1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for load, store and alloca.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/MapVector.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Analysis/Loads.h"
19 #include "llvm/IR/ConstantRange.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/IntrinsicInst.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/MDBuilder.h"
25 #include "llvm/IR/PatternMatch.h"
26 #include "llvm/Transforms/InstCombine/InstCombiner.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Local.h"
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 STATISTIC(NumDeadStore,    "Number of dead stores eliminated");
35 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global");
36 
37 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
38 /// pointer to an alloca.  Ignore any reads of the pointer, return false if we
39 /// see any stores or other unknown uses.  If we see pointer arithmetic, keep
40 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse
41 /// the uses.  If we see a memcpy/memmove that targets an unoffseted pointer to
42 /// the alloca, and if the source pointer is a pointer to a constant global, we
43 /// can optimize this.
44 static bool
45 isOnlyCopiedFromConstantMemory(AAResults *AA,
46                                Value *V, MemTransferInst *&TheCopy,
47                                SmallVectorImpl<Instruction *> &ToDelete) {
48   // We track lifetime intrinsics as we encounter them.  If we decide to go
49   // ahead and replace the value with the global, this lets the caller quickly
50   // eliminate the markers.
51 
52   SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect;
53   ValuesToInspect.emplace_back(V, false);
54   while (!ValuesToInspect.empty()) {
55     auto ValuePair = ValuesToInspect.pop_back_val();
56     const bool IsOffset = ValuePair.second;
57     for (auto &U : ValuePair.first->uses()) {
58       auto *I = cast<Instruction>(U.getUser());
59 
60       if (auto *LI = dyn_cast<LoadInst>(I)) {
61         // Ignore non-volatile loads, they are always ok.
62         if (!LI->isSimple()) return false;
63         continue;
64       }
65 
66       if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) {
67         // If uses of the bitcast are ok, we are ok.
68         ValuesToInspect.emplace_back(I, IsOffset);
69         continue;
70       }
71       if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
72         // If the GEP has all zero indices, it doesn't offset the pointer. If it
73         // doesn't, it does.
74         ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices());
75         continue;
76       }
77 
78       if (auto *Call = dyn_cast<CallBase>(I)) {
79         // If this is the function being called then we treat it like a load and
80         // ignore it.
81         if (Call->isCallee(&U))
82           continue;
83 
84         unsigned DataOpNo = Call->getDataOperandNo(&U);
85         bool IsArgOperand = Call->isArgOperand(&U);
86 
87         // Inalloca arguments are clobbered by the call.
88         if (IsArgOperand && Call->isInAllocaArgument(DataOpNo))
89           return false;
90 
91         // If this is a readonly/readnone call site, then we know it is just a
92         // load (but one that potentially returns the value itself), so we can
93         // ignore it if we know that the value isn't captured.
94         if (Call->onlyReadsMemory() &&
95             (Call->use_empty() || Call->doesNotCapture(DataOpNo)))
96           continue;
97 
98         // If this is being passed as a byval argument, the caller is making a
99         // copy, so it is only a read of the alloca.
100         if (IsArgOperand && Call->isByValArgument(DataOpNo))
101           continue;
102       }
103 
104       // Lifetime intrinsics can be handled by the caller.
105       if (I->isLifetimeStartOrEnd()) {
106         assert(I->use_empty() && "Lifetime markers have no result to use!");
107         ToDelete.push_back(I);
108         continue;
109       }
110 
111       // If this is isn't our memcpy/memmove, reject it as something we can't
112       // handle.
113       MemTransferInst *MI = dyn_cast<MemTransferInst>(I);
114       if (!MI)
115         return false;
116 
117       // If the transfer is using the alloca as a source of the transfer, then
118       // ignore it since it is a load (unless the transfer is volatile).
119       if (U.getOperandNo() == 1) {
120         if (MI->isVolatile()) return false;
121         continue;
122       }
123 
124       // If we already have seen a copy, reject the second one.
125       if (TheCopy) return false;
126 
127       // If the pointer has been offset from the start of the alloca, we can't
128       // safely handle this.
129       if (IsOffset) return false;
130 
131       // If the memintrinsic isn't using the alloca as the dest, reject it.
132       if (U.getOperandNo() != 0) return false;
133 
134       // If the source of the memcpy/move is not a constant global, reject it.
135       if (!AA->pointsToConstantMemory(MI->getSource()))
136         return false;
137 
138       // Otherwise, the transform is safe.  Remember the copy instruction.
139       TheCopy = MI;
140     }
141   }
142   return true;
143 }
144 
145 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
146 /// modified by a copy from a constant global.  If we can prove this, we can
147 /// replace any uses of the alloca with uses of the global directly.
