LI.use_empty())
576     return nullptr;
577 
578   // swifterror values can't be bitcasted.
579   if (LI.getPointerOperand()->isSwiftError())
580     return nullptr;
581 
582   Type *Ty = LI.getType();
583   const DataLayout &DL = IC.getDataLayout();
584 
585   // Try to canonicalize loads which are only ever stored to operate over
586   // integers instead of any other type. We only do this when the loaded type
587   // is sized and has a size exactly the same as its store size and the store
588   // size is a legal integer type.
589   // Do not perform canonicalization if minmax pattern is found (to avoid
590   // infinite loop).
591   Type *Dummy;
592   if (!Ty->isIntegerTy() && Ty->isSized() &&
593       !(Ty->isVectorTy() && Ty->getVectorIsScalable()) &&
594       DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) &&
595       DL.typeSizeEqualsStoreSize(Ty) &&
596       !DL.isNonIntegralPointerType(Ty) &&
597       !isMinMaxWithLoads(
598           peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true),
599           Dummy)) {
600     if (all_of(LI.users(), [&LI](User *U) {
601           auto *SI = dyn_cast<StoreInst>(U);
602           return SI && SI->getPointerOperand() != &LI &&
603                  !SI->getPointerOperand()->isSwiftError();
604         })) {
605       LoadInst *NewLoad = IC.combineLoadToNewType(
606           LI, Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty)));
607       // Replace all the stores with stores of the newly loaded value.
608       for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) {
609         auto *SI = cast<StoreInst>(*UI++);
610         IC.Builder.SetInsertPoint(SI);
611         combineStoreToNewValue(IC, *SI, NewLoad);
612         IC.eraseInstFromFunction(*SI);
613       }
614       assert(LI.use_empty() && "Failed to remove all users of the load!");
615       // Return the old load so the combiner can delete it safely.
616       return &LI;
617     }
618   }
619 
620   // Fold away bit casts of the loaded value by loading the desired type.
621   // We can do this for BitCastInsts as well as casts from and to pointer types,
622   // as long as those are noops (i.e., the source or dest type have the same
623   // bitwidth as the target's pointers).
624   if (LI.hasOneUse())
625     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
626       if (CI->isNoopCast(DL))
627         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
628           LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
629           CI->replaceAllUsesWith(NewLoad);
630           IC.eraseInstFromFunction(*CI);
631           return &LI;
632         }
633 
634   // FIXME: We should also canonicalize loads of vectors when their elements are
635   // cast to other types.
636   return nullptr;
637 }
638 
639 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) {
640   // FIXME: We could probably with some care handle both volatile and atomic
641   // stores here but it isn't clear that this is important.
642   if (!LI.isSimple())
643     return nullptr;
644 
645   Type *T = LI.getType();
646   if (!T->isAggregateType())
647     return nullptr;
648 
649   StringRef Name = LI.getName();
650   assert(LI.getAlignment() && "Alignment must be set at this point");
651 
652   if (auto *ST = dyn_cast<StructType>(T)) {
653     // If the struct only have one element, we unpack.
654     auto NumElements = ST->getNumElements();
655     if (NumElements == 1) {
656       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
657                                                   ".unpack");
658       AAMDNodes AAMD;
659       LI.getAAMetadata(AAMD);
660       NewLoad->setAAMetadata(AAMD);
661       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
662         UndefValue::get(T), NewLoad, 0, Name));
663     }
664 
665     // We don't want to break loads with padding here as we'd loose
666     // the knowledge that padding exists for the rest of the pipeline.
667     const DataLayout &DL = IC.getDataLayout();
668     auto *SL = DL.getStructLayout(ST);
669     if (SL->hasPadding())
670       return nullptr;
671 
672     const auto Align = DL.getValueOrABITypeAlignment(LI.getAlign(), ST);
673 
674     auto *Addr = LI.getPointerOperand();
675     auto *IdxType = Type::getInt32Ty(T->getContext());
676     auto *Zero = ConstantInt::get(IdxType, 0);
677 
678     Value *V = UndefValue::get(T);
679     for (unsigned i = 0; i < NumElements; i++) {
680       Value *Indices[2] = {
681         Zero,
682         ConstantInt::get(IdxType, i),
683       };
684       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
685                                                Name + ".elt");
686       auto *L = IC.Builder.CreateAlignedLoad(
687           ST->getElementType(i), Ptr,
688           commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
689       // Propagate AA metadata. It'll still be valid on the narrowed load.
