1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/MapVector.h" 16 #include "llvm/ADT/SmallString.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/Loads.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 26 #include "llvm/Transforms/Utils/Local.h" 27 using namespace llvm; 28 29 #define DEBUG_TYPE "instcombine" 30 31 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 32 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 33 34 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 35 /// some part of a constant global variable. This intentionally only accepts 36 /// constant expressions because we can't rewrite arbitrary instructions. 37 static bool pointsToConstantGlobal(Value *V) { 38 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 39 return GV->isConstant(); 40 41 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 42 if (CE->getOpcode() == Instruction::BitCast || 43 CE->getOpcode() == Instruction::AddrSpaceCast || 44 CE->getOpcode() == Instruction::GetElementPtr) 45 return pointsToConstantGlobal(CE->getOperand(0)); 46 } 47 return false; 48 } 49 50 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 51 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 52 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 53 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 54 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 55 /// the alloca, and if the source pointer is a pointer to a constant global, we 56 /// can optimize this. 57 static bool 58 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 59 SmallVectorImpl<Instruction *> &ToDelete) { 60 // We track lifetime intrinsics as we encounter them. If we decide to go 61 // ahead and replace the value with the global, this lets the caller quickly 62 // eliminate the markers. 63 64 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 65 ValuesToInspect.emplace_back(V, false); 66 while (!ValuesToInspect.empty()) { 67 auto ValuePair = ValuesToInspect.pop_back_val(); 68 const bool IsOffset = ValuePair.second; 69 for (auto &U : ValuePair.first->uses()) { 70 auto *I = cast<Instruction>(U.getUser()); 71 72 if (auto *LI = dyn_cast<LoadInst>(I)) { 73 // Ignore non-volatile loads, they are always ok. 74 if (!LI->isSimple()) return false; 75 continue; 76 } 77 78 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 79 // If uses of the bitcast are ok, we are ok. 80 ValuesToInspect.emplace_back(I, IsOffset); 81 continue; 82 } 83 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 84 // If the GEP has all zero indices, it doesn't offset the pointer. If it 85 // doesn't, it does. 86 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 87 continue; 88 } 89 90 if (auto CS = CallSite(I)) { 91 // If this is the function being called then we treat it like a load and 92 // ignore it. 93 if (CS.isCallee(&U)) 94 continue; 95 96 unsigned DataOpNo = CS.getDataOperandNo(&U); 97 bool IsArgOperand = CS.isArgOperand(&U); 98 99 // Inalloca arguments are clobbered by the call. 100 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 101 return false; 102 103 // If this is a readonly/readnone call site, then we know it is just a 104 // load (but one that potentially returns the value itself), so we can 105 // ignore it if we know that the value isn't captured. 106 if (CS.onlyReadsMemory() && 107 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 108 continue; 109 110 // If this is being passed as a byval argument, the caller is making a 111 // copy, so it is only a read of the alloca. 112 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 113 continue; 114 } 115 116 // Lifetime intrinsics can be handled by the caller. 117 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 118 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 119 II->getIntrinsicID() == Intrinsic::lifetime_end) { 120 assert(II->use_empty() && "Lifetime markers have no result to use!"); 121 ToDelete.push_back(II); 122 continue; 123 } 124 } 125 126 // If this is isn't our memcpy/memmove, reject it as something we can't 127 // handle. 128 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 129 if (!MI) 130 return false; 131 132 // If the transfer is using the alloca as a source of the transfer, then 133 // ignore it since it is a load (unless the transfer is volatile). 134 if (U.getOperandNo() == 1) { 135 if (MI->isVolatile()) return false; 136 continue; 137 } 138 139 // If we already have seen a copy, reject the second one. 140 if (TheCopy) return false; 141 142 // If the pointer has been offset from the start of the alloca, we can't 143 // safely handle this. 144 if (IsOffset) return false; 145 146 // If the memintrinsic isn't using the alloca as the dest, reject it. 147 if (U.getOperandNo() != 0) return false; 148 149 // If the source of the memcpy/move is not a constant global, reject it. 150 if (!pointsToConstantGlobal(MI->getSource())) 151 return false; 152 153 // Otherwise, the transform is safe. Remember the copy instruction. 154 TheCopy = MI; 155 } 156 } 157 return true; 158 } 159 160 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 161 /// modified by a copy from a constant global. If we can prove this, we can 162 /// replace any uses of the alloca with uses of the global directly. 163 static MemTransferInst * 164 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 165 SmallVectorImpl<Instruction *> &ToDelete) { 166 MemTransferInst *TheCopy = nullptr; 167 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 168 return TheCopy; 169 return nullptr; 170 } 171 172 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 173 // Check for array size of 1 (scalar allocation). 174 if (!AI.isArrayAllocation()) { 175 // i32 1 is the canonical array size for scalar allocations. 176 if (AI.getArraySize()->getType()->isIntegerTy(32)) 177 return nullptr; 178 179 // Canonicalize it. 180 Value *V = IC.Builder->getInt32(1); 181 AI.setOperand(0, V); 182 return &AI; 183 } 184 185 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 186 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 187 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 188 AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName()); 189 New->setAlignment(AI.getAlignment()); 190 191 // Scan to the end of the allocation instructions, to skip over a block of 192 // allocas if possible...also skip interleaved debug info 193 // 194 BasicBlock::iterator It(New); 195 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 196 ++It; 197 198 // Now that I is pointing to the first non-allocation-inst in the block, 199 // insert our getelementptr instruction... 200 // 201 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 202 Value *NullIdx = Constant::getNullValue(IdxTy); 203 Value *Idx[2] = {NullIdx, NullIdx}; 204 Instruction *GEP = 205 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 206 IC.InsertNewInstBefore(GEP, *It); 207 208 // Now make everything use the getelementptr instead of the original 209 // allocation. 