148 static MemTransferInst *
149 isOnlyCopiedFromConstantMemory(AAResults *AA,
150                                AllocaInst *AI,
151                                SmallVectorImpl<Instruction *> &ToDelete) {
152   MemTransferInst *TheCopy = nullptr;
153   if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete))
154     return TheCopy;
155   return nullptr;
156 }
157 
158 /// Returns true if V is dereferenceable for size of alloca.
159 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI,
160                                            const DataLayout &DL) {
161   if (AI->isArrayAllocation())
162     return false;
163   uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType());
164   if (!AllocaSize)
165     return false;
166   return isDereferenceableAndAlignedPointer(V, AI->getAlign(),
167                                             APInt(64, AllocaSize), DL);
168 }
169 
170 static Instruction *simplifyAllocaArraySize(InstCombinerImpl &IC,
171                                             AllocaInst &AI) {
172   // Check for array size of 1 (scalar allocation).
173   if (!AI.isArrayAllocation()) {
174     // i32 1 is the canonical array size for scalar allocations.
175     if (AI.getArraySize()->getType()->isIntegerTy(32))
176       return nullptr;
177 
178     // Canonicalize it.
179     return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1));
180   }
181 
182   // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1
183   if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
184     if (C->getValue().getActiveBits() <= 64) {
185       Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
186       AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName());
187       New->setAlignment(AI.getAlign());
188 
189       // Scan to the end of the allocation instructions, to skip over a block of
190       // allocas if possible...also skip interleaved debug info
191       //
192       BasicBlock::iterator It(New);
193       while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It))
194         ++It;
195 
196       // Now that I is pointing to the first non-allocation-inst in the block,
197       // insert our getelementptr instruction...
198       //
199       Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType());
200       Value *NullIdx = Constant::getNullValue(IdxTy);
201       Value *Idx[2] = {NullIdx, NullIdx};
202       Instruction *NewI = GetElementPtrInst::CreateInBounds(
203           NewTy, New, Idx, New->getName() + ".sub");
204       IC.InsertNewInstBefore(NewI, *It);
205 
206       // Gracefully handle allocas in other address spaces.
207       if (AI.getType()->getPointerAddressSpace() !=
208           NewI->getType()->getPointerAddressSpace()) {
209         NewI =
210             CastInst::CreatePointerBitCastOrAddrSpaceCast(NewI, AI.getType());
211         IC.InsertNewInstBefore(NewI, *It);
212       }
213 
214       // Now make everything use the getelementptr instead of the original
215       // allocation.
216       return IC.replaceInstUsesWith(AI, NewI);
217     }
218   }
219 
220   if (isa<UndefValue>(AI.getArraySize()))
221     return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
222 
223   // Ensure that the alloca array size argument has type intptr_t, so that
224   // any casting is exposed early.
225   Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType());
226   if (AI.getArraySize()->getType() != IntPtrTy) {
227     Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false);
228     return IC.replaceOperand(AI, 0, V);
229   }
230 
231   return nullptr;
232 }
233 
234 namespace {
235 // If I and V are pointers in different address space, it is not allowed to
236 // use replaceAllUsesWith since I and V have different types. A
237 // non-target-specific transformation should not use addrspacecast on V since
238 // the two address space may be disjoint depending on target.
239 //
240 // This class chases down uses of the old pointer until reaching the load
241 // instructions, then replaces the old pointer in the load instructions with
242 // the new pointer. If during the chasing it sees bitcast or GEP, it will
243 // create new bitcast or GEP with the new pointer and use them in the load
244 // instruction.
245 class PointerReplacer {
246 public:
247   PointerReplacer(InstCombinerImpl &IC) : IC(IC) {}
248 
249   bool collectUsers(Instruction &I);
250   void replacePointer(Instruction &I, Value *V);
251 
252 private:
253   void replace(Instruction *I);
254   Value *getReplacement(Value *I);
255 
256   SmallSetVector<Instruction *, 4> Worklist;
257   MapVector<Value *, Value *> WorkMap;
258   InstCombinerImpl &IC;
259 };
260 } // end anonymous namespace
261 
262 bool PointerReplacer::collectUsers(Instruction &I) {
263   for (auto U : I.users()) {
264     auto *Inst = cast<Instruction>(&*U);
265     if (auto *Load = dyn_cast<LoadInst>(Inst)) {
266       if (Load->isVolatile())
267         return false;
268       Worklist.insert(Load);
269     } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) {
270       Worklist.insert(Inst);
271       if (!collectUsers(*Inst))
272         return false;
273     } else if (auto *MI = dyn_cast<MemTransferInst>(Inst)) {
