1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/MapVector.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 using namespace llvm; 28 29 #define DEBUG_TYPE "instcombine" 30 31 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 32 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 33 34 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 35 /// some part of a constant global variable. This intentionally only accepts 36 /// constant expressions because we can't rewrite arbitrary instructions. 37 static bool pointsToConstantGlobal(Value *V) { 38 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 39 return GV->isConstant(); 40 41 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 42 if (CE->getOpcode() == Instruction::BitCast || 43 CE->getOpcode() == Instruction::AddrSpaceCast || 44 CE->getOpcode() == Instruction::GetElementPtr) 45 return pointsToConstantGlobal(CE->getOperand(0)); 46 } 47 return false; 48 } 49 50 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 51 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 52 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 53 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 54 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 55 /// the alloca, and if the source pointer is a pointer to a constant global, we 56 /// can optimize this. 57 static bool 58 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 59 SmallVectorImpl<Instruction *> &ToDelete) { 60 // We track lifetime intrinsics as we encounter them. If we decide to go 61 // ahead and replace the value with the global, this lets the caller quickly 62 // eliminate the markers. 63 64 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 65 ValuesToInspect.emplace_back(V, false); 66 while (!ValuesToInspect.empty()) { 67 auto ValuePair = ValuesToInspect.pop_back_val(); 68 const bool IsOffset = ValuePair.second; 69 for (auto &U : ValuePair.first->uses()) { 70 auto *I = cast<Instruction>(U.getUser()); 71 72 if (auto *LI = dyn_cast<LoadInst>(I)) { 73 // Ignore non-volatile loads, they are always ok. 74 if (!LI->isSimple()) return false; 75 continue; 76 } 77 78 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 79 // If uses of the bitcast are ok, we are ok. 80 ValuesToInspect.emplace_back(I, IsOffset); 81 continue; 82 } 83 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 84 // If the GEP has all zero indices, it doesn't offset the pointer. If it 85 // doesn't, it does. 86 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 87 continue; 88 } 89 90 if (auto CS = CallSite(I)) { 91 // If this is the function being called then we treat it like a load and 92 // ignore it. 93 if (CS.isCallee(&U)) 94 continue; 95 96 unsigned DataOpNo = CS.getDataOperandNo(&U); 97 bool IsArgOperand = CS.isArgOperand(&U); 98 99 // Inalloca arguments are clobbered by the call. 100 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 101 return false; 102 103 // If this is a readonly/readnone call site, then we know it is just a 104 // load (but one that potentially returns the value itself), so we can 105 // ignore it if we know that the value isn't captured. 106 if (CS.onlyReadsMemory() && 107 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 108 continue; 109 110 // If this is being passed as a byval argument, the caller is making a 111 // copy, so it is only a read of the alloca. 112 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 113 continue; 114 } 115 116 // Lifetime intrinsics can be handled by the caller. 117 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 118 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 119 II->getIntrinsicID() == Intrinsic::lifetime_end) { 120 assert(II->use_empty() && "Lifetime markers have no result to use!"); 121 ToDelete.push_back(II); 122 continue; 123 } 124 } 125 126 // If this is isn't our memcpy/memmove, reject it as something we can't 127 // handle. 128 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 129 if (!MI) 130 return false; 131 132 // If the transfer is using the alloca as a source of the transfer, then 133 // ignore it since it is a load (unless the transfer is volatile). 134 if (U.getOperandNo() == 1) { 135 if (MI->isVolatile()) return false; 136 continue; 137 } 138 139 // If we already have seen a copy, reject the second one. 140 if (TheCopy) return false; 141 142 // If the pointer has been offset from the start of the alloca, we can't 143 // safely handle this. 144 if (IsOffset) return false; 145 146 // If the memintrinsic isn't using the alloca as the dest, reject it. 147 if (U.getOperandNo() != 0) return false; 148 149 // If the source of the memcpy/move is not a constant global, reject it. 150 if (!pointsToConstantGlobal(MI->getSource())) 151 return false; 152 153 // Otherwise, the transform is safe. Remember the copy instruction. 154 TheCopy = MI; 155 } 156 } 157 return true; 158 } 159 160 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 161 /// modified by a copy from a constant global. If we can prove this, we can 162 /// replace any uses of the alloca with uses of the global directly. 163 static MemTransferInst * 164 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 165 SmallVectorImpl<Instruction *> &ToDelete) { 166 MemTransferInst *TheCopy = nullptr; 167 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 168 return TheCopy; 169 return nullptr; 170 } 171 172 /// Returns true if V is dereferenceable for size of alloca. 173 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 174 const DataLayout &DL) { 175 if (AI->isArrayAllocation()) 176 return false; 177 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 178 if (!AllocaSize) 179 return false; 180 return isDereferenceableAndAlignedPointer(V, AI->getAlignment(), 181 APInt(64, AllocaSize), DL); 182 } 183 184 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 185 // Check for array size of 1 (scalar allocation). 186 if (!AI.isArrayAllocation()) { 187 // i32 1 is the canonical array size for scalar allocations. 188 if (AI.getArraySize()->getType()->isIntegerTy(32)) 189 return nullptr; 190 191 // Canonicalize it. 192 Value *V = IC.Builder.getInt32(1); 193 AI.setOperand(0, V); 194 return &AI; 195 } 196 197 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 198 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 199 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 200 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 201 New->setAlignment(AI.getAlignment()); 202 203 // Scan to the end of the allocation instructions, to skip over a block of 204 // allocas if possible...also skip interleaved debug info 205 // 206 BasicBlock::iterator It(New); 207 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 208 ++It; 209 210 // Now that I is pointing to the first non-allocation-inst in the block, 211 // insert our getelementptr instruction... 