210 return IC.replaceInstUsesWith(AI, GEP); 211 } 212 213 if (isa<UndefValue>(AI.getArraySize())) 214 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 215 216 // Ensure that the alloca array size argument has type intptr_t, so that 217 // any casting is exposed early. 218 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 219 if (AI.getArraySize()->getType() != IntPtrTy) { 220 Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false); 221 AI.setOperand(0, V); 222 return &AI; 223 } 224 225 return nullptr; 226 } 227 228 namespace { 229 // If I and V are pointers in different address space, it is not allowed to 230 // use replaceAllUsesWith since I and V have different types. A 231 // non-target-specific transformation should not use addrspacecast on V since 232 // the two address space may be disjoint depending on target. 233 // 234 // This class chases down uses of the old pointer until reaching the load 235 // instructions, then replaces the old pointer in the load instructions with 236 // the new pointer. If during the chasing it sees bitcast or GEP, it will 237 // create new bitcast or GEP with the new pointer and use them in the load 238 // instruction. 239 class PointerReplacer { 240 public: 241 PointerReplacer(InstCombiner &IC) : IC(IC) {} 242 void replacePointer(Instruction &I, Value *V); 243 244 private: 245 void findLoadAndReplace(Instruction &I); 246 void replace(Instruction *I); 247 Value *getReplacement(Value *I); 248 249 SmallVector<Instruction *, 4> Path; 250 MapVector<Value *, Value *> WorkMap; 251 InstCombiner &IC; 252 }; 253 } // end anonymous namespace 254 255 void PointerReplacer::findLoadAndReplace(Instruction &I) { 256 for (auto U : I.users()) { 257 auto *Inst = dyn_cast<Instruction>(&*U); 258 if (!Inst) 259 return; 260 DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 261 if (isa<LoadInst>(Inst)) { 262 for (auto P : Path) 263 replace(P); 264 replace(Inst); 265 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 266 Path.push_back(Inst); 267 findLoadAndReplace(*Inst); 268 Path.pop_back(); 269 } else { 270 return; 271 } 272 } 273 } 274 275 Value *PointerReplacer::getReplacement(Value *V) { 276 auto Loc = WorkMap.find(V); 277 if (Loc != WorkMap.end()) 278 return Loc->second; 279 return nullptr; 280 } 281 282 void PointerReplacer::replace(Instruction *I) { 283 if (getReplacement(I)) 284 return; 285 286 if (auto *LT = dyn_cast<LoadInst>(I)) { 287 auto *V = getReplacement(LT->getPointerOperand()); 288 assert(V && "Operand not replaced"); 289 auto *NewI = new LoadInst(V); 290 NewI->takeName(LT); 291 IC.InsertNewInstWith(NewI, *LT); 292 IC.replaceInstUsesWith(*LT, NewI); 293 WorkMap[LT] = NewI; 294 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 295 auto *V = getReplacement(GEP->getPointerOperand()); 296 assert(V && "Operand not replaced"); 297 SmallVector<Value *, 8> Indices; 298 Indices.append(GEP->idx_begin(), GEP->idx_end()); 299 auto *NewI = GetElementPtrInst::Create( 300 V->getType()->getPointerElementType(), V, Indices); 301 IC.InsertNewInstWith(NewI, *GEP); 302 NewI->takeName(GEP); 303 WorkMap[GEP] = NewI; 304 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 305 auto *V = getReplacement(BC->getOperand(0)); 306 assert(V && "Operand not replaced"); 307 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 308 V->getType()->getPointerAddressSpace()); 309 auto *NewI = new BitCastInst(V, NewT); 310 IC.InsertNewInstWith(NewI, *BC); 311 NewI->takeName(BC); 312 WorkMap[BC] = NewI; 313 } else { 314 llvm_unreachable("should never reach here"); 315 } 316 } 317 318 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 319 #ifndef NDEBUG 320 auto *PT = cast<PointerType>(I.getType()); 321 auto *NT = cast<PointerType>(V->getType()); 322 assert(PT != NT && PT->getElementType() == NT->getElementType() && 323 "Invalid usage"); 324 #endif 325 WorkMap[&I] = V; 326 findLoadAndReplace(I); 327 } 328 329 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 330 if (auto *I = simplifyAllocaArraySize(*this, AI)) 331 return I; 332 333 if (AI.getAllocatedType()->isSized()) { 334 // If the alignment is 0 (unspecified), assign it the preferred alignment. 335 if (AI.getAlignment() == 0) 336 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 337 338 // Move all alloca's of zero byte objects to the entry block and merge them 339 // together. Note that we only do this for alloca's, because malloc should 340 // allocate and return a unique pointer, even for a zero byte allocation. 341 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 342 // For a zero sized alloca there is no point in doing an array allocation. 343 // This is helpful if the array size is a complicated expression not used 344 // elsewhere. 345 if (AI.isArrayAllocation()) { 346 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 347 return &AI; 348 } 349 350 // Get the first instruction in the entry block. 351 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 352 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 353 if (FirstInst != &AI) { 354 // If the entry block doesn't start with a zero-size alloca then move 355 // this one to the start of the entry block. There is no problem with 356 // dominance as the array size was forced to a constant earlier already. 357 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 358 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 359 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 360 AI.moveBefore(FirstInst); 361 return &AI; 362 } 363 364 // If the alignment of the entry block alloca is 0 (unspecified), 365 // assign it the preferred alignment. 366 if (EntryAI->getAlignment() == 0) 367 EntryAI->setAlignment( 368 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 369 // Replace this zero-sized alloca with the one at the start of the entry 370 // block after ensuring that the address will be aligned enough for both 371 // types. 372 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 373 AI.getAlignment()); 374 EntryAI->setAlignment(MaxAlign); 375 if (AI.getType() != EntryAI->getType()) 376 return new BitCastInst(EntryAI, AI.getType()); 377 return replaceInstUsesWith(AI, EntryAI); 378 } 379 } 380 } 381 382 if (AI.getAlignment()) { 383 // Check to see if this allocation is only modified by a memcpy/memmove from 384 // a constant global whose alignment is equal to or exceeds that of the 385 // allocation. If this is the case, we can change all users to use 386 // the constant global instead. This is commonly produced by the CFE by 387 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 388 // is only subsequently read. 389 SmallVector<Instruction *, 4> ToDelete; 390 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 391 unsigned SourceAlign = getOrEnforceKnownAlignment( 392 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 393 if (AI.getAlignment() <= SourceAlign) { 394 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 395 DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 396 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 397 eraseInstFromFunction(*ToDelete[i]); 398 Constant *TheSrc = cast<Constant>(Copy->getSource()); 399 auto *SrcTy = TheSrc->getType(); 400 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 401 SrcTy->getPointerAddressSpace()); 402 Constant *Cast = 403 ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 404 if (AI.getType()->getPointerAddressSpace() == 405 SrcTy->getPointerAddressSpace()) { 406 Instruction *NewI = replaceInstUsesWith(AI, Cast); 407 eraseInstFromFunction(*Copy); 408 ++NumGlobalCopies; 409 return NewI; 410 } else { 411 PointerReplacer PtrReplacer(*this); 412 PtrReplacer.replacePointer(AI, Cast); 413 ++NumGlobalCopies; 414 } 415 } 416 } 417 } 418 419 // At last, use the generic allocation site handler to aggressively remove 420 // unused allocas. 