1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/AliasAnalysis.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/InstCombine/InstCombiner.h" 27 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 28 #include "llvm/Transforms/Utils/Local.h" 29 using namespace llvm; 30 using namespace PatternMatch; 31 32 #define DEBUG_TYPE "instcombine" 33 34 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 36 37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 38 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 39 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 41 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 42 /// the alloca, and if the source pointer is a pointer to a constant global, we 43 /// can optimize this. 44 static bool 45 isOnlyCopiedFromConstantMemory(AAResults *AA, 46 Value *V, MemTransferInst *&TheCopy, 47 SmallVectorImpl<Instruction *> &ToDelete) { 48 // We track lifetime intrinsics as we encounter them. If we decide to go 49 // ahead and replace the value with the global, this lets the caller quickly 50 // eliminate the markers. 51 52 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 53 ValuesToInspect.emplace_back(V, false); 54 while (!ValuesToInspect.empty()) { 55 auto ValuePair = ValuesToInspect.pop_back_val(); 56 const bool IsOffset = ValuePair.second; 57 for (auto &U : ValuePair.first->uses()) { 58 auto *I = cast<Instruction>(U.getUser()); 59 60 if (auto *LI = dyn_cast<LoadInst>(I)) { 61 // Ignore non-volatile loads, they are always ok. 62 if (!LI->isSimple()) return false; 63 continue; 64 } 65 66 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 67 // If uses of the bitcast are ok, we are ok. 68 ValuesToInspect.emplace_back(I, IsOffset); 69 continue; 70 } 71 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 72 // If the GEP has all zero indices, it doesn't offset the pointer. If it 73 // doesn't, it does. 74 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 75 continue; 76 } 77 78 if (auto *Call = dyn_cast<CallBase>(I)) { 79 // If this is the function being called then we treat it like a load and 80 // ignore it. 81 if (Call->isCallee(&U)) 82 continue; 83 84 unsigned DataOpNo = Call->getDataOperandNo(&U); 85 bool IsArgOperand = Call->isArgOperand(&U); 86 87 // Inalloca arguments are clobbered by the call. 88 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 89 return false; 90 91 // If this is a readonly/readnone call site, then we know it is just a 92 // load (but one that potentially returns the value itself), so we can 93 // ignore it if we know that the value isn't captured. 94 if (Call->onlyReadsMemory() && 95 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 96 continue; 97 98 // If this is being passed as a byval argument, the caller is making a 99 // copy, so it is only a read of the alloca. 100 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 101 continue; 102 } 103 104 // Lifetime intrinsics can be handled by the caller. 105 if (I->isLifetimeStartOrEnd()) { 106 assert(I->use_empty() && "Lifetime markers have no result to use!"); 107 ToDelete.push_back(I); 108 continue; 109 } 110 111 // If this is isn't our memcpy/memmove, reject it as something we can't 112 // handle. 113 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 114 if (!MI) 115 return false; 116 117 // If the transfer is using the alloca as a source of the transfer, then 118 // ignore it since it is a load (unless the transfer is volatile). 119 if (U.getOperandNo() == 1) { 120 if (MI->isVolatile()) return false; 121 continue; 122 } 123 124 // If we already have seen a copy, reject the second one. 125 if (TheCopy) return false; 126 127 // If the pointer has been offset from the start of the alloca, we can't 128 // safely handle this. 129 if (IsOffset) return false; 130 131 // If the memintrinsic isn't using the alloca as the dest, reject it. 132 if (U.getOperandNo() != 0) return false; 133 134 // If the source of the memcpy/move is not a constant global, reject it. 135 if (!AA->pointsToConstantMemory(MI->getSource())) 136 return false; 137 138 // Otherwise, the transform is safe. Remember the copy instruction. 139 TheCopy = MI; 140 } 141 } 142 return true; 143 } 144 145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 146 /// modified by a copy from a constant global. If we can prove this, we can 147 /// replace any uses of the alloca with uses of the global directly. 148 static MemTransferInst * 149 isOnlyCopiedFromConstantMemory(AAResults *AA, 150 AllocaInst *AI, 151 SmallVectorImpl<Instruction *> &ToDelete) { 152 MemTransferInst *TheCopy = nullptr; 153 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) 154 return TheCopy; 155 return nullptr; 156 } 157 158 /// Returns true if V is dereferenceable for size of alloca. 159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 160 const DataLayout &DL) { 161 if (AI->isArrayAllocation()) 162 return false; 163 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 164 if (!AllocaSize) 165 return false; 166 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()), 167 APInt(64, AllocaSize), DL); 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC, 171 AllocaInst &AI) { 172 // Check for array size of 1 (scalar allocation). 173 if (!AI.isArrayAllocation()) { 174 // i32 1 is the canonical array size for scalar allocations. 175 if (AI.getArraySize()->getType()->isIntegerTy(32)) 176 return nullptr; 177 178 // Canonicalize it. 179 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); 180 } 181 182 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 183 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 184 if (C->getValue().getActiveBits() <= 64) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 187 New->setAlignment(AI.getAlign()); 188 189 // Scan to the end of the allocation instructions, to skip over a block of 190 // allocas if possible...also skip interleaved debug info 191 // 192 BasicBlock::iterator It(New); 193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 194 ++It; 195 196 // Now that I is pointing to the first non-allocation-inst in the block, 197 // insert our getelementptr instruction... 198 // 199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 200 Value *NullIdx = Constant::getNullValue(IdxTy); 201 Value *Idx[2] = {NullIdx, NullIdx}; 202 Instruction *GEP = GetElementPtrInst::CreateInBounds( 203 NewTy, New, Idx, New->getName() + ".sub"); 204 IC.InsertNewInstBefore(GEP, *It); 205 206 // Now make everything use the getelementptr instead of the original 207 // allocation. 208 return IC.replaceInstUsesWith(AI, GEP); 209 } 210 } 211 212 if (isa<UndefValue>(AI.getArraySize())) 213 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 214 215 // Ensure that the alloca array size argument has type intptr_t, so that 216 // any casting is exposed early. 