690       AAMDNodes AAMD;
691       LI.getAAMetadata(AAMD);
692       L->setAAMetadata(AAMD);
693       V = IC.Builder.CreateInsertValue(V, L, i);
694     }
695 
696     V->setName(Name);
697     return IC.replaceInstUsesWith(LI, V);
698   }
699 
700   if (auto *AT = dyn_cast<ArrayType>(T)) {
701     auto *ET = AT->getElementType();
702     auto NumElements = AT->getNumElements();
703     if (NumElements == 1) {
704       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
705       AAMDNodes AAMD;
706       LI.getAAMetadata(AAMD);
707       NewLoad->setAAMetadata(AAMD);
708       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
709         UndefValue::get(T), NewLoad, 0, Name));
710     }
711 
712     // Bail out if the array is too large. Ideally we would like to optimize
713     // arrays of arbitrary size but this has a terrible impact on compile time.
714     // The threshold here is chosen arbitrarily, maybe needs a little bit of
715     // tuning.
716     if (NumElements > IC.MaxArraySizeForCombine)
717       return nullptr;
718 
719     const DataLayout &DL = IC.getDataLayout();
720     auto EltSize = DL.getTypeAllocSize(ET);
721     const auto Align = DL.getValueOrABITypeAlignment(LI.getAlign(), T);
722 
723     auto *Addr = LI.getPointerOperand();
724     auto *IdxType = Type::getInt64Ty(T->getContext());
725     auto *Zero = ConstantInt::get(IdxType, 0);
726 
727     Value *V = UndefValue::get(T);
728     uint64_t Offset = 0;
729     for (uint64_t i = 0; i < NumElements; i++) {
730       Value *Indices[2] = {
731         Zero,
732         ConstantInt::get(IdxType, i),
733       };
734       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
735                                                Name + ".elt");
736       auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
737                                              commonAlignment(Align, Offset),
738                                              Name + ".unpack");
739       AAMDNodes AAMD;
740       LI.getAAMetadata(AAMD);
741       L->setAAMetadata(AAMD);
742       V = IC.Builder.CreateInsertValue(V, L, i);
743       Offset += EltSize;
744     }
745 
746     V->setName(Name);
747     return IC.replaceInstUsesWith(LI, V);
748   }
749 
750   return nullptr;
751 }
752 
753 // If we can determine that all possible objects pointed to by the provided
754 // pointer value are, not only dereferenceable, but also definitively less than
755 // or equal to the provided maximum size, then return true. Otherwise, return
756 // false (constant global values and allocas fall into this category).
757 //
758 // FIXME: This should probably live in ValueTracking (or similar).
759 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
760                                      const DataLayout &DL) {
761   SmallPtrSet<Value *, 4> Visited;
762   SmallVector<Value *, 4> Worklist(1, V);
763 
764   do {
765     Value *P = Worklist.pop_back_val();
766     P = P->stripPointerCasts();
767 
768     if (!Visited.insert(P).second)
769       continue;
770 
771     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
772       Worklist.push_back(SI->getTrueValue());
773       Worklist.push_back(SI->getFalseValue());
774       continue;
775     }
776 
777     if (PHINode *PN = dyn_cast<PHINode>(P)) {
778       for (Value *IncValue : PN->incoming_values())
779         Worklist.push_back(IncValue);
780       continue;
781     }
782 
783     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
784       if (GA->isInterposable())
785         return false;
786       Worklist.push_back(GA->getAliasee());
787       continue;
788     }
789 
790     // If we know how big this object is, and it is less than MaxSize, continue
791     // searching. Otherwise, return false.
792     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
793       if (!AI->getAllocatedType()->isSized())
794         return false;
795 
796       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
797       if (!CS)
798         return false;
799 
800       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
801       // Make sure that, even if the multiplication below would wrap as an
802       // uint64_t, we still do the right thing.
803       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
804         return false;
805       continue;
806     }
807 
808     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
809       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
810         return false;
811 
812       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
813       if (InitSize > MaxSize)
814         return false;
815       continue;
816     }
817 
818     return false;
819   } while (!Worklist.empty());
820 
821   return true;
822 }
823 
824 // If we're indexing into an object of a known size, and the outer index is
825 // not a constant, but having any value but zero would lead to undefined
826 // behavior, replace it with zero.
827 //
828 // For example, if we have:
829 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
830 // ...
831 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
832 // ... = load i32* %arrayidx, align 4
833 // Then we know that we can replace %x in the GEP with i64 0.