421 return visitAllocSite(AI); 422 } 423 424 // Are we allowed to form a atomic load or store of this type? 425 static bool isSupportedAtomicType(Type *Ty) { 426 return Ty->isIntegerTy() || Ty->isPointerTy() || Ty->isFloatingPointTy(); 427 } 428 429 /// \brief Helper to combine a load to a new type. 430 /// 431 /// This just does the work of combining a load to a new type. It handles 432 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 433 /// loaded *value* type. This will convert it to a pointer, cast the operand to 434 /// that pointer type, load it, etc. 435 /// 436 /// Note that this will create all of the instructions with whatever insert 437 /// point the \c InstCombiner currently is using. 438 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 439 const Twine &Suffix = "") { 440 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 441 "can't fold an atomic load to requested type"); 442 443 Value *Ptr = LI.getPointerOperand(); 444 unsigned AS = LI.getPointerAddressSpace(); 445 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 446 LI.getAllMetadata(MD); 447 448 LoadInst *NewLoad = IC.Builder->CreateAlignedLoad( 449 IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)), 450 LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 451 NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope()); 452 MDBuilder MDB(NewLoad->getContext()); 453 for (const auto &MDPair : MD) { 454 unsigned ID = MDPair.first; 455 MDNode *N = MDPair.second; 456 // Note, essentially every kind of metadata should be preserved here! This 457 // routine is supposed to clone a load instruction changing *only its type*. 458 // The only metadata it makes sense to drop is metadata which is invalidated 459 // when the pointer type changes. This should essentially never be the case 460 // in LLVM, but we explicitly switch over only known metadata to be 461 // conservatively correct. If you are adding metadata to LLVM which pertains 462 // to loads, you almost certainly want to add it here. 463 switch (ID) { 464 case LLVMContext::MD_dbg: 465 case LLVMContext::MD_tbaa: 466 case LLVMContext::MD_prof: 467 case LLVMContext::MD_fpmath: 468 case LLVMContext::MD_tbaa_struct: 469 case LLVMContext::MD_invariant_load: 470 case LLVMContext::MD_alias_scope: 471 case LLVMContext::MD_noalias: 472 case LLVMContext::MD_nontemporal: 473 case LLVMContext::MD_mem_parallel_loop_access: 474 // All of these directly apply. 475 NewLoad->setMetadata(ID, N); 476 break; 477 478 case LLVMContext::MD_nonnull: 479 // This only directly applies if the new type is also a pointer. 480 if (NewTy->isPointerTy()) { 481 NewLoad->setMetadata(ID, N); 482 break; 483 } 484 // If it's integral now, translate it to !range metadata. 485 if (NewTy->isIntegerTy()) { 486 auto *ITy = cast<IntegerType>(NewTy); 487 auto *NullInt = ConstantExpr::getPtrToInt( 488 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 489 auto *NonNullInt = 490 ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 491 NewLoad->setMetadata(LLVMContext::MD_range, 492 MDB.createRange(NonNullInt, NullInt)); 493 } 494 break; 495 case LLVMContext::MD_align: 496 case LLVMContext::MD_dereferenceable: 497 case LLVMContext::MD_dereferenceable_or_null: 498 // These only directly apply if the new type is also a pointer. 499 if (NewTy->isPointerTy()) 500 NewLoad->setMetadata(ID, N); 501 break; 502 case LLVMContext::MD_range: 503 // FIXME: It would be nice to propagate this in some way, but the type 504 // conversions make it hard. 505 506 // If it's a pointer now and the range does not contain 0, make it !nonnull. 507 if (NewTy->isPointerTy()) { 508 unsigned BitWidth = IC.getDataLayout().getTypeSizeInBits(NewTy); 509 if (!getConstantRangeFromMetadata(*N).contains(APInt(BitWidth, 0))) { 510 MDNode *NN = MDNode::get(LI.getContext(), None); 511 NewLoad->setMetadata(LLVMContext::MD_nonnull, NN); 512 } 513 } 514 break; 515 } 516 } 517 return NewLoad; 518 } 519 520 /// \brief Combine a store to a new type. 521 /// 522 /// Returns the newly created store instruction. 523 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 524 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 525 "can't fold an atomic store of requested type"); 526 527 Value *Ptr = SI.getPointerOperand(); 528 unsigned AS = SI.getPointerAddressSpace(); 529 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 530 SI.getAllMetadata(MD); 531 532 StoreInst *NewStore = IC.Builder->CreateAlignedStore( 533 V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 534 SI.getAlignment(), SI.isVolatile()); 535 NewStore->setAtomic(SI.getOrdering(), SI.getSynchScope()); 536 for (const auto &MDPair : MD) { 537 unsigned ID = MDPair.first; 538 MDNode *N = MDPair.second; 539 // Note, essentially every kind of metadata should be preserved here! This 540 // routine is supposed to clone a store instruction changing *only its 541 // type*. The only metadata it makes sense to drop is metadata which is 542 // invalidated when the pointer type changes. This should essentially 543 // never be the case in LLVM, but we explicitly switch over only known 544 // metadata to be conservatively correct. If you are adding metadata to 545 // LLVM which pertains to stores, you almost certainly want to add it 546 // here. 547 switch (ID) { 548 case LLVMContext::MD_dbg: 549 case LLVMContext::MD_tbaa: 550 case LLVMContext::MD_prof: 551 case LLVMContext::MD_fpmath: 552 case LLVMContext::MD_tbaa_struct: 553 case LLVMContext::MD_alias_scope: 554 case LLVMContext::MD_noalias: 555 case LLVMContext::MD_nontemporal: 556 case LLVMContext::MD_mem_parallel_loop_access: 557 // All of these directly apply. 558 NewStore->setMetadata(ID, N); 559 break; 560 561 case LLVMContext::MD_invariant_load: 562 case LLVMContext::MD_nonnull: 563 case LLVMContext::MD_range: 564 case LLVMContext::MD_align: 565 case LLVMContext::MD_dereferenceable: 566 case LLVMContext::MD_dereferenceable_or_null: 567 // These don't apply for stores. 568 break; 569 } 570 } 571 572 return NewStore; 573 } 574 575 /// \brief Combine loads to match the type of their uses' value after looking 576 /// through intervening bitcasts. 577 /// 578 /// The core idea here is that if the result of a load is used in an operation, 579 /// we should load the type most conducive to that operation. For example, when 580 /// loading an integer and converting that immediately to a pointer, we should 581 /// instead directly load a pointer. 