1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/LLVMContext.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "instcombine" 27 28 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 29 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 30 31 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 32 /// some part of a constant global variable. This intentionally only accepts 33 /// constant expressions because we can't rewrite arbitrary instructions. 34 static bool pointsToConstantGlobal(Value *V) { 35 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 36 return GV->isConstant(); 37 38 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 39 if (CE->getOpcode() == Instruction::BitCast || 40 CE->getOpcode() == Instruction::AddrSpaceCast || 41 CE->getOpcode() == Instruction::GetElementPtr) 42 return pointsToConstantGlobal(CE->getOperand(0)); 43 } 44 return false; 45 } 46 47 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 48 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 49 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 50 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 51 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 52 /// the alloca, and if the source pointer is a pointer to a constant global, we 53 /// can optimize this. 54 static bool 55 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 56 SmallVectorImpl<Instruction *> &ToDelete) { 57 // We track lifetime intrinsics as we encounter them. If we decide to go 58 // ahead and replace the value with the global, this lets the caller quickly 59 // eliminate the markers. 60 61 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 62 ValuesToInspect.push_back(std::make_pair(V, false)); 63 while (!ValuesToInspect.empty()) { 64 auto ValuePair = ValuesToInspect.pop_back_val(); 65 const bool IsOffset = ValuePair.second; 66 for (auto &U : ValuePair.first->uses()) { 67 Instruction *I = cast<Instruction>(U.getUser()); 68 69 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 70 // Ignore non-volatile loads, they are always ok. 71 if (!LI->isSimple()) return false; 72 continue; 73 } 74 75 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 76 // If uses of the bitcast are ok, we are ok. 77 ValuesToInspect.push_back(std::make_pair(I, IsOffset)); 78 continue; 79 } 80 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { 81 // If the GEP has all zero indices, it doesn't offset the pointer. If it 82 // doesn't, it does. 83 ValuesToInspect.push_back( 84 std::make_pair(I, IsOffset || !GEP->hasAllZeroIndices())); 85 continue; 86 } 87 88 if (auto CS = CallSite(I)) { 89 // If this is the function being called then we treat it like a load and 90 // ignore it. 91 if (CS.isCallee(&U)) 92 continue; 93 94 unsigned DataOpNo = CS.getDataOperandNo(&U); 95 bool IsArgOperand = CS.isArgOperand(&U); 96 97 // Inalloca arguments are clobbered by the call. 98 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 99 return false; 100 101 // If this is a readonly/readnone call site, then we know it is just a 102 // load (but one that potentially returns the value itself), so we can 103 // ignore it if we know that the value isn't captured. 104 if (CS.onlyReadsMemory() && 105 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 106 continue; 107 108 // If this is being passed as a byval argument, the caller is making a 109 // copy, so it is only a read of the alloca. 110 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 111 continue; 112 } 113 114 // Lifetime intrinsics can be handled by the caller. 115 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 116 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 117 II->getIntrinsicID() == Intrinsic::lifetime_end) { 118 assert(II->use_empty() && "Lifetime markers have no result to use!"); 119 ToDelete.push_back(II); 120 continue; 121 } 122 } 123 124 // If this is isn't our memcpy/memmove, reject it as something we can't 125 // handle. 126 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 127 if (!MI) 128 return false; 129 130 // If the transfer is using the alloca as a source of the transfer, then 131 // ignore it since it is a load (unless the transfer is volatile). 132 if (U.getOperandNo() == 1) { 133 if (MI->isVolatile()) return false; 134 continue; 135 } 136 137 // If we already have seen a copy, reject the second one. 138 if (TheCopy) return false; 139 140 // If the pointer has been offset from the start of the alloca, we can't 141 // safely handle this. 142 if (IsOffset) return false; 143 144 // If the memintrinsic isn't using the alloca as the dest, reject it. 145 if (U.getOperandNo() != 0) return false; 146 147 // If the source of the memcpy/move is not a constant global, reject it. 148 if (!pointsToConstantGlobal(MI->getSource())) 149 return false; 150 151 // Otherwise, the transform is safe. Remember the copy instruction. 152 TheCopy = MI; 153 } 154 } 155 return true; 156 } 157 158 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 159 /// modified by a copy from a constant global. If we can prove this, we can 160 /// replace any uses of the alloca with uses of the global directly. 161 static MemTransferInst * 162 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 163 SmallVectorImpl<Instruction *> &ToDelete) { 164 MemTransferInst *TheCopy = nullptr; 165 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 166 return TheCopy; 167 return nullptr; 168 } 169 170 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 171 // Check for array size of 1 (scalar allocation). 172 if (!AI.isArrayAllocation()) { 173 // i32 1 is the canonical array size for scalar allocations. 174 if (AI.getArraySize()->getType()->isIntegerTy(32)) 175 return nullptr; 176 177 // Canonicalize it. 178 Value *V = IC.Builder->getInt32(1); 179 AI.setOperand(0, V); 180 return &AI; 181 } 182 183 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 184 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 185 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 186 AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName()); 187 New->setAlignment(AI.getAlignment()); 188 189 // Scan to the end of the allocation instructions, to skip over a block of 190 // allocas if possible...also skip interleaved debug info 191 // 192 BasicBlock::iterator It(New); 193 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 194 ++It; 195 196 // Now that I is pointing to the first non-allocation-inst in the block, 197 // insert our getelementptr instruction... 