217 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 218 if (AI.getArraySize()->getType() != IntPtrTy) { 219 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 220 return IC.replaceOperand(AI, 0, V); 221 } 222 223 return nullptr; 224 } 225 226 namespace { 227 // If I and V are pointers in different address space, it is not allowed to 228 // use replaceAllUsesWith since I and V have different types. A 229 // non-target-specific transformation should not use addrspacecast on V since 230 // the two address space may be disjoint depending on target. 231 // 232 // This class chases down uses of the old pointer until reaching the load 233 // instructions, then replaces the old pointer in the load instructions with 234 // the new pointer. If during the chasing it sees bitcast or GEP, it will 235 // create new bitcast or GEP with the new pointer and use them in the load 236 // instruction. 237 class PointerReplacer { 238 public: 239 PointerReplacer(InstCombinerImpl &IC) : IC(IC) {} 240 241 bool collectUsers(Instruction &I); 242 void replacePointer(Instruction &I, Value *V); 243 244 private: 245 void replace(Instruction *I); 246 Value *getReplacement(Value *I); 247 248 SmallSetVector<Instruction *, 4> Worklist; 249 MapVector<Value *, Value *> WorkMap; 250 InstCombinerImpl &IC; 251 }; 252 } // end anonymous namespace 253 254 bool PointerReplacer::collectUsers(Instruction &I) { 255 for (auto U : I.users()) { 256 Instruction *Inst = cast<Instruction>(&*U); 257 if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) { 258 if (Load->isVolatile()) 259 return false; 260 Worklist.insert(Load); 261 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 262 Worklist.insert(Inst); 263 if (!collectUsers(*Inst)) 264 return false; 265 } else if (isa<MemTransferInst>(Inst)) { 266 Worklist.insert(Inst); 267 } else { 268 LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n'); 269 return false; 270 } 271 } 272 273 return true; 274 } 275 276 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); } 277 278 void PointerReplacer::replace(Instruction *I) { 279 if (getReplacement(I)) 280 return; 281 282 if (auto *LT = dyn_cast<LoadInst>(I)) { 283 auto *V = getReplacement(LT->getPointerOperand()); 284 assert(V && "Operand not replaced"); 285 auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(), 286 LT->getAlign(), LT->getOrdering(), 287 LT->getSyncScopeID()); 288 NewI->takeName(LT); 289 copyMetadataForLoad(*NewI, *LT); 290 291 IC.InsertNewInstWith(NewI, *LT); 292 IC.replaceInstUsesWith(*LT, NewI); 293 WorkMap[LT] = NewI; 294 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 295 auto *V = getReplacement(GEP->getPointerOperand()); 296 assert(V && "Operand not replaced"); 297 SmallVector<Value *, 8> Indices; 298 Indices.append(GEP->idx_begin(), GEP->idx_end()); 299 auto *NewI = GetElementPtrInst::Create( 300 V->getType()->getPointerElementType(), V, Indices); 301 IC.InsertNewInstWith(NewI, *GEP); 302 NewI->takeName(GEP); 303 WorkMap[GEP] = NewI; 304 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 305 auto *V = getReplacement(BC->getOperand(0)); 306 assert(V && "Operand not replaced"); 307 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 308 V->getType()->getPointerAddressSpace()); 309 auto *NewI = new BitCastInst(V, NewT); 310 IC.InsertNewInstWith(NewI, *BC); 311 NewI->takeName(BC); 312 WorkMap[BC] = NewI; 313 } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) { 314 auto *SrcV = getReplacement(MemCpy->getRawSource()); 315 // The pointer may appear in the destination of a copy, but we don't want to 316 // replace it. 317 if (!SrcV) { 318 assert(getReplacement(MemCpy->getRawDest()) && 319 "destination not in replace list"); 320 return; 321 } 322 323 IC.Builder.SetInsertPoint(MemCpy); 324 auto *NewI = IC.Builder.CreateMemTransferInst( 325 MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(), 326 SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(), 327 MemCpy->isVolatile()); 328 AAMDNodes AAMD; 329 MemCpy->getAAMetadata(AAMD); 330 if (AAMD) 331 NewI->setAAMetadata(AAMD); 332 333 IC.eraseInstFromFunction(*MemCpy); 334 WorkMap[MemCpy] = NewI; 335 } else { 336 llvm_unreachable("should never reach here"); 337 } 338 } 339 340 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 341 #ifndef NDEBUG 342 auto *PT = cast<PointerType>(I.getType()); 343 auto *NT = cast<PointerType>(V->getType()); 344 assert(PT != NT && PT->getElementType() == NT->getElementType() && 345 "Invalid usage"); 346 #endif 347 WorkMap[&I] = V; 348 349 for (Instruction *Workitem : Worklist) 350 replace(Workitem); 351 } 352 353 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) { 354 if (auto *I = simplifyAllocaArraySize(*this, AI)) 355 return I; 356 357 if (AI.getAllocatedType()->isSized()) { 358 // Move all alloca's of zero byte objects to the entry block and merge them 359 // together. Note that we only do this for alloca's, because malloc should 360 // allocate and return a unique pointer, even for a zero byte allocation. 361 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) { 362 // For a zero sized alloca there is no point in doing an array allocation. 363 // This is helpful if the array size is a complicated expression not used 364 // elsewhere. 365 if (AI.isArrayAllocation()) 366 return replaceOperand(AI, 0, 367 ConstantInt::get(AI.getArraySize()->getType(), 1)); 368 369 // Get the first instruction in the entry block. 370 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 371 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 372 if (FirstInst != &AI) { 373 // If the entry block doesn't start with a zero-size alloca then move 374 // this one to the start of the entry block. There is no problem with 375 // dominance as the array size was forced to a constant earlier already. 376 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 377 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 378 DL.getTypeAllocSize(EntryAI->getAllocatedType()) 379 .getKnownMinSize() != 0) { 380 AI.moveBefore(FirstInst); 381 return &AI; 382 } 383 384 // Replace this zero-sized alloca with the one at the start of the entry 385 // block after ensuring that the address will be aligned enough for both 386 // types. 387 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); 388 EntryAI->setAlignment(MaxAlign); 389 if (AI.getType() != EntryAI->getType()) 390 return new BitCastInst(EntryAI, AI.getType()); 391 return replaceInstUsesWith(AI, EntryAI); 392 } 393 } 394 } 395 396 // Check to see if this allocation is only modified by a memcpy/memmove from 397 // a constant whose alignment is equal to or exceeds that of the allocation. 