274       if (MI->isVolatile())
275         return false;
276       Worklist.insert(Inst);
277     } else if (Inst->isLifetimeStartOrEnd()) {
278       continue;
279     } else {
280       LLVM_DEBUG(dbgs() << "Cannot handle pointer user: " << *U << '\n');
281       return false;
282     }
283   }
284 
285   return true;
286 }
287 
288 Value *PointerReplacer::getReplacement(Value *V) { return WorkMap.lookup(V); }
289 
290 void PointerReplacer::replace(Instruction *I) {
291   if (getReplacement(I))
292     return;
293 
294   if (auto *LT = dyn_cast<LoadInst>(I)) {
295     auto *V = getReplacement(LT->getPointerOperand());
296     assert(V && "Operand not replaced");
297     auto *NewI = new LoadInst(LT->getType(), V, "", LT->isVolatile(),
298                               LT->getAlign(), LT->getOrdering(),
299                               LT->getSyncScopeID());
300     NewI->takeName(LT);
301     copyMetadataForLoad(*NewI, *LT);
302 
303     IC.InsertNewInstWith(NewI, *LT);
304     IC.replaceInstUsesWith(*LT, NewI);
305     WorkMap[LT] = NewI;
306   } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
307     auto *V = getReplacement(GEP->getPointerOperand());
308     assert(V && "Operand not replaced");
309     SmallVector<Value *, 8> Indices;
310     Indices.append(GEP->idx_begin(), GEP->idx_end());
311     auto *NewI = GetElementPtrInst::Create(
312         V->getType()->getPointerElementType(), V, Indices);
313     IC.InsertNewInstWith(NewI, *GEP);
314     NewI->takeName(GEP);
315     WorkMap[GEP] = NewI;
316   } else if (auto *BC = dyn_cast<BitCastInst>(I)) {
317     auto *V = getReplacement(BC->getOperand(0));
318     assert(V && "Operand not replaced");
319     auto *NewT = PointerType::get(BC->getType()->getPointerElementType(),
320                                   V->getType()->getPointerAddressSpace());
321     auto *NewI = new BitCastInst(V, NewT);
322     IC.InsertNewInstWith(NewI, *BC);
323     NewI->takeName(BC);
324     WorkMap[BC] = NewI;
325   } else if (auto *MemCpy = dyn_cast<MemTransferInst>(I)) {
326     auto *SrcV = getReplacement(MemCpy->getRawSource());
327     // The pointer may appear in the destination of a copy, but we don't want to
328     // replace it.
329     if (!SrcV) {
330       assert(getReplacement(MemCpy->getRawDest()) &&
331              "destination not in replace list");
332       return;
333     }
334 
335     IC.Builder.SetInsertPoint(MemCpy);
336     auto *NewI = IC.Builder.CreateMemTransferInst(
337         MemCpy->getIntrinsicID(), MemCpy->getRawDest(), MemCpy->getDestAlign(),
338         SrcV, MemCpy->getSourceAlign(), MemCpy->getLength(),
339         MemCpy->isVolatile());
340     AAMDNodes AAMD = MemCpy->getAAMetadata();
341     if (AAMD)
342       NewI->setAAMetadata(AAMD);
343 
344     IC.eraseInstFromFunction(*MemCpy);
345     WorkMap[MemCpy] = NewI;
346   } else {
347     llvm_unreachable("should never reach here");
348   }
349 }
350 
351 void PointerReplacer::replacePointer(Instruction &I, Value *V) {
352 #ifndef NDEBUG
353   auto *PT = cast<PointerType>(I.getType());
354   auto *NT = cast<PointerType>(V->getType());
355   assert(PT != NT && PT->getElementType() == NT->getElementType() &&
356          "Invalid usage");
357 #endif
358   WorkMap[&I] = V;
359 
360   for (Instruction *Workitem : Worklist)
361     replace(Workitem);
362 }
363 
364 Instruction *InstCombinerImpl::visitAllocaInst(AllocaInst &AI) {
365   if (auto *I = simplifyAllocaArraySize(*this, AI))
366     return I;
367 
368   if (AI.getAllocatedType()->isSized()) {
369     // Move all alloca's of zero byte objects to the entry block and merge them
370     // together.  Note that we only do this for alloca's, because malloc should
371     // allocate and return a unique pointer, even for a zero byte allocation.
372     if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) {
373       // For a zero sized alloca there is no point in doing an array allocation.
374       // This is helpful if the array size is a complicated expression not used
375       // elsewhere.
376       if (AI.isArrayAllocation())
377         return replaceOperand(AI, 0,
378             ConstantInt::get(AI.getArraySize()->getType(), 1));
379 
380       // Get the first instruction in the entry block.
381       BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock();
382       Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg();
383       if (FirstInst != &AI) {
384         // If the entry block doesn't start with a zero-size alloca then move
385         // this one to the start of the entry block.  There is no problem with
386         // dominance as the array size was forced to a constant earlier already.
387         AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst);
388         if (!EntryAI || !EntryAI->getAllocatedType()->isSized() ||
389             DL.getTypeAllocSize(EntryAI->getAllocatedType())
390                     .getKnownMinSize() != 0) {
391           AI.moveBefore(FirstInst);
392           return &AI;
393         }
394 
395         // Replace this zero-sized alloca with the one at the start of the entry
396         // block after ensuring that the address will be aligned enough for both
397         // types.