198 // 199 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 200 Value *NullIdx = Constant::getNullValue(IdxTy); 201 Value *Idx[2] = {NullIdx, NullIdx}; 202 Instruction *GEP = 203 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 204 IC.InsertNewInstBefore(GEP, *It); 205 206 // Now make everything use the getelementptr instead of the original 207 // allocation. 208 return IC.replaceInstUsesWith(AI, GEP); 209 } 210 211 if (isa<UndefValue>(AI.getArraySize())) 212 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 213 214 // Ensure that the alloca array size argument has type intptr_t, so that 215 // any casting is exposed early. 216 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 217 if (AI.getArraySize()->getType() != IntPtrTy) { 218 Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false); 219 AI.setOperand(0, V); 220 return &AI; 221 } 222 223 return nullptr; 224 } 225 226 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 227 if (auto *I = simplifyAllocaArraySize(*this, AI)) 228 return I; 229 230 if (AI.getAllocatedType()->isSized()) { 231 // If the alignment is 0 (unspecified), assign it the preferred alignment. 232 if (AI.getAlignment() == 0) 233 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 234 235 // Move all alloca's of zero byte objects to the entry block and merge them 236 // together. Note that we only do this for alloca's, because malloc should 237 // allocate and return a unique pointer, even for a zero byte allocation. 238 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 239 // For a zero sized alloca there is no point in doing an array allocation. 240 // This is helpful if the array size is a complicated expression not used 241 // elsewhere. 242 if (AI.isArrayAllocation()) { 243 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 244 return &AI; 245 } 246 247 // Get the first instruction in the entry block. 248 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 249 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 250 if (FirstInst != &AI) { 251 // If the entry block doesn't start with a zero-size alloca then move 252 // this one to the start of the entry block. There is no problem with 253 // dominance as the array size was forced to a constant earlier already. 254 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 255 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 256 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 257 AI.moveBefore(FirstInst); 258 return &AI; 259 } 260 261 // If the alignment of the entry block alloca is 0 (unspecified), 262 // assign it the preferred alignment. 263 if (EntryAI->getAlignment() == 0) 264 EntryAI->setAlignment( 265 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 266 // Replace this zero-sized alloca with the one at the start of the entry 267 // block after ensuring that the address will be aligned enough for both 268 // types. 269 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 270 AI.getAlignment()); 271 EntryAI->setAlignment(MaxAlign); 272 if (AI.getType() != EntryAI->getType()) 273 return new BitCastInst(EntryAI, AI.getType()); 274 return replaceInstUsesWith(AI, EntryAI); 275 } 276 } 277 } 278 279 if (AI.getAlignment()) { 280 // Check to see if this allocation is only modified by a memcpy/memmove from 281 // a constant global whose alignment is equal to or exceeds that of the 282 // allocation. If this is the case, we can change all users to use 283 // the constant global instead. This is commonly produced by the CFE by 284 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 285 // is only subsequently read. 286 SmallVector<Instruction *, 4> ToDelete; 287 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 288 unsigned SourceAlign = getOrEnforceKnownAlignment( 289 Copy->getSource(), AI.getAlignment(), DL, &AI, AC, DT); 290 if (AI.getAlignment() <= SourceAlign) { 291 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 292 DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 293 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 294 eraseInstFromFunction(*ToDelete[i]); 295 Constant *TheSrc = cast<Constant>(Copy->getSource()); 296 Constant *Cast 297 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType()); 298 Instruction *NewI = replaceInstUsesWith(AI, Cast); 299 eraseInstFromFunction(*Copy); 300 ++NumGlobalCopies; 301 return NewI; 302 } 303 } 304 } 305 306 // At last, use the generic allocation site handler to aggressively remove 307 // unused allocas. 308 return visitAllocSite(AI); 309 } 310 311 /// \brief Helper to combine a load to a new type. 312 /// 313 /// This just does the work of combining a load to a new type. It handles 314 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 315 /// loaded *value* type. This will convert it to a pointer, cast the operand to 316 /// that pointer type, load it, etc. 317 /// 318 /// Note that this will create all of the instructions with whatever insert 319 /// point the \c InstCombiner currently is using. 320 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 321 const Twine &Suffix = "") { 322 Value *Ptr = LI.getPointerOperand(); 323 unsigned AS = LI.getPointerAddressSpace(); 324 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 325 LI.getAllMetadata(MD); 326 327 LoadInst *NewLoad = IC.Builder->CreateAlignedLoad( 328 IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)), 329 LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 330 NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope()); 331 MDBuilder MDB(NewLoad->getContext()); 332 for (const auto &MDPair : MD) { 333 unsigned ID = MDPair.first; 334 MDNode *N = MDPair.second; 335 // Note, essentially every kind of metadata should be preserved here! This 336 // routine is supposed to clone a load instruction changing *only its type*. 337 // The only metadata it makes sense to drop is metadata which is invalidated 338 // when the pointer type changes. This should essentially never be the case 339 // in LLVM, but we explicitly switch over only known metadata to be 340 // conservatively correct. If you are adding metadata to LLVM which pertains 341 // to loads, you almost certainly want to add it here. 342 switch (ID) { 343 case LLVMContext::MD_dbg: 344 case LLVMContext::MD_tbaa: 345 case LLVMContext::MD_prof: 346 case LLVMContext::MD_fpmath: 347 case LLVMContext::MD_tbaa_struct: 348 case LLVMContext::MD_invariant_load: 349 case LLVMContext::MD_alias_scope: 350 case LLVMContext::MD_noalias: 351 case LLVMContext::MD_nontemporal: 352 case LLVMContext::MD_mem_parallel_loop_access: 353 // All of these directly apply. 