398 // If this is the case, we can change all users to use the constant global 399 // instead. This is commonly produced by the CFE by constructs like "void 400 // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently 401 // read. 402 SmallVector<Instruction *, 4> ToDelete; 403 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { 404 Value *TheSrc = Copy->getSource(); 405 Align AllocaAlign = AI.getAlign(); 406 Align SourceAlign = getOrEnforceKnownAlignment( 407 TheSrc, AllocaAlign, DL, &AI, &AC, &DT); 408 if (AllocaAlign <= SourceAlign && 409 isDereferenceableForAllocaSize(TheSrc, &AI, DL)) { 410 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 411 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 412 unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace(); 413 auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace); 414 if (AI.getType()->getAddressSpace() == SrcAddrSpace) { 415 for (Instruction *Delete : ToDelete) 416 eraseInstFromFunction(*Delete); 417 418 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 419 Instruction *NewI = replaceInstUsesWith(AI, Cast); 420 eraseInstFromFunction(*Copy); 421 ++NumGlobalCopies; 422 return NewI; 423 } 424 425 PointerReplacer PtrReplacer(*this); 426 if (PtrReplacer.collectUsers(AI)) { 427 for (Instruction *Delete : ToDelete) 428 eraseInstFromFunction(*Delete); 429 430 Value *Cast = Builder.CreateBitCast(TheSrc, DestTy); 431 PtrReplacer.replacePointer(AI, Cast); 432 ++NumGlobalCopies; 433 } 434 } 435 } 436 437 // At last, use the generic allocation site handler to aggressively remove 438 // unused allocas. 439 return visitAllocSite(AI); 440 } 441 442 // Are we allowed to form a atomic load or store of this type? 443 static bool isSupportedAtomicType(Type *Ty) { 444 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 445 } 446 447 /// Helper to combine a load to a new type. 448 /// 449 /// This just does the work of combining a load to a new type. It handles 450 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 451 /// loaded *value* type. This will convert it to a pointer, cast the operand to 452 /// that pointer type, load it, etc. 453 /// 454 /// Note that this will create all of the instructions with whatever insert 455 /// point the \c InstCombinerImpl currently is using. 456 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy, 457 const Twine &Suffix) { 458 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 459 "can't fold an atomic load to requested type"); 460 461 Value *Ptr = LI.getPointerOperand(); 462 unsigned AS = LI.getPointerAddressSpace(); 463 Value *NewPtr = nullptr; 464 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 465 NewPtr->getType()->getPointerElementType() == NewTy && 466 NewPtr->getType()->getPointerAddressSpace() == AS)) 467 NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 468 469 LoadInst *NewLoad = Builder.CreateAlignedLoad( 470 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); 471 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 472 copyMetadataForLoad(*NewLoad, LI); 473 return NewLoad; 474 } 475 476 /// Combine a store to a new type. 477 /// 478 /// Returns the newly created store instruction. 479 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI, 480 Value *V) { 481 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 482 "can't fold an atomic store of requested type"); 483 484 Value *Ptr = SI.getPointerOperand(); 485 unsigned AS = SI.getPointerAddressSpace(); 486 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 487 SI.getAllMetadata(MD); 488 489 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 490 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 491 SI.getAlign(), SI.isVolatile()); 492 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 493 for (const auto &MDPair : MD) { 494 unsigned ID = MDPair.first; 495 MDNode *N = MDPair.second; 496 // Note, essentially every kind of metadata should be preserved here! This 497 // routine is supposed to clone a store instruction changing *only its 498 // type*. The only metadata it makes sense to drop is metadata which is 499 // invalidated when the pointer type changes. This should essentially 500 // never be the case in LLVM, but we explicitly switch over only known 501 // metadata to be conservatively correct. If you are adding metadata to 502 // LLVM which pertains to stores, you almost certainly want to add it 503 // here. 504 switch (ID) { 505 case LLVMContext::MD_dbg: 506 case LLVMContext::MD_tbaa: 507 case LLVMContext::MD_prof: 508 case LLVMContext::MD_fpmath: 509 case LLVMContext::MD_tbaa_struct: 510 case LLVMContext::MD_alias_scope: 511 case LLVMContext::MD_noalias: 512 case LLVMContext::MD_nontemporal: 513 case LLVMContext::MD_mem_parallel_loop_access: 514 case LLVMContext::MD_access_group: 515 // All of these directly apply. 516 NewStore->setMetadata(ID, N); 517 break; 518 case LLVMContext::MD_invariant_load: 519 case LLVMContext::MD_nonnull: 520 case LLVMContext::MD_noundef: 521 case LLVMContext::MD_range: 522 case LLVMContext::MD_align: 523 case LLVMContext::MD_dereferenceable: 524 case LLVMContext::MD_dereferenceable_or_null: 525 // These don't apply for stores. 526 break; 527 } 528 } 529 530 return NewStore; 531 } 532 533 /// Returns true if instruction represent minmax pattern like: 534 /// select ((cmp load V1, load V2), V1, V2). 535 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 536 assert(V->getType()->isPointerTy() && "Expected pointer type."); 537 // Ignore possible ty* to ixx* bitcast. 538 V = InstCombiner::peekThroughBitcast(V); 539 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 540 // pattern. 541 CmpInst::Predicate Pred; 542 Instruction *L1; 543 Instruction *L2; 544 Value *LHS; 545 Value *RHS; 546 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 547 m_Value(LHS), m_Value(RHS)))) 548 return false; 549 LoadTy = L1->getType(); 550 return (match(L1, m_Load(m_Specific(LHS))) && 551 match(L2, m_Load(m_Specific(RHS)))) || 552 (match(L1, m_Load(m_Specific(RHS))) && 553 match(L2, m_Load(m_Specific(LHS)))); 554 } 555 556 /// Combine loads to match the type of their uses' value after looking 557 /// through intervening bitcasts. 558 /// 559 /// The core idea here is that if the result of a load is used in an operation, 560 /// we should load the type most conducive to that operation. For example, when 561 /// loading an integer and converting that immediately to a pointer, we should 562 /// instead directly load a pointer. 563 /// 564 /// However, this routine must never change the width of a load or the number of 565 /// loads as that would introduce a semantic change. This combine is expected to 566 /// be a semantic no-op which just allows loads to more closely model the types 567 /// of their consuming operations. 568 /// 569 /// Currently, we also refuse to change the precise type used for an atomic load 570 /// or a volatile load. This is debatable, and might be reasonable to change 571 /// later. However, it is risky in case some backend or other part of LLVM is 572 /// relying on the exact type loaded to select appropriate atomic operations. 573 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC, 574 LoadInst &LI) { 575 // FIXME: We could probably with some care handle both volatile and ordered 576 // atomic loads here but it isn't clear that this is important. 577 if (!LI.isUnordered()) 578 return nullptr; 579 580 if (LI.use_empty()) 581 return nullptr; 582 583 // swifterror values can't be bitcasted. 584 if (LI.getPointerOperand()->isSwiftError()) 585 return nullptr; 586 587 const DataLayout &DL = IC.getDataLayout(); 588 589 // Fold away bit casts of the loaded value by loading the desired type. 590 // Note that we should not do this for pointer<->integer casts, 591 // because that would result in type punning. 