212 // 213 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 214 Value *NullIdx = Constant::getNullValue(IdxTy); 215 Value *Idx[2] = {NullIdx, NullIdx}; 216 Instruction *GEP = 217 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 218 IC.InsertNewInstBefore(GEP, *It); 219 220 // Now make everything use the getelementptr instead of the original 221 // allocation. 222 return IC.replaceInstUsesWith(AI, GEP); 223 } 224 225 if (isa<UndefValue>(AI.getArraySize())) 226 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 227 228 // Ensure that the alloca array size argument has type intptr_t, so that 229 // any casting is exposed early. 230 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 231 if (AI.getArraySize()->getType() != IntPtrTy) { 232 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 233 AI.setOperand(0, V); 234 return &AI; 235 } 236 237 return nullptr; 238 } 239 240 namespace { 241 // If I and V are pointers in different address space, it is not allowed to 242 // use replaceAllUsesWith since I and V have different types. A 243 // non-target-specific transformation should not use addrspacecast on V since 244 // the two address space may be disjoint depending on target. 245 // 246 // This class chases down uses of the old pointer until reaching the load 247 // instructions, then replaces the old pointer in the load instructions with 248 // the new pointer. If during the chasing it sees bitcast or GEP, it will 249 // create new bitcast or GEP with the new pointer and use them in the load 250 // instruction. 251 class PointerReplacer { 252 public: 253 PointerReplacer(InstCombiner &IC) : IC(IC) {} 254 void replacePointer(Instruction &I, Value *V); 255 256 private: 257 void findLoadAndReplace(Instruction &I); 258 void replace(Instruction *I); 259 Value *getReplacement(Value *I); 260 261 SmallVector<Instruction *, 4> Path; 262 MapVector<Value *, Value *> WorkMap; 263 InstCombiner &IC; 264 }; 265 } // end anonymous namespace 266 267 void PointerReplacer::findLoadAndReplace(Instruction &I) { 268 for (auto U : I.users()) { 269 auto *Inst = dyn_cast<Instruction>(&*U); 270 if (!Inst) 271 return; 272 DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 273 if (isa<LoadInst>(Inst)) { 274 for (auto P : Path) 275 replace(P); 276 replace(Inst); 277 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 278 Path.push_back(Inst); 279 findLoadAndReplace(*Inst); 280 Path.pop_back(); 281 } else { 282 return; 283 } 284 } 285 } 286 287 Value *PointerReplacer::getReplacement(Value *V) { 288 auto Loc = WorkMap.find(V); 289 if (Loc != WorkMap.end()) 290 return Loc->second; 291 return nullptr; 292 } 293 294 void PointerReplacer::replace(Instruction *I) { 295 if (getReplacement(I)) 296 return; 297 298 if (auto *LT = dyn_cast<LoadInst>(I)) { 299 auto *V = getReplacement(LT->getPointerOperand()); 300 assert(V && "Operand not replaced"); 301 auto *NewI = new LoadInst(V); 302 NewI->takeName(LT); 303 IC.InsertNewInstWith(NewI, *LT); 304 IC.replaceInstUsesWith(*LT, NewI); 305 WorkMap[LT] = NewI; 306 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 307 auto *V = getReplacement(GEP->getPointerOperand()); 308 assert(V && "Operand not replaced"); 309 SmallVector<Value *, 8> Indices; 310 Indices.append(GEP->idx_begin(), GEP->idx_end()); 311 auto *NewI = GetElementPtrInst::Create( 312 V->getType()->getPointerElementType(), V, Indices); 313 IC.InsertNewInstWith(NewI, *GEP); 314 NewI->takeName(GEP); 315 WorkMap[GEP] = NewI; 316 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 317 auto *V = getReplacement(BC->getOperand(0)); 318 assert(V && "Operand not replaced"); 319 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 320 V->getType()->getPointerAddressSpace()); 321 auto *NewI = new BitCastInst(V, NewT); 322 IC.InsertNewInstWith(NewI, *BC); 323 NewI->takeName(BC); 324 WorkMap[BC] = NewI; 325 } else { 326 llvm_unreachable("should never reach here"); 327 } 328 } 329 330 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 331 #ifndef NDEBUG 332 auto *PT = cast<PointerType>(I.getType()); 333 auto *NT = cast<PointerType>(V->getType()); 334 assert(PT != NT && PT->getElementType() == NT->getElementType() && 335 "Invalid usage"); 336 #endif 337 WorkMap[&I] = V; 338 findLoadAndReplace(I); 339 } 340 341 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 342 if (auto *I = simplifyAllocaArraySize(*this, AI)) 343 return I; 344 345 if (AI.getAllocatedType()->isSized()) { 346 // If the alignment is 0 (unspecified), assign it the preferred alignment. 347 if (AI.getAlignment() == 0) 348 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 349 350 // Move all alloca's of zero byte objects to the entry block and merge them 351 // together. Note that we only do this for alloca's, because malloc should 352 // allocate and return a unique pointer, even for a zero byte allocation. 353 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 354 // For a zero sized alloca there is no point in doing an array allocation. 355 // This is helpful if the array size is a complicated expression not used 356 // elsewhere. 357 if (AI.isArrayAllocation()) { 358 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 359 return &AI; 360 } 361 362 // Get the first instruction in the entry block. 363 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 364 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 365 if (FirstInst != &AI) { 366 // If the entry block doesn't start with a zero-size alloca then move 367 // this one to the start of the entry block. There is no problem with 368 // dominance as the array size was forced to a constant earlier already. 369 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 370 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 371 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 372 AI.moveBefore(FirstInst); 373 return &AI; 374 } 375 376 // If the alignment of the entry block alloca is 0 (unspecified), 377 // assign it the preferred alignment. 378 if (EntryAI->getAlignment() == 0) 379 EntryAI->setAlignment( 380 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 381 // Replace this zero-sized alloca with the one at the start of the entry 382 // block after ensuring that the address will be aligned enough for both 383 // types. 