582 /// 583 /// However, this routine must never change the width of a load or the number of 584 /// loads as that would introduce a semantic change. This combine is expected to 585 /// be a semantic no-op which just allows loads to more closely model the types 586 /// of their consuming operations. 587 /// 588 /// Currently, we also refuse to change the precise type used for an atomic load 589 /// or a volatile load. This is debatable, and might be reasonable to change 590 /// later. However, it is risky in case some backend or other part of LLVM is 591 /// relying on the exact type loaded to select appropriate atomic operations. 592 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 593 // FIXME: We could probably with some care handle both volatile and ordered 594 // atomic loads here but it isn't clear that this is important. 595 if (!LI.isUnordered()) 596 return nullptr; 597 598 if (LI.use_empty()) 599 return nullptr; 600 601 // swifterror values can't be bitcasted. 602 if (LI.getPointerOperand()->isSwiftError()) 603 return nullptr; 604 605 Type *Ty = LI.getType(); 606 const DataLayout &DL = IC.getDataLayout(); 607 608 // Try to canonicalize loads which are only ever stored to operate over 609 // integers instead of any other type. We only do this when the loaded type 610 // is sized and has a size exactly the same as its store size and the store 611 // size is a legal integer type. 612 if (!Ty->isIntegerTy() && Ty->isSized() && 613 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 614 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) && 615 !DL.isNonIntegralPointerType(Ty)) { 616 if (all_of(LI.users(), [&LI](User *U) { 617 auto *SI = dyn_cast<StoreInst>(U); 618 return SI && SI->getPointerOperand() != &LI && 619 !SI->getPointerOperand()->isSwiftError(); 620 })) { 621 LoadInst *NewLoad = combineLoadToNewType( 622 IC, LI, 623 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 624 // Replace all the stores with stores of the newly loaded value. 625 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 626 auto *SI = cast<StoreInst>(*UI++); 627 IC.Builder->SetInsertPoint(SI); 628 combineStoreToNewValue(IC, *SI, NewLoad); 629 IC.eraseInstFromFunction(*SI); 630 } 631 assert(LI.use_empty() && "Failed to remove all users of the load!"); 632 // Return the old load so the combiner can delete it safely. 633 return &LI; 634 } 635 } 636 637 // Fold away bit casts of the loaded value by loading the desired type. 638 // We can do this for BitCastInsts as well as casts from and to pointer types, 639 // as long as those are noops (i.e., the source or dest type have the same 640 // bitwidth as the target's pointers). 641 if (LI.hasOneUse()) 642 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 643 if (CI->isNoopCast(DL)) 644 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 645 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 646 CI->replaceAllUsesWith(NewLoad); 647 IC.eraseInstFromFunction(*CI); 648 return &LI; 649 } 650 651 // FIXME: We should also canonicalize loads of vectors when their elements are 652 // cast to other types. 653 return nullptr; 654 } 655 656 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 657 // FIXME: We could probably with some care handle both volatile and atomic 658 // stores here but it isn't clear that this is important. 659 if (!LI.isSimple()) 660 return nullptr; 661 662 Type *T = LI.getType(); 663 if (!T->isAggregateType()) 664 return nullptr; 665 666 StringRef Name = LI.getName(); 667 assert(LI.getAlignment() && "Alignment must be set at this point"); 668 669 if (auto *ST = dyn_cast<StructType>(T)) { 670 // If the struct only have one element, we unpack. 671 auto NumElements = ST->getNumElements(); 672 if (NumElements == 1) { 673 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 674 ".unpack"); 675 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 676 UndefValue::get(T), NewLoad, 0, Name)); 677 } 678 679 // We don't want to break loads with padding here as we'd loose 680 // the knowledge that padding exists for the rest of the pipeline. 681 const DataLayout &DL = IC.getDataLayout(); 682 auto *SL = DL.getStructLayout(ST); 683 if (SL->hasPadding()) 684 return nullptr; 685 686 auto Align = LI.getAlignment(); 687 if (!Align) 688 Align = DL.getABITypeAlignment(ST); 689 690 auto *Addr = LI.getPointerOperand(); 691 auto *IdxType = Type::getInt32Ty(T->getContext()); 692 auto *Zero = ConstantInt::get(IdxType, 0); 693 694 Value *V = UndefValue::get(T); 695 for (unsigned i = 0; i < NumElements; i++) { 696 Value *Indices[2] = { 697 Zero, 698 ConstantInt::get(IdxType, i), 699 }; 700 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 701 Name + ".elt"); 702 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 703 auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 704 V = IC.Builder->CreateInsertValue(V, L, i); 705 } 706 707 V->setName(Name); 708 return IC.replaceInstUsesWith(LI, V); 709 } 710 711 if (auto *AT = dyn_cast<ArrayType>(T)) { 712 auto *ET = AT->getElementType(); 713 auto NumElements = AT->getNumElements(); 714 if (NumElements == 1) { 715 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 716 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 717 UndefValue::get(T), NewLoad, 0, Name)); 718 } 719 720 // Bail out if the array is too large. Ideally we would like to optimize 721 // arrays of arbitrary size but this has a terrible impact on compile time. 722 // The threshold here is chosen arbitrarily, maybe needs a little bit of 723 // tuning. 724 if (NumElements > IC.MaxArraySizeForCombine) 725 return nullptr; 726 727 const DataLayout &DL = IC.getDataLayout(); 728 auto EltSize = DL.getTypeAllocSize(ET); 729 auto Align = LI.getAlignment(); 730 if (!Align) 731 Align = DL.getABITypeAlignment(T); 732 733 auto *Addr = LI.getPointerOperand(); 734 auto *IdxType = Type::getInt64Ty(T->getContext()); 735 auto *Zero = ConstantInt::get(IdxType, 0); 736 737 Value *V = UndefValue::get(T); 738 uint64_t Offset = 0; 739 for (uint64_t i = 0; i < NumElements; i++) { 740 Value *Indices[2] = { 741 Zero, 742 ConstantInt::get(IdxType, i), 743 }; 744 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 745 Name + ".elt"); 746 auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 747 Name + ".unpack"); 748 V = IC.Builder->CreateInsertValue(V, L, i); 749 Offset += EltSize; 750 } 751 752 V->setName(Name); 753 return IC.replaceInstUsesWith(LI, V); 754 } 755 756 return nullptr; 757 } 758 759 // If we can determine that all possible objects pointed to by the provided 760 // pointer value are, not only dereferenceable, but also definitively less than 761 // or equal to the provided maximum size, then return true. Otherwise, return 762 // false (constant global values and allocas fall into this category). 763 // 764 // FIXME: This should probably live in ValueTracking (or similar). 