354 NewLoad->setMetadata(ID, N); 355 break; 356 357 case LLVMContext::MD_nonnull: 358 // This only directly applies if the new type is also a pointer. 359 if (NewTy->isPointerTy()) { 360 NewLoad->setMetadata(ID, N); 361 break; 362 } 363 // If it's integral now, translate it to !range metadata. 364 if (NewTy->isIntegerTy()) { 365 auto *ITy = cast<IntegerType>(NewTy); 366 auto *NullInt = ConstantExpr::getPtrToInt( 367 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 368 auto *NonNullInt = 369 ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 370 NewLoad->setMetadata(LLVMContext::MD_range, 371 MDB.createRange(NonNullInt, NullInt)); 372 } 373 break; 374 case LLVMContext::MD_align: 375 case LLVMContext::MD_dereferenceable: 376 case LLVMContext::MD_dereferenceable_or_null: 377 // These only directly apply if the new type is also a pointer. 378 if (NewTy->isPointerTy()) 379 NewLoad->setMetadata(ID, N); 380 break; 381 case LLVMContext::MD_range: 382 // FIXME: It would be nice to propagate this in some way, but the type 383 // conversions make it hard. If the new type is a pointer, we could 384 // translate it to !nonnull metadata. 385 break; 386 } 387 } 388 return NewLoad; 389 } 390 391 /// \brief Combine a store to a new type. 392 /// 393 /// Returns the newly created store instruction. 394 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 395 Value *Ptr = SI.getPointerOperand(); 396 unsigned AS = SI.getPointerAddressSpace(); 397 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 398 SI.getAllMetadata(MD); 399 400 StoreInst *NewStore = IC.Builder->CreateAlignedStore( 401 V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 402 SI.getAlignment(), SI.isVolatile()); 403 NewStore->setAtomic(SI.getOrdering(), SI.getSynchScope()); 404 for (const auto &MDPair : MD) { 405 unsigned ID = MDPair.first; 406 MDNode *N = MDPair.second; 407 // Note, essentially every kind of metadata should be preserved here! This 408 // routine is supposed to clone a store instruction changing *only its 409 // type*. The only metadata it makes sense to drop is metadata which is 410 // invalidated when the pointer type changes. This should essentially 411 // never be the case in LLVM, but we explicitly switch over only known 412 // metadata to be conservatively correct. If you are adding metadata to 413 // LLVM which pertains to stores, you almost certainly want to add it 414 // here. 415 switch (ID) { 416 case LLVMContext::MD_dbg: 417 case LLVMContext::MD_tbaa: 418 case LLVMContext::MD_prof: 419 case LLVMContext::MD_fpmath: 420 case LLVMContext::MD_tbaa_struct: 421 case LLVMContext::MD_alias_scope: 422 case LLVMContext::MD_noalias: 423 case LLVMContext::MD_nontemporal: 424 case LLVMContext::MD_mem_parallel_loop_access: 425 // All of these directly apply. 426 NewStore->setMetadata(ID, N); 427 break; 428 429 case LLVMContext::MD_invariant_load: 430 case LLVMContext::MD_nonnull: 431 case LLVMContext::MD_range: 432 case LLVMContext::MD_align: 433 case LLVMContext::MD_dereferenceable: 434 case LLVMContext::MD_dereferenceable_or_null: 435 // These don't apply for stores. 436 break; 437 } 438 } 439 440 return NewStore; 441 } 442 443 /// \brief Combine loads to match the type of their uses' value after looking 444 /// through intervening bitcasts. 445 /// 446 /// The core idea here is that if the result of a load is used in an operation, 447 /// we should load the type most conducive to that operation. For example, when 448 /// loading an integer and converting that immediately to a pointer, we should 449 /// instead directly load a pointer. 450 /// 451 /// However, this routine must never change the width of a load or the number of 452 /// loads as that would introduce a semantic change. This combine is expected to 453 /// be a semantic no-op which just allows loads to more closely model the types 454 /// of their consuming operations. 455 /// 456 /// Currently, we also refuse to change the precise type used for an atomic load 457 /// or a volatile load. This is debatable, and might be reasonable to change 458 /// later. However, it is risky in case some backend or other part of LLVM is 459 /// relying on the exact type loaded to select appropriate atomic operations. 460 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 461 // FIXME: We could probably with some care handle both volatile and ordered 462 // atomic loads here but it isn't clear that this is important. 463 if (!LI.isUnordered()) 464 return nullptr; 465 466 if (LI.use_empty()) 467 return nullptr; 468 469 Type *Ty = LI.getType(); 470 const DataLayout &DL = IC.getDataLayout(); 471 472 // Try to canonicalize loads which are only ever stored to operate over 473 // integers instead of any other type. We only do this when the loaded type 474 // is sized and has a size exactly the same as its store size and the store 475 // size is a legal integer type. 476 if (!Ty->isIntegerTy() && Ty->isSized() && 477 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 478 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty)) { 479 if (std::all_of(LI.user_begin(), LI.user_end(), [&LI](User *U) { 480 auto *SI = dyn_cast<StoreInst>(U); 481 return SI && SI->getPointerOperand() != &LI; 482 })) { 483 LoadInst *NewLoad = combineLoadToNewType( 484 IC, LI, 485 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 486 // Replace all the stores with stores of the newly loaded value. 487 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 488 auto *SI = cast<StoreInst>(*UI++); 489 IC.Builder->SetInsertPoint(SI); 490 combineStoreToNewValue(IC, *SI, NewLoad); 491 IC.eraseInstFromFunction(*SI); 492 } 493 assert(LI.use_empty() && "Failed to remove all users of the load!"); 494 // Return the old load so the combiner can delete it safely. 495 return &LI; 496 } 497 } 498 499 // Fold away bit casts of the loaded value by loading the desired type. 500 // We can do this for BitCastInsts as well as casts from and to pointer types, 501 // as long as those are noops (i.e., the source or dest type have the same 502 // bitwidth as the target's pointers). 