834 //
835 // FIXME: We could fold any GEP index to zero that would cause UB if it were
836 // not zero. Currently, we only handle the first such index. Also, we could
837 // also search through non-zero constant indices if we kept track of the
838 // offsets those indices implied.
839 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI,
840                                      Instruction *MemI, unsigned &Idx) {
841   if (GEPI->getNumOperands() < 2)
842     return false;
843 
844   // Find the first non-zero index of a GEP. If all indices are zero, return
845   // one past the last index.
846   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
847     unsigned I = 1;
848     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
849       Value *V = GEPI->getOperand(I);
850       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
851         if (CI->isZero())
852           continue;
853 
854       break;
855     }
856 
857     return I;
858   };
859 
860   // Skip through initial 'zero' indices, and find the corresponding pointer
861   // type. See if the next index is not a constant.
862   Idx = FirstNZIdx(GEPI);
863   if (Idx == GEPI->getNumOperands())
864     return false;
865   if (isa<Constant>(GEPI->getOperand(Idx)))
866     return false;
867 
868   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
869   Type *AllocTy =
870     GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops);
871   if (!AllocTy || !AllocTy->isSized())
872     return false;
873   const DataLayout &DL = IC.getDataLayout();
874   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy);
875 
876   // If there are more indices after the one we might replace with a zero, make
877   // sure they're all non-negative. If any of them are negative, the overall
878   // address being computed might be before the base address determined by the
879   // first non-zero index.
880   auto IsAllNonNegative = [&]() {
881     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
882       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
883       if (Known.isNonNegative())
884         continue;
885       return false;
886     }
887 
888     return true;
889   };
890 
891   // FIXME: If the GEP is not inbounds, and there are extra indices after the
892   // one we'll replace, those could cause the address computation to wrap
893   // (rendering the IsAllNonNegative() check below insufficient). We can do
894   // better, ignoring zero indices (and other indices we can prove small
895   // enough not to wrap).
896   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
897     return false;
898 
899   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
900   // also known to be dereferenceable.
901   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
902          IsAllNonNegative();
903 }
904 
905 // If we're indexing into an object with a variable index for the memory
906 // access, but the object has only one element, we can assume that the index
907 // will always be zero. If we replace the GEP, return it.
908 template <typename T>
909 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr,
910                                           T &MemI) {
911   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
912     unsigned Idx;
913     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
914       Instruction *NewGEPI = GEPI->clone();
915       NewGEPI->setOperand(Idx,
916         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
917       NewGEPI->insertBefore(GEPI);
918       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
919       return NewGEPI;
920     }
921   }
922 
923   return nullptr;
924 }
925 
926 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
927   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
928     return false;
929 
930   auto *Ptr = SI.getPointerOperand();
931   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
932     Ptr = GEPI->getOperand(0);
933   return (isa<ConstantPointerNull>(Ptr) &&
934           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
935 }
936 
937 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
938   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
939     const Value *GEPI0 = GEPI->getOperand(0);
940     if (isa<ConstantPointerNull>(GEPI0) &&
941         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
942       return true;
943   }
944   if (isa<UndefValue>(Op) ||
945       (isa<ConstantPointerNull>(Op) &&
946        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
947     return true;
948   return false;
949 }
950 
951 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
952   Value *Op = LI.getOperand(0);
953 
954   // Try to canonicalize the loaded type.
955   if (Instruction *Res = combineLoadToOperationType(*this, LI))
956     return Res;
957 
958   // Attempt to improve the alignment.
959   unsigned KnownAlign = getOrEnforceKnownAlignment(
960       Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT);
961   unsigned LoadAlign = LI.getAlignment();
962   unsigned EffectiveLoadAlign =
963       LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType());
964 
965   if (KnownAlign > EffectiveLoadAlign)
966     LI.setAlignment(MaybeAlign(KnownAlign));
967   else if (LoadAlign == 0)
968     LI.setAlignment(MaybeAlign(EffectiveLoadAlign));
969 
970   // Replace GEP indices if possible.
971   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
972       Worklist.push(NewGEPI);
973       return &LI;
974   }
975 
976   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
977     return Res;
978 
979   // Do really simple store-to-load forwarding and load CSE, to catch cases
980   // where there are several consecutive memory accesses to the same location,
981   // separated by a few arithmetic operations.
982   BasicBlock::iterator BBI(LI);
983   bool IsLoadCSE = false;
984   if (Value *AvailableVal = FindAvailableLoadedValue(
985           &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) {
986     if (IsLoadCSE)
987       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
988 
989     return replaceInstUsesWith(
990         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
991                                            LI.getName() + ".cast"));
992   }
993 
994   // None of the following transforms are legal for volatile/ordered atomic
995   // loads.  Most of them do apply for unordered atomics.