592 if (LI.hasOneUse()) { 593 // Don't transform when the type is x86_amx, it makes the pass that lower 594 // x86_amx type happy. 595 if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) { 596 assert(!LI.getType()->isX86_AMXTy() && 597 "load from x86_amx* should not happen!"); 598 if (BC->getType()->isX86_AMXTy()) 599 return nullptr; 600 } 601 602 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 603 if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() == 604 CI->getDestTy()->isPtrOrPtrVectorTy()) 605 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 606 LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy()); 607 CI->replaceAllUsesWith(NewLoad); 608 IC.eraseInstFromFunction(*CI); 609 return &LI; 610 } 611 } 612 613 // FIXME: We should also canonicalize loads of vectors when their elements are 614 // cast to other types. 615 return nullptr; 616 } 617 618 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) { 619 // FIXME: We could probably with some care handle both volatile and atomic 620 // stores here but it isn't clear that this is important. 621 if (!LI.isSimple()) 622 return nullptr; 623 624 Type *T = LI.getType(); 625 if (!T->isAggregateType()) 626 return nullptr; 627 628 StringRef Name = LI.getName(); 629 assert(LI.getAlignment() && "Alignment must be set at this point"); 630 631 if (auto *ST = dyn_cast<StructType>(T)) { 632 // If the struct only have one element, we unpack. 633 auto NumElements = ST->getNumElements(); 634 if (NumElements == 1) { 635 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 636 ".unpack"); 637 AAMDNodes AAMD; 638 LI.getAAMetadata(AAMD); 639 NewLoad->setAAMetadata(AAMD); 640 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 641 UndefValue::get(T), NewLoad, 0, Name)); 642 } 643 644 // We don't want to break loads with padding here as we'd loose 645 // the knowledge that padding exists for the rest of the pipeline. 646 const DataLayout &DL = IC.getDataLayout(); 647 auto *SL = DL.getStructLayout(ST); 648 if (SL->hasPadding()) 649 return nullptr; 650 651 const auto Align = LI.getAlign(); 652 auto *Addr = LI.getPointerOperand(); 653 auto *IdxType = Type::getInt32Ty(T->getContext()); 654 auto *Zero = ConstantInt::get(IdxType, 0); 655 656 Value *V = UndefValue::get(T); 657 for (unsigned i = 0; i < NumElements; i++) { 658 Value *Indices[2] = { 659 Zero, 660 ConstantInt::get(IdxType, i), 661 }; 662 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 663 Name + ".elt"); 664 auto *L = IC.Builder.CreateAlignedLoad( 665 ST->getElementType(i), Ptr, 666 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); 667 // Propagate AA metadata. It'll still be valid on the narrowed load. 668 AAMDNodes AAMD; 669 LI.getAAMetadata(AAMD); 670 L->setAAMetadata(AAMD); 671 V = IC.Builder.CreateInsertValue(V, L, i); 672 } 673 674 V->setName(Name); 675 return IC.replaceInstUsesWith(LI, V); 676 } 677 678 if (auto *AT = dyn_cast<ArrayType>(T)) { 679 auto *ET = AT->getElementType(); 680 auto NumElements = AT->getNumElements(); 681 if (NumElements == 1) { 682 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 683 AAMDNodes AAMD; 684 LI.getAAMetadata(AAMD); 685 NewLoad->setAAMetadata(AAMD); 686 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 687 UndefValue::get(T), NewLoad, 0, Name)); 688 } 689 690 // Bail out if the array is too large. Ideally we would like to optimize 691 // arrays of arbitrary size but this has a terrible impact on compile time. 692 // The threshold here is chosen arbitrarily, maybe needs a little bit of 693 // tuning. 694 if (NumElements > IC.MaxArraySizeForCombine) 695 return nullptr; 696 697 const DataLayout &DL = IC.getDataLayout(); 698 auto EltSize = DL.getTypeAllocSize(ET); 699 const auto Align = LI.getAlign(); 700 701 auto *Addr = LI.getPointerOperand(); 702 auto *IdxType = Type::getInt64Ty(T->getContext()); 703 auto *Zero = ConstantInt::get(IdxType, 0); 704 705 Value *V = UndefValue::get(T); 706 uint64_t Offset = 0; 707 for (uint64_t i = 0; i < NumElements; i++) { 708 Value *Indices[2] = { 709 Zero, 710 ConstantInt::get(IdxType, i), 711 }; 712 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 713 Name + ".elt"); 714 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, 715 commonAlignment(Align, Offset), 716 Name + ".unpack"); 717 AAMDNodes AAMD; 718 LI.getAAMetadata(AAMD); 719 L->setAAMetadata(AAMD); 720 V = IC.Builder.CreateInsertValue(V, L, i); 721 Offset += EltSize; 722 } 723 724 V->setName(Name); 725 return IC.replaceInstUsesWith(LI, V); 726 } 727 728 return nullptr; 729 } 730 731 // If we can determine that all possible objects pointed to by the provided 732 // pointer value are, not only dereferenceable, but also definitively less than 733 // or equal to the provided maximum size, then return true. Otherwise, return 734 // false (constant global values and allocas fall into this category). 735 // 736 // FIXME: This should probably live in ValueTracking (or similar). 737 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 738 const DataLayout &DL) { 739 SmallPtrSet<Value *, 4> Visited; 740 SmallVector<Value *, 4> Worklist(1, V); 741 742 do { 743 Value *P = Worklist.pop_back_val(); 744 P = P->stripPointerCasts(); 745 746 if (!Visited.insert(P).second) 747 continue; 748 749 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 750 Worklist.push_back(SI->getTrueValue()); 751 Worklist.push_back(SI->getFalseValue()); 752 continue; 753 } 754 755 if (PHINode *PN = dyn_cast<PHINode>(P)) { 756 append_range(Worklist, PN->incoming_values()); 757 continue; 758 } 759 760 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 761 if (GA->isInterposable()) 762 return false; 763 Worklist.push_back(GA->getAliasee()); 764 continue; 765 } 766 767 // If we know how big this object is, and it is less than MaxSize, continue 768 // searching. Otherwise, return false. 769 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 770 if (!AI->getAllocatedType()->isSized()) 771 return false; 772 773 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 774 if (!CS) 775 return false; 776 777 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 778 // Make sure that, even if the multiplication below would wrap as an 779 // uint64_t, we still do the right thing. 780 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 781 return false; 782 continue; 783 } 784 785 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 786 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 787 return false; 788 789 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 790 if (InitSize > MaxSize) 791 return false; 792 continue; 793 } 794 795 return false; 796 } while (!Worklist.empty()); 797 798 return true; 799 } 800 801 // If we're indexing into an object of a known size, and the outer index is 802 // not a constant, but having any value but zero would lead to undefined 803 // behavior, replace it with zero. 804 // 805 // For example, if we have: 806 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 807 // ... 