503 if (LI.hasOneUse()) 504 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) { 505 if (CI->isNoopCast(DL)) { 506 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 507 CI->replaceAllUsesWith(NewLoad); 508 IC.eraseInstFromFunction(*CI); 509 return &LI; 510 } 511 } 512 513 // FIXME: We should also canonicalize loads of vectors when their elements are 514 // cast to other types. 515 return nullptr; 516 } 517 518 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 519 // FIXME: We could probably with some care handle both volatile and atomic 520 // stores here but it isn't clear that this is important. 521 if (!LI.isSimple()) 522 return nullptr; 523 524 Type *T = LI.getType(); 525 if (!T->isAggregateType()) 526 return nullptr; 527 528 StringRef Name = LI.getName(); 529 assert(LI.getAlignment() && "Alignment must be set at this point"); 530 531 if (auto *ST = dyn_cast<StructType>(T)) { 532 // If the struct only have one element, we unpack. 533 auto NumElements = ST->getNumElements(); 534 if (NumElements == 1) { 535 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 536 ".unpack"); 537 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 538 UndefValue::get(T), NewLoad, 0, Name)); 539 } 540 541 // We don't want to break loads with padding here as we'd loose 542 // the knowledge that padding exists for the rest of the pipeline. 543 const DataLayout &DL = IC.getDataLayout(); 544 auto *SL = DL.getStructLayout(ST); 545 if (SL->hasPadding()) 546 return nullptr; 547 548 auto Align = LI.getAlignment(); 549 if (!Align) 550 Align = DL.getABITypeAlignment(ST); 551 552 auto *Addr = LI.getPointerOperand(); 553 auto *IdxType = Type::getInt32Ty(T->getContext()); 554 auto *Zero = ConstantInt::get(IdxType, 0); 555 556 Value *V = UndefValue::get(T); 557 for (unsigned i = 0; i < NumElements; i++) { 558 Value *Indices[2] = { 559 Zero, 560 ConstantInt::get(IdxType, i), 561 }; 562 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 563 Name + ".elt"); 564 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 565 auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 566 V = IC.Builder->CreateInsertValue(V, L, i); 567 } 568 569 V->setName(Name); 570 return IC.replaceInstUsesWith(LI, V); 571 } 572 573 if (auto *AT = dyn_cast<ArrayType>(T)) { 574 auto *ET = AT->getElementType(); 575 auto NumElements = AT->getNumElements(); 576 if (NumElements == 1) { 577 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 578 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 579 UndefValue::get(T), NewLoad, 0, Name)); 580 } 581 582 const DataLayout &DL = IC.getDataLayout(); 583 auto EltSize = DL.getTypeAllocSize(ET); 584 auto Align = LI.getAlignment(); 585 if (!Align) 586 Align = DL.getABITypeAlignment(T); 587 588 auto *Addr = LI.getPointerOperand(); 589 auto *IdxType = Type::getInt64Ty(T->getContext()); 590 auto *Zero = ConstantInt::get(IdxType, 0); 591 592 Value *V = UndefValue::get(T); 593 uint64_t Offset = 0; 594 for (uint64_t i = 0; i < NumElements; i++) { 595 Value *Indices[2] = { 596 Zero, 597 ConstantInt::get(IdxType, i), 598 }; 599 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 600 Name + ".elt"); 601 auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 602 Name + ".unpack"); 603 V = IC.Builder->CreateInsertValue(V, L, i); 604 Offset += EltSize; 605 } 606 607 V->setName(Name); 608 return IC.replaceInstUsesWith(LI, V); 609 } 610 611 return nullptr; 612 } 613 614 // If we can determine that all possible objects pointed to by the provided 615 // pointer value are, not only dereferenceable, but also definitively less than 616 // or equal to the provided maximum size, then return true. Otherwise, return 617 // false (constant global values and allocas fall into this category). 618 // 619 // FIXME: This should probably live in ValueTracking (or similar). 620 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 621 const DataLayout &DL) { 622 SmallPtrSet<Value *, 4> Visited; 623 SmallVector<Value *, 4> Worklist(1, V); 624 625 do { 626 Value *P = Worklist.pop_back_val(); 627 P = P->stripPointerCasts(); 628 629 if (!Visited.insert(P).second) 630 continue; 631 632 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 633 Worklist.push_back(SI->getTrueValue()); 634 Worklist.push_back(SI->getFalseValue()); 635 continue; 636 } 637 638 if (PHINode *PN = dyn_cast<PHINode>(P)) { 639 for (Value *IncValue : PN->incoming_values()) 640 Worklist.push_back(IncValue); 641 continue; 642 } 643 644 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 645 if (GA->isInterposable()) 646 return false; 647 Worklist.push_back(GA->getAliasee()); 648 continue; 649 } 650 651 // If we know how big this object is, and it is less than MaxSize, continue 652 // searching. Otherwise, return false. 653 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 654 if (!AI->getAllocatedType()->isSized()) 655 return false; 656 657 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 658 if (!CS) 659 return false; 660 661 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 662 // Make sure that, even if the multiplication below would wrap as an 663 // uint64_t, we still do the right thing. 664 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 665 return false; 666 continue; 667 } 668 669 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 670 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 671 return false; 672 673 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 674 if (InitSize > MaxSize) 675 return false; 676 continue; 677 } 678 679 return false; 680 } while (!Worklist.empty()); 681 682 return true; 683 } 684 685 // If we're indexing into an object of a known size, and the outer index is 686 // not a constant, but having any value but zero would lead to undefined 687 // behavior, replace it with zero. 688 // 689 // For example, if we have: 690 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 691 // ... 692 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 693 // ... = load i32* %arrayidx, align 4 694 // Then we know that we can replace %x in the GEP with i64 0. 695 // 696 // FIXME: We could fold any GEP index to zero that would cause UB if it were 697 // not zero. Currently, we only handle the first such index. Also, we could 698 // also search through non-zero constant indices if we kept track of the 699 // offsets those indices implied. 