996   if (!LI.isUnordered()) return nullptr;
997 
998   // load(gep null, ...) -> unreachable
999   // load null/undef -> unreachable
1000   // TODO: Consider a target hook for valid address spaces for this xforms.
1001   if (canSimplifyNullLoadOrGEP(LI, Op)) {
1002     // Insert a new store to null instruction before the load to indicate
1003     // that this code is not reachable.  We do this instead of inserting
1004     // an unreachable instruction directly because we cannot modify the
1005     // CFG.
1006     StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()),
1007                                   Constant::getNullValue(Op->getType()), &LI);
1008     SI->setDebugLoc(LI.getDebugLoc());
1009     return replaceInstUsesWith(LI, UndefValue::get(LI.getType()));
1010   }
1011 
1012   if (Op->hasOneUse()) {
1013     // Change select and PHI nodes to select values instead of addresses: this
1014     // helps alias analysis out a lot, allows many others simplifications, and
1015     // exposes redundancy in the code.
1016     //
1017     // Note that we cannot do the transformation unless we know that the
1018     // introduced loads cannot trap!  Something like this is valid as long as
1019     // the condition is always false: load (select bool %C, int* null, int* %G),
1020     // but it would not be valid if we transformed it to load from null
1021     // unconditionally.
1022     //
1023     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1024       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1025       const MaybeAlign Alignment(LI.getAlignment());
1026       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1027                                       Alignment, DL, SI) &&
1028           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1029                                       Alignment, DL, SI)) {
1030         LoadInst *V1 =
1031             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1032                                SI->getOperand(1)->getName() + ".val");
1033         LoadInst *V2 =
1034             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1035                                SI->getOperand(2)->getName() + ".val");
1036         assert(LI.isUnordered() && "implied by above");
1037         V1->setAlignment(Alignment);
1038         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1039         V2->setAlignment(Alignment);
1040         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1041         return SelectInst::Create(SI->getCondition(), V1, V2);
1042       }
1043 
1044       // load (select (cond, null, P)) -> load P
1045       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1046           !NullPointerIsDefined(SI->getFunction(),
1047                                 LI.getPointerAddressSpace()))
1048         return replaceOperand(LI, 0, SI->getOperand(2));
1049 
1050       // load (select (cond, P, null)) -> load P
1051       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1052           !NullPointerIsDefined(SI->getFunction(),
1053                                 LI.getPointerAddressSpace()))
1054         return replaceOperand(LI, 0, SI->getOperand(1));
1055     }
1056   }
1057   return nullptr;
1058 }
1059 
1060 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1061 ///
1062 /// \returns underlying value that was "cast", or nullptr otherwise.
1063 ///
1064 /// For example, if we have:
1065 ///
1066 ///     %E0 = extractelement <2 x double> %U, i32 0
1067 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1068 ///     %E1 = extractelement <2 x double> %U, i32 1
1069 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1070 ///
1071 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1072 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1073 /// Note that %U may contain non-undef values where %V1 has undef.
1074 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) {
1075   Value *U = nullptr;
1076   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1077     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1078     if (!E)
1079       return nullptr;
1080     auto *W = E->getVectorOperand();
1081     if (!U)
1082       U = W;
1083     else if (U != W)
1084       return nullptr;
1085     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1086     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1087       return nullptr;
1088     V = IV->getAggregateOperand();
1089   }
1090   if (!isa<UndefValue>(V) ||!U)
1091     return nullptr;
1092 
1093   auto *UT = cast<VectorType>(U->getType());
1094   auto *VT = V->getType();
1095   // Check that types UT and VT are bitwise isomorphic.
1096   const auto &DL = IC.getDataLayout();
1097   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1098     return nullptr;
1099   }
1100   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1101     if (AT->getNumElements() != UT->getNumElements())
1102       return nullptr;
1103   } else {
1104     auto *ST = cast<StructType>(VT);
1105     if (ST->getNumElements() != UT->getNumElements())
1106       return nullptr;
1107     for (const auto *EltT : ST->elements()) {
1108       if (EltT != UT->getElementType())
1109         return nullptr;
1110     }
1111   }
1112   return U;
1113 }
1114 
1115 /// Combine stores to match the type of value being stored.