765 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 766 const DataLayout &DL) { 767 SmallPtrSet<Value *, 4> Visited; 768 SmallVector<Value *, 4> Worklist(1, V); 769 770 do { 771 Value *P = Worklist.pop_back_val(); 772 P = P->stripPointerCasts(); 773 774 if (!Visited.insert(P).second) 775 continue; 776 777 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 778 Worklist.push_back(SI->getTrueValue()); 779 Worklist.push_back(SI->getFalseValue()); 780 continue; 781 } 782 783 if (PHINode *PN = dyn_cast<PHINode>(P)) { 784 for (Value *IncValue : PN->incoming_values()) 785 Worklist.push_back(IncValue); 786 continue; 787 } 788 789 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 790 if (GA->isInterposable()) 791 return false; 792 Worklist.push_back(GA->getAliasee()); 793 continue; 794 } 795 796 // If we know how big this object is, and it is less than MaxSize, continue 797 // searching. Otherwise, return false. 798 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 799 if (!AI->getAllocatedType()->isSized()) 800 return false; 801 802 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 803 if (!CS) 804 return false; 805 806 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 807 // Make sure that, even if the multiplication below would wrap as an 808 // uint64_t, we still do the right thing. 809 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 810 return false; 811 continue; 812 } 813 814 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 815 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 816 return false; 817 818 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 819 if (InitSize > MaxSize) 820 return false; 821 continue; 822 } 823 824 return false; 825 } while (!Worklist.empty()); 826 827 return true; 828 } 829 830 // If we're indexing into an object of a known size, and the outer index is 831 // not a constant, but having any value but zero would lead to undefined 832 // behavior, replace it with zero. 833 // 834 // For example, if we have: 835 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 836 // ... 837 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 838 // ... = load i32* %arrayidx, align 4 839 // Then we know that we can replace %x in the GEP with i64 0. 840 // 841 // FIXME: We could fold any GEP index to zero that would cause UB if it were 842 // not zero. Currently, we only handle the first such index. Also, we could 843 // also search through non-zero constant indices if we kept track of the 844 // offsets those indices implied. 845 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 846 Instruction *MemI, unsigned &Idx) { 847 if (GEPI->getNumOperands() < 2) 848 return false; 849 850 // Find the first non-zero index of a GEP. If all indices are zero, return 851 // one past the last index. 852 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 853 unsigned I = 1; 854 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 855 Value *V = GEPI->getOperand(I); 856 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 857 if (CI->isZero()) 858 continue; 859 860 break; 861 } 862 863 return I; 864 }; 865 866 // Skip through initial 'zero' indices, and find the corresponding pointer 867 // type. See if the next index is not a constant. 868 Idx = FirstNZIdx(GEPI); 869 if (Idx == GEPI->getNumOperands()) 870 return false; 871 if (isa<Constant>(GEPI->getOperand(Idx))) 872 return false; 873 874 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 875 Type *AllocTy = 876 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 877 if (!AllocTy || !AllocTy->isSized()) 878 return false; 879 const DataLayout &DL = IC.getDataLayout(); 880 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 881 882 // If there are more indices after the one we might replace with a zero, make 883 // sure they're all non-negative. If any of them are negative, the overall 884 // address being computed might be before the base address determined by the 885 // first non-zero index. 886 auto IsAllNonNegative = [&]() { 887 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 888 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 889 if (Known.isNonNegative()) 890 continue; 891 return false; 892 } 893 894 return true; 895 }; 896 897 // FIXME: If the GEP is not inbounds, and there are extra indices after the 898 // one we'll replace, those could cause the address computation to wrap 899 // (rendering the IsAllNonNegative() check below insufficient). We can do 900 // better, ignoring zero indices (and other indices we can prove small 901 // enough not to wrap). 902 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 903 return false; 904 905 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 906 // also known to be dereferenceable. 907 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 908 IsAllNonNegative(); 909 } 910 911 // If we're indexing into an object with a variable index for the memory 912 // access, but the object has only one element, we can assume that the index 913 // will always be zero. If we replace the GEP, return it. 914 template <typename T> 915 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 916 T &MemI) { 917 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 918 unsigned Idx; 919 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 920 Instruction *NewGEPI = GEPI->clone(); 921 NewGEPI->setOperand(Idx, 922 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 923 NewGEPI->insertBefore(GEPI); 924 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 925 return NewGEPI; 926 } 927 } 928 929 return nullptr; 930 } 931 932 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 933 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 934 const Value *GEPI0 = GEPI->getOperand(0); 935 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0) 936 return true; 937 } 938 if (isa<UndefValue>(Op) || 939 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) 940 return true; 941 return false; 942 } 943 944 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 945 Value *Op = LI.getOperand(0); 946 947 // Try to canonicalize the loaded type. 948 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 949 return Res; 950 951 // Attempt to improve the alignment. 952 unsigned KnownAlign = getOrEnforceKnownAlignment( 953 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 954 unsigned LoadAlign = LI.getAlignment(); 955 unsigned EffectiveLoadAlign = 956 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 957 958 if (KnownAlign > EffectiveLoadAlign) 959 LI.setAlignment(KnownAlign); 960 else if (LoadAlign == 0) 961 LI.setAlignment(EffectiveLoadAlign); 962 963 // Replace GEP indices if possible. 964 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 965 Worklist.Add(NewGEPI); 966 return &LI; 967 } 968 969 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 970 return Res; 971 972 // Do really simple store-to-load forwarding and load CSE, to catch cases 973 // where there are several consecutive memory accesses to the same location, 974 // separated by a few arithmetic operations. 