384 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 385 AI.getAlignment()); 386 EntryAI->setAlignment(MaxAlign); 387 if (AI.getType() != EntryAI->getType()) 388 return new BitCastInst(EntryAI, AI.getType()); 389 return replaceInstUsesWith(AI, EntryAI); 390 } 391 } 392 } 393 394 if (AI.getAlignment()) { 395 // Check to see if this allocation is only modified by a memcpy/memmove from 396 // a constant global whose alignment is equal to or exceeds that of the 397 // allocation. If this is the case, we can change all users to use 398 // the constant global instead. This is commonly produced by the CFE by 399 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 400 // is only subsequently read. 401 SmallVector<Instruction *, 4> ToDelete; 402 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 403 unsigned SourceAlign = getOrEnforceKnownAlignment( 404 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 405 if (AI.getAlignment() <= SourceAlign && 406 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 407 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 408 DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 409 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 410 eraseInstFromFunction(*ToDelete[i]); 411 Constant *TheSrc = cast<Constant>(Copy->getSource()); 412 auto *SrcTy = TheSrc->getType(); 413 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 414 SrcTy->getPointerAddressSpace()); 415 Constant *Cast = 416 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 417 if (AI.getType()->getPointerAddressSpace() == 418 SrcTy->getPointerAddressSpace()) { 419 Instruction *NewI = replaceInstUsesWith(AI, Cast); 420 eraseInstFromFunction(*Copy); 421 ++NumGlobalCopies; 422 return NewI; 423 } else { 424 PointerReplacer PtrReplacer(*this); 425 PtrReplacer.replacePointer(AI, Cast); 426 ++NumGlobalCopies; 427 } 428 } 429 } 430 } 431 432 // At last, use the generic allocation site handler to aggressively remove 433 // unused allocas. 434 return visitAllocSite(AI); 435 } 436 437 // Are we allowed to form a atomic load or store of this type? 438 static bool isSupportedAtomicType(Type *Ty) { 439 return Ty->isIntegerTy() || Ty->isPointerTy() || Ty->isFloatingPointTy(); 440 } 441 442 /// \brief Helper to combine a load to a new type. 443 /// 444 /// This just does the work of combining a load to a new type. It handles 445 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 446 /// loaded *value* type. This will convert it to a pointer, cast the operand to 447 /// that pointer type, load it, etc. 448 /// 449 /// Note that this will create all of the instructions with whatever insert 450 /// point the \c InstCombiner currently is using. 451 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 452 const Twine &Suffix = "") { 453 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 454 "can't fold an atomic load to requested type"); 455 456 Value *Ptr = LI.getPointerOperand(); 457 unsigned AS = LI.getPointerAddressSpace(); 458 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 459 LI.getAllMetadata(MD); 460 461 LoadInst *NewLoad = IC.Builder.CreateAlignedLoad( 462 IC.Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)), 463 LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 464 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 465 MDBuilder MDB(NewLoad->getContext()); 466 for (const auto &MDPair : MD) { 467 unsigned ID = MDPair.first; 468 MDNode *N = MDPair.second; 469 // Note, essentially every kind of metadata should be preserved here! This 470 // routine is supposed to clone a load instruction changing *only its type*. 471 // The only metadata it makes sense to drop is metadata which is invalidated 472 // when the pointer type changes. This should essentially never be the case 473 // in LLVM, but we explicitly switch over only known metadata to be 474 // conservatively correct. If you are adding metadata to LLVM which pertains 475 // to loads, you almost certainly want to add it here. 476 switch (ID) { 477 case LLVMContext::MD_dbg: 478 case LLVMContext::MD_tbaa: 479 case LLVMContext::MD_prof: 480 case LLVMContext::MD_fpmath: 481 case LLVMContext::MD_tbaa_struct: 482 case LLVMContext::MD_invariant_load: 483 case LLVMContext::MD_alias_scope: 484 case LLVMContext::MD_noalias: 485 case LLVMContext::MD_nontemporal: 486 case LLVMContext::MD_mem_parallel_loop_access: 487 // All of these directly apply. 488 NewLoad->setMetadata(ID, N); 489 break; 490 491 case LLVMContext::MD_nonnull: 492 copyNonnullMetadata(LI, N, *NewLoad); 493 break; 494 case LLVMContext::MD_align: 495 case LLVMContext::MD_dereferenceable: 496 case LLVMContext::MD_dereferenceable_or_null: 497 // These only directly apply if the new type is also a pointer. 498 if (NewTy->isPointerTy()) 499 NewLoad->setMetadata(ID, N); 500 break; 501 case LLVMContext::MD_range: 502 copyRangeMetadata(IC.getDataLayout(), LI, N, *NewLoad); 503 break; 504 } 505 } 506 return NewLoad; 507 } 508 509 /// \brief Combine a store to a new type. 510 /// 511 /// Returns the newly created store instruction. 512 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 513 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 514 "can't fold an atomic store of requested type"); 515 516 Value *Ptr = SI.getPointerOperand(); 517 unsigned AS = SI.getPointerAddressSpace(); 518 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 519 SI.getAllMetadata(MD); 520 521 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 522 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 523 SI.getAlignment(), SI.isVolatile()); 524 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 525 for (const auto &MDPair : MD) { 526 unsigned ID = MDPair.first; 527 MDNode *N = MDPair.second; 528 // Note, essentially every kind of metadata should be preserved here! This 529 // routine is supposed to clone a store instruction changing *only its 530 // type*. The only metadata it makes sense to drop is metadata which is 531 // invalidated when the pointer type changes. This should essentially 532 // never be the case in LLVM, but we explicitly switch over only known 533 // metadata to be conservatively correct. If you are adding metadata to 534 // LLVM which pertains to stores, you almost certainly want to add it 535 // here. 536 switch (ID) { 537 case LLVMContext::MD_dbg: 538 case LLVMContext::MD_tbaa: 539 case LLVMContext::MD_prof: 540 case LLVMContext::MD_fpmath: 541 case LLVMContext::MD_tbaa_struct: 542 case LLVMContext::MD_alias_scope: 543 case LLVMContext::MD_noalias: 544 case LLVMContext::MD_nontemporal: 545 case LLVMContext::MD_mem_parallel_loop_access: 546 // All of these directly apply. 547 NewStore->setMetadata(ID, N); 548 break; 549 550 case LLVMContext::MD_invariant_load: 551 case LLVMContext::MD_nonnull: 552 case LLVMContext::MD_range: 553 case LLVMContext::MD_align: 554 case LLVMContext::MD_dereferenceable: 555 case LLVMContext::MD_dereferenceable_or_null: 556 // These don't apply for stores. 557 break; 558 } 559 } 560 561 return NewStore; 562 } 563 564 /// \brief Combine loads to match the type of their uses' value after looking 565 /// through intervening bitcasts. 566 /// 567 /// The core idea here is that if the result of a load is used in an operation, 568 /// we should load the type most conducive to that operation. For example, when 569 /// loading an integer and converting that immediately to a pointer, we should 570 /// instead directly load a pointer. 571 /// 572 /// However, this routine must never change the width of a load or the number of 573 /// loads as that would introduce a semantic change. This combine is expected to 574 /// be a semantic no-op which just allows loads to more closely model the types 575 /// of their consuming operations. 576 /// 577 /// Currently, we also refuse to change the precise type used for an atomic load 578 /// or a volatile load. This is debatable, and might be reasonable to change 579 /// later. However, it is risky in case some backend or other part of LLVM is 580 /// relying on the exact type loaded to select appropriate atomic operations. 