1116 ///
1117 /// The core idea here is that the memory does not have any intrinsic type and
1118 /// where we can we should match the type of a store to the type of value being
1119 /// stored.
1120 ///
1121 /// However, this routine must never change the width of a store or the number of
1122 /// stores as that would introduce a semantic change. This combine is expected to
1123 /// be a semantic no-op which just allows stores to more closely model the types
1124 /// of their incoming values.
1125 ///
1126 /// Currently, we also refuse to change the precise type used for an atomic or
1127 /// volatile store. This is debatable, and might be reasonable to change later.
1128 /// However, it is risky in case some backend or other part of LLVM is relying
1129 /// on the exact type stored to select appropriate atomic operations.
1130 ///
1131 /// \returns true if the store was successfully combined away. This indicates
1132 /// the caller must erase the store instruction. We have to let the caller erase
1133 /// the store instruction as otherwise there is no way to signal whether it was
1134 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1135 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) {
1136   // FIXME: We could probably with some care handle both volatile and ordered
1137   // atomic stores here but it isn't clear that this is important.
1138   if (!SI.isUnordered())
1139     return false;
1140 
1141   // swifterror values can't be bitcasted.
1142   if (SI.getPointerOperand()->isSwiftError())
1143     return false;
1144 
1145   Value *V = SI.getValueOperand();
1146 
1147   // Fold away bit casts of the stored value by storing the original type.
1148   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1149     V = BC->getOperand(0);
1150     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1151       combineStoreToNewValue(IC, SI, V);
1152       return true;
1153     }
1154   }
1155 
1156   if (Value *U = likeBitCastFromVector(IC, V))
1157     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1158       combineStoreToNewValue(IC, SI, U);
1159       return true;
1160     }
1161 
1162   // FIXME: We should also canonicalize stores of vectors when their elements
1163   // are cast to other types.
1164   return false;
1165 }
1166 
1167 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) {
1168   // FIXME: We could probably with some care handle both volatile and atomic
1169   // stores here but it isn't clear that this is important.
1170   if (!SI.isSimple())
1171     return false;
1172 
1173   Value *V = SI.getValueOperand();
1174   Type *T = V->getType();
1175 
1176   if (!T->isAggregateType())
1177     return false;
1178 
1179   if (auto *ST = dyn_cast<StructType>(T)) {
1180     // If the struct only have one element, we unpack.
1181     unsigned Count = ST->getNumElements();
1182     if (Count == 1) {
1183       V = IC.Builder.CreateExtractValue(V, 0);
1184       combineStoreToNewValue(IC, SI, V);
1185       return true;
1186     }
1187 
1188     // We don't want to break loads with padding here as we'd loose
1189     // the knowledge that padding exists for the rest of the pipeline.
1190     const DataLayout &DL = IC.getDataLayout();
1191     auto *SL = DL.getStructLayout(ST);
1192     if (SL->hasPadding())
1193       return false;
1194 
1195     const auto Align = DL.getValueOrABITypeAlignment(SI.getAlign(), ST);
1196 
1197     SmallString<16> EltName = V->getName();
1198     EltName += ".elt";
1199     auto *Addr = SI.getPointerOperand();
1200     SmallString<16> AddrName = Addr->getName();
1201     AddrName += ".repack";
1202 
1203     auto *IdxType = Type::getInt32Ty(ST->getContext());
1204     auto *Zero = ConstantInt::get(IdxType, 0);
1205     for (unsigned i = 0; i < Count; i++) {
1206       Value *Indices[2] = {
1207         Zero,
1208         ConstantInt::get(IdxType, i),
1209       };
1210       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1211                                                AddrName);
1212       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1213       auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1214       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1215       AAMDNodes AAMD;
1216       SI.getAAMetadata(AAMD);
1217       NS->setAAMetadata(AAMD);
1218     }
1219 
1220     return true;
1221   }
1222 
1223   if (auto *AT = dyn_cast<ArrayType>(T)) {
1224     // If the array only have one element, we unpack.
1225     auto NumElements = AT->getNumElements();
1226     if (NumElements == 1) {
1227       V = IC.Builder.CreateExtractValue(V, 0);
1228       combineStoreToNewValue(IC, SI, V);
1229       return true;
1230     }
1231 
1232     // Bail out if the array is too large. Ideally we would like to optimize
1233     // arrays of arbitrary size but this has a terrible impact on compile time.
1234     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1235     // tuning.