975 BasicBlock::iterator BBI(LI); 976 bool IsLoadCSE = false; 977 if (Value *AvailableVal = FindAvailableLoadedValue( 978 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 979 if (IsLoadCSE) 980 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI); 981 982 return replaceInstUsesWith( 983 LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(), 984 LI.getName() + ".cast")); 985 } 986 987 // None of the following transforms are legal for volatile/ordered atomic 988 // loads. Most of them do apply for unordered atomics. 989 if (!LI.isUnordered()) return nullptr; 990 991 // load(gep null, ...) -> unreachable 992 // load null/undef -> unreachable 993 // TODO: Consider a target hook for valid address spaces for this xforms. 994 if (canSimplifyNullLoadOrGEP(LI, Op)) { 995 // Insert a new store to null instruction before the load to indicate 996 // that this code is not reachable. We do this instead of inserting 997 // an unreachable instruction directly because we cannot modify the 998 // CFG. 999 new StoreInst(UndefValue::get(LI.getType()), 1000 Constant::getNullValue(Op->getType()), &LI); 1001 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 1002 } 1003 1004 if (Op->hasOneUse()) { 1005 // Change select and PHI nodes to select values instead of addresses: this 1006 // helps alias analysis out a lot, allows many others simplifications, and 1007 // exposes redundancy in the code. 1008 // 1009 // Note that we cannot do the transformation unless we know that the 1010 // introduced loads cannot trap! Something like this is valid as long as 1011 // the condition is always false: load (select bool %C, int* null, int* %G), 1012 // but it would not be valid if we transformed it to load from null 1013 // unconditionally. 1014 // 1015 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 1016 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 1017 unsigned Align = LI.getAlignment(); 1018 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && 1019 isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { 1020 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), 1021 SI->getOperand(1)->getName()+".val"); 1022 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), 1023 SI->getOperand(2)->getName()+".val"); 1024 assert(LI.isUnordered() && "implied by above"); 1025 V1->setAlignment(Align); 1026 V1->setAtomic(LI.getOrdering(), LI.getSynchScope()); 1027 V2->setAlignment(Align); 1028 V2->setAtomic(LI.getOrdering(), LI.getSynchScope()); 1029 return SelectInst::Create(SI->getCondition(), V1, V2); 1030 } 1031 1032 // load (select (cond, null, P)) -> load P 1033 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1034 LI.getPointerAddressSpace() == 0) { 1035 LI.setOperand(0, SI->getOperand(2)); 1036 return &LI; 1037 } 1038 1039 // load (select (cond, P, null)) -> load P 1040 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1041 LI.getPointerAddressSpace() == 0) { 1042 LI.setOperand(0, SI->getOperand(1)); 1043 return &LI; 1044 } 1045 } 1046 } 1047 return nullptr; 1048 } 1049 1050 /// \brief Look for extractelement/insertvalue sequence that acts like a bitcast. 1051 /// 1052 /// \returns underlying value that was "cast", or nullptr otherwise. 1053 /// 1054 /// For example, if we have: 1055 /// 1056 /// %E0 = extractelement <2 x double> %U, i32 0 1057 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1058 /// %E1 = extractelement <2 x double> %U, i32 1 1059 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1060 /// 1061 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1062 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1063 /// Note that %U may contain non-undef values where %V1 has undef. 1064 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1065 Value *U = nullptr; 1066 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1067 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1068 if (!E) 1069 return nullptr; 1070 auto *W = E->getVectorOperand(); 1071 if (!U) 1072 U = W; 1073 else if (U != W) 1074 return nullptr; 1075 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1076 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1077 return nullptr; 1078 V = IV->getAggregateOperand(); 1079 } 1080 if (!isa<UndefValue>(V) ||!U) 1081 return nullptr; 1082 1083 auto *UT = cast<VectorType>(U->getType()); 1084 auto *VT = V->getType(); 1085 // Check that types UT and VT are bitwise isomorphic. 1086 const auto &DL = IC.getDataLayout(); 1087 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1088 return nullptr; 1089 } 1090 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1091 if (AT->getNumElements() != UT->getNumElements()) 1092 return nullptr; 1093 } else { 1094 auto *ST = cast<StructType>(VT); 1095 if (ST->getNumElements() != UT->getNumElements()) 1096 return nullptr; 1097 for (const auto *EltT : ST->elements()) { 1098 if (EltT != UT->getElementType()) 1099 return nullptr; 1100 } 1101 } 1102 return U; 1103 } 1104 1105 /// \brief Combine stores to match the type of value being stored. 1106 /// 1107 /// The core idea here is that the memory does not have any intrinsic type and 1108 /// where we can we should match the type of a store to the type of value being 1109 /// stored. 1110 /// 1111 /// However, this routine must never change the width of a store or the number of 1112 /// stores as that would introduce a semantic change. This combine is expected to 1113 /// be a semantic no-op which just allows stores to more closely model the types 1114 /// of their incoming values. 1115 /// 1116 /// Currently, we also refuse to change the precise type used for an atomic or 1117 /// volatile store. This is debatable, and might be reasonable to change later. 1118 /// However, it is risky in case some backend or other part of LLVM is relying 1119 /// on the exact type stored to select appropriate atomic operations. 1120 /// 1121 /// \returns true if the store was successfully combined away. This indicates 1122 /// the caller must erase the store instruction. We have to let the caller erase 1123 /// the store instruction as otherwise there is no way to signal whether it was 1124 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1125 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1126 // FIXME: We could probably with some care handle both volatile and ordered 1127 // atomic stores here but it isn't clear that this is important. 1128 if (!SI.isUnordered()) 1129 return false; 1130 1131 // swifterror values can't be bitcasted. 1132 if (SI.getPointerOperand()->isSwiftError()) 1133 return false; 1134 1135 Value *V = SI.getValueOperand(); 1136 1137 // Fold away bit casts of the stored value by storing the original type. 1138 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1139 V = BC->getOperand(0); 1140 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1141 combineStoreToNewValue(IC, SI, V); 1142 return true; 1143 } 1144 } 1145 1146 if (Value *U = likeBitCastFromVector(IC, V)) 1147 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1148 combineStoreToNewValue(IC, SI, U); 1149 return true; 1150 } 1151 1152 // FIXME: We should also canonicalize stores of vectors when their elements 1153 // are cast to other types. 