808 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 809 // ... = load i32* %arrayidx, align 4 810 // Then we know that we can replace %x in the GEP with i64 0. 811 // 812 // FIXME: We could fold any GEP index to zero that would cause UB if it were 813 // not zero. Currently, we only handle the first such index. Also, we could 814 // also search through non-zero constant indices if we kept track of the 815 // offsets those indices implied. 816 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC, 817 GetElementPtrInst *GEPI, Instruction *MemI, 818 unsigned &Idx) { 819 if (GEPI->getNumOperands() < 2) 820 return false; 821 822 // Find the first non-zero index of a GEP. If all indices are zero, return 823 // one past the last index. 824 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 825 unsigned I = 1; 826 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 827 Value *V = GEPI->getOperand(I); 828 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 829 if (CI->isZero()) 830 continue; 831 832 break; 833 } 834 835 return I; 836 }; 837 838 // Skip through initial 'zero' indices, and find the corresponding pointer 839 // type. See if the next index is not a constant. 840 Idx = FirstNZIdx(GEPI); 841 if (Idx == GEPI->getNumOperands()) 842 return false; 843 if (isa<Constant>(GEPI->getOperand(Idx))) 844 return false; 845 846 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 847 Type *SourceElementType = GEPI->getSourceElementType(); 848 // Size information about scalable vectors is not available, so we cannot 849 // deduce whether indexing at n is undefined behaviour or not. Bail out. 850 if (isa<ScalableVectorType>(SourceElementType)) 851 return false; 852 853 Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops); 854 if (!AllocTy || !AllocTy->isSized()) 855 return false; 856 const DataLayout &DL = IC.getDataLayout(); 857 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize(); 858 859 // If there are more indices after the one we might replace with a zero, make 860 // sure they're all non-negative. If any of them are negative, the overall 861 // address being computed might be before the base address determined by the 862 // first non-zero index. 863 auto IsAllNonNegative = [&]() { 864 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 865 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 866 if (Known.isNonNegative()) 867 continue; 868 return false; 869 } 870 871 return true; 872 }; 873 874 // FIXME: If the GEP is not inbounds, and there are extra indices after the 875 // one we'll replace, those could cause the address computation to wrap 876 // (rendering the IsAllNonNegative() check below insufficient). We can do 877 // better, ignoring zero indices (and other indices we can prove small 878 // enough not to wrap). 879 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 880 return false; 881 882 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 883 // also known to be dereferenceable. 884 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 885 IsAllNonNegative(); 886 } 887 888 // If we're indexing into an object with a variable index for the memory 889 // access, but the object has only one element, we can assume that the index 890 // will always be zero. If we replace the GEP, return it. 891 template <typename T> 892 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr, 893 T &MemI) { 894 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 895 unsigned Idx; 896 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 897 Instruction *NewGEPI = GEPI->clone(); 898 NewGEPI->setOperand(Idx, 899 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 900 NewGEPI->insertBefore(GEPI); 901 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 902 return NewGEPI; 903 } 904 } 905 906 return nullptr; 907 } 908 909 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 910 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 911 return false; 912 913 auto *Ptr = SI.getPointerOperand(); 914 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 915 Ptr = GEPI->getOperand(0); 916 return (isa<ConstantPointerNull>(Ptr) && 917 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 918 } 919 920 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 921 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 922 const Value *GEPI0 = GEPI->getOperand(0); 923 if (isa<ConstantPointerNull>(GEPI0) && 924 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 925 return true; 926 } 927 if (isa<UndefValue>(Op) || 928 (isa<ConstantPointerNull>(Op) && 929 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 930 return true; 931 return false; 932 } 933 934 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) { 935 Value *Op = LI.getOperand(0); 936 937 // Try to canonicalize the loaded type. 938 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 939 return Res; 940 941 // Attempt to improve the alignment. 942 Align KnownAlign = getOrEnforceKnownAlignment( 943 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); 944 if (KnownAlign > LI.getAlign()) 945 LI.setAlignment(KnownAlign); 946 947 // Replace GEP indices if possible. 948 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 949 Worklist.push(NewGEPI); 950 return &LI; 951 } 952 953 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 954 return Res; 955 956 // Do really simple store-to-load forwarding and load CSE, to catch cases 957 // where there are several consecutive memory accesses to the same location, 958 // separated by a few arithmetic operations. 959 bool IsLoadCSE = false; 960 if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) { 961 if (IsLoadCSE) 962 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 963 964 return replaceInstUsesWith( 965 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 966 LI.getName() + ".cast")); 967 } 968 969 // None of the following transforms are legal for volatile/ordered atomic 970 // loads. Most of them do apply for unordered atomics. 971 if (!LI.isUnordered()) return nullptr; 972 973 // load(gep null, ...) -> unreachable 974 // load null/undef -> unreachable 975 // TODO: Consider a target hook for valid address spaces for this xforms. 976 if (canSimplifyNullLoadOrGEP(LI, Op)) { 977 // Insert a new store to null instruction before the load to indicate 978 // that this code is not reachable. We do this instead of inserting 979 // an unreachable instruction directly because we cannot modify the 980 // CFG. 981 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 982 Constant::getNullValue(Op->getType()), &LI); 983 SI->setDebugLoc(LI.getDebugLoc()); 984 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 985 } 986 987 if (Op->hasOneUse()) { 988 // Change select and PHI nodes to select values instead of addresses: this 989 // helps alias analysis out a lot, allows many others simplifications, and 990 // exposes redundancy in the code. 991 // 992 // Note that we cannot do the transformation unless we know that the 993 // introduced loads cannot trap! Something like this is valid as long as 994 // the condition is always false: load (select bool %C, int* null, int* %G), 995 // but it would not be valid if we transformed it to load from null 996 // unconditionally. 