1236     if (NumElements > IC.MaxArraySizeForCombine)
1237       return false;
1238 
1239     const DataLayout &DL = IC.getDataLayout();
1240     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1241     const auto Align = DL.getValueOrABITypeAlignment(SI.getAlign(), T);
1242 
1243     SmallString<16> EltName = V->getName();
1244     EltName += ".elt";
1245     auto *Addr = SI.getPointerOperand();
1246     SmallString<16> AddrName = Addr->getName();
1247     AddrName += ".repack";
1248 
1249     auto *IdxType = Type::getInt64Ty(T->getContext());
1250     auto *Zero = ConstantInt::get(IdxType, 0);
1251 
1252     uint64_t Offset = 0;
1253     for (uint64_t i = 0; i < NumElements; i++) {
1254       Value *Indices[2] = {
1255         Zero,
1256         ConstantInt::get(IdxType, i),
1257       };
1258       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1259                                                AddrName);
1260       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1261       auto EltAlign = commonAlignment(Align, Offset);
1262       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1263       AAMDNodes AAMD;
1264       SI.getAAMetadata(AAMD);
1265       NS->setAAMetadata(AAMD);
1266       Offset += EltSize;
1267     }
1268 
1269     return true;
1270   }
1271 
1272   return false;
1273 }
1274 
1275 /// equivalentAddressValues - Test if A and B will obviously have the same
1276 /// value. This includes recognizing that %t0 and %t1 will have the same
1277 /// value in code like this:
1278 ///   %t0 = getelementptr \@a, 0, 3
1279 ///   store i32 0, i32* %t0
1280 ///   %t1 = getelementptr \@a, 0, 3
1281 ///   %t2 = load i32* %t1
1282 ///
1283 static bool equivalentAddressValues(Value *A, Value *B) {
1284   // Test if the values are trivially equivalent.
1285   if (A == B) return true;
1286 
1287   // Test if the values come form identical arithmetic instructions.
1288   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1289   // its only used to compare two uses within the same basic block, which
1290   // means that they'll always either have the same value or one of them
1291   // will have an undefined value.
1292   if (isa<BinaryOperator>(A) ||
1293       isa<CastInst>(A) ||
1294       isa<PHINode>(A) ||
1295       isa<GetElementPtrInst>(A))
1296     if (Instruction *BI = dyn_cast<Instruction>(B))
1297       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1298         return true;
1299 
1300   // Otherwise they may not be equivalent.
1301   return false;
1302 }
1303 
1304 /// Converts store (bitcast (load (bitcast (select ...)))) to
1305 /// store (load (select ...)), where select is minmax:
1306 /// select ((cmp load V1, load V2), V1, V2).
1307 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC,
1308                                                 StoreInst &SI) {
1309   // bitcast?
1310   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1311     return false;
1312   // load? integer?
1313   Value *LoadAddr;
1314   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1315     return false;
1316   auto *LI = cast<LoadInst>(SI.getValueOperand());
1317   if (!LI->getType()->isIntegerTy())
1318     return false;
1319   Type *CmpLoadTy;
1320   if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
1321     return false;
1322 
1323   // Make sure the type would actually change.
1324   // This condition can be hit with chains of bitcasts.
1325   if (LI->getType() == CmpLoadTy)
1326     return false;
1327 
1328   // Make sure we're not changing the size of the load/store.
1329   const auto &DL = IC.getDataLayout();
1330   if (DL.getTypeStoreSizeInBits(LI->getType()) !=
1331       DL.getTypeStoreSizeInBits(CmpLoadTy))
1332     return false;
1333 
1334   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1335         auto *SI = dyn_cast<StoreInst>(U);
1336         return SI && SI->getPointerOperand() != LI &&
1337                peekThroughBitcast(SI->getPointerOperand()) != LoadAddr &&
1338                !SI->getPointerOperand()->isSwiftError();
1339       }))
1340     return false;
1341 
1342   IC.Builder.SetInsertPoint(LI);
1343   LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
1344   // Replace all the stores with stores of the newly loaded value.
1345   for (auto *UI : LI->users()) {
1346     auto *USI = cast<StoreInst>(UI);
1347     IC.Builder.SetInsertPoint(USI);
1348     combineStoreToNewValue(IC, *USI, NewLI);
1349   }
1350   IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType()));
1351   IC.eraseInstFromFunction(*LI);
1352   return true;
1353 }
1354 
1355 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
1356   Value *Val = SI.getOperand(0);
1357   Value *Ptr = SI.getOperand(1);
1358 
1359   // Try to canonicalize the stored type.