581 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 582 // FIXME: We could probably with some care handle both volatile and ordered 583 // atomic loads here but it isn't clear that this is important. 584 if (!LI.isUnordered()) 585 return nullptr; 586 587 if (LI.use_empty()) 588 return nullptr; 589 590 // swifterror values can't be bitcasted. 591 if (LI.getPointerOperand()->isSwiftError()) 592 return nullptr; 593 594 Type *Ty = LI.getType(); 595 const DataLayout &DL = IC.getDataLayout(); 596 597 // Try to canonicalize loads which are only ever stored to operate over 598 // integers instead of any other type. We only do this when the loaded type 599 // is sized and has a size exactly the same as its store size and the store 600 // size is a legal integer type. 601 if (!Ty->isIntegerTy() && Ty->isSized() && 602 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 603 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) && 604 !DL.isNonIntegralPointerType(Ty)) { 605 if (all_of(LI.users(), [&LI](User *U) { 606 auto *SI = dyn_cast<StoreInst>(U); 607 return SI && SI->getPointerOperand() != &LI && 608 !SI->getPointerOperand()->isSwiftError(); 609 })) { 610 LoadInst *NewLoad = combineLoadToNewType( 611 IC, LI, 612 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 613 // Replace all the stores with stores of the newly loaded value. 614 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 615 auto *SI = cast<StoreInst>(*UI++); 616 IC.Builder.SetInsertPoint(SI); 617 combineStoreToNewValue(IC, *SI, NewLoad); 618 IC.eraseInstFromFunction(*SI); 619 } 620 assert(LI.use_empty() && "Failed to remove all users of the load!"); 621 // Return the old load so the combiner can delete it safely. 622 return &LI; 623 } 624 } 625 626 // Fold away bit casts of the loaded value by loading the desired type. 627 // We can do this for BitCastInsts as well as casts from and to pointer types, 628 // as long as those are noops (i.e., the source or dest type have the same 629 // bitwidth as the target's pointers). 630 if (LI.hasOneUse()) 631 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 632 if (CI->isNoopCast(DL)) 633 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 634 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 635 CI->replaceAllUsesWith(NewLoad); 636 IC.eraseInstFromFunction(*CI); 637 return &LI; 638 } 639 640 // FIXME: We should also canonicalize loads of vectors when their elements are 641 // cast to other types. 642 return nullptr; 643 } 644 645 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 646 // FIXME: We could probably with some care handle both volatile and atomic 647 // stores here but it isn't clear that this is important. 648 if (!LI.isSimple()) 649 return nullptr; 650 651 Type *T = LI.getType(); 652 if (!T->isAggregateType()) 653 return nullptr; 654 655 StringRef Name = LI.getName(); 656 assert(LI.getAlignment() && "Alignment must be set at this point"); 657 658 if (auto *ST = dyn_cast<StructType>(T)) { 659 // If the struct only have one element, we unpack. 660 auto NumElements = ST->getNumElements(); 661 if (NumElements == 1) { 662 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 663 ".unpack"); 664 AAMDNodes AAMD; 665 LI.getAAMetadata(AAMD); 666 NewLoad->setAAMetadata(AAMD); 667 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 668 UndefValue::get(T), NewLoad, 0, Name)); 669 } 670 671 // We don't want to break loads with padding here as we'd loose 672 // the knowledge that padding exists for the rest of the pipeline. 673 const DataLayout &DL = IC.getDataLayout(); 674 auto *SL = DL.getStructLayout(ST); 675 if (SL->hasPadding()) 676 return nullptr; 677 678 auto Align = LI.getAlignment(); 679 if (!Align) 680 Align = DL.getABITypeAlignment(ST); 681 682 auto *Addr = LI.getPointerOperand(); 683 auto *IdxType = Type::getInt32Ty(T->getContext()); 684 auto *Zero = ConstantInt::get(IdxType, 0); 685 686 Value *V = UndefValue::get(T); 687 for (unsigned i = 0; i < NumElements; i++) { 688 Value *Indices[2] = { 689 Zero, 690 ConstantInt::get(IdxType, i), 691 }; 692 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 693 Name + ".elt"); 694 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 695 auto *L = IC.Builder.CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 696 // Propagate AA metadata. It'll still be valid on the narrowed load. 697 AAMDNodes AAMD; 698 LI.getAAMetadata(AAMD); 699 L->setAAMetadata(AAMD); 700 V = IC.Builder.CreateInsertValue(V, L, i); 701 } 702 703 V->setName(Name); 704 return IC.replaceInstUsesWith(LI, V); 705 } 706 707 if (auto *AT = dyn_cast<ArrayType>(T)) { 708 auto *ET = AT->getElementType(); 709 auto NumElements = AT->getNumElements(); 710 if (NumElements == 1) { 711 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 712 AAMDNodes AAMD; 713 LI.getAAMetadata(AAMD); 714 NewLoad->setAAMetadata(AAMD); 715 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 716 UndefValue::get(T), NewLoad, 0, Name)); 717 } 718 719 // Bail out if the array is too large. Ideally we would like to optimize 720 // arrays of arbitrary size but this has a terrible impact on compile time. 721 // The threshold here is chosen arbitrarily, maybe needs a little bit of 722 // tuning. 723 if (NumElements > IC.MaxArraySizeForCombine) 724 return nullptr; 725 726 const DataLayout &DL = IC.getDataLayout(); 727 auto EltSize = DL.getTypeAllocSize(ET); 728 auto Align = LI.getAlignment(); 729 if (!Align) 730 Align = DL.getABITypeAlignment(T); 731 732 auto *Addr = LI.getPointerOperand(); 733 auto *IdxType = Type::getInt64Ty(T->getContext()); 734 auto *Zero = ConstantInt::get(IdxType, 0); 735 736 Value *V = UndefValue::get(T); 737 uint64_t Offset = 0; 738 for (uint64_t i = 0; i < NumElements; i++) { 739 Value *Indices[2] = { 740 Zero, 741 ConstantInt::get(IdxType, i), 742 }; 743 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 744 Name + ".elt"); 745 auto *L = IC.Builder.CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 746 Name + ".unpack"); 747 AAMDNodes AAMD; 748 LI.getAAMetadata(AAMD); 749 L->setAAMetadata(AAMD); 750 V = IC.Builder.CreateInsertValue(V, L, i); 751 Offset += EltSize; 752 } 753 754 V->setName(Name); 755 return IC.replaceInstUsesWith(LI, V); 756 } 757 758 return nullptr; 759 } 760 761 // If we can determine that all possible objects pointed to by the provided 762 // pointer value are, not only dereferenceable, but also definitively less than 763 // or equal to the provided maximum size, then return true. Otherwise, return 764 // false (constant global values and allocas fall into this category). 765 // 766 // FIXME: This should probably live in ValueTracking (or similar). 