997 // 998 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 999 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1000 Align Alignment = LI.getAlign(); 1001 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 1002 Alignment, DL, SI) && 1003 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 1004 Alignment, DL, SI)) { 1005 LoadInst *V1 = 1006 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 1007 SI->getOperand(1)->getName() + ".val"); 1008 LoadInst *V2 = 1009 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 1010 SI->getOperand(2)->getName() + ".val"); 1011 assert(LI.isUnordered() && "implied by above"); 1012 V1->setAlignment(Alignment); 1013 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1014 V2->setAlignment(Alignment); 1015 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1016 return SelectInst::Create(SI->getCondition(), V1, V2); 1017 } 1018 1019 // load (select (cond, null, P)) -> load P 1020 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1021 !NullPointerIsDefined(SI->getFunction(), 1022 LI.getPointerAddressSpace())) 1023 return replaceOperand(LI, 0, SI->getOperand(2)); 1024 1025 // load (select (cond, P, null)) -> load P 1026 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1027 !NullPointerIsDefined(SI->getFunction(), 1028 LI.getPointerAddressSpace())) 1029 return replaceOperand(LI, 0, SI->getOperand(1)); 1030 } 1031 } 1032 return nullptr; 1033 } 1034 1035 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1036 /// 1037 /// \returns underlying value that was "cast", or nullptr otherwise. 1038 /// 1039 /// For example, if we have: 1040 /// 1041 /// %E0 = extractelement <2 x double> %U, i32 0 1042 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1043 /// %E1 = extractelement <2 x double> %U, i32 1 1044 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1045 /// 1046 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1047 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1048 /// Note that %U may contain non-undef values where %V1 has undef. 1049 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) { 1050 Value *U = nullptr; 1051 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1052 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1053 if (!E) 1054 return nullptr; 1055 auto *W = E->getVectorOperand(); 1056 if (!U) 1057 U = W; 1058 else if (U != W) 1059 return nullptr; 1060 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1061 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1062 return nullptr; 1063 V = IV->getAggregateOperand(); 1064 } 1065 if (!isa<UndefValue>(V) ||!U) 1066 return nullptr; 1067 1068 auto *UT = cast<VectorType>(U->getType()); 1069 auto *VT = V->getType(); 1070 // Check that types UT and VT are bitwise isomorphic. 1071 const auto &DL = IC.getDataLayout(); 1072 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1073 return nullptr; 1074 } 1075 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1076 if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1077 return nullptr; 1078 } else { 1079 auto *ST = cast<StructType>(VT); 1080 if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements()) 1081 return nullptr; 1082 for (const auto *EltT : ST->elements()) { 1083 if (EltT != UT->getElementType()) 1084 return nullptr; 1085 } 1086 } 1087 return U; 1088 } 1089 1090 /// Combine stores to match the type of value being stored. 1091 /// 1092 /// The core idea here is that the memory does not have any intrinsic type and 1093 /// where we can we should match the type of a store to the type of value being 1094 /// stored. 1095 /// 1096 /// However, this routine must never change the width of a store or the number of 1097 /// stores as that would introduce a semantic change. This combine is expected to 1098 /// be a semantic no-op which just allows stores to more closely model the types 1099 /// of their incoming values. 1100 /// 1101 /// Currently, we also refuse to change the precise type used for an atomic or 1102 /// volatile store. This is debatable, and might be reasonable to change later. 1103 /// However, it is risky in case some backend or other part of LLVM is relying 1104 /// on the exact type stored to select appropriate atomic operations. 1105 /// 1106 /// \returns true if the store was successfully combined away. This indicates 1107 /// the caller must erase the store instruction. We have to let the caller erase 1108 /// the store instruction as otherwise there is no way to signal whether it was 1109 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1110 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) { 1111 // FIXME: We could probably with some care handle both volatile and ordered 1112 // atomic stores here but it isn't clear that this is important. 1113 if (!SI.isUnordered()) 1114 return false; 1115 1116 // swifterror values can't be bitcasted. 1117 if (SI.getPointerOperand()->isSwiftError()) 1118 return false; 1119 1120 Value *V = SI.getValueOperand(); 1121 1122 // Fold away bit casts of the stored value by storing the original type. 1123 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1124 assert(!BC->getType()->isX86_AMXTy() && 1125 "store to x86_amx* should not happen!"); 1126 V = BC->getOperand(0); 1127 // Don't transform when the type is x86_amx, it makes the pass that lower 1128 // x86_amx type happy. 1129 if (V->getType()->isX86_AMXTy()) 1130 return false; 1131 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1132 combineStoreToNewValue(IC, SI, V); 1133 return true; 1134 } 1135 } 1136 1137 if (Value *U = likeBitCastFromVector(IC, V)) 1138 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1139 combineStoreToNewValue(IC, SI, U); 1140 return true; 1141 } 1142 1143 // FIXME: We should also canonicalize stores of vectors when their elements 1144 // are cast to other types. 1145 return false; 1146 } 1147 1148 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) { 1149 // FIXME: We could probably with some care handle both volatile and atomic 1150 // stores here but it isn't clear that this is important. 1151 if (!SI.isSimple()) 1152 return false; 1153 1154 Value *V = SI.getValueOperand(); 1155 Type *T = V->getType(); 1156 1157 if (!T->isAggregateType()) 1158 return false; 1159 1160 if (auto *ST = dyn_cast<StructType>(T)) { 1161 // If the struct only have one element, we unpack. 1162 unsigned Count = ST->getNumElements(); 1163 if (Count == 1) { 1164 V = IC.Builder.CreateExtractValue(V, 0); 1165 combineStoreToNewValue(IC, SI, V); 1166 return true; 1167 } 1168 1169 // We don't want to break loads with padding here as we'd loose 1170 // the knowledge that padding exists for the rest of the pipeline. 