700 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 701 Instruction *MemI, unsigned &Idx) { 702 if (GEPI->getNumOperands() < 2) 703 return false; 704 705 // Find the first non-zero index of a GEP. If all indices are zero, return 706 // one past the last index. 707 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 708 unsigned I = 1; 709 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 710 Value *V = GEPI->getOperand(I); 711 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 712 if (CI->isZero()) 713 continue; 714 715 break; 716 } 717 718 return I; 719 }; 720 721 // Skip through initial 'zero' indices, and find the corresponding pointer 722 // type. See if the next index is not a constant. 723 Idx = FirstNZIdx(GEPI); 724 if (Idx == GEPI->getNumOperands()) 725 return false; 726 if (isa<Constant>(GEPI->getOperand(Idx))) 727 return false; 728 729 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 730 Type *AllocTy = 731 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 732 if (!AllocTy || !AllocTy->isSized()) 733 return false; 734 const DataLayout &DL = IC.getDataLayout(); 735 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 736 737 // If there are more indices after the one we might replace with a zero, make 738 // sure they're all non-negative. If any of them are negative, the overall 739 // address being computed might be before the base address determined by the 740 // first non-zero index. 741 auto IsAllNonNegative = [&]() { 742 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 743 bool KnownNonNegative, KnownNegative; 744 IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative, 745 KnownNegative, 0, MemI); 746 if (KnownNonNegative) 747 continue; 748 return false; 749 } 750 751 return true; 752 }; 753 754 // FIXME: If the GEP is not inbounds, and there are extra indices after the 755 // one we'll replace, those could cause the address computation to wrap 756 // (rendering the IsAllNonNegative() check below insufficient). We can do 757 // better, ignoring zero indices (and other indices we can prove small 758 // enough not to wrap). 759 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 760 return false; 761 762 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 763 // also known to be dereferenceable. 764 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 765 IsAllNonNegative(); 766 } 767 768 // If we're indexing into an object with a variable index for the memory 769 // access, but the object has only one element, we can assume that the index 770 // will always be zero. If we replace the GEP, return it. 771 template <typename T> 772 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 773 T &MemI) { 774 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 775 unsigned Idx; 776 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 777 Instruction *NewGEPI = GEPI->clone(); 778 NewGEPI->setOperand(Idx, 779 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 780 NewGEPI->insertBefore(GEPI); 781 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 782 return NewGEPI; 783 } 784 } 785 786 return nullptr; 787 } 788 789 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 790 Value *Op = LI.getOperand(0); 791 792 // Try to canonicalize the loaded type. 793 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 794 return Res; 795 796 // Attempt to improve the alignment. 797 unsigned KnownAlign = getOrEnforceKnownAlignment( 798 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, AC, DT); 799 unsigned LoadAlign = LI.getAlignment(); 800 unsigned EffectiveLoadAlign = 801 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 802 803 if (KnownAlign > EffectiveLoadAlign) 804 LI.setAlignment(KnownAlign); 805 else if (LoadAlign == 0) 806 LI.setAlignment(EffectiveLoadAlign); 807 808 // Replace GEP indices if possible. 809 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 810 Worklist.Add(NewGEPI); 811 return &LI; 812 } 813 814 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 815 return Res; 816 817 // Do really simple store-to-load forwarding and load CSE, to catch cases 818 // where there are several consecutive memory accesses to the same location, 819 // separated by a few arithmetic operations. 820 BasicBlock::iterator BBI(LI); 821 AAMDNodes AATags; 822 if (Value *AvailableVal = 823 FindAvailableLoadedValue(&LI, LI.getParent(), BBI, 824 DefMaxInstsToScan, AA, &AATags)) { 825 if (LoadInst *NLI = dyn_cast<LoadInst>(AvailableVal)) { 826 unsigned KnownIDs[] = { 827 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 828 LLVMContext::MD_noalias, LLVMContext::MD_range, 829 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 830 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 831 LLVMContext::MD_dereferenceable, 832 LLVMContext::MD_dereferenceable_or_null}; 833 combineMetadata(NLI, &LI, KnownIDs); 834 }; 835 836 return replaceInstUsesWith( 837 LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(), 838 LI.getName() + ".cast")); 839 } 840 841 // None of the following transforms are legal for volatile/ordered atomic 842 // loads. Most of them do apply for unordered atomics. 843 if (!LI.isUnordered()) return nullptr; 844 845 // load(gep null, ...) -> unreachable 846 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 847 const Value *GEPI0 = GEPI->getOperand(0); 848 // TODO: Consider a target hook for valid address spaces for this xform. 849 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ 850 // Insert a new store to null instruction before the load to indicate 851 // that this code is not reachable. We do this instead of inserting 852 // an unreachable instruction directly because we cannot modify the 853 // CFG. 854 new StoreInst(UndefValue::get(LI.getType()), 855 Constant::getNullValue(Op->getType()), &LI); 856 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 857 } 858 } 859 860 // load null/undef -> unreachable 861 // TODO: Consider a target hook for valid address spaces for this xform. 