398         const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign());
399         EntryAI->setAlignment(MaxAlign);
400         if (AI.getType() != EntryAI->getType())
401           return new BitCastInst(EntryAI, AI.getType());
402         return replaceInstUsesWith(AI, EntryAI);
403       }
404     }
405   }
406 
407   // Check to see if this allocation is only modified by a memcpy/memmove from
408   // a constant whose alignment is equal to or exceeds that of the allocation.
409   // If this is the case, we can change all users to use the constant global
410   // instead.  This is commonly produced by the CFE by constructs like "void
411   // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently
412   // read.
413   SmallVector<Instruction *, 4> ToDelete;
414   if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) {
415     Value *TheSrc = Copy->getSource();
416     Align AllocaAlign = AI.getAlign();
417     Align SourceAlign = getOrEnforceKnownAlignment(
418       TheSrc, AllocaAlign, DL, &AI, &AC, &DT);
419     if (AllocaAlign <= SourceAlign &&
420         isDereferenceableForAllocaSize(TheSrc, &AI, DL) &&
421         !isa<Instruction>(TheSrc)) {
422       // FIXME: Can we sink instructions without violating dominance when TheSrc
423       // is an instruction instead of a constant or argument?
424       LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n');
425       LLVM_DEBUG(dbgs() << "  memcpy = " << *Copy << '\n');
426       unsigned SrcAddrSpace = TheSrc->getType()->getPointerAddressSpace();
427       auto *DestTy = PointerType::get(AI.getAllocatedType(), SrcAddrSpace);
428       if (AI.getType()->getAddressSpace() == SrcAddrSpace) {
429         for (Instruction *Delete : ToDelete)
430           eraseInstFromFunction(*Delete);
431 
432         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
433         Instruction *NewI = replaceInstUsesWith(AI, Cast);
434         eraseInstFromFunction(*Copy);
435         ++NumGlobalCopies;
436         return NewI;
437       }
438 
439       PointerReplacer PtrReplacer(*this);
440       if (PtrReplacer.collectUsers(AI)) {
441         for (Instruction *Delete : ToDelete)
442           eraseInstFromFunction(*Delete);
443 
444         Value *Cast = Builder.CreateBitCast(TheSrc, DestTy);
445         PtrReplacer.replacePointer(AI, Cast);
446         ++NumGlobalCopies;
447       }
448     }
449   }
450 
451   // At last, use the generic allocation site handler to aggressively remove
452   // unused allocas.
453   return visitAllocSite(AI);
454 }
455 
456 // Are we allowed to form a atomic load or store of this type?
457 static bool isSupportedAtomicType(Type *Ty) {
458   return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy();
459 }
460 
461 /// Helper to combine a load to a new type.
462 ///
463 /// This just does the work of combining a load to a new type. It handles
464 /// metadata, etc., and returns the new instruction. The \c NewTy should be the
465 /// loaded *value* type. This will convert it to a pointer, cast the operand to
466 /// that pointer type, load it, etc.
467 ///
468 /// Note that this will create all of the instructions with whatever insert
469 /// point the \c InstCombinerImpl currently is using.
470 LoadInst *InstCombinerImpl::combineLoadToNewType(LoadInst &LI, Type *NewTy,
471                                                  const Twine &Suffix) {
472   assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) &&
473          "can't fold an atomic load to requested type");
474 
475   Value *Ptr = LI.getPointerOperand();
476   unsigned AS = LI.getPointerAddressSpace();
477   Type *NewPtrTy = NewTy->getPointerTo(AS);
478   Value *NewPtr = nullptr;
479   if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) &&
480         NewPtr->getType() == NewPtrTy))
481     NewPtr = Builder.CreateBitCast(Ptr, NewPtrTy);
482 
483   LoadInst *NewLoad = Builder.CreateAlignedLoad(
484       NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix);
485   NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
486   copyMetadataForLoad(*NewLoad, LI);
487   return NewLoad;
488 }
489 
490 /// Combine a store to a new type.
491 ///
492 /// Returns the newly created store instruction.
493 static StoreInst *combineStoreToNewValue(InstCombinerImpl &IC, StoreInst &SI,
494                                          Value *V) {
495   assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) &&
496          "can't fold an atomic store of requested type");
497 
498   Value *Ptr = SI.getPointerOperand();
499   unsigned AS = SI.getPointerAddressSpace();
500   SmallVector<std::pair<unsigned, MDNode *>, 8> MD;
501   SI.getAllMetadata(MD);
502 
503   StoreInst *NewStore = IC.Builder.CreateAlignedStore(
504       V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)),
505       SI.getAlign(), SI.isVolatile());
506   NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID());
507   for (const auto &MDPair : MD) {
508     unsigned ID = MDPair.first;
509     MDNode *N = MDPair.second;
510     // Note, essentially every kind of metadata should be preserved here! This
511     // routine is supposed to clone a store instruction changing *only its
512     // type*. The only metadata it makes sense to drop is metadata which is
513     // invalidated when the pointer type changes. This should essentially
514     // never be the case in LLVM, but we explicitly switch over only known
515     // metadata to be conservatively correct. If you are adding metadata to
516     // LLVM which pertains to stores, you almost certainly want to add it
517     // here.