1171 const DataLayout &DL = IC.getDataLayout(); 1172 auto *SL = DL.getStructLayout(ST); 1173 if (SL->hasPadding()) 1174 return false; 1175 1176 const auto Align = SI.getAlign(); 1177 1178 SmallString<16> EltName = V->getName(); 1179 EltName += ".elt"; 1180 auto *Addr = SI.getPointerOperand(); 1181 SmallString<16> AddrName = Addr->getName(); 1182 AddrName += ".repack"; 1183 1184 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1185 auto *Zero = ConstantInt::get(IdxType, 0); 1186 for (unsigned i = 0; i < Count; i++) { 1187 Value *Indices[2] = { 1188 Zero, 1189 ConstantInt::get(IdxType, i), 1190 }; 1191 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1192 AddrName); 1193 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1194 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); 1195 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1196 AAMDNodes AAMD; 1197 SI.getAAMetadata(AAMD); 1198 NS->setAAMetadata(AAMD); 1199 } 1200 1201 return true; 1202 } 1203 1204 if (auto *AT = dyn_cast<ArrayType>(T)) { 1205 // If the array only have one element, we unpack. 1206 auto NumElements = AT->getNumElements(); 1207 if (NumElements == 1) { 1208 V = IC.Builder.CreateExtractValue(V, 0); 1209 combineStoreToNewValue(IC, SI, V); 1210 return true; 1211 } 1212 1213 // Bail out if the array is too large. Ideally we would like to optimize 1214 // arrays of arbitrary size but this has a terrible impact on compile time. 1215 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1216 // tuning. 1217 if (NumElements > IC.MaxArraySizeForCombine) 1218 return false; 1219 1220 const DataLayout &DL = IC.getDataLayout(); 1221 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1222 const auto Align = SI.getAlign(); 1223 1224 SmallString<16> EltName = V->getName(); 1225 EltName += ".elt"; 1226 auto *Addr = SI.getPointerOperand(); 1227 SmallString<16> AddrName = Addr->getName(); 1228 AddrName += ".repack"; 1229 1230 auto *IdxType = Type::getInt64Ty(T->getContext()); 1231 auto *Zero = ConstantInt::get(IdxType, 0); 1232 1233 uint64_t Offset = 0; 1234 for (uint64_t i = 0; i < NumElements; i++) { 1235 Value *Indices[2] = { 1236 Zero, 1237 ConstantInt::get(IdxType, i), 1238 }; 1239 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1240 AddrName); 1241 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1242 auto EltAlign = commonAlignment(Align, Offset); 1243 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1244 AAMDNodes AAMD; 1245 SI.getAAMetadata(AAMD); 1246 NS->setAAMetadata(AAMD); 1247 Offset += EltSize; 1248 } 1249 1250 return true; 1251 } 1252 1253 return false; 1254 } 1255 1256 /// equivalentAddressValues - Test if A and B will obviously have the same 1257 /// value. This includes recognizing that %t0 and %t1 will have the same 1258 /// value in code like this: 1259 /// %t0 = getelementptr \@a, 0, 3 1260 /// store i32 0, i32* %t0 1261 /// %t1 = getelementptr \@a, 0, 3 1262 /// %t2 = load i32* %t1 1263 /// 1264 static bool equivalentAddressValues(Value *A, Value *B) { 1265 // Test if the values are trivially equivalent. 1266 if (A == B) return true; 1267 1268 // Test if the values come form identical arithmetic instructions. 1269 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1270 // its only used to compare two uses within the same basic block, which 1271 // means that they'll always either have the same value or one of them 1272 // will have an undefined value. 1273 if (isa<BinaryOperator>(A) || 1274 isa<CastInst>(A) || 1275 isa<PHINode>(A) || 1276 isa<GetElementPtrInst>(A)) 1277 if (Instruction *BI = dyn_cast<Instruction>(B)) 1278 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1279 return true; 1280 1281 // Otherwise they may not be equivalent. 1282 return false; 1283 } 1284 1285 /// Converts store (bitcast (load (bitcast (select ...)))) to 1286 /// store (load (select ...)), where select is minmax: 1287 /// select ((cmp load V1, load V2), V1, V2). 1288 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC, 1289 StoreInst &SI) { 1290 // bitcast? 1291 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1292 return false; 1293 // load? integer? 1294 Value *LoadAddr; 1295 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1296 return false; 1297 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1298 if (!LI->getType()->isIntegerTy()) 1299 return false; 1300 Type *CmpLoadTy; 1301 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1302 return false; 1303 1304 // Make sure the type would actually change. 1305 // This condition can be hit with chains of bitcasts. 1306 if (LI->getType() == CmpLoadTy) 1307 return false; 1308 1309 // Make sure we're not changing the size of the load/store. 1310 const auto &DL = IC.getDataLayout(); 1311 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1312 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1313 return false; 1314 1315 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1316 auto *SI = dyn_cast<StoreInst>(U); 1317 return SI && SI->getPointerOperand() != LI && 1318 InstCombiner::peekThroughBitcast(SI->getPointerOperand()) != 1319 LoadAddr && 1320 !SI->getPointerOperand()->isSwiftError(); 1321 })) 1322 return false; 1323 1324 IC.Builder.SetInsertPoint(LI); 1325 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1326 // Replace all the stores with stores of the newly loaded value. 1327 for (auto *UI : LI->users()) { 1328 auto *USI = cast<StoreInst>(UI); 1329 IC.Builder.SetInsertPoint(USI); 1330 combineStoreToNewValue(IC, *USI, NewLI); 1331 } 1332 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1333 IC.eraseInstFromFunction(*LI); 1334 return true; 1335 } 1336 1337 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) { 1338 Value *Val = SI.getOperand(0); 1339 Value *Ptr = SI.getOperand(1); 1340 1341 // Try to canonicalize the stored type. 1342 if (combineStoreToValueType(*this, SI)) 1343 return eraseInstFromFunction(SI); 1344 1345 // Attempt to improve the alignment. 1346 const Align KnownAlign = getOrEnforceKnownAlignment( 1347 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); 1348 if (KnownAlign > SI.getAlign()) 1349 SI.setAlignment(KnownAlign); 1350 1351 // Try to canonicalize the stored type. 1352 if (unpackStoreToAggregate(*this, SI)) 1353 return eraseInstFromFunction(SI); 1354 1355 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1356 return eraseInstFromFunction(SI); 1357 1358 // Replace GEP indices if possible. 1359 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1360 Worklist.push(NewGEPI); 1361 return &SI; 1362 } 1363 1364 // Don't hack volatile/ordered stores. 1365 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1366 if (!SI.isUnordered()) return nullptr; 1367 1368 // If the RHS is an alloca with a single use, zapify the store, making the 1369 // alloca dead. 1370 if (Ptr->hasOneUse()) { 1371 if (isa<AllocaInst>(Ptr)) 1372 return eraseInstFromFunction(SI); 1373 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1374 if (isa<AllocaInst>(GEP->getOperand(0))) { 1375 if (GEP->getOperand(0)->hasOneUse()) 1376 return eraseInstFromFunction(SI); 1377 } 1378 } 1379 } 1380 1381 // If we have a store to a location which is known constant, we can conclude 1382 // that the store must be storing the constant value (else the memory 1383 // wouldn't be constant), and this must be a noop. 1384 if (AA->pointsToConstantMemory(Ptr)) 1385 return eraseInstFromFunction(SI); 1386 1387 // Do really simple DSE, to catch cases where there are several consecutive 1388 // stores to the same location, separated by a few arithmetic operations. This 1389 // situation often occurs with bitfield accesses. 