862 if (isa<UndefValue>(Op) || 863 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { 864 // Insert a new store to null instruction before the load to indicate that 865 // this code is not reachable. We do this instead of inserting an 866 // unreachable instruction directly because we cannot modify the CFG. 867 new StoreInst(UndefValue::get(LI.getType()), 868 Constant::getNullValue(Op->getType()), &LI); 869 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 870 } 871 872 if (Op->hasOneUse()) { 873 // Change select and PHI nodes to select values instead of addresses: this 874 // helps alias analysis out a lot, allows many others simplifications, and 875 // exposes redundancy in the code. 876 // 877 // Note that we cannot do the transformation unless we know that the 878 // introduced loads cannot trap! Something like this is valid as long as 879 // the condition is always false: load (select bool %C, int* null, int* %G), 880 // but it would not be valid if we transformed it to load from null 881 // unconditionally. 882 // 883 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 884 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 885 unsigned Align = LI.getAlignment(); 886 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && 887 isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { 888 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), 889 SI->getOperand(1)->getName()+".val"); 890 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), 891 SI->getOperand(2)->getName()+".val"); 892 assert(LI.isUnordered() && "implied by above"); 893 V1->setAlignment(Align); 894 V1->setAtomic(LI.getOrdering(), LI.getSynchScope()); 895 V2->setAlignment(Align); 896 V2->setAtomic(LI.getOrdering(), LI.getSynchScope()); 897 return SelectInst::Create(SI->getCondition(), V1, V2); 898 } 899 900 // load (select (cond, null, P)) -> load P 901 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 902 LI.getPointerAddressSpace() == 0) { 903 LI.setOperand(0, SI->getOperand(2)); 904 return &LI; 905 } 906 907 // load (select (cond, P, null)) -> load P 908 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 909 LI.getPointerAddressSpace() == 0) { 910 LI.setOperand(0, SI->getOperand(1)); 911 return &LI; 912 } 913 } 914 } 915 return nullptr; 916 } 917 918 /// \brief Look for extractelement/insertvalue sequence that acts like a bitcast. 919 /// 920 /// \returns underlying value that was "cast", or nullptr otherwise. 921 /// 922 /// For example, if we have: 923 /// 924 /// %E0 = extractelement <2 x double> %U, i32 0 925 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 926 /// %E1 = extractelement <2 x double> %U, i32 1 927 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 928 /// 929 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 930 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 931 /// Note that %U may contain non-undef values where %V1 has undef. 932 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 933 Value *U = nullptr; 934 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 935 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 936 if (!E) 937 return nullptr; 938 auto *W = E->getVectorOperand(); 939 if (!U) 940 U = W; 941 else if (U != W) 942 return nullptr; 943 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 944 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 945 return nullptr; 946 V = IV->getAggregateOperand(); 947 } 948 if (!isa<UndefValue>(V) ||!U) 949 return nullptr; 950 951 auto *UT = cast<VectorType>(U->getType()); 952 auto *VT = V->getType(); 953 // Check that types UT and VT are bitwise isomorphic. 954 const auto &DL = IC.getDataLayout(); 955 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 956 return nullptr; 957 } 958 if (auto *AT = dyn_cast<ArrayType>(VT)) { 959 if (AT->getNumElements() != UT->getNumElements()) 960 return nullptr; 961 } else { 962 auto *ST = cast<StructType>(VT); 963 if (ST->getNumElements() != UT->getNumElements()) 964 return nullptr; 965 for (const auto *EltT : ST->elements()) { 966 if (EltT != UT->getElementType()) 967 return nullptr; 968 } 969 } 970 return U; 971 } 972 973 /// \brief Combine stores to match the type of value being stored. 974 /// 975 /// The core idea here is that the memory does not have any intrinsic type and 976 /// where we can we should match the type of a store to the type of value being 977 /// stored. 978 /// 979 /// However, this routine must never change the width of a store or the number of 980 /// stores as that would introduce a semantic change. This combine is expected to 981 /// be a semantic no-op which just allows stores to more closely model the types 982 /// of their incoming values. 983 /// 984 /// Currently, we also refuse to change the precise type used for an atomic or 985 /// volatile store. This is debatable, and might be reasonable to change later. 986 /// However, it is risky in case some backend or other part of LLVM is relying 987 /// on the exact type stored to select appropriate atomic operations. 988 /// 989 /// \returns true if the store was successfully combined away. This indicates 990 /// the caller must erase the store instruction. We have to let the caller erase 991 /// the store instruction as otherwise there is no way to signal whether it was 992 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 993 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 994 // FIXME: We could probably with some care handle both volatile and ordered 995 // atomic stores here but it isn't clear that this is important. 996 if (!SI.isUnordered()) 997 return false; 998 999 Value *V = SI.getValueOperand(); 1000 1001 // Fold away bit casts of the stored value by storing the original type. 1002 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1003 V = BC->getOperand(0); 1004 combineStoreToNewValue(IC, SI, V); 1005 return true; 1006 } 1007 1008 if (Value *U = likeBitCastFromVector(IC, V)) { 1009 combineStoreToNewValue(IC, SI, U); 1010 return true; 1011 } 1012 1013 // FIXME: We should also canonicalize stores of vectors when their elements 1014 // are cast to other types. 1015 return false; 1016 } 1017 1018 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1019 // FIXME: We could probably with some care handle both volatile and atomic 1020 // stores here but it isn't clear that this is important. 1021 if (!SI.isSimple()) 1022 return false; 1023 1024 Value *V = SI.getValueOperand(); 1025 Type *T = V->getType(); 1026 1027 if (!T->isAggregateType()) 1028 return false; 1029 1030 if (auto *ST = dyn_cast<StructType>(T)) { 1031 // If the struct only have one element, we unpack. 1032 unsigned Count = ST->getNumElements(); 1033 if (Count == 1) { 1034 V = IC.Builder->CreateExtractValue(V, 0); 1035 combineStoreToNewValue(IC, SI, V); 1036 return true; 1037 } 1038 1039 // We don't want to break loads with padding here as we'd loose 1040 // the knowledge that padding exists for the rest of the pipeline. 1041 const DataLayout &DL = IC.getDataLayout(); 1042 auto *SL = DL.getStructLayout(ST); 1043 if (SL->hasPadding()) 1044 return false; 1045 1046 auto Align = SI.getAlignment(); 1047 if (!Align) 1048 Align = DL.getABITypeAlignment(ST); 1049 1050 SmallString<16> EltName = V->getName(); 1051 EltName += ".elt"; 1052 auto *Addr = SI.getPointerOperand(); 1053 SmallString<16> AddrName = Addr->getName(); 1054 AddrName += ".repack"; 1055 1056 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1057 auto *Zero = ConstantInt::get(IdxType, 0); 1058 for (unsigned i = 0; i < Count; i++) { 1059 Value *Indices[2] = { 1060 Zero, 1061 ConstantInt::get(IdxType, i), 1062 }; 1063 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1064 AddrName); 1065 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1066 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1067 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1068 } 1069 1070 return true; 1071 } 1072 1073 if (auto *AT = dyn_cast<ArrayType>(T)) { 1074 // If the array only have one element, we unpack. 1075 auto NumElements = AT->getNumElements(); 1076 if (NumElements == 1) { 1077 V = IC.Builder->CreateExtractValue(V, 0); 1078 combineStoreToNewValue(IC, SI, V); 1079 return true; 1080 } 1081 1082 const DataLayout &DL = IC.getDataLayout(); 1083 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1084 auto Align = SI.getAlignment(); 1085 if (!Align) 1086 Align = DL.getABITypeAlignment(T); 1087 1088 SmallString<16> EltName = V->getName(); 1089 EltName += ".elt"; 1090 auto *Addr = SI.getPointerOperand(); 1091 SmallString<16> AddrName = Addr->getName(); 1092 AddrName += ".repack"; 1093 1094 auto *IdxType = Type::getInt64Ty(T->getContext()); 1095 auto *Zero = ConstantInt::get(IdxType, 0); 1096 1097 uint64_t Offset = 0; 1098 for (uint64_t i = 0; i < NumElements; i++) { 1099 Value *Indices[2] = { 1100 Zero, 1101 ConstantInt::get(IdxType, i), 1102 }; 1103 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1104 AddrName); 1105 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1106 auto EltAlign = MinAlign(Align, Offset); 1107 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1108 Offset += EltSize; 1109 } 1110 1111 return true; 1112 } 1113 1114 return false; 1115 } 1116 1117 /// equivalentAddressValues - Test if A and B will obviously have the same 1118 /// value. This includes recognizing that %t0 and %t1 will have the same 1119 /// value in code like this: 1120 /// %t0 = getelementptr \@a, 0, 3 1121 /// store i32 0, i32* %t0 1122 /// %t1 = getelementptr \@a, 0, 3 1123 /// %t2 = load i32* %t1 1124 /// 1125 static bool equivalentAddressValues(Value *A, Value *B) { 1126 // Test if the values are trivially equivalent. 1127 if (A == B) return true; 1128 1129 // Test if the values come form identical arithmetic instructions. 1130 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1131 // its only used to compare two uses within the same basic block, which 1132 // means that they'll always either have the same value or one of them 1133 // will have an undefined value. 1134 if (isa<BinaryOperator>(A) || 1135 isa<CastInst>(A) || 1136 isa<PHINode>(A) || 1137 isa<GetElementPtrInst>(A)) 1138 if (Instruction *BI = dyn_cast<Instruction>(B)) 1139 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1140 return true; 1141 1142 // Otherwise they may not be equivalent. 1143 return false; 1144 } 1145 1146 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1147 Value *Val = SI.getOperand(0); 1148 Value *Ptr = SI.getOperand(1); 1149 1150 // Try to canonicalize the stored type. 1151 if (combineStoreToValueType(*this, SI)) 1152 return eraseInstFromFunction(SI); 1153 1154 // Attempt to improve the alignment. 1155 unsigned KnownAlign = getOrEnforceKnownAlignment( 1156 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, AC, DT); 1157 unsigned StoreAlign = SI.getAlignment(); 1158 unsigned EffectiveStoreAlign = 1159 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1160 1161 if (KnownAlign > EffectiveStoreAlign) 1162 SI.setAlignment(KnownAlign); 1163 else if (StoreAlign == 0) 1164 SI.setAlignment(EffectiveStoreAlign); 1165 1166 // Try to canonicalize the stored type. 1167 if (unpackStoreToAggregate(*this, SI)) 1168 return eraseInstFromFunction(SI); 1169 1170 // Replace GEP indices if possible. 1171 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1172 Worklist.Add(NewGEPI); 1173 return &SI; 1174 } 1175 1176 // Don't hack volatile/ordered stores. 1177 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1178 if (!SI.isUnordered()) return nullptr; 1179 1180 // If the RHS is an alloca with a single use, zapify the store, making the 1181 // alloca dead. 1182 if (Ptr->hasOneUse()) { 1183 if (isa<AllocaInst>(Ptr)) 1184 return eraseInstFromFunction(SI); 1185 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1186 if (isa<AllocaInst>(GEP->getOperand(0))) { 1187 if (GEP->getOperand(0)->hasOneUse()) 1188 return eraseInstFromFunction(SI); 1189 } 1190 } 1191 } 1192 1193 // Do really simple DSE, to catch cases where there are several consecutive 1194 // stores to the same location, separated by a few arithmetic operations. This 1195 // situation often occurs with bitfield accesses. 1196 BasicBlock::iterator BBI(SI); 1197 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1198 --ScanInsts) { 1199 --BBI; 1200 // Don't count debug info directives, lest they affect codegen, 1201 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1202 if (isa<DbgInfoIntrinsic>(BBI) || 1203 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1204 ScanInsts++; 1205 continue; 1206 } 1207 1208 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1209 // Prev store isn't volatile, and stores to the same location? 1210 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1211 SI.getOperand(1))) { 1212 ++NumDeadStore; 1213 ++BBI; 1214 eraseInstFromFunction(*PrevSI); 1215 continue; 1216 } 1217 break; 1218 } 1219 1220 // If this is a load, we have to stop. However, if the loaded value is from 1221 // the pointer we're loading and is producing the pointer we're storing, 1222 // then *this* store is dead (X = load P; store X -> P). 1223 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1224 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1225 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1226 return eraseInstFromFunction(SI); 1227 } 1228 1229 // Otherwise, this is a load from some other location. Stores before it 1230 // may not be dead. 1231 break; 1232 } 1233 1234 // Don't skip over loads or things that can modify memory. 1235 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) 1236 break; 1237 } 1238 1239 // store X, null -> turns into 'unreachable' in SimplifyCFG 1240 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { 1241 if (!isa<UndefValue>(Val)) { 1242 SI.setOperand(0, UndefValue::get(Val->getType())); 1243 if (Instruction *U = dyn_cast<Instruction>(Val)) 1244 Worklist.Add(U); // Dropped a use. 1245 } 1246 return nullptr; // Do not modify these! 1247 } 1248 1249 // store undef, Ptr -> noop 1250 if (isa<UndefValue>(Val)) 1251 return eraseInstFromFunction(SI); 1252 1253 // If this store is the last instruction in the basic block (possibly 1254 // excepting debug info instructions), and if the block ends with an 1255 // unconditional branch, try to move it to the successor block. 1256 BBI = SI.getIterator(); 1257 do { 1258 ++BBI; 1259 } while (isa<DbgInfoIntrinsic>(BBI) || 1260 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1261 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1262 if (BI->isUnconditional()) 1263 if (SimplifyStoreAtEndOfBlock(SI)) 1264 return nullptr; // xform done! 1265 1266 return nullptr; 1267 } 1268 1269 /// SimplifyStoreAtEndOfBlock - Turn things like: 1270 /// if () { *P = v1; } else { *P = v2 } 1271 /// into a phi node with a store in the successor. 1272 /// 1273 /// Simplify things like: 1274 /// *P = v1; if () { *P = v2; } 1275 /// into a phi node with a store in the successor. 1276 /// 1277 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1278 assert(SI.isUnordered() && 1279 "this code has not been auditted for volatile or ordered store case"); 1280 1281 BasicBlock *StoreBB = SI.getParent(); 1282 1283 // Check to see if the successor block has exactly two incoming edges. If 1284 // so, see if the other predecessor contains a store to the same location. 1285 // if so, insert a PHI node (if needed) and move the stores down. 1286 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1287 1288 // Determine whether Dest has exactly two predecessors and, if so, compute 1289 // the other predecessor. 1290 pred_iterator PI = pred_begin(DestBB); 1291 BasicBlock *P = *PI; 1292 BasicBlock *OtherBB = nullptr; 1293 1294 if (P != StoreBB) 1295 OtherBB = P; 1296 1297 if (++PI == pred_end(DestBB)) 1298 return false; 1299 1300 P = *PI; 1301 if (P != StoreBB) { 1302 if (OtherBB) 1303 return false; 1304 OtherBB = P; 1305 } 1306 if (++PI != pred_end(DestBB)) 1307 return false; 1308 1309 // Bail out if all the relevant blocks aren't distinct (this can happen, 1310 // for example, if SI is in an infinite loop) 1311 if (StoreBB == DestBB || OtherBB == DestBB) 1312 return false; 1313 1314 // Verify that the other block ends in a branch and is not otherwise empty. 1315 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1316 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1317 if (!OtherBr || BBI == OtherBB->begin()) 1318 return false; 1319 1320 // If the other block ends in an unconditional branch, check for the 'if then 1321 // else' case. there is an instruction before the branch. 1322 StoreInst *OtherStore = nullptr; 1323 if (OtherBr->isUnconditional()) { 1324 --BBI; 1325 // Skip over debugging info. 1326 while (isa<DbgInfoIntrinsic>(BBI) || 1327 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1328 if (BBI==OtherBB->begin()) 1329 return false; 1330 --BBI; 1331 } 1332 // If this isn't a store, isn't a store to the same location, or is not the 1333 // right kind of store, bail out. 1334 OtherStore = dyn_cast<StoreInst>(BBI); 1335 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1336 !SI.isSameOperationAs(OtherStore)) 1337 return false; 1338 } else { 1339 // Otherwise, the other block ended with a conditional branch. If one of the 1340 // destinations is StoreBB, then we have the if/then case. 1341 if (OtherBr->getSuccessor(0) != StoreBB && 1342 OtherBr->getSuccessor(1) != StoreBB) 1343 return false; 1344 1345 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1346 // if/then triangle. See if there is a store to the same ptr as SI that 1347 // lives in OtherBB. 1348 for (;; --BBI) { 1349 // Check to see if we find the matching store. 1350 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1351 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1352 !SI.isSameOperationAs(OtherStore)) 1353 return false; 1354 break; 1355 } 1356 // If we find something that may be using or overwriting the stored 1357 // value, or if we run out of instructions, we can't do the xform. 1358 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || 1359 BBI == OtherBB->begin()) 1360 return false; 1361 } 1362 1363 // In order to eliminate the store in OtherBr, we have to 1364 // make sure nothing reads or overwrites the stored value in 1365 // StoreBB. 1366 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1367 // FIXME: This should really be AA driven. 1368 if (I->mayReadFromMemory() || I->mayWriteToMemory()) 1369 return false; 1370 } 1371 } 1372 1373 // Insert a PHI node now if we need it. 1374 Value *MergedVal = OtherStore->getOperand(0); 1375 if (MergedVal != SI.getOperand(0)) { 1376 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1377 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1378 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1379 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1380 } 1381 1382 // Advance to a place where it is safe to insert the new store and 1383 // insert it. 1384 BBI = DestBB->getFirstInsertionPt(); 1385 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1386 SI.isVolatile(), 1387 SI.getAlignment(), 1388 SI.getOrdering(), 1389 SI.getSynchScope()); 1390 InsertNewInstBefore(NewSI, *BBI); 1391 NewSI->setDebugLoc(OtherStore->getDebugLoc()); 1392 1393 // If the two stores had AA tags, merge them. 1394 AAMDNodes AATags; 1395 SI.getAAMetadata(AATags); 1396 if (AATags) { 1397 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1398 NewSI->setAAMetadata(AATags); 1399 } 1400 1401 // Nuke the old stores. 1402 eraseInstFromFunction(SI); 1403 eraseInstFromFunction(*OtherStore); 1404 return true; 1405 } 1406