1360   if (combineStoreToValueType(*this, SI))
1361     return eraseInstFromFunction(SI);
1362 
1363   // Attempt to improve the alignment.
1364   const Align KnownAlign = Align(getOrEnforceKnownAlignment(
1365       Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT));
1366   const MaybeAlign StoreAlign = MaybeAlign(SI.getAlignment());
1367   const Align EffectiveStoreAlign =
1368       StoreAlign ? *StoreAlign : Align(DL.getABITypeAlignment(Val->getType()));
1369 
1370   if (KnownAlign > EffectiveStoreAlign)
1371     SI.setAlignment(KnownAlign);
1372   else if (!StoreAlign)
1373     SI.setAlignment(EffectiveStoreAlign);
1374 
1375   // Try to canonicalize the stored type.
1376   if (unpackStoreToAggregate(*this, SI))
1377     return eraseInstFromFunction(SI);
1378 
1379   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1380     return eraseInstFromFunction(SI);
1381 
1382   // Replace GEP indices if possible.
1383   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1384       Worklist.push(NewGEPI);
1385       return &SI;
1386   }
1387 
1388   // Don't hack volatile/ordered stores.
1389   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1390   if (!SI.isUnordered()) return nullptr;
1391 
1392   // If the RHS is an alloca with a single use, zapify the store, making the
1393   // alloca dead.
1394   if (Ptr->hasOneUse()) {
1395     if (isa<AllocaInst>(Ptr))
1396       return eraseInstFromFunction(SI);
1397     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1398       if (isa<AllocaInst>(GEP->getOperand(0))) {
1399         if (GEP->getOperand(0)->hasOneUse())
1400           return eraseInstFromFunction(SI);
1401       }
1402     }
1403   }
1404 
1405   // If we have a store to a location which is known constant, we can conclude
1406   // that the store must be storing the constant value (else the memory
1407   // wouldn't be constant), and this must be a noop.
1408   if (AA->pointsToConstantMemory(Ptr))
1409     return eraseInstFromFunction(SI);
1410 
1411   // Do really simple DSE, to catch cases where there are several consecutive
1412   // stores to the same location, separated by a few arithmetic operations. This
1413   // situation often occurs with bitfield accesses.
1414   BasicBlock::iterator BBI(SI);
1415   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1416        --ScanInsts) {
1417     --BBI;
1418     // Don't count debug info directives, lest they affect codegen,
1419     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1420     if (isa<DbgInfoIntrinsic>(BBI) ||
1421         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1422       ScanInsts++;
1423       continue;
1424     }
1425 
1426     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1427       // Prev store isn't volatile, and stores to the same location?
1428       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1429                                                         SI.getOperand(1))) {
1430         ++NumDeadStore;
1431         // Manually add back the original store to the worklist now, so it will
1432         // be processed after the operands of the removed store, as this may
1433         // expose additional DSE opportunities.
1434         Worklist.push(&SI);
1435         eraseInstFromFunction(*PrevSI);
1436         return nullptr;
1437       }
1438       break;
1439     }
1440 
1441     // If this is a load, we have to stop.  However, if the loaded value is from
1442     // the pointer we're loading and is producing the pointer we're storing,
1443     // then *this* store is dead (X = load P; store X -> P).
1444     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1445       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1446         assert(SI.isUnordered() && "can't eliminate ordering operation");
1447         return eraseInstFromFunction(SI);
1448       }
1449 
1450       // Otherwise, this is a load from some other location.  Stores before it
1451       // may not be dead.
1452       break;
1453     }
1454 
1455     // Don't skip over loads, throws or things that can modify memory.
1456     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1457       break;
1458   }
1459 
1460   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1461   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1462   if (canSimplifyNullStoreOrGEP(SI)) {
1463     if (!isa<UndefValue>(Val))
1464       return replaceOperand(SI, 0, UndefValue::get(Val->getType()));
1465     return nullptr;  // Do not modify these!
1466   }
1467 
1468   // store undef, Ptr -> noop
1469   if (isa<UndefValue>(Val))
1470     return eraseInstFromFunction(SI);
1471 
1472   // If this store is the second-to-last instruction in the basic block
1473   // (excluding debug info and bitcasts of pointers) and if the block ends with
1474   // an unconditional branch, try to move the store to the successor block.