518     switch (ID) {
519     case LLVMContext::MD_dbg:
520     case LLVMContext::MD_tbaa:
521     case LLVMContext::MD_prof:
522     case LLVMContext::MD_fpmath:
523     case LLVMContext::MD_tbaa_struct:
524     case LLVMContext::MD_alias_scope:
525     case LLVMContext::MD_noalias:
526     case LLVMContext::MD_nontemporal:
527     case LLVMContext::MD_mem_parallel_loop_access:
528     case LLVMContext::MD_access_group:
529       // All of these directly apply.
530       NewStore->setMetadata(ID, N);
531       break;
532     case LLVMContext::MD_invariant_load:
533     case LLVMContext::MD_nonnull:
534     case LLVMContext::MD_noundef:
535     case LLVMContext::MD_range:
536     case LLVMContext::MD_align:
537     case LLVMContext::MD_dereferenceable:
538     case LLVMContext::MD_dereferenceable_or_null:
539       // These don't apply for stores.
540       break;
541     }
542   }
543 
544   return NewStore;
545 }
546 
547 /// Returns true if instruction represent minmax pattern like:
548 ///   select ((cmp load V1, load V2), V1, V2).
549 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) {
550   assert(V->getType()->isPointerTy() && "Expected pointer type.");
551   // Ignore possible ty* to ixx* bitcast.
552   V = InstCombiner::peekThroughBitcast(V);
553   // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax
554   // pattern.
555   CmpInst::Predicate Pred;
556   Instruction *L1;
557   Instruction *L2;
558   Value *LHS;
559   Value *RHS;
560   if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)),
561                          m_Value(LHS), m_Value(RHS))))
562     return false;
563   LoadTy = L1->getType();
564   return (match(L1, m_Load(m_Specific(LHS))) &&
565           match(L2, m_Load(m_Specific(RHS)))) ||
566          (match(L1, m_Load(m_Specific(RHS))) &&
567           match(L2, m_Load(m_Specific(LHS))));
568 }
569 
570 /// Combine loads to match the type of their uses' value after looking
571 /// through intervening bitcasts.
572 ///
573 /// The core idea here is that if the result of a load is used in an operation,
574 /// we should load the type most conducive to that operation. For example, when
575 /// loading an integer and converting that immediately to a pointer, we should
576 /// instead directly load a pointer.
577 ///
578 /// However, this routine must never change the width of a load or the number of
579 /// loads as that would introduce a semantic change. This combine is expected to
580 /// be a semantic no-op which just allows loads to more closely model the types
581 /// of their consuming operations.
582 ///
583 /// Currently, we also refuse to change the precise type used for an atomic load
584 /// or a volatile load. This is debatable, and might be reasonable to change
585 /// later. However, it is risky in case some backend or other part of LLVM is
586 /// relying on the exact type loaded to select appropriate atomic operations.
587 static Instruction *combineLoadToOperationType(InstCombinerImpl &IC,
588                                                LoadInst &LI) {
589   // FIXME: We could probably with some care handle both volatile and ordered
590   // atomic loads here but it isn't clear that this is important.
591   if (!LI.isUnordered())
592     return nullptr;
593 
594   if (LI.use_empty())
595     return nullptr;
596 
597   // swifterror values can't be bitcasted.
598   if (LI.getPointerOperand()->isSwiftError())
599     return nullptr;
600 
601   const DataLayout &DL = IC.getDataLayout();
602 
603   // Fold away bit casts of the loaded value by loading the desired type.
604   // Note that we should not do this for pointer<->integer casts,
605   // because that would result in type punning.
606   if (LI.hasOneUse()) {
607     // Don't transform when the type is x86_amx, it makes the pass that lower
608     // x86_amx type happy.
609     if (auto *BC = dyn_cast<BitCastInst>(LI.user_back())) {
610       assert(!LI.getType()->isX86_AMXTy() &&
611              "load from x86_amx* should not happen!");
612       if (BC->getType()->isX86_AMXTy())
613         return nullptr;
614     }
615 
616     if (auto* CI = dyn_cast<CastInst>(LI.user_back()))
617       if (CI->isNoopCast(DL) && LI.getType()->isPtrOrPtrVectorTy() ==
618                                     CI->getDestTy()->isPtrOrPtrVectorTy())
619         if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) {
620           LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy());
621           CI->replaceAllUsesWith(NewLoad);
622           IC.eraseInstFromFunction(*CI);
623           return &LI;
624         }
625   }
626 
627   // FIXME: We should also canonicalize loads of vectors when their elements are
628   // cast to other types.