767 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 768 const DataLayout &DL) { 769 SmallPtrSet<Value *, 4> Visited; 770 SmallVector<Value *, 4> Worklist(1, V); 771 772 do { 773 Value *P = Worklist.pop_back_val(); 774 P = P->stripPointerCasts(); 775 776 if (!Visited.insert(P).second) 777 continue; 778 779 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 780 Worklist.push_back(SI->getTrueValue()); 781 Worklist.push_back(SI->getFalseValue()); 782 continue; 783 } 784 785 if (PHINode *PN = dyn_cast<PHINode>(P)) { 786 for (Value *IncValue : PN->incoming_values()) 787 Worklist.push_back(IncValue); 788 continue; 789 } 790 791 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 792 if (GA->isInterposable()) 793 return false; 794 Worklist.push_back(GA->getAliasee()); 795 continue; 796 } 797 798 // If we know how big this object is, and it is less than MaxSize, continue 799 // searching. Otherwise, return false. 800 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 801 if (!AI->getAllocatedType()->isSized()) 802 return false; 803 804 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 805 if (!CS) 806 return false; 807 808 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 809 // Make sure that, even if the multiplication below would wrap as an 810 // uint64_t, we still do the right thing. 811 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 812 return false; 813 continue; 814 } 815 816 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 817 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 818 return false; 819 820 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 821 if (InitSize > MaxSize) 822 return false; 823 continue; 824 } 825 826 return false; 827 } while (!Worklist.empty()); 828 829 return true; 830 } 831 832 // If we're indexing into an object of a known size, and the outer index is 833 // not a constant, but having any value but zero would lead to undefined 834 // behavior, replace it with zero. 835 // 836 // For example, if we have: 837 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 838 // ... 839 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 840 // ... = load i32* %arrayidx, align 4 841 // Then we know that we can replace %x in the GEP with i64 0. 842 // 843 // FIXME: We could fold any GEP index to zero that would cause UB if it were 844 // not zero. Currently, we only handle the first such index. Also, we could 845 // also search through non-zero constant indices if we kept track of the 846 // offsets those indices implied. 847 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 848 Instruction *MemI, unsigned &Idx) { 849 if (GEPI->getNumOperands() < 2) 850 return false; 851 852 // Find the first non-zero index of a GEP. If all indices are zero, return 853 // one past the last index. 854 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 855 unsigned I = 1; 856 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 857 Value *V = GEPI->getOperand(I); 858 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 859 if (CI->isZero()) 860 continue; 861 862 break; 863 } 864 865 return I; 866 }; 867 868 // Skip through initial 'zero' indices, and find the corresponding pointer 869 // type. See if the next index is not a constant. 870 Idx = FirstNZIdx(GEPI); 871 if (Idx == GEPI->getNumOperands()) 872 return false; 873 if (isa<Constant>(GEPI->getOperand(Idx))) 874 return false; 875 876 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 877 Type *AllocTy = 878 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 879 if (!AllocTy || !AllocTy->isSized()) 880 return false; 881 const DataLayout &DL = IC.getDataLayout(); 882 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 883 884 // If there are more indices after the one we might replace with a zero, make 885 // sure they're all non-negative. If any of them are negative, the overall 886 // address being computed might be before the base address determined by the 887 // first non-zero index. 888 auto IsAllNonNegative = [&]() { 889 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 890 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 891 if (Known.isNonNegative()) 892 continue; 893 return false; 894 } 895 896 return true; 897 }; 898 899 // FIXME: If the GEP is not inbounds, and there are extra indices after the 900 // one we'll replace, those could cause the address computation to wrap 901 // (rendering the IsAllNonNegative() check below insufficient). We can do 902 // better, ignoring zero indices (and other indices we can prove small 903 // enough not to wrap). 904 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 905 return false; 906 907 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 908 // also known to be dereferenceable. 909 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 910 IsAllNonNegative(); 911 } 912 913 // If we're indexing into an object with a variable index for the memory 914 // access, but the object has only one element, we can assume that the index 915 // will always be zero. If we replace the GEP, return it. 916 template <typename T> 917 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 918 T &MemI) { 919 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 920 unsigned Idx; 921 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 922 Instruction *NewGEPI = GEPI->clone(); 923 NewGEPI->setOperand(Idx, 924 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 925 NewGEPI->insertBefore(GEPI); 926 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 927 return NewGEPI; 928 } 929 } 930 931 return nullptr; 932 } 933 934 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 935 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 936 const Value *GEPI0 = GEPI->getOperand(0); 937 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0) 938 return true; 939 } 940 if (isa<UndefValue>(Op) || 941 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) 942 return true; 943 return false; 944 } 945 946 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 947 Value *Op = LI.getOperand(0); 948 949 // Try to canonicalize the loaded type. 950 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 951 return Res; 952 953 // Attempt to improve the alignment. 954 unsigned KnownAlign = getOrEnforceKnownAlignment( 955 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 956 unsigned LoadAlign = LI.getAlignment(); 957 unsigned EffectiveLoadAlign = 958 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 959 960 if (KnownAlign > EffectiveLoadAlign) 961 LI.setAlignment(KnownAlign); 962 else if (LoadAlign == 0) 963 LI.setAlignment(EffectiveLoadAlign); 964 965 // Replace GEP indices if possible. 966 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 967 Worklist.Add(NewGEPI); 968 return &LI; 969 } 970 971 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 972 return Res; 973 974 // Do really simple store-to-load forwarding and load CSE, to catch cases 975 // where there are several consecutive memory accesses to the same location, 976 // separated by a few arithmetic operations. 