1475   BBI = SI.getIterator();
1476   do {
1477     ++BBI;
1478   } while (isa<DbgInfoIntrinsic>(BBI) ||
1479            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy()));
1480 
1481   if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
1482     if (BI->isUnconditional())
1483       mergeStoreIntoSuccessor(SI);
1484 
1485   return nullptr;
1486 }
1487 
1488 /// Try to transform:
1489 ///   if () { *P = v1; } else { *P = v2 }
1490 /// or:
1491 ///   *P = v1; if () { *P = v2; }
1492 /// into a phi node with a store in the successor.
1493 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) {
1494   assert(SI.isUnordered() &&
1495          "This code has not been audited for volatile or ordered store case.");
1496 
1497   // Check if the successor block has exactly 2 incoming edges.
1498   BasicBlock *StoreBB = SI.getParent();
1499   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1500   if (!DestBB->hasNPredecessors(2))
1501     return false;
1502 
1503   // Capture the other block (the block that doesn't contain our store).
1504   pred_iterator PredIter = pred_begin(DestBB);
1505   if (*PredIter == StoreBB)
1506     ++PredIter;
1507   BasicBlock *OtherBB = *PredIter;
1508 
1509   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1510   // for example, if SI is in an infinite loop.
1511   if (StoreBB == DestBB || OtherBB == DestBB)
1512     return false;
1513 
1514   // Verify that the other block ends in a branch and is not otherwise empty.
1515   BasicBlock::iterator BBI(OtherBB->getTerminator());
1516   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1517   if (!OtherBr || BBI == OtherBB->begin())
1518     return false;
1519 
1520   // If the other block ends in an unconditional branch, check for the 'if then
1521   // else' case. There is an instruction before the branch.
1522   StoreInst *OtherStore = nullptr;
1523   if (OtherBr->isUnconditional()) {
1524     --BBI;
1525     // Skip over debugging info.
1526     while (isa<DbgInfoIntrinsic>(BBI) ||
1527            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1528       if (BBI==OtherBB->begin())
1529         return false;
1530       --BBI;
1531     }
1532     // If this isn't a store, isn't a store to the same location, or is not the
1533     // right kind of store, bail out.
1534     OtherStore = dyn_cast<StoreInst>(BBI);
1535     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1536         !SI.isSameOperationAs(OtherStore))
1537       return false;
1538   } else {
1539     // Otherwise, the other block ended with a conditional branch. If one of the
1540     // destinations is StoreBB, then we have the if/then case.
1541     if (OtherBr->getSuccessor(0) != StoreBB &&
1542         OtherBr->getSuccessor(1) != StoreBB)
1543       return false;
1544 
1545     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1546     // if/then triangle. See if there is a store to the same ptr as SI that
1547     // lives in OtherBB.
1548     for (;; --BBI) {
1549       // Check to see if we find the matching store.
1550       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1551         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1552             !SI.isSameOperationAs(OtherStore))
1553           return false;
1554         break;
1555       }
1556       // If we find something that may be using or overwriting the stored
1557       // value, or if we run out of instructions, we can't do the transform.
1558       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1559           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1560         return false;
1561     }
1562 
1563     // In order to eliminate the store in OtherBr, we have to make sure nothing
1564     // reads or overwrites the stored value in StoreBB.
1565     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1566       // FIXME: This should really be AA driven.
1567       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1568         return false;
1569     }
1570   }
1571 
1572   // Insert a PHI node now if we need it.
1573   Value *MergedVal = OtherStore->getOperand(0);
1574   // The debug locations of the original instructions might differ. Merge them.
1575   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1576                                                      OtherStore->getDebugLoc());
1577   if (MergedVal != SI.getOperand(0)) {
1578     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1579     PN->addIncoming(SI.getOperand(0), SI.getParent());
1580     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1581     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1582     PN->setDebugLoc(MergedLoc);
1583   }
1584 
1585   // Advance to a place where it is safe to insert the new store and insert it.
1586   BBI = DestBB->getFirstInsertionPt();
1587   StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(),
1588                                    MaybeAlign(SI.getAlignment()),
1589                                    SI.getOrdering(), SI.getSyncScopeID());
1590   InsertNewInstBefore(NewSI, *BBI);
1591   NewSI->setDebugLoc(MergedLoc);
1592 
1593   // If the two stores had AA tags, merge them.
1594   AAMDNodes AATags;
1595   SI.getAAMetadata(AATags);
1596   if (AATags) {
1597     OtherStore->getAAMetadata(AATags, /* Merge = */ true);
1598     NewSI->setAAMetadata(AATags);
1599   }
1600 
1601   // Nuke the old stores.
1602   eraseInstFromFunction(SI);
1603   eraseInstFromFunction(*OtherStore);
1604   return true;
1605 }
1606