1154 return false; 1155 } 1156 1157 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1158 // FIXME: We could probably with some care handle both volatile and atomic 1159 // stores here but it isn't clear that this is important. 1160 if (!SI.isSimple()) 1161 return false; 1162 1163 Value *V = SI.getValueOperand(); 1164 Type *T = V->getType(); 1165 1166 if (!T->isAggregateType()) 1167 return false; 1168 1169 if (auto *ST = dyn_cast<StructType>(T)) { 1170 // If the struct only have one element, we unpack. 1171 unsigned Count = ST->getNumElements(); 1172 if (Count == 1) { 1173 V = IC.Builder->CreateExtractValue(V, 0); 1174 combineStoreToNewValue(IC, SI, V); 1175 return true; 1176 } 1177 1178 // We don't want to break loads with padding here as we'd loose 1179 // the knowledge that padding exists for the rest of the pipeline. 1180 const DataLayout &DL = IC.getDataLayout(); 1181 auto *SL = DL.getStructLayout(ST); 1182 if (SL->hasPadding()) 1183 return false; 1184 1185 auto Align = SI.getAlignment(); 1186 if (!Align) 1187 Align = DL.getABITypeAlignment(ST); 1188 1189 SmallString<16> EltName = V->getName(); 1190 EltName += ".elt"; 1191 auto *Addr = SI.getPointerOperand(); 1192 SmallString<16> AddrName = Addr->getName(); 1193 AddrName += ".repack"; 1194 1195 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1196 auto *Zero = ConstantInt::get(IdxType, 0); 1197 for (unsigned i = 0; i < Count; i++) { 1198 Value *Indices[2] = { 1199 Zero, 1200 ConstantInt::get(IdxType, i), 1201 }; 1202 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1203 AddrName); 1204 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1205 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1206 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1207 } 1208 1209 return true; 1210 } 1211 1212 if (auto *AT = dyn_cast<ArrayType>(T)) { 1213 // If the array only have one element, we unpack. 1214 auto NumElements = AT->getNumElements(); 1215 if (NumElements == 1) { 1216 V = IC.Builder->CreateExtractValue(V, 0); 1217 combineStoreToNewValue(IC, SI, V); 1218 return true; 1219 } 1220 1221 // Bail out if the array is too large. Ideally we would like to optimize 1222 // arrays of arbitrary size but this has a terrible impact on compile time. 1223 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1224 // tuning. 1225 if (NumElements > IC.MaxArraySizeForCombine) 1226 return false; 1227 1228 const DataLayout &DL = IC.getDataLayout(); 1229 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1230 auto Align = SI.getAlignment(); 1231 if (!Align) 1232 Align = DL.getABITypeAlignment(T); 1233 1234 SmallString<16> EltName = V->getName(); 1235 EltName += ".elt"; 1236 auto *Addr = SI.getPointerOperand(); 1237 SmallString<16> AddrName = Addr->getName(); 1238 AddrName += ".repack"; 1239 1240 auto *IdxType = Type::getInt64Ty(T->getContext()); 1241 auto *Zero = ConstantInt::get(IdxType, 0); 1242 1243 uint64_t Offset = 0; 1244 for (uint64_t i = 0; i < NumElements; i++) { 1245 Value *Indices[2] = { 1246 Zero, 1247 ConstantInt::get(IdxType, i), 1248 }; 1249 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1250 AddrName); 1251 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1252 auto EltAlign = MinAlign(Align, Offset); 1253 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1254 Offset += EltSize; 1255 } 1256 1257 return true; 1258 } 1259 1260 return false; 1261 } 1262 1263 /// equivalentAddressValues - Test if A and B will obviously have the same 1264 /// value. This includes recognizing that %t0 and %t1 will have the same 1265 /// value in code like this: 1266 /// %t0 = getelementptr \@a, 0, 3 1267 /// store i32 0, i32* %t0 1268 /// %t1 = getelementptr \@a, 0, 3 1269 /// %t2 = load i32* %t1 1270 /// 1271 static bool equivalentAddressValues(Value *A, Value *B) { 1272 // Test if the values are trivially equivalent. 1273 if (A == B) return true; 1274 1275 // Test if the values come form identical arithmetic instructions. 1276 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1277 // its only used to compare two uses within the same basic block, which 1278 // means that they'll always either have the same value or one of them 1279 // will have an undefined value. 1280 if (isa<BinaryOperator>(A) || 1281 isa<CastInst>(A) || 1282 isa<PHINode>(A) || 1283 isa<GetElementPtrInst>(A)) 1284 if (Instruction *BI = dyn_cast<Instruction>(B)) 1285 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1286 return true; 1287 1288 // Otherwise they may not be equivalent. 1289 return false; 1290 } 1291 1292 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1293 Value *Val = SI.getOperand(0); 1294 Value *Ptr = SI.getOperand(1); 1295 1296 // Try to canonicalize the stored type. 1297 if (combineStoreToValueType(*this, SI)) 1298 return eraseInstFromFunction(SI); 1299 1300 // Attempt to improve the alignment. 1301 unsigned KnownAlign = getOrEnforceKnownAlignment( 1302 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1303 unsigned StoreAlign = SI.getAlignment(); 1304 unsigned EffectiveStoreAlign = 1305 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1306 1307 if (KnownAlign > EffectiveStoreAlign) 1308 SI.setAlignment(KnownAlign); 1309 else if (StoreAlign == 0) 1310 SI.setAlignment(EffectiveStoreAlign); 1311 1312 // Try to canonicalize the stored type. 1313 if (unpackStoreToAggregate(*this, SI)) 1314 return eraseInstFromFunction(SI); 1315 1316 // Replace GEP indices if possible. 1317 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1318 Worklist.Add(NewGEPI); 1319 return &SI; 1320 } 1321 1322 // Don't hack volatile/ordered stores. 1323 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1324 if (!SI.isUnordered()) return nullptr; 1325 1326 // If the RHS is an alloca with a single use, zapify the store, making the 1327 // alloca dead. 1328 if (Ptr->hasOneUse()) { 1329 if (isa<AllocaInst>(Ptr)) 1330 return eraseInstFromFunction(SI); 1331 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1332 if (isa<AllocaInst>(GEP->getOperand(0))) { 1333 if (GEP->getOperand(0)->hasOneUse()) 1334 return eraseInstFromFunction(SI); 1335 } 1336 } 1337 } 1338 1339 // Do really simple DSE, to catch cases where there are several consecutive 1340 // stores to the same location, separated by a few arithmetic operations. This 1341 // situation often occurs with bitfield accesses. 1342 BasicBlock::iterator BBI(SI); 1343 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1344 --ScanInsts) { 1345 --BBI; 1346 // Don't count debug info directives, lest they affect codegen, 1347 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1348 if (isa<DbgInfoIntrinsic>(BBI) || 1349 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1350 ScanInsts++; 1351 continue; 1352 } 1353 1354 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1355 // Prev store isn't volatile, and stores to the same location? 