629   return nullptr;
630 }
631 
632 static Instruction *unpackLoadToAggregate(InstCombinerImpl &IC, LoadInst &LI) {
633   // FIXME: We could probably with some care handle both volatile and atomic
634   // stores here but it isn't clear that this is important.
635   if (!LI.isSimple())
636     return nullptr;
637 
638   Type *T = LI.getType();
639   if (!T->isAggregateType())
640     return nullptr;
641 
642   StringRef Name = LI.getName();
643 
644   if (auto *ST = dyn_cast<StructType>(T)) {
645     // If the struct only have one element, we unpack.
646     auto NumElements = ST->getNumElements();
647     if (NumElements == 1) {
648       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U),
649                                                   ".unpack");
650       NewLoad->setAAMetadata(LI.getAAMetadata());
651       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
652         UndefValue::get(T), NewLoad, 0, Name));
653     }
654 
655     // We don't want to break loads with padding here as we'd loose
656     // the knowledge that padding exists for the rest of the pipeline.
657     const DataLayout &DL = IC.getDataLayout();
658     auto *SL = DL.getStructLayout(ST);
659     if (SL->hasPadding())
660       return nullptr;
661 
662     const auto Align = LI.getAlign();
663     auto *Addr = LI.getPointerOperand();
664     auto *IdxType = Type::getInt32Ty(T->getContext());
665     auto *Zero = ConstantInt::get(IdxType, 0);
666 
667     Value *V = UndefValue::get(T);
668     for (unsigned i = 0; i < NumElements; i++) {
669       Value *Indices[2] = {
670         Zero,
671         ConstantInt::get(IdxType, i),
672       };
673       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
674                                                Name + ".elt");
675       auto *L = IC.Builder.CreateAlignedLoad(
676           ST->getElementType(i), Ptr,
677           commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack");
678       // Propagate AA metadata. It'll still be valid on the narrowed load.
679       L->setAAMetadata(LI.getAAMetadata());
680       V = IC.Builder.CreateInsertValue(V, L, i);
681     }
682 
683     V->setName(Name);
684     return IC.replaceInstUsesWith(LI, V);
685   }
686 
687   if (auto *AT = dyn_cast<ArrayType>(T)) {
688     auto *ET = AT->getElementType();
689     auto NumElements = AT->getNumElements();
690     if (NumElements == 1) {
691       LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack");
692       NewLoad->setAAMetadata(LI.getAAMetadata());
693       return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue(
694         UndefValue::get(T), NewLoad, 0, Name));
695     }
696 
697     // Bail out if the array is too large. Ideally we would like to optimize
698     // arrays of arbitrary size but this has a terrible impact on compile time.
699     // The threshold here is chosen arbitrarily, maybe needs a little bit of
700     // tuning.
701     if (NumElements > IC.MaxArraySizeForCombine)
702       return nullptr;
703 
704     const DataLayout &DL = IC.getDataLayout();
705     auto EltSize = DL.getTypeAllocSize(ET);
706     const auto Align = LI.getAlign();
707 
708     auto *Addr = LI.getPointerOperand();
709     auto *IdxType = Type::getInt64Ty(T->getContext());
710     auto *Zero = ConstantInt::get(IdxType, 0);
711 
712     Value *V = UndefValue::get(T);
713     uint64_t Offset = 0;
714     for (uint64_t i = 0; i < NumElements; i++) {
715       Value *Indices[2] = {
716         Zero,
717         ConstantInt::get(IdxType, i),
718       };
719       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
720                                                Name + ".elt");
721       auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr,
722                                              commonAlignment(Align, Offset),
723                                              Name + ".unpack");
724       L->setAAMetadata(LI.getAAMetadata());
725       V = IC.Builder.CreateInsertValue(V, L, i);
726       Offset += EltSize;
727     }
728 
729     V->setName(Name);
730     return IC.replaceInstUsesWith(LI, V);
731   }
732 
733   return nullptr;
734 }
735 
736 // If we can determine that all possible objects pointed to by the provided
737 // pointer value are, not only dereferenceable, but also definitively less than
738 // or equal to the provided maximum size, then return true. Otherwise, return
739 // false (constant global values and allocas fall into this category).
740 //
741 // FIXME: This should probably live in ValueTracking (or similar).
