1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 36 37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 38 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 39 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 41 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 42 /// the alloca, and if the source pointer is a pointer to a constant global, we 43 /// can optimize this. 44 static bool 45 isOnlyCopiedFromConstantMemory(AAResults *AA, 46 Value *V, MemTransferInst *&TheCopy, 47 SmallVectorImpl<Instruction *> &ToDelete) { 48 // We track lifetime intrinsics as we encounter them. If we decide to go 49 // ahead and replace the value with the global, this lets the caller quickly 50 // eliminate the markers. 51 52 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 53 ValuesToInspect.emplace_back(V, false); 54 while (!ValuesToInspect.empty()) { 55 auto ValuePair = ValuesToInspect.pop_back_val(); 56 const bool IsOffset = ValuePair.second; 57 for (auto &U : ValuePair.first->uses()) { 58 auto *I = cast<Instruction>(U.getUser()); 59 60 if (auto *LI = dyn_cast<LoadInst>(I)) { 61 // Ignore non-volatile loads, they are always ok. 62 if (!LI->isSimple()) return false; 63 continue; 64 } 65 66 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 67 // If uses of the bitcast are ok, we are ok. 68 ValuesToInspect.emplace_back(I, IsOffset); 69 continue; 70 } 71 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 72 // If the GEP has all zero indices, it doesn't offset the pointer. If it 73 // doesn't, it does. 74 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 75 continue; 76 } 77 78 if (auto *Call = dyn_cast<CallBase>(I)) { 79 // If this is the function being called then we treat it like a load and 80 // ignore it. 81 if (Call->isCallee(&U)) 82 continue; 83 84 unsigned DataOpNo = Call->getDataOperandNo(&U); 85 bool IsArgOperand = Call->isArgOperand(&U); 86 87 // Inalloca arguments are clobbered by the call. 88 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 89 return false; 90 91 // If this is a readonly/readnone call site, then we know it is just a 92 // load (but one that potentially returns the value itself), so we can 93 // ignore it if we know that the value isn't captured. 94 if (Call->onlyReadsMemory() && 95 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 96 continue; 97 98 // If this is being passed as a byval argument, the caller is making a 99 // copy, so it is only a read of the alloca. 100 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 101 continue; 102 } 103 104 // Lifetime intrinsics can be handled by the caller. 105 if (I->isLifetimeStartOrEnd()) { 106 assert(I->use_empty() && "Lifetime markers have no result to use!"); 107 ToDelete.push_back(I); 108 continue; 109 } 110 111 // If this is isn't our memcpy/memmove, reject it as something we can't 112 // handle. 113 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 114 if (!MI) 115 return false; 116 117 // If the transfer is using the alloca as a source of the transfer, then 118 // ignore it since it is a load (unless the transfer is volatile). 119 if (U.getOperandNo() == 1) { 120 if (MI->isVolatile()) return false; 121 continue; 122 } 123 124 // If we already have seen a copy, reject the second one. 125 if (TheCopy) return false; 126 127 // If the pointer has been offset from the start of the alloca, we can't 128 // safely handle this. 129 if (IsOffset) return false; 130 131 // If the memintrinsic isn't using the alloca as the dest, reject it. 132 if (U.getOperandNo() != 0) return false; 133 134 // If the source of the memcpy/move is not a constant global, reject it. 135 if (!AA->pointsToConstantMemory(MI->getSource())) 136 return false; 137 138 // Otherwise, the transform is safe. Remember the copy instruction. 139 TheCopy = MI; 140 } 141 } 142 return true; 143 } 144 145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 146 /// modified by a copy from a constant global. If we can prove this, we can 147 /// replace any uses of the alloca with uses of the global directly. 148 static MemTransferInst * 149 isOnlyCopiedFromConstantMemory(AAResults *AA, 150 AllocaInst *AI, 151 SmallVectorImpl<Instruction *> &ToDelete) { 152 MemTransferInst *TheCopy = nullptr; 153 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) 154 return TheCopy; 155 return nullptr; 156 } 157 158 /// Returns true if V is dereferenceable for size of alloca. 159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 160 const DataLayout &DL) { 161 if (AI->isArrayAllocation()) 162 return false; 163 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 164 if (!AllocaSize) 165 return false; 166 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()), 167 APInt(64, AllocaSize), DL); 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC, 171 AllocaInst &AI) { 172 // Check for array size of 1 (scalar allocation). 173 if (!AI.isArrayAllocation()) { 174 // i32 1 is the canonical array size for scalar allocations. 175 if (AI.getArraySize()->getType()->isIntegerTy(32)) 176 return nullptr; 177 178 // Canonicalize it. 179 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); 180 } 181 182 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 183 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 184 if (C->getValue().getActiveBits() <= 64) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 187 New->setAlignment(AI.getAlign()); 188 189 // Scan to the end of the allocation instructions, to skip over a block of 190 // allocas if possible...also skip interleaved debug info 191 // 192 BasicBlock::iterator It(New); 193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 194 ++It; 195 196 // Now that I is pointing to the first non-allocation-inst in the block, 197 // insert our getelementptr instruction... 198 // 199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 200 Value *NullIdx = Constant::getNullValue(IdxTy); 201 Value *Idx[2] = {NullIdx, NullIdx}; 202 Instruction *GEP = GetElementPtrInst::CreateInBounds( 203 NewTy, New, Idx, New->getName() + ".sub"); 204 IC.InsertNewInstBefore(GEP, *It); 205 206 // Now make everything use the getelementptr instead of the original 207 // allocation. 208 return IC.replaceInstUsesWith(AI, GEP); 209 } 210 } 211 212 if (isa<UndefValue>(AI.getArraySize())) 213 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 214 215 // Ensure that the alloca array size argument has type intptr_t, so that 216 // any casting is exposed early. 217 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 218 if (AI.getArraySize()->getType() != IntPtrTy) { 219 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 220 return IC.replaceOperand(AI, 0, V); 221 } 222 223 return nullptr; 224 } 225 226 namespace { 227 // If I and V are pointers in different address space, it is not allowed to 228 // use replaceAllUsesWith since I and V have different types. A 229 // non-target-specific transformation should not use addrspacecast on V since 230 // the two address space may be disjoint depending on target. 231 // 232 // This class chases down uses of the old pointer until reaching the load 233 // instructions, then replaces the old pointer in the load instructions with 234 // the new pointer. If during the chasing it sees bitcast or GEP, it will 235 // create new bitcast or GEP with the new pointer and use them in the load 236 // instruction. 237 class PointerReplacer { 238 public: 239 PointerReplacer(InstCombinerImpl &IC) : IC(IC) {} 240 241 bool collectUsers(Instruction &I); 242 void replacePointer(Instruction &I, Value *V); 243 244 private: 245 void replace(Instruction *I); 246 Value *getReplacement(Value *I); 247 248 SmallSetVector<Instruction *, 4> Worklist; 249 MapVector<Value *, Value *> WorkMap; 250 InstCombinerImpl &IC; 251 }; 252 } // end anonymous namespace 253 254 bool PointerReplacer::collectUsers(Instruction &I) { 255 for (auto U : I.users()) { 256 Instruction *Inst = cast<Instruction>(&*U); 257 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 258 if (Load->isVolatile()) 259 return false; 260 Worklist.insert(Load); 261 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 262 Worklist.insert(Inst); 263 if (!collectUsers(*Inst)) 264 return false; 265 } else if (isa<MemTransferInst>(Inst)) { 266 Worklist.insert(Inst); 267 } else { 268 LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n'); 269 return false; 270 } 271 } 272 273 return true; 274 } 275 276 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); } 277 278 void PointerReplacer::replace(Instruction *I) { 279 if (getReplacement(I)) 280 return; 281 282 if (auto *LT = dyn_cast<LoadInst>(I)) { 283 auto *V = getReplacement(LT->getPointerOperand()); 284 assert(V && "Operand not replaced"); 285 auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(), 286 LT->getAlign(), LT->getOrdering(), 287 LT->getSyncScopeID()); 288 NewI->takeName(LT); 289 copyMetadataForLoad(*NewI, *LT); 290 291 IC.InsertNewInstWith(NewI, *LT); 292 IC.replaceInstUsesWith(*LT, NewI); 293 WorkMap[LT] = NewI; 294 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 295 auto *V = getReplacement(GEP->getPointerOperand()); 296 assert(V && "Operand not replaced"); 297 SmallVector<Value *, 8> Indices; 298 Indices.append(GEP->idx_begin(), GEP->idx_end()); 299 auto *NewI = GetElementPtrInst::Create( 300 V->getType()->getPointerElementType(), V, Indices); 301 IC.InsertNewInstWith(NewI, *GEP); 302 NewI->takeName(GEP); 303 WorkMap[GEP] = NewI; 304 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 305 auto *V = getReplacement(BC->getOperand(0)); 306 assert(V && "Operand not replaced"); 307 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 308 V->getType()->getPointerAddressSpace()); 309 auto *NewI = new BitCastInst(V, NewT); 310 IC.InsertNewInstWith(NewI, *BC); 311 NewI->takeName(BC); 312 WorkMap[BC] = NewI; 313 } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) { 314 auto *SrcV = getReplacement(MemCpy->getRawSource()); 315 // The pointer may appear in the destination of a copy, but we don't want to 316 // replace it. 317 if (!SrcV) { 318 assert(getReplacement(MemCpy->getRawDest()) && 319 "destination not in replace list"); 320 return; 321 } 322 323 IC.Builder.SetInsertPoint(MemCpy); 324 auto *NewI = IC.Builder.CreateMemTransferInst( 325 MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(), 326 SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(), 327 MemCpy->isVolatile()); 328 AAMDNodes AAMD; 329 MemCpy->getAAMetadata(AAMD); 330 if (AAMD) 331 NewI->setAAMetadata(AAMD); 332 333 IC.eraseInstFromFunction(*MemCpy); 334 WorkMap[MemCpy] = NewI; 335 } else { 336 llvm_unreachable("should never reach here"); 337 } 338 } 339 340 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 341 #ifndef NDEBUG 342 auto *PT = cast<PointerType>(I.getType()); 343 auto *NT = cast<PointerType>(V->getType()); 344 assert(PT != NT && PT->getElementType() == NT->getElementType() && 345 "Invalid usage"); 346 #endif 347 WorkMap[&I] = V; 348 349 for (Instruction *Workitem : Worklist) 350 replace(Workitem); 351 } 352 353 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) { 354 if (auto *I = simplifyAllocaArraySize(*this, AI)) 355 return I; 356 357 if (AI.getAllocatedType()->isSized()) { 358 // Move all alloca's of zero byte objects to the entry block and merge them 359 // together. Note that we only do this for alloca's, because malloc should 360 // allocate and return a unique pointer, even for a zero byte allocation. 361 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) { 362 // For a zero sized alloca there is no point in doing an array allocation. 363 // This is helpful if the array size is a complicated expression not used 364 // elsewhere. 365 if (AI.isArrayAllocation()) 366 return replaceOperand(AI, 0, 367 ConstantInt::get(AI.getArraySize()->getType(), 1)); 368 369 // Get the first instruction in the entry block. 370 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 371 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 372 if (FirstInst != &AI) { 373 // If the entry block doesn't start with a zero-size alloca then move 374 // this one to the start of the entry block. There is no problem with 375 // dominance as the array size was forced to a constant earlier already. 376 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 377 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 378 DL.getTypeAllocSize(EntryAI->getAllocatedType()) 379 .getKnownMinSize() != 0) { 380 AI.moveBefore(FirstInst); 381 return &AI; 382 } 383 384 // Replace this zero-sized alloca with the one at the start of the entry 385 // block after ensuring that the address will be aligned enough for both 386 // types. 387 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); 388 EntryAI->setAlignment(MaxAlign); 389 if (AI.getType() != EntryAI->getType()) 390 return new BitCastInst(EntryAI, AI.getType()); 391 return replaceInstUsesWith(AI, EntryAI); 392 } 393 } 394 } 395 396 // Check to see if this allocation is only modified by a memcpy/memmove from 397 // a constant whose alignment is equal to or exceeds that of the allocation. 398 // If this is the case, we can change all users to use the constant global 399 // instead. This is commonly produced by the CFE by constructs like "void 400 // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently 401 // read. 402 SmallVector<Instruction *, 4> ToDelete; 403 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { 404 Value *TheSrc = Copy->getSource(); 405 Align AllocaAlign = AI.getAlign(); 406 Align SourceAlign = getOrEnforceKnownAlignment( 407 TheSrc, AllocaAlign, DL, &AI, &AC, &DT); 408 if (AllocaAlign <= SourceAlign && 409 isDereferenceableForAllocaSize(TheSrc, &AI, DL)) { 410 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 411 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 412 unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace(); 413 auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace); 414 if (AI.getType()->getAddressSpace() == SrcAddrSpace) { 415 for (Instruction *Delete : ToDelete) 416 eraseInstFromFunction(*Delete); 417 418 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 419 Instruction *NewI = replaceInstUsesWith(AI, Cast); 420 eraseInstFromFunction(*Copy); 421 ++NumGlobalCopies; 422 return NewI; 423 } 424 425 PointerReplacer PtrReplacer(*this); 426 if (PtrReplacer.collectUsers(AI)) { 427 for (Instruction *Delete : ToDelete) 428 eraseInstFromFunction(*Delete); 429 430 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 431 PtrReplacer.replacePointer(AI, Cast); 432 ++NumGlobalCopies; 433 } 434 } 435 } 436 437 // At last, use the generic allocation site handler to aggressively remove 438 // unused allocas. 439 return visitAllocSite(AI); 440 } 441 442 // Are we allowed to form a atomic load or store of this type? 443 static bool isSupportedAtomicType(Type *Ty) { 444 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 445 } 446 447 /// Helper to combine a load to a new type. 448 /// 449 /// This just does the work of combining a load to a new type. It handles 450 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 451 /// loaded *value* type. This will convert it to a pointer, cast the operand to 452 /// that pointer type, load it, etc. 453 /// 454 /// Note that this will create all of the instructions with whatever insert 455 /// point the \c InstCombinerImpl currently is using. 456 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy, 457 const Twine &Suffix) { 458 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 459 "can't fold an atomic load to requested type"); 460 461 Value *Ptr = LI.getPointerOperand(); 462 unsigned AS = LI.getPointerAddressSpace(); 463 Value *NewPtr = nullptr; 464 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 465 NewPtr->getType()->getPointerElementType() == NewTy && 466 NewPtr->getType()->getPointerAddressSpace() == AS)) 467 NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 468 469 LoadInst *NewLoad = Builder.CreateAlignedLoad( 470 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); 471 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 472 copyMetadataForLoad(*NewLoad, LI); 473 return NewLoad; 474 } 475 476 /// Combine a store to a new type. 477 /// 478 /// Returns the newly created store instruction. 479 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI, 480 Value *V) { 481 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 482 "can't fold an atomic store of requested type"); 483 484 Value *Ptr = SI.getPointerOperand(); 485 unsigned AS = SI.getPointerAddressSpace(); 486 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 487 SI.getAllMetadata(MD); 488 489 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 490 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 491 SI.getAlign(), SI.isVolatile()); 492 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 493 for (const auto &MDPair : MD) { 494 unsigned ID = MDPair.first; 495 MDNode *N = MDPair.second; 496 // Note, essentially every kind of metadata should be preserved here! This 497 // routine is supposed to clone a store instruction changing *only its 498 // type*. The only metadata it makes sense to drop is metadata which is 499 // invalidated when the pointer type changes. This should essentially 500 // never be the case in LLVM, but we explicitly switch over only known 501 // metadata to be conservatively correct. If you are adding metadata to 502 // LLVM which pertains to stores, you almost certainly want to add it 503 // here. 504 switch (ID) { 505 case LLVMContext::MD_dbg: 506 case LLVMContext::MD_tbaa: 507 case LLVMContext::MD_prof: 508 case LLVMContext::MD_fpmath: 509 case LLVMContext::MD_tbaa_struct: 510 case LLVMContext::MD_alias_scope: 511 case LLVMContext::MD_noalias: 512 case LLVMContext::MD_nontemporal: 513 case LLVMContext::MD_mem_parallel_loop_access: 514 case LLVMContext::MD_access_group: 515 // All of these directly apply. 516 NewStore->setMetadata(ID, N); 517 break; 518 case LLVMContext::MD_invariant_load: 519 case LLVMContext::MD_nonnull: 520 case LLVMContext::MD_noundef: 521 case LLVMContext::MD_range: 522 case LLVMContext::MD_align: 523 case LLVMContext::MD_dereferenceable: 524 case LLVMContext::MD_dereferenceable_or_null: 525 // These don't apply for stores. 526 break; 527 } 528 } 529 530 return NewStore; 531 } 532 533 /// Returns true if instruction represent minmax pattern like: 534 /// select ((cmp load V1, load V2), V1, V2). 535 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 536 assert(V->getType()->isPointerTy() && "Expected pointer type."); 537 // Ignore possible ty* to ixx* bitcast. 538 V = InstCombiner::peekThroughBitcast(V); 539 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 540 // pattern. 541 CmpInst::Predicate Pred; 542 Instruction *L1; 543 Instruction *L2; 544 Value *LHS; 545 Value *RHS; 546 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 547 m_Value(LHS), m_Value(RHS)))) 548 return false; 549 LoadTy = L1->getType(); 550 return (match(L1, m_Load(m_Specific(LHS))) && 551 match(L2, m_Load(m_Specific(RHS)))) || 552 (match(L1, m_Load(m_Specific(RHS))) && 553 match(L2, m_Load(m_Specific(LHS)))); 554 } 555 556 /// Combine loads to match the type of their uses' value after looking 557 /// through intervening bitcasts. 558 /// 559 /// The core idea here is that if the result of a load is used in an operation, 560 /// we should load the type most conducive to that operation. For example, when 561 /// loading an integer and converting that immediately to a pointer, we should 562 /// instead directly load a pointer. 563 /// 564 /// However, this routine must never change the width of a load or the number of 565 /// loads as that would introduce a semantic change. This combine is expected to 566 /// be a semantic no-op which just allows loads to more closely model the types 567 /// of their consuming operations. 568 /// 569 /// Currently, we also refuse to change the precise type used for an atomic load 570 /// or a volatile load. This is debatable, and might be reasonable to change 571 /// later. However, it is risky in case some backend or other part of LLVM is 572 /// relying on the exact type loaded to select appropriate atomic operations. 573 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC, 574 LoadInst &LI) { 575 // FIXME: We could probably with some care handle both volatile and ordered 576 // atomic loads here but it isn't clear that this is important. 577 if (!LI.isUnordered()) 578 return nullptr; 579 580 if (LI.use_empty()) 581 return nullptr; 582 583 // swifterror values can't be bitcasted. 584 if (LI.getPointerOperand()->isSwiftError()) 585 return nullptr; 586 587 const DataLayout &DL = IC.getDataLayout(); 588 589 // Fold away bit casts of the loaded value by loading the desired type. 590 // Note that we should not do this for pointer<->integer casts, 591 // because that would result in type punning. 592 if (LI.hasOneUse()) 593 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 594 if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() == 595 CI->getDestTy()->isPtrOrPtrVectorTy()) 596 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 597 LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy()); 598 CI->replaceAllUsesWith(NewLoad); 599 IC.eraseInstFromFunction(*CI); 600 return &LI; 601 } 602 603 // FIXME: We should also canonicalize loads of vectors when their elements are 604 // cast to other types. 605 return nullptr; 606 } 607 608 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) { 609 // FIXME: We could probably with some care handle both volatile and atomic 610 // stores here but it isn't clear that this is important. 611 if (!LI.isSimple()) 612 return nullptr; 613 614 Type *T = LI.getType(); 615 if (!T->isAggregateType()) 616 return nullptr; 617 618 StringRef Name = LI.getName(); 619 assert(LI.getAlignment() && "Alignment must be set at this point"); 620 621 if (auto *ST = dyn_cast<StructType>(T)) { 622 // If the struct only have one element, we unpack. 623 auto NumElements = ST->getNumElements(); 624 if (NumElements == 1) { 625 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 626 ".unpack"); 627 AAMDNodes AAMD; 628 LI.getAAMetadata(AAMD); 629 NewLoad->setAAMetadata(AAMD); 630 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 631 UndefValue::get(T), NewLoad, 0, Name)); 632 } 633 634 // We don't want to break loads with padding here as we'd loose 635 // the knowledge that padding exists for the rest of the pipeline. 636 const DataLayout &DL = IC.getDataLayout(); 637 auto *SL = DL.getStructLayout(ST); 638 if (SL->hasPadding()) 639 return nullptr; 640 641 const auto Align = LI.getAlign(); 642 auto *Addr = LI.getPointerOperand(); 643 auto *IdxType = Type::getInt32Ty(T->getContext()); 644 auto *Zero = ConstantInt::get(IdxType, 0); 645 646 Value *V = UndefValue::get(T); 647 for (unsigned i = 0; i < NumElements; i++) { 648 Value *Indices[2] = { 649 Zero, 650 ConstantInt::get(IdxType, i), 651 }; 652 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 653 Name + ".elt"); 654 auto *L = IC.Builder.CreateAlignedLoad( 655 ST->getElementType(i), Ptr, 656 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); 657 // Propagate AA metadata. It'll still be valid on the narrowed load. 658 AAMDNodes AAMD; 659 LI.getAAMetadata(AAMD); 660 L->setAAMetadata(AAMD); 661 V = IC.Builder.CreateInsertValue(V, L, i); 662 } 663 664 V->setName(Name); 665 return IC.replaceInstUsesWith(LI, V); 666 } 667 668 if (auto *AT = dyn_cast<ArrayType>(T)) { 669 auto *ET = AT->getElementType(); 670 auto NumElements = AT->getNumElements(); 671 if (NumElements == 1) { 672 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 673 AAMDNodes AAMD; 674 LI.getAAMetadata(AAMD); 675 NewLoad->setAAMetadata(AAMD); 676 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 677 UndefValue::get(T), NewLoad, 0, Name)); 678 } 679 680 // Bail out if the array is too large. Ideally we would like to optimize 681 // arrays of arbitrary size but this has a terrible impact on compile time. 682 // The threshold here is chosen arbitrarily, maybe needs a little bit of 683 // tuning. 684 if (NumElements > IC.MaxArraySizeForCombine) 685 return nullptr; 686 687 const DataLayout &DL = IC.getDataLayout(); 688 auto EltSize = DL.getTypeAllocSize(ET); 689 const auto Align = LI.getAlign(); 690 691 auto *Addr = LI.getPointerOperand(); 692 auto *IdxType = Type::getInt64Ty(T->getContext()); 693 auto *Zero = ConstantInt::get(IdxType, 0); 694 695 Value *V = UndefValue::get(T); 696 uint64_t Offset = 0; 697 for (uint64_t i = 0; i < NumElements; i++) { 698 Value *Indices[2] = { 699 Zero, 700 ConstantInt::get(IdxType, i), 701 }; 702 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 703 Name + ".elt"); 704 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, 705 commonAlignment(Align, Offset), 706 Name + ".unpack"); 707 AAMDNodes AAMD; 708 LI.getAAMetadata(AAMD); 709 L->setAAMetadata(AAMD); 710 V = IC.Builder.CreateInsertValue(V, L, i); 711 Offset += EltSize; 712 } 713 714 V->setName(Name); 715 return IC.replaceInstUsesWith(LI, V); 716 } 717 718 return nullptr; 719 } 720 721 // If we can determine that all possible objects pointed to by the provided 722 // pointer value are, not only dereferenceable, but also definitively less than 723 // or equal to the provided maximum size, then return true. Otherwise, return 724 // false (constant global values and allocas fall into this category). 725 // 726 // FIXME: This should probably live in ValueTracking (or similar). 727 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 728 const DataLayout &DL) { 729 SmallPtrSet<Value *, 4> Visited; 730 SmallVector<Value *, 4> Worklist(1, V); 731 732 do { 733 Value *P = Worklist.pop_back_val(); 734 P = P->stripPointerCasts(); 735 736 if (!Visited.insert(P).second) 737 continue; 738 739 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 740 Worklist.push_back(SI->getTrueValue()); 741 Worklist.push_back(SI->getFalseValue()); 742 continue; 743 } 744 745 if (PHINode *PN = dyn_cast<PHINode>(P)) { 746 for (Value *IncValue : PN->incoming_values()) 747 Worklist.push_back(IncValue); 748 continue; 749 } 750 751 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 752 if (GA->isInterposable()) 753 return false; 754 Worklist.push_back(GA->getAliasee()); 755 continue; 756 } 757 758 // If we know how big this object is, and it is less than MaxSize, continue 759 // searching. Otherwise, return false. 760 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 761 if (!AI->getAllocatedType()->isSized()) 762 return false; 763 764 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 765 if (!CS) 766 return false; 767 768 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 769 // Make sure that, even if the multiplication below would wrap as an 770 // uint64_t, we still do the right thing. 771 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 772 return false; 773 continue; 774 } 775 776 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 777 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 778 return false; 779 780 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 781 if (InitSize > MaxSize) 782 return false; 783 continue; 784 } 785 786 return false; 787 } while (!Worklist.empty()); 788 789 return true; 790 } 791 792 // If we're indexing into an object of a known size, and the outer index is 793 // not a constant, but having any value but zero would lead to undefined 794 // behavior, replace it with zero. 795 // 796 // For example, if we have: 797 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 798 // ... 799 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 800 // ... = load i32* %arrayidx, align 4 801 // Then we know that we can replace %x in the GEP with i64 0. 802 // 803 // FIXME: We could fold any GEP index to zero that would cause UB if it were 804 // not zero. Currently, we only handle the first such index. Also, we could 805 // also search through non-zero constant indices if we kept track of the 806 // offsets those indices implied. 807 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC, 808 GetElementPtrInst *GEPI, Instruction *MemI, 809 unsigned &Idx) { 810 if (GEPI->getNumOperands() < 2) 811 return false; 812 813 // Find the first non-zero index of a GEP. If all indices are zero, return 814 // one past the last index. 815 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 816 unsigned I = 1; 817 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 818 Value *V = GEPI->getOperand(I); 819 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 820 if (CI->isZero()) 821 continue; 822 823 break; 824 } 825 826 return I; 827 }; 828 829 // Skip through initial 'zero' indices, and find the corresponding pointer 830 // type. See if the next index is not a constant. 831 Idx = FirstNZIdx(GEPI); 832 if (Idx == GEPI->getNumOperands()) 833 return false; 834 if (isa<Constant>(GEPI->getOperand(Idx))) 835 return false; 836 837 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 838 Type *SourceElementType = GEPI->getSourceElementType(); 839 // Size information about scalable vectors is not available, so we cannot 840 // deduce whether indexing at n is undefined behaviour or not. Bail out. 841 if (isa<ScalableVectorType>(SourceElementType)) 842 return false; 843 844 Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops); 845 if (!AllocTy || !AllocTy->isSized()) 846 return false; 847 const DataLayout &DL = IC.getDataLayout(); 848 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize(); 849 850 // If there are more indices after the one we might replace with a zero, make 851 // sure they're all non-negative. If any of them are negative, the overall 852 // address being computed might be before the base address determined by the 853 // first non-zero index. 854 auto IsAllNonNegative = [&]() { 855 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 856 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 857 if (Known.isNonNegative()) 858 continue; 859 return false; 860 } 861 862 return true; 863 }; 864 865 // FIXME: If the GEP is not inbounds, and there are extra indices after the 866 // one we'll replace, those could cause the address computation to wrap 867 // (rendering the IsAllNonNegative() check below insufficient). We can do 868 // better, ignoring zero indices (and other indices we can prove small 869 // enough not to wrap). 870 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 871 return false; 872 873 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 874 // also known to be dereferenceable. 875 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 876 IsAllNonNegative(); 877 } 878 879 // If we're indexing into an object with a variable index for the memory 880 // access, but the object has only one element, we can assume that the index 881 // will always be zero. If we replace the GEP, return it. 882 template <typename T> 883 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr, 884 T &MemI) { 885 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 886 unsigned Idx; 887 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 888 Instruction *NewGEPI = GEPI->clone(); 889 NewGEPI->setOperand(Idx, 890 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 891 NewGEPI->insertBefore(GEPI); 892 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 893 return NewGEPI; 894 } 895 } 896 897 return nullptr; 898 } 899 900 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 901 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 902 return false; 903 904 auto *Ptr = SI.getPointerOperand(); 905 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 906 Ptr = GEPI->getOperand(0); 907 return (isa<ConstantPointerNull>(Ptr) && 908 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 909 } 910 911 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 912 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 913 const Value *GEPI0 = GEPI->getOperand(0); 914 if (isa<ConstantPointerNull>(GEPI0) && 915 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 916 return true; 917 } 918 if (isa<UndefValue>(Op) || 919 (isa<ConstantPointerNull>(Op) && 920 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 921 return true; 922 return false; 923 } 924 925 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) { 926 Value *Op = LI.getOperand(0); 927 928 // Try to canonicalize the loaded type. 929 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 930 return Res; 931 932 // Attempt to improve the alignment. 933 Align KnownAlign = getOrEnforceKnownAlignment( 934 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); 935 if (KnownAlign > LI.getAlign()) 936 LI.setAlignment(KnownAlign); 937 938 // Replace GEP indices if possible. 939 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 940 Worklist.push(NewGEPI); 941 return &LI; 942 } 943 944 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 945 return Res; 946 947 // Do really simple store-to-load forwarding and load CSE, to catch cases 948 // where there are several consecutive memory accesses to the same location, 949 // separated by a few arithmetic operations. 950 BasicBlock::iterator BBI(LI); 951 bool IsLoadCSE = false; 952 if (Value *AvailableVal = FindAvailableLoadedValue( 953 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 954 if (IsLoadCSE) 955 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 956 957 return replaceInstUsesWith( 958 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 959 LI.getName() + ".cast")); 960 } 961 962 // None of the following transforms are legal for volatile/ordered atomic 963 // loads. Most of them do apply for unordered atomics. 964 if (!LI.isUnordered()) return nullptr; 965 966 // load(gep null, ...) -> unreachable 967 // load null/undef -> unreachable 968 // TODO: Consider a target hook for valid address spaces for this xforms. 969 if (canSimplifyNullLoadOrGEP(LI, Op)) { 970 // Insert a new store to null instruction before the load to indicate 971 // that this code is not reachable. We do this instead of inserting 972 // an unreachable instruction directly because we cannot modify the 973 // CFG. 974 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 975 Constant::getNullValue(Op->getType()), &LI); 976 SI->setDebugLoc(LI.getDebugLoc()); 977 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 978 } 979 980 if (Op->hasOneUse()) { 981 // Change select and PHI nodes to select values instead of addresses: this 982 // helps alias analysis out a lot, allows many others simplifications, and 983 // exposes redundancy in the code. 984 // 985 // Note that we cannot do the transformation unless we know that the 986 // introduced loads cannot trap! Something like this is valid as long as 987 // the condition is always false: load (select bool %C, int* null, int* %G), 988 // but it would not be valid if we transformed it to load from null 989 // unconditionally. 990 // 991 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 992 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 993 Align Alignment = LI.getAlign(); 994 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 995 Alignment, DL, SI) && 996 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 997 Alignment, DL, SI)) { 998 LoadInst *V1 = 999 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 1000 SI->getOperand(1)->getName() + ".val"); 1001 LoadInst *V2 = 1002 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1003 SI->getOperand(2)->getName() + ".val"); 1004 assert(LI.isUnordered() && "implied by above"); 1005 V1->setAlignment(Alignment); 1006 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1007 V2->setAlignment(Alignment); 1008 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1009 return SelectInst::Create(SI->getCondition(), V1, V2); 1010 } 1011 1012 // load (select (cond, null, P)) -> load P 1013 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1014 !NullPointerIsDefined(SI->getFunction(), 1015 LI.getPointerAddressSpace())) 1016 return replaceOperand(LI, 0, SI->getOperand(2)); 1017 1018 // load (select (cond, P, null)) -> load P 1019 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1020 !NullPointerIsDefined(SI->getFunction(), 1021 LI.getPointerAddressSpace())) 1022 return replaceOperand(LI, 0, SI->getOperand(1)); 1023 } 1024 } 1025 return nullptr; 1026 } 1027 1028 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1029 /// 1030 /// \returns underlying value that was "cast", or nullptr otherwise. 1031 /// 1032 /// For example, if we have: 1033 /// 1034 /// %E0 = extractelement <2 x double> %U, i32 0 1035 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1036 /// %E1 = extractelement <2 x double> %U, i32 1 1037 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1038 /// 1039 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1040 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1041 /// Note that %U may contain non-undef values where %V1 has undef. 1042 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) { 1043 Value *U = nullptr; 1044 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1045 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1046 if (!E) 1047 return nullptr; 1048 auto *W = E->getVectorOperand(); 1049 if (!U) 1050 U = W; 1051 else if (U != W) 1052 return nullptr; 1053 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1054 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1055 return nullptr; 1056 V = IV->getAggregateOperand(); 1057 } 1058 if (!isa<UndefValue>(V) ||!U) 1059 return nullptr; 1060 1061 auto *UT = cast<VectorType>(U->getType()); 1062 auto *VT = V->getType(); 1063 // Check that types UT and VT are bitwise isomorphic. 1064 const auto &DL = IC.getDataLayout(); 1065 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1066 return nullptr; 1067 } 1068 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1069 if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1070 return nullptr; 1071 } else { 1072 auto *ST = cast<StructType>(VT); 1073 if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1074 return nullptr; 1075 for (const auto *EltT : ST->elements()) { 1076 if (EltT != UT->getElementType()) 1077 return nullptr; 1078 } 1079 } 1080 return U; 1081 } 1082 1083 /// Combine stores to match the type of value being stored. 1084 /// 1085 /// The core idea here is that the memory does not have any intrinsic type and 1086 /// where we can we should match the type of a store to the type of value being 1087 /// stored. 1088 /// 1089 /// However, this routine must never change the width of a store or the number of 1090 /// stores as that would introduce a semantic change. This combine is expected to 1091 /// be a semantic no-op which just allows stores to more closely model the types 1092 /// of their incoming values. 1093 /// 1094 /// Currently, we also refuse to change the precise type used for an atomic or 1095 /// volatile store. This is debatable, and might be reasonable to change later. 1096 /// However, it is risky in case some backend or other part of LLVM is relying 1097 /// on the exact type stored to select appropriate atomic operations. 1098 /// 1099 /// \returns true if the store was successfully combined away. This indicates 1100 /// the caller must erase the store instruction. We have to let the caller erase 1101 /// the store instruction as otherwise there is no way to signal whether it was 1102 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1103 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) { 1104 // FIXME: We could probably with some care handle both volatile and ordered 1105 // atomic stores here but it isn't clear that this is important. 1106 if (!SI.isUnordered()) 1107 return false; 1108 1109 // swifterror values can't be bitcasted. 1110 if (SI.getPointerOperand()->isSwiftError()) 1111 return false; 1112 1113 Value *V = SI.getValueOperand(); 1114 1115 // Fold away bit casts of the stored value by storing the original type. 1116 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1117 V = BC->getOperand(0); 1118 // Don't transform when the type is x86_amx, it make the pass that lower 1119 // x86_amx type happy. 1120 if (BC->getType()->isX86_AMXTy() || V->getType()->isX86_AMXTy()) 1121 return false; 1122 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1123 combineStoreToNewValue(IC, SI, V); 1124 return true; 1125 } 1126 } 1127 1128 if (Value *U = likeBitCastFromVector(IC, V)) 1129 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1130 combineStoreToNewValue(IC, SI, U); 1131 return true; 1132 } 1133 1134 // FIXME: We should also canonicalize stores of vectors when their elements 1135 // are cast to other types. 1136 return false; 1137 } 1138 1139 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) { 1140 // FIXME: We could probably with some care handle both volatile and atomic 1141 // stores here but it isn't clear that this is important. 1142 if (!SI.isSimple()) 1143 return false; 1144 1145 Value *V = SI.getValueOperand(); 1146 Type *T = V->getType(); 1147 1148 if (!T->isAggregateType()) 1149 return false; 1150 1151 if (auto *ST = dyn_cast<StructType>(T)) { 1152 // If the struct only have one element, we unpack. 1153 unsigned Count = ST->getNumElements(); 1154 if (Count == 1) { 1155 V = IC.Builder.CreateExtractValue(V, 0); 1156 combineStoreToNewValue(IC, SI, V); 1157 return true; 1158 } 1159 1160 // We don't want to break loads with padding here as we'd loose 1161 // the knowledge that padding exists for the rest of the pipeline. 1162 const DataLayout &DL = IC.getDataLayout(); 1163 auto *SL = DL.getStructLayout(ST); 1164 if (SL->hasPadding()) 1165 return false; 1166 1167 const auto Align = SI.getAlign(); 1168 1169 SmallString<16> EltName = V->getName(); 1170 EltName += ".elt"; 1171 auto *Addr = SI.getPointerOperand(); 1172 SmallString<16> AddrName = Addr->getName(); 1173 AddrName += ".repack"; 1174 1175 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1176 auto *Zero = ConstantInt::get(IdxType, 0); 1177 for (unsigned i = 0; i < Count; i++) { 1178 Value *Indices[2] = { 1179 Zero, 1180 ConstantInt::get(IdxType, i), 1181 }; 1182 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1183 AddrName); 1184 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1185 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); 1186 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1187 AAMDNodes AAMD; 1188 SI.getAAMetadata(AAMD); 1189 NS->setAAMetadata(AAMD); 1190 } 1191 1192 return true; 1193 } 1194 1195 if (auto *AT = dyn_cast<ArrayType>(T)) { 1196 // If the array only have one element, we unpack. 1197 auto NumElements = AT->getNumElements(); 1198 if (NumElements == 1) { 1199 V = IC.Builder.CreateExtractValue(V, 0); 1200 combineStoreToNewValue(IC, SI, V); 1201 return true; 1202 } 1203 1204 // Bail out if the array is too large. Ideally we would like to optimize 1205 // arrays of arbitrary size but this has a terrible impact on compile time. 1206 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1207 // tuning. 1208 if (NumElements > IC.MaxArraySizeForCombine) 1209 return false; 1210 1211 const DataLayout &DL = IC.getDataLayout(); 1212 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1213 const auto Align = SI.getAlign(); 1214 1215 SmallString<16> EltName = V->getName(); 1216 EltName += ".elt"; 1217 auto *Addr = SI.getPointerOperand(); 1218 SmallString<16> AddrName = Addr->getName(); 1219 AddrName += ".repack"; 1220 1221 auto *IdxType = Type::getInt64Ty(T->getContext()); 1222 auto *Zero = ConstantInt::get(IdxType, 0); 1223 1224 uint64_t Offset = 0; 1225 for (uint64_t i = 0; i < NumElements; i++) { 1226 Value *Indices[2] = { 1227 Zero, 1228 ConstantInt::get(IdxType, i), 1229 }; 1230 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1231 AddrName); 1232 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1233 auto EltAlign = commonAlignment(Align, Offset); 1234 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1235 AAMDNodes AAMD; 1236 SI.getAAMetadata(AAMD); 1237 NS->setAAMetadata(AAMD); 1238 Offset += EltSize; 1239 } 1240 1241 return true; 1242 } 1243 1244 return false; 1245 } 1246 1247 /// equivalentAddressValues - Test if A and B will obviously have the same 1248 /// value. This includes recognizing that %t0 and %t1 will have the same 1249 /// value in code like this: 1250 /// %t0 = getelementptr \@a, 0, 3 1251 /// store i32 0, i32* %t0 1252 /// %t1 = getelementptr \@a, 0, 3 1253 /// %t2 = load i32* %t1 1254 /// 1255 static bool equivalentAddressValues(Value *A, Value *B) { 1256 // Test if the values are trivially equivalent. 1257 if (A == B) return true; 1258 1259 // Test if the values come form identical arithmetic instructions. 1260 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1261 // its only used to compare two uses within the same basic block, which 1262 // means that they'll always either have the same value or one of them 1263 // will have an undefined value. 1264 if (isa<BinaryOperator>(A) || 1265 isa<CastInst>(A) || 1266 isa<PHINode>(A) || 1267 isa<GetElementPtrInst>(A)) 1268 if (Instruction *BI = dyn_cast<Instruction>(B)) 1269 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1270 return true; 1271 1272 // Otherwise they may not be equivalent. 1273 return false; 1274 } 1275 1276 /// Converts store (bitcast (load (bitcast (select ...)))) to 1277 /// store (load (select ...)), where select is minmax: 1278 /// select ((cmp load V1, load V2), V1, V2). 1279 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC, 1280 StoreInst &SI) { 1281 // bitcast? 1282 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1283 return false; 1284 // load? integer? 1285 Value *LoadAddr; 1286 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1287 return false; 1288 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1289 if (!LI->getType()->isIntegerTy()) 1290 return false; 1291 Type *CmpLoadTy; 1292 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1293 return false; 1294 1295 // Make sure the type would actually change. 1296 // This condition can be hit with chains of bitcasts. 1297 if (LI->getType() == CmpLoadTy) 1298 return false; 1299 1300 // Make sure we're not changing the size of the load/store. 1301 const auto &DL = IC.getDataLayout(); 1302 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1303 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1304 return false; 1305 1306 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1307 auto *SI = dyn_cast<StoreInst>(U); 1308 return SI && SI->getPointerOperand() != LI && 1309 InstCombiner::peekThroughBitcast(SI->getPointerOperand()) != 1310 LoadAddr && 1311 !SI->getPointerOperand()->isSwiftError(); 1312 })) 1313 return false; 1314 1315 IC.Builder.SetInsertPoint(LI); 1316 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1317 // Replace all the stores with stores of the newly loaded value. 1318 for (auto *UI : LI->users()) { 1319 auto *USI = cast<StoreInst>(UI); 1320 IC.Builder.SetInsertPoint(USI); 1321 combineStoreToNewValue(IC, *USI, NewLI); 1322 } 1323 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1324 IC.eraseInstFromFunction(*LI); 1325 return true; 1326 } 1327 1328 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) { 1329 Value *Val = SI.getOperand(0); 1330 Value *Ptr = SI.getOperand(1); 1331 1332 // Try to canonicalize the stored type. 1333 if (combineStoreToValueType(*this, SI)) 1334 return eraseInstFromFunction(SI); 1335 1336 // Attempt to improve the alignment. 1337 const Align KnownAlign = getOrEnforceKnownAlignment( 1338 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); 1339 if (KnownAlign > SI.getAlign()) 1340 SI.setAlignment(KnownAlign); 1341 1342 // Try to canonicalize the stored type. 1343 if (unpackStoreToAggregate(*this, SI)) 1344 return eraseInstFromFunction(SI); 1345 1346 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1347 return eraseInstFromFunction(SI); 1348 1349 // Replace GEP indices if possible. 1350 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1351 Worklist.push(NewGEPI); 1352 return &SI; 1353 } 1354 1355 // Don't hack volatile/ordered stores. 1356 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1357 if (!SI.isUnordered()) return nullptr; 1358 1359 // If the RHS is an alloca with a single use, zapify the store, making the 1360 // alloca dead. 1361 if (Ptr->hasOneUse()) { 1362 if (isa<AllocaInst>(Ptr)) 1363 return eraseInstFromFunction(SI); 1364 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1365 if (isa<AllocaInst>(GEP->getOperand(0))) { 1366 if (GEP->getOperand(0)->hasOneUse()) 1367 return eraseInstFromFunction(SI); 1368 } 1369 } 1370 } 1371 1372 // If we have a store to a location which is known constant, we can conclude 1373 // that the store must be storing the constant value (else the memory 1374 // wouldn't be constant), and this must be a noop. 1375 if (AA->pointsToConstantMemory(Ptr)) 1376 return eraseInstFromFunction(SI); 1377 1378 // Do really simple DSE, to catch cases where there are several consecutive 1379 // stores to the same location, separated by a few arithmetic operations. This 1380 // situation often occurs with bitfield accesses. 1381 BasicBlock::iterator BBI(SI); 1382 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1383 --ScanInsts) { 1384 --BBI; 1385 // Don't count debug info directives, lest they affect codegen, 1386 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1387 if (isa<DbgInfoIntrinsic>(BBI) || 1388 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1389 ScanInsts++; 1390 continue; 1391 } 1392 1393 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1394 // Prev store isn't volatile, and stores to the same location? 1395 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1396 SI.getOperand(1))) { 1397 ++NumDeadStore; 1398 // Manually add back the original store to the worklist now, so it will 1399 // be processed after the operands of the removed store, as this may 1400 // expose additional DSE opportunities. 1401 Worklist.push(&SI); 1402 eraseInstFromFunction(*PrevSI); 1403 return nullptr; 1404 } 1405 break; 1406 } 1407 1408 // If this is a load, we have to stop. However, if the loaded value is from 1409 // the pointer we're loading and is producing the pointer we're storing, 1410 // then *this* store is dead (X = load P; store X -> P). 1411 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1412 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1413 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1414 return eraseInstFromFunction(SI); 1415 } 1416 1417 // Otherwise, this is a load from some other location. Stores before it 1418 // may not be dead. 1419 break; 1420 } 1421 1422 // Don't skip over loads, throws or things that can modify memory. 1423 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1424 break; 1425 } 1426 1427 // store X, null -> turns into 'unreachable' in SimplifyCFG 1428 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1429 if (canSimplifyNullStoreOrGEP(SI)) { 1430 if (!isa<UndefValue>(Val)) 1431 return replaceOperand(SI, 0, UndefValue::get(Val->getType())); 1432 return nullptr; // Do not modify these! 1433 } 1434 1435 // store undef, Ptr -> noop 1436 if (isa<UndefValue>(Val)) 1437 return eraseInstFromFunction(SI); 1438 1439 return nullptr; 1440 } 1441 1442 /// Try to transform: 1443 /// if () { *P = v1; } else { *P = v2 } 1444 /// or: 1445 /// *P = v1; if () { *P = v2; } 1446 /// into a phi node with a store in the successor. 1447 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) { 1448 if (!SI.isUnordered()) 1449 return false; // This code has not been audited for volatile/ordered case. 1450 1451 // Check if the successor block has exactly 2 incoming edges. 1452 BasicBlock *StoreBB = SI.getParent(); 1453 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1454 if (!DestBB->hasNPredecessors(2)) 1455 return false; 1456 1457 // Capture the other block (the block that doesn't contain our store). 1458 pred_iterator PredIter = pred_begin(DestBB); 1459 if (*PredIter == StoreBB) 1460 ++PredIter; 1461 BasicBlock *OtherBB = *PredIter; 1462 1463 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1464 // for example, if SI is in an infinite loop. 1465 if (StoreBB == DestBB || OtherBB == DestBB) 1466 return false; 1467 1468 // Verify that the other block ends in a branch and is not otherwise empty. 1469 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1470 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1471 if (!OtherBr || BBI == OtherBB->begin()) 1472 return false; 1473 1474 // If the other block ends in an unconditional branch, check for the 'if then 1475 // else' case. There is an instruction before the branch. 1476 StoreInst *OtherStore = nullptr; 1477 if (OtherBr->isUnconditional()) { 1478 --BBI; 1479 // Skip over debugging info. 1480 while (isa<DbgInfoIntrinsic>(BBI) || 1481 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1482 if (BBI==OtherBB->begin()) 1483 return false; 1484 --BBI; 1485 } 1486 // If this isn't a store, isn't a store to the same location, or is not the 1487 // right kind of store, bail out. 1488 OtherStore = dyn_cast<StoreInst>(BBI); 1489 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1490 !SI.isSameOperationAs(OtherStore)) 1491 return false; 1492 } else { 1493 // Otherwise, the other block ended with a conditional branch. If one of the 1494 // destinations is StoreBB, then we have the if/then case. 1495 if (OtherBr->getSuccessor(0) != StoreBB && 1496 OtherBr->getSuccessor(1) != StoreBB) 1497 return false; 1498 1499 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1500 // if/then triangle. See if there is a store to the same ptr as SI that 1501 // lives in OtherBB. 1502 for (;; --BBI) { 1503 // Check to see if we find the matching store. 1504 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1505 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1506 !SI.isSameOperationAs(OtherStore)) 1507 return false; 1508 break; 1509 } 1510 // If we find something that may be using or overwriting the stored 1511 // value, or if we run out of instructions, we can't do the transform. 1512 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1513 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1514 return false; 1515 } 1516 1517 // In order to eliminate the store in OtherBr, we have to make sure nothing 1518 // reads or overwrites the stored value in StoreBB. 1519 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1520 // FIXME: This should really be AA driven. 1521 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1522 return false; 1523 } 1524 } 1525 1526 // Insert a PHI node now if we need it. 1527 Value *MergedVal = OtherStore->getOperand(0); 1528 // The debug locations of the original instructions might differ. Merge them. 1529 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1530 OtherStore->getDebugLoc()); 1531 if (MergedVal != SI.getOperand(0)) { 1532 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1533 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1534 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1535 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1536 PN->setDebugLoc(MergedLoc); 1537 } 1538 1539 // Advance to a place where it is safe to insert the new store and insert it. 1540 BBI = DestBB->getFirstInsertionPt(); 1541 StoreInst *NewSI = 1542 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), 1543 SI.getOrdering(), SI.getSyncScopeID()); 1544 InsertNewInstBefore(NewSI, *BBI); 1545 NewSI->setDebugLoc(MergedLoc); 1546 1547 // If the two stores had AA tags, merge them. 1548 AAMDNodes AATags; 1549 SI.getAAMetadata(AATags); 1550 if (AATags) { 1551 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1552 NewSI->setAAMetadata(AATags); 1553 } 1554 1555 // Nuke the old stores. 1556 eraseInstFromFunction(SI); 1557 eraseInstFromFunction(*OtherStore); 1558 return true; 1559 } 1560