1356 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1357 SI.getOperand(1))) { 1358 ++NumDeadStore; 1359 ++BBI; 1360 eraseInstFromFunction(*PrevSI); 1361 continue; 1362 } 1363 break; 1364 } 1365 1366 // If this is a load, we have to stop. However, if the loaded value is from 1367 // the pointer we're loading and is producing the pointer we're storing, 1368 // then *this* store is dead (X = load P; store X -> P). 1369 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1370 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1371 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1372 return eraseInstFromFunction(SI); 1373 } 1374 1375 // Otherwise, this is a load from some other location. Stores before it 1376 // may not be dead. 1377 break; 1378 } 1379 1380 // Don't skip over loads, throws or things that can modify memory. 1381 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1382 break; 1383 } 1384 1385 // store X, null -> turns into 'unreachable' in SimplifyCFG 1386 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { 1387 if (!isa<UndefValue>(Val)) { 1388 SI.setOperand(0, UndefValue::get(Val->getType())); 1389 if (Instruction *U = dyn_cast<Instruction>(Val)) 1390 Worklist.Add(U); // Dropped a use. 1391 } 1392 return nullptr; // Do not modify these! 1393 } 1394 1395 // store undef, Ptr -> noop 1396 if (isa<UndefValue>(Val)) 1397 return eraseInstFromFunction(SI); 1398 1399 // If this store is the last instruction in the basic block (possibly 1400 // excepting debug info instructions), and if the block ends with an 1401 // unconditional branch, try to move it to the successor block. 1402 BBI = SI.getIterator(); 1403 do { 1404 ++BBI; 1405 } while (isa<DbgInfoIntrinsic>(BBI) || 1406 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1407 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1408 if (BI->isUnconditional()) 1409 if (SimplifyStoreAtEndOfBlock(SI)) 1410 return nullptr; // xform done! 1411 1412 return nullptr; 1413 } 1414 1415 /// SimplifyStoreAtEndOfBlock - Turn things like: 1416 /// if () { *P = v1; } else { *P = v2 } 1417 /// into a phi node with a store in the successor. 1418 /// 1419 /// Simplify things like: 1420 /// *P = v1; if () { *P = v2; } 1421 /// into a phi node with a store in the successor. 1422 /// 1423 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1424 assert(SI.isUnordered() && 1425 "this code has not been auditted for volatile or ordered store case"); 1426 1427 BasicBlock *StoreBB = SI.getParent(); 1428 1429 // Check to see if the successor block has exactly two incoming edges. If 1430 // so, see if the other predecessor contains a store to the same location. 1431 // if so, insert a PHI node (if needed) and move the stores down. 1432 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1433 1434 // Determine whether Dest has exactly two predecessors and, if so, compute 1435 // the other predecessor. 1436 pred_iterator PI = pred_begin(DestBB); 1437 BasicBlock *P = *PI; 1438 BasicBlock *OtherBB = nullptr; 1439 1440 if (P != StoreBB) 1441 OtherBB = P; 1442 1443 if (++PI == pred_end(DestBB)) 1444 return false; 1445 1446 P = *PI; 1447 if (P != StoreBB) { 1448 if (OtherBB) 1449 return false; 1450 OtherBB = P; 1451 } 1452 if (++PI != pred_end(DestBB)) 1453 return false; 1454 1455 // Bail out if all the relevant blocks aren't distinct (this can happen, 1456 // for example, if SI is in an infinite loop) 1457 if (StoreBB == DestBB || OtherBB == DestBB) 1458 return false; 1459 1460 // Verify that the other block ends in a branch and is not otherwise empty. 1461 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1462 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1463 if (!OtherBr || BBI == OtherBB->begin()) 1464 return false; 1465 1466 // If the other block ends in an unconditional branch, check for the 'if then 1467 // else' case. there is an instruction before the branch. 1468 StoreInst *OtherStore = nullptr; 1469 if (OtherBr->isUnconditional()) { 1470 --BBI; 1471 // Skip over debugging info. 1472 while (isa<DbgInfoIntrinsic>(BBI) || 1473 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1474 if (BBI==OtherBB->begin()) 1475 return false; 1476 --BBI; 1477 } 1478 // If this isn't a store, isn't a store to the same location, or is not the 1479 // right kind of store, bail out. 1480 OtherStore = dyn_cast<StoreInst>(BBI); 1481 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1482 !SI.isSameOperationAs(OtherStore)) 1483 return false; 1484 } else { 1485 // Otherwise, the other block ended with a conditional branch. If one of the 1486 // destinations is StoreBB, then we have the if/then case. 1487 if (OtherBr->getSuccessor(0) != StoreBB && 1488 OtherBr->getSuccessor(1) != StoreBB) 1489 return false; 1490 1491 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1492 // if/then triangle. See if there is a store to the same ptr as SI that 1493 // lives in OtherBB. 1494 for (;; --BBI) { 1495 // Check to see if we find the matching store. 1496 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1497 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1498 !SI.isSameOperationAs(OtherStore)) 1499 return false; 1500 break; 1501 } 1502 // If we find something that may be using or overwriting the stored 1503 // value, or if we run out of instructions, we can't do the xform. 1504 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1505 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1506 return false; 1507 } 1508 1509 // In order to eliminate the store in OtherBr, we have to 1510 // make sure nothing reads or overwrites the stored value in 1511 // StoreBB. 1512 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1513 // FIXME: This should really be AA driven. 1514 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1515 return false; 1516 } 1517 } 1518 1519 // Insert a PHI node now if we need it. 1520 Value *MergedVal = OtherStore->getOperand(0); 1521 if (MergedVal != SI.getOperand(0)) { 1522 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1523 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1524 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1525 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1526 } 1527 1528 // Advance to a place where it is safe to insert the new store and 1529 // insert it. 1530 BBI = DestBB->getFirstInsertionPt(); 1531 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1532 SI.isVolatile(), 1533 SI.getAlignment(), 1534 SI.getOrdering(), 1535 SI.getSynchScope()); 1536 InsertNewInstBefore(NewSI, *BBI); 1537 // The debug locations of the original instructions might differ; merge them. 1538 NewSI->setDebugLoc(DILocation::getMergedLocation(SI.getDebugLoc(), 1539 OtherStore->getDebugLoc())); 1540 1541 // If the two stores had AA tags, merge them. 1542 AAMDNodes AATags; 1543 SI.getAAMetadata(AATags); 1544 if (AATags) { 1545 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1546 NewSI->setAAMetadata(AATags); 1547 } 1548 1549 // Nuke the old stores. 1550 eraseInstFromFunction(SI); 1551 eraseInstFromFunction(*OtherStore); 1552 return true; 1553 } 1554