742 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize,
743                                      const DataLayout &DL) {
744   SmallPtrSet<Value *, 4> Visited;
745   SmallVector<Value *, 4> Worklist(1, V);
746 
747   do {
748     Value *P = Worklist.pop_back_val();
749     P = P->stripPointerCasts();
750 
751     if (!Visited.insert(P).second)
752       continue;
753 
754     if (SelectInst *SI = dyn_cast<SelectInst>(P)) {
755       Worklist.push_back(SI->getTrueValue());
756       Worklist.push_back(SI->getFalseValue());
757       continue;
758     }
759 
760     if (PHINode *PN = dyn_cast<PHINode>(P)) {
761       append_range(Worklist, PN->incoming_values());
762       continue;
763     }
764 
765     if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) {
766       if (GA->isInterposable())
767         return false;
768       Worklist.push_back(GA->getAliasee());
769       continue;
770     }
771 
772     // If we know how big this object is, and it is less than MaxSize, continue
773     // searching. Otherwise, return false.
774     if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) {
775       if (!AI->getAllocatedType()->isSized())
776         return false;
777 
778       ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize());
779       if (!CS)
780         return false;
781 
782       uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType());
783       // Make sure that, even if the multiplication below would wrap as an
784       // uint64_t, we still do the right thing.
785       if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize))
786         return false;
787       continue;
788     }
789 
790     if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) {
791       if (!GV->hasDefinitiveInitializer() || !GV->isConstant())
792         return false;
793 
794       uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType());
795       if (InitSize > MaxSize)
796         return false;
797       continue;
798     }
799 
800     return false;
801   } while (!Worklist.empty());
802 
803   return true;
804 }
805 
806 // If we're indexing into an object of a known size, and the outer index is
807 // not a constant, but having any value but zero would lead to undefined
808 // behavior, replace it with zero.
809 //
810 // For example, if we have:
811 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4
812 // ...
813 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x
814 // ... = load i32* %arrayidx, align 4
815 // Then we know that we can replace %x in the GEP with i64 0.
816 //
817 // FIXME: We could fold any GEP index to zero that would cause UB if it were
818 // not zero. Currently, we only handle the first such index. Also, we could
819 // also search through non-zero constant indices if we kept track of the
820 // offsets those indices implied.
821 static bool canReplaceGEPIdxWithZero(InstCombinerImpl &IC,
822                                      GetElementPtrInst *GEPI, Instruction *MemI,
823                                      unsigned &Idx) {
824   if (GEPI->getNumOperands() < 2)
825     return false;
826 
827   // Find the first non-zero index of a GEP. If all indices are zero, return
828   // one past the last index.
829   auto FirstNZIdx = [](const GetElementPtrInst *GEPI) {
830     unsigned I = 1;
831     for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) {
832       Value *V = GEPI->getOperand(I);
833       if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
834         if (CI->isZero())
835           continue;
836 
837       break;
838     }
839 
840     return I;
841   };
842 
843   // Skip through initial 'zero' indices, and find the corresponding pointer
844   // type. See if the next index is not a constant.
845   Idx = FirstNZIdx(GEPI);
846   if (Idx == GEPI->getNumOperands())
847     return false;
848   if (isa<Constant>(GEPI->getOperand(Idx)))
849     return false;
850 
851   SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx);
852   Type *SourceElementType = GEPI->getSourceElementType();
853   // Size information about scalable vectors is not available, so we cannot
854   // deduce whether indexing at n is undefined behaviour or not. Bail out.
855   if (isa<ScalableVectorType>(SourceElementType))
856     return false;
857 
858   Type *AllocTy = GetElementPtrInst::getIndexedType(SourceElementType, Ops);
859   if (!AllocTy || !AllocTy->isSized())
860     return false;
861   const DataLayout &DL = IC.getDataLayout();
862   uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy).getFixedSize();
863 
864   // If there are more indices after the one we might replace with a zero, make
865   // sure they're all non-negative. If any of them are negative, the overall
866   // address being computed might be before the base address determined by the
867   // first non-zero index.
868   auto IsAllNonNegative = [&]() {
869     for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) {
870       KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI);
871       if (Known.isNonNegative())
872         continue;
873       return false;
874     }
875 
876     return true;
877   };
878 
879   // FIXME: If the GEP is not inbounds, and there are extra indices after the
880   // one we'll replace, those could cause the address computation to wrap
881   // (rendering the IsAllNonNegative() check below insufficient). We can do
882   // better, ignoring zero indices (and other indices we can prove small
883   // enough not to wrap).
884   if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds())
885     return false;
886 
887   // Note that isObjectSizeLessThanOrEq will return true only if the pointer is
888   // also known to be dereferenceable.
889   return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) &&
890          IsAllNonNegative();
891 }
892 
893 // If we're indexing into an object with a variable index for the memory
894 // access, but the object has only one element, we can assume that the index
895 // will always be zero. If we replace the GEP, return it.