977 BasicBlock::iterator BBI(LI); 978 bool IsLoadCSE = false; 979 if (Value *AvailableVal = FindAvailableLoadedValue( 980 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 981 if (IsLoadCSE) 982 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI); 983 984 return replaceInstUsesWith( 985 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 986 LI.getName() + ".cast")); 987 } 988 989 // None of the following transforms are legal for volatile/ordered atomic 990 // loads. Most of them do apply for unordered atomics. 991 if (!LI.isUnordered()) return nullptr; 992 993 // load(gep null, ...) -> unreachable 994 // load null/undef -> unreachable 995 // TODO: Consider a target hook for valid address spaces for this xforms. 996 if (canSimplifyNullLoadOrGEP(LI, Op)) { 997 // Insert a new store to null instruction before the load to indicate 998 // that this code is not reachable. We do this instead of inserting 999 // an unreachable instruction directly because we cannot modify the 1000 // CFG. 1001 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 1002 Constant::getNullValue(Op->getType()), &LI); 1003 SI->setDebugLoc(LI.getDebugLoc()); 1004 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 1005 } 1006 1007 if (Op->hasOneUse()) { 1008 // Change select and PHI nodes to select values instead of addresses: this 1009 // helps alias analysis out a lot, allows many others simplifications, and 1010 // exposes redundancy in the code. 1011 // 1012 // Note that we cannot do the transformation unless we know that the 1013 // introduced loads cannot trap! Something like this is valid as long as 1014 // the condition is always false: load (select bool %C, int* null, int* %G), 1015 // but it would not be valid if we transformed it to load from null 1016 // unconditionally. 1017 // 1018 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1019 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1020 unsigned Align = LI.getAlignment(); 1021 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && 1022 isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { 1023 LoadInst *V1 = Builder.CreateLoad(SI->getOperand(1), 1024 SI->getOperand(1)->getName()+".val"); 1025 LoadInst *V2 = Builder.CreateLoad(SI->getOperand(2), 1026 SI->getOperand(2)->getName()+".val"); 1027 assert(LI.isUnordered() && "implied by above"); 1028 V1->setAlignment(Align); 1029 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1030 V2->setAlignment(Align); 1031 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1032 return SelectInst::Create(SI->getCondition(), V1, V2); 1033 } 1034 1035 // load (select (cond, null, P)) -> load P 1036 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1037 LI.getPointerAddressSpace() == 0) { 1038 LI.setOperand(0, SI->getOperand(2)); 1039 return &LI; 1040 } 1041 1042 // load (select (cond, P, null)) -> load P 1043 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1044 LI.getPointerAddressSpace() == 0) { 1045 LI.setOperand(0, SI->getOperand(1)); 1046 return &LI; 1047 } 1048 } 1049 } 1050 return nullptr; 1051 } 1052 1053 /// \brief Look for extractelement/insertvalue sequence that acts like a bitcast. 1054 /// 1055 /// \returns underlying value that was "cast", or nullptr otherwise. 1056 /// 1057 /// For example, if we have: 1058 /// 1059 /// %E0 = extractelement <2 x double> %U, i32 0 1060 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1061 /// %E1 = extractelement <2 x double> %U, i32 1 1062 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1063 /// 1064 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1065 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1066 /// Note that %U may contain non-undef values where %V1 has undef. 1067 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1068 Value *U = nullptr; 1069 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1070 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1071 if (!E) 1072 return nullptr; 1073 auto *W = E->getVectorOperand(); 1074 if (!U) 1075 U = W; 1076 else if (U != W) 1077 return nullptr; 1078 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1079 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1080 return nullptr; 1081 V = IV->getAggregateOperand(); 1082 } 1083 if (!isa<UndefValue>(V) ||!U) 1084 return nullptr; 1085 1086 auto *UT = cast<VectorType>(U->getType()); 1087 auto *VT = V->getType(); 1088 // Check that types UT and VT are bitwise isomorphic. 1089 const auto &DL = IC.getDataLayout(); 1090 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1091 return nullptr; 1092 } 1093 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1094 if (AT->getNumElements() != UT->getNumElements()) 1095 return nullptr; 1096 } else { 1097 auto *ST = cast<StructType>(VT); 1098 if (ST->getNumElements() != UT->getNumElements()) 1099 return nullptr; 1100 for (const auto *EltT : ST->elements()) { 1101 if (EltT != UT->getElementType()) 1102 return nullptr; 1103 } 1104 } 1105 return U; 1106 } 1107 1108 /// \brief Combine stores to match the type of value being stored. 1109 /// 1110 /// The core idea here is that the memory does not have any intrinsic type and 1111 /// where we can we should match the type of a store to the type of value being 1112 /// stored. 1113 /// 1114 /// However, this routine must never change the width of a store or the number of 1115 /// stores as that would introduce a semantic change. This combine is expected to 1116 /// be a semantic no-op which just allows stores to more closely model the types 1117 /// of their incoming values. 1118 /// 1119 /// Currently, we also refuse to change the precise type used for an atomic or 1120 /// volatile store. This is debatable, and might be reasonable to change later. 1121 /// However, it is risky in case some backend or other part of LLVM is relying 1122 /// on the exact type stored to select appropriate atomic operations. 1123 /// 1124 /// \returns true if the store was successfully combined away. This indicates 1125 /// the caller must erase the store instruction. We have to let the caller erase 1126 /// the store instruction as otherwise there is no way to signal whether it was 1127 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1128 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1129 // FIXME: We could probably with some care handle both volatile and ordered 1130 // atomic stores here but it isn't clear that this is important. 1131 if (!SI.isUnordered()) 1132 return false; 1133 1134 // swifterror values can't be bitcasted. 1135 if (SI.getPointerOperand()->isSwiftError()) 1136 return false; 1137 1138 Value *V = SI.getValueOperand(); 1139 1140 // Fold away bit casts of the stored value by storing the original type. 1141 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1142 V = BC->getOperand(0); 1143 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1144 combineStoreToNewValue(IC, SI, V); 1145 return true; 1146 } 1147 } 1148 1149 if (Value *U = likeBitCastFromVector(IC, V)) 1150 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1151 combineStoreToNewValue(IC, SI, U); 1152 return true; 1153 } 1154 1155 // FIXME: We should also canonicalize stores of vectors when their elements 1156 // are cast to other types. 1157 return false; 1158 } 1159 1160 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1161 // FIXME: We could probably with some care handle both volatile and atomic 1162 // stores here but it isn't clear that this is important. 1163 if (!SI.isSimple()) 1164 return false; 1165 1166 Value *V = SI.getValueOperand(); 1167 Type *T = V->getType(); 1168 1169 if (!T->isAggregateType()) 1170 return false; 1171 1172 if (auto *ST = dyn_cast<StructType>(T)) { 1173 // If the struct only have one element, we unpack. 1174 unsigned Count = ST->getNumElements(); 1175 if (Count == 1) { 1176 V = IC.Builder.CreateExtractValue(V, 0); 1177 combineStoreToNewValue(IC, SI, V); 1178 return true; 1179 } 1180 1181 // We don't want to break loads with padding here as we'd loose 1182 // the knowledge that padding exists for the rest of the pipeline. 1183 const DataLayout &DL = IC.getDataLayout(); 1184 auto *SL = DL.getStructLayout(ST); 1185 if (SL->hasPadding()) 1186 return false; 1187 1188 auto Align = SI.getAlignment(); 1189 if (!Align) 1190 Align = DL.getABITypeAlignment(ST); 1191 1192 SmallString<16> EltName = V->getName(); 1193 EltName += ".elt"; 1194 auto *Addr = SI.getPointerOperand(); 1195 SmallString<16> AddrName = Addr->getName(); 1196 AddrName += ".repack"; 1197 1198 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1199 auto *Zero = ConstantInt::get(IdxType, 0); 1200 for (unsigned i = 0; i < Count; i++) { 1201 Value *Indices[2] = { 1202 Zero, 1203 ConstantInt::get(IdxType, i), 1204 }; 1205 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1206 AddrName); 1207 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1208 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1209 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1210 AAMDNodes AAMD; 1211 SI.getAAMetadata(AAMD); 1212 NS->setAAMetadata(AAMD); 1213 } 1214 1215 return true; 1216 } 1217 1218 if (auto *AT = dyn_cast<ArrayType>(T)) { 1219 // If the array only have one element, we unpack. 1220 auto NumElements = AT->getNumElements(); 1221 if (NumElements == 1) { 1222 V = IC.Builder.CreateExtractValue(V, 0); 1223 combineStoreToNewValue(IC, SI, V); 1224 return true; 1225 } 1226 1227 // Bail out if the array is too large. Ideally we would like to optimize 1228 // arrays of arbitrary size but this has a terrible impact on compile time. 1229 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1230 // tuning. 1231 if (NumElements > IC.MaxArraySizeForCombine) 1232 return false; 1233 1234 const DataLayout &DL = IC.getDataLayout(); 1235 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1236 auto Align = SI.getAlignment(); 1237 if (!Align) 1238 Align = DL.getABITypeAlignment(T); 1239 1240 SmallString<16> EltName = V->getName(); 1241 EltName += ".elt"; 1242 auto *Addr = SI.getPointerOperand(); 1243 SmallString<16> AddrName = Addr->getName(); 1244 AddrName += ".repack"; 1245 1246 auto *IdxType = Type::getInt64Ty(T->getContext()); 1247 auto *Zero = ConstantInt::get(IdxType, 0); 1248 1249 uint64_t Offset = 0; 1250 for (uint64_t i = 0; i < NumElements; i++) { 1251 Value *Indices[2] = { 1252 Zero, 1253 ConstantInt::get(IdxType, i), 1254 }; 1255 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1256 AddrName); 1257 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1258 auto EltAlign = MinAlign(Align, Offset); 1259 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1260 AAMDNodes AAMD; 1261 SI.getAAMetadata(AAMD); 1262 NS->setAAMetadata(AAMD); 1263 Offset += EltSize; 1264 } 1265 1266 return true; 1267 } 1268 1269 return false; 1270 } 1271 1272 /// equivalentAddressValues - Test if A and B will obviously have the same 1273 /// value. This includes recognizing that %t0 and %t1 will have the same 1274 /// value in code like this: 1275 /// %t0 = getelementptr \@a, 0, 3 1276 /// store i32 0, i32* %t0 1277 /// %t1 = getelementptr \@a, 0, 3 1278 /// %t2 = load i32* %t1 1279 /// 1280 static bool equivalentAddressValues(Value *A, Value *B) { 1281 // Test if the values are trivially equivalent. 1282 if (A == B) return true; 1283 1284 // Test if the values come form identical arithmetic instructions. 1285 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1286 // its only used to compare two uses within the same basic block, which 1287 // means that they'll always either have the same value or one of them 1288 // will have an undefined value. 1289 if (isa<BinaryOperator>(A) || 1290 isa<CastInst>(A) || 1291 isa<PHINode>(A) || 1292 isa<GetElementPtrInst>(A)) 1293 if (Instruction *BI = dyn_cast<Instruction>(B)) 1294 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1295 return true; 1296 1297 // Otherwise they may not be equivalent. 1298 return false; 1299 } 1300 1301 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1302 Value *Val = SI.getOperand(0); 1303 Value *Ptr = SI.getOperand(1); 1304 1305 // Try to canonicalize the stored type. 1306 if (combineStoreToValueType(*this, SI)) 1307 return eraseInstFromFunction(SI); 1308 1309 // Attempt to improve the alignment. 1310 unsigned KnownAlign = getOrEnforceKnownAlignment( 1311 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1312 unsigned StoreAlign = SI.getAlignment(); 1313 unsigned EffectiveStoreAlign = 1314 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1315 1316 if (KnownAlign > EffectiveStoreAlign) 1317 SI.setAlignment(KnownAlign); 1318 else if (StoreAlign == 0) 1319 SI.setAlignment(EffectiveStoreAlign); 1320 1321 // Try to canonicalize the stored type. 1322 if (unpackStoreToAggregate(*this, SI)) 1323 return eraseInstFromFunction(SI); 1324 1325 // Replace GEP indices if possible. 1326 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1327 Worklist.Add(NewGEPI); 1328 return &SI; 1329 } 1330 1331 // Don't hack volatile/ordered stores. 1332 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1333 if (!SI.isUnordered()) return nullptr; 1334 1335 // If the RHS is an alloca with a single use, zapify the store, making the 1336 // alloca dead. 1337 if (Ptr->hasOneUse()) { 1338 if (isa<AllocaInst>(Ptr)) 1339 return eraseInstFromFunction(SI); 1340 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1341 if (isa<AllocaInst>(GEP->getOperand(0))) { 1342 if (GEP->getOperand(0)->hasOneUse()) 1343 return eraseInstFromFunction(SI); 1344 } 1345 } 1346 } 1347 1348 // Do really simple DSE, to catch cases where there are several consecutive 1349 // stores to the same location, separated by a few arithmetic operations. This 1350 // situation often occurs with bitfield accesses. 1351 BasicBlock::iterator BBI(SI); 1352 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1353 --ScanInsts) { 1354 --BBI; 1355 // Don't count debug info directives, lest they affect codegen, 1356 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1357 if (isa<DbgInfoIntrinsic>(BBI) || 1358 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1359 ScanInsts++; 1360 continue; 1361 } 1362 1363 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1364 // Prev store isn't volatile, and stores to the same location? 1365 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1366 SI.getOperand(1))) { 1367 ++NumDeadStore; 1368 ++BBI; 1369 eraseInstFromFunction(*PrevSI); 1370 continue; 1371 } 1372 break; 1373 } 1374 1375 // If this is a load, we have to stop. However, if the loaded value is from 1376 // the pointer we're loading and is producing the pointer we're storing, 1377 // then *this* store is dead (X = load P; store X -> P). 1378 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1379 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1380 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1381 return eraseInstFromFunction(SI); 1382 } 1383 1384 // Otherwise, this is a load from some other location. Stores before it 1385 // may not be dead. 1386 break; 1387 } 1388 1389 // Don't skip over loads, throws or things that can modify memory. 1390 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1391 break; 1392 } 1393 1394 // store X, null -> turns into 'unreachable' in SimplifyCFG 1395 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { 1396 if (!isa<UndefValue>(Val)) { 1397 SI.setOperand(0, UndefValue::get(Val->getType())); 1398 if (Instruction *U = dyn_cast<Instruction>(Val)) 1399 Worklist.Add(U); // Dropped a use. 1400 } 1401 return nullptr; // Do not modify these! 1402 } 1403 1404 // store undef, Ptr -> noop 1405 if (isa<UndefValue>(Val)) 1406 return eraseInstFromFunction(SI); 1407 1408 // If this store is the last instruction in the basic block (possibly 1409 // excepting debug info instructions), and if the block ends with an 1410 // unconditional branch, try to move it to the successor block. 1411 BBI = SI.getIterator(); 1412 do { 1413 ++BBI; 1414 } while (isa<DbgInfoIntrinsic>(BBI) || 1415 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1416 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1417 if (BI->isUnconditional()) 1418 if (SimplifyStoreAtEndOfBlock(SI)) 1419 return nullptr; // xform done! 1420 1421 return nullptr; 1422 } 1423 1424 /// SimplifyStoreAtEndOfBlock - Turn things like: 1425 /// if () { *P = v1; } else { *P = v2 } 1426 /// into a phi node with a store in the successor. 1427 /// 1428 /// Simplify things like: 1429 /// *P = v1; if () { *P = v2; } 1430 /// into a phi node with a store in the successor. 1431 /// 1432 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1433 assert(SI.isUnordered() && 1434 "this code has not been auditted for volatile or ordered store case"); 1435 1436 BasicBlock *StoreBB = SI.getParent(); 1437 1438 // Check to see if the successor block has exactly two incoming edges. If 1439 // so, see if the other predecessor contains a store to the same location. 1440 // if so, insert a PHI node (if needed) and move the stores down. 1441 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1442 1443 // Determine whether Dest has exactly two predecessors and, if so, compute 1444 // the other predecessor. 1445 pred_iterator PI = pred_begin(DestBB); 1446 BasicBlock *P = *PI; 1447 BasicBlock *OtherBB = nullptr; 1448 1449 if (P != StoreBB) 1450 OtherBB = P; 1451 1452 if (++PI == pred_end(DestBB)) 1453 return false; 1454 1455 P = *PI; 1456 if (P != StoreBB) { 1457 if (OtherBB) 1458 return false; 1459 OtherBB = P; 1460 } 1461 if (++PI != pred_end(DestBB)) 1462 return false; 1463 1464 // Bail out if all the relevant blocks aren't distinct (this can happen, 1465 // for example, if SI is in an infinite loop) 1466 if (StoreBB == DestBB || OtherBB == DestBB) 1467 return false; 1468 1469 // Verify that the other block ends in a branch and is not otherwise empty. 1470 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1471 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1472 if (!OtherBr || BBI == OtherBB->begin()) 1473 return false; 1474 1475 // If the other block ends in an unconditional branch, check for the 'if then 1476 // else' case. there is an instruction before the branch. 1477 StoreInst *OtherStore = nullptr; 1478 if (OtherBr->isUnconditional()) { 1479 --BBI; 1480 // Skip over debugging info. 1481 while (isa<DbgInfoIntrinsic>(BBI) || 1482 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1483 if (BBI==OtherBB->begin()) 1484 return false; 1485 --BBI; 1486 } 1487 // If this isn't a store, isn't a store to the same location, or is not the 1488 // right kind of store, bail out. 1489 OtherStore = dyn_cast<StoreInst>(BBI); 1490 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1491 !SI.isSameOperationAs(OtherStore)) 1492 return false; 1493 } else { 1494 // Otherwise, the other block ended with a conditional branch. If one of the 1495 // destinations is StoreBB, then we have the if/then case. 1496 if (OtherBr->getSuccessor(0) != StoreBB && 1497 OtherBr->getSuccessor(1) != StoreBB) 1498 return false; 1499 1500 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1501 // if/then triangle. See if there is a store to the same ptr as SI that 1502 // lives in OtherBB. 1503 for (;; --BBI) { 1504 // Check to see if we find the matching store. 1505 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1506 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1507 !SI.isSameOperationAs(OtherStore)) 1508 return false; 1509 break; 1510 } 1511 // If we find something that may be using or overwriting the stored 1512 // value, or if we run out of instructions, we can't do the xform. 1513 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1514 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1515 return false; 1516 } 1517 1518 // In order to eliminate the store in OtherBr, we have to 1519 // make sure nothing reads or overwrites the stored value in 1520 // StoreBB. 1521 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1522 // FIXME: This should really be AA driven. 1523 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1524 return false; 1525 } 1526 } 1527 1528 // Insert a PHI node now if we need it. 1529 Value *MergedVal = OtherStore->getOperand(0); 1530 if (MergedVal != SI.getOperand(0)) { 1531 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1532 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1533 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1534 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1535 } 1536 1537 // Advance to a place where it is safe to insert the new store and 1538 // insert it. 1539 BBI = DestBB->getFirstInsertionPt(); 1540 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1541 SI.isVolatile(), 1542 SI.getAlignment(), 1543 SI.getOrdering(), 1544 SI.getSyncScopeID()); 1545 InsertNewInstBefore(NewSI, *BBI); 1546 // The debug locations of the original instructions might differ; merge them. 1547 NewSI->setDebugLoc(DILocation::getMergedLocation(SI.getDebugLoc(), 1548 OtherStore->getDebugLoc())); 1549 1550 // If the two stores had AA tags, merge them. 1551 AAMDNodes AATags; 1552 SI.getAAMetadata(AATags); 1553 if (AATags) { 1554 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1555 NewSI->setAAMetadata(AATags); 1556 } 1557 1558 // Nuke the old stores. 1559 eraseInstFromFunction(SI); 1560 eraseInstFromFunction(*OtherStore); 1561 return true; 1562 } 1563