1390 BasicBlock::iterator BBI(SI); 1391 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1392 --ScanInsts) { 1393 --BBI; 1394 // Don't count debug info directives, lest they affect codegen, 1395 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1396 if (isa<DbgInfoIntrinsic>(BBI) || 1397 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1398 ScanInsts++; 1399 continue; 1400 } 1401 1402 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1403 // Prev store isn't volatile, and stores to the same location? 1404 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1405 SI.getOperand(1))) { 1406 ++NumDeadStore; 1407 // Manually add back the original store to the worklist now, so it will 1408 // be processed after the operands of the removed store, as this may 1409 // expose additional DSE opportunities. 1410 Worklist.push(&SI); 1411 eraseInstFromFunction(*PrevSI); 1412 return nullptr; 1413 } 1414 break; 1415 } 1416 1417 // If this is a load, we have to stop. However, if the loaded value is from 1418 // the pointer we're loading and is producing the pointer we're storing, 1419 // then *this* store is dead (X = load P; store X -> P). 1420 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1421 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1422 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1423 return eraseInstFromFunction(SI); 1424 } 1425 1426 // Otherwise, this is a load from some other location. Stores before it 1427 // may not be dead. 1428 break; 1429 } 1430 1431 // Don't skip over loads, throws or things that can modify memory. 1432 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1433 break; 1434 } 1435 1436 // store X, null -> turns into 'unreachable' in SimplifyCFG 1437 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1438 if (canSimplifyNullStoreOrGEP(SI)) { 1439 if (!isa<UndefValue>(Val)) 1440 return replaceOperand(SI, 0, UndefValue::get(Val->getType())); 1441 return nullptr; // Do not modify these! 1442 } 1443 1444 // store undef, Ptr -> noop 1445 if (isa<UndefValue>(Val)) 1446 return eraseInstFromFunction(SI); 1447 1448 return nullptr; 1449 } 1450 1451 /// Try to transform: 1452 /// if () { *P = v1; } else { *P = v2 } 1453 /// or: 1454 /// *P = v1; if () { *P = v2; } 1455 /// into a phi node with a store in the successor. 1456 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) { 1457 if (!SI.isUnordered()) 1458 return false; // This code has not been audited for volatile/ordered case. 1459 1460 // Check if the successor block has exactly 2 incoming edges. 1461 BasicBlock *StoreBB = SI.getParent(); 1462 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1463 if (!DestBB->hasNPredecessors(2)) 1464 return false; 1465 1466 // Capture the other block (the block that doesn't contain our store). 1467 pred_iterator PredIter = pred_begin(DestBB); 1468 if (*PredIter == StoreBB) 1469 ++PredIter; 1470 BasicBlock *OtherBB = *PredIter; 1471 1472 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1473 // for example, if SI is in an infinite loop. 1474 if (StoreBB == DestBB || OtherBB == DestBB) 1475 return false; 1476 1477 // Verify that the other block ends in a branch and is not otherwise empty. 1478 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1479 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1480 if (!OtherBr || BBI == OtherBB->begin()) 1481 return false; 1482 1483 // If the other block ends in an unconditional branch, check for the 'if then 1484 // else' case. There is an instruction before the branch. 1485 StoreInst *OtherStore = nullptr; 1486 if (OtherBr->isUnconditional()) { 1487 --BBI; 1488 // Skip over debugging info. 1489 while (isa<DbgInfoIntrinsic>(BBI) || 1490 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1491 if (BBI==OtherBB->begin()) 1492 return false; 1493 --BBI; 1494 } 1495 // If this isn't a store, isn't a store to the same location, or is not the 1496 // right kind of store, bail out. 1497 OtherStore = dyn_cast<StoreInst>(BBI); 1498 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1499 !SI.isSameOperationAs(OtherStore)) 1500 return false; 1501 } else { 1502 // Otherwise, the other block ended with a conditional branch. If one of the 1503 // destinations is StoreBB, then we have the if/then case. 1504 if (OtherBr->getSuccessor(0) != StoreBB && 1505 OtherBr->getSuccessor(1) != StoreBB) 1506 return false; 1507 1508 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1509 // if/then triangle. See if there is a store to the same ptr as SI that 1510 // lives in OtherBB. 1511 for (;; --BBI) { 1512 // Check to see if we find the matching store. 1513 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1514 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1515 !SI.isSameOperationAs(OtherStore)) 1516 return false; 1517 break; 1518 } 1519 // If we find something that may be using or overwriting the stored 1520 // value, or if we run out of instructions, we can't do the transform. 1521 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1522 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1523 return false; 1524 } 1525 1526 // In order to eliminate the store in OtherBr, we have to make sure nothing 1527 // reads or overwrites the stored value in StoreBB. 1528 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1529 // FIXME: This should really be AA driven. 1530 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1531 return false; 1532 } 1533 } 1534 1535 // Insert a PHI node now if we need it. 1536 Value *MergedVal = OtherStore->getOperand(0); 1537 // The debug locations of the original instructions might differ. Merge them. 1538 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1539 OtherStore->getDebugLoc()); 1540 if (MergedVal != SI.getOperand(0)) { 1541 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1542 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1543 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1544 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1545 PN->setDebugLoc(MergedLoc); 1546 } 1547 1548 // Advance to a place where it is safe to insert the new store and insert it. 1549 BBI = DestBB->getFirstInsertionPt(); 1550 StoreInst *NewSI = 1551 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), 1552 SI.getOrdering(), SI.getSyncScopeID()); 1553 InsertNewInstBefore(NewSI, *BBI); 1554 NewSI->setDebugLoc(MergedLoc); 1555 1556 // If the two stores had AA tags, merge them. 1557 AAMDNodes AATags; 1558 SI.getAAMetadata(AATags); 1559 if (AATags) { 1560 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1561 NewSI->setAAMetadata(AATags); 1562 } 1563 1564 // Nuke the old stores. 1565 eraseInstFromFunction(SI); 1566 eraseInstFromFunction(*OtherStore); 1567 return true; 1568 } 1569