896 template <typename T>
897 static Instruction *replaceGEPIdxWithZero(InstCombinerImpl &IC, Value *Ptr,
898                                           T &MemI) {
899   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) {
900     unsigned Idx;
901     if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) {
902       Instruction *NewGEPI = GEPI->clone();
903       NewGEPI->setOperand(Idx,
904         ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0));
905       NewGEPI->insertBefore(GEPI);
906       MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI);
907       return NewGEPI;
908     }
909   }
910 
911   return nullptr;
912 }
913 
914 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) {
915   if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()))
916     return false;
917 
918   auto *Ptr = SI.getPointerOperand();
919   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr))
920     Ptr = GEPI->getOperand(0);
921   return (isa<ConstantPointerNull>(Ptr) &&
922           !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace()));
923 }
924 
925 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) {
926   if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
927     const Value *GEPI0 = GEPI->getOperand(0);
928     if (isa<ConstantPointerNull>(GEPI0) &&
929         !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace()))
930       return true;
931   }
932   if (isa<UndefValue>(Op) ||
933       (isa<ConstantPointerNull>(Op) &&
934        !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace())))
935     return true;
936   return false;
937 }
938 
939 Instruction *InstCombinerImpl::visitLoadInst(LoadInst &LI) {
940   Value *Op = LI.getOperand(0);
941 
942   // Try to canonicalize the loaded type.
943   if (Instruction *Res = combineLoadToOperationType(*this, LI))
944     return Res;
945 
946   // Attempt to improve the alignment.
947   Align KnownAlign = getOrEnforceKnownAlignment(
948       Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT);
949   if (KnownAlign > LI.getAlign())
950     LI.setAlignment(KnownAlign);
951 
952   // Replace GEP indices if possible.
953   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) {
954       Worklist.push(NewGEPI);
955       return &LI;
956   }
957 
958   if (Instruction *Res = unpackLoadToAggregate(*this, LI))
959     return Res;
960 
961   // Do really simple store-to-load forwarding and load CSE, to catch cases
962   // where there are several consecutive memory accesses to the same location,
963   // separated by a few arithmetic operations.
964   bool IsLoadCSE = false;
965   if (Value *AvailableVal = FindAvailableLoadedValue(&LI, *AA, &IsLoadCSE)) {
966     if (IsLoadCSE)
967       combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false);
968 
969     return replaceInstUsesWith(
970         LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(),
971                                            LI.getName() + ".cast"));
972   }
973 
974   // None of the following transforms are legal for volatile/ordered atomic
975   // loads.  Most of them do apply for unordered atomics.
976   if (!LI.isUnordered()) return nullptr;
977 
978   // load(gep null, ...) -> unreachable
979   // load null/undef -> unreachable
980   // TODO: Consider a target hook for valid address spaces for this xforms.
981   if (canSimplifyNullLoadOrGEP(LI, Op)) {
982     // Insert a new store to null instruction before the load to indicate
983     // that this code is not reachable.  We do this instead of inserting
984     // an unreachable instruction directly because we cannot modify the
985     // CFG.
986     StoreInst *SI = new StoreInst(PoisonValue::get(LI.getType()),
987                                   Constant::getNullValue(Op->getType()), &LI);
988     SI->setDebugLoc(LI.getDebugLoc());
989     return replaceInstUsesWith(LI, PoisonValue::get(LI.getType()));
990   }
991 
992   if (Op->hasOneUse()) {
993     // Change select and PHI nodes to select values instead of addresses: this
994     // helps alias analysis out a lot, allows many others simplifications, and
995     // exposes redundancy in the code.
996     //
997     // Note that we cannot do the transformation unless we know that the
998     // introduced loads cannot trap!  Something like this is valid as long as
999     // the condition is always false: load (select bool %C, int* null, int* %G),
1000     // but it would not be valid if we transformed it to load from null
1001     // unconditionally.
1002     //
1003     if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
1004       // load (select (Cond, &V1, &V2))  --> select(Cond, load &V1, load &V2).
1005       Align Alignment = LI.getAlign();
1006       if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(),
1007                                       Alignment, DL, SI) &&
1008           isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(),
1009                                       Alignment, DL, SI)) {
1010         LoadInst *V1 =
1011             Builder.CreateLoad(LI.getType(), SI->getOperand(1),
1012                                SI->getOperand(1)->getName() + ".val");
1013         LoadInst *V2 =
1014             Builder.CreateLoad(LI.getType(), SI->getOperand(2),
1015                                SI->getOperand(2)->getName() + ".val");
1016         assert(LI.isUnordered() && "implied by above");
1017         V1->setAlignment(Alignment);
1018         V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1019         V2->setAlignment(Alignment);
1020         V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID());
1021         return SelectInst::Create(SI->getCondition(), V1, V2);
1022       }
1023 
1024       // load (select (cond, null, P)) -> load P
1025       if (isa<ConstantPointerNull>(SI->getOperand(1)) &&
1026           !NullPointerIsDefined(SI->getFunction(),
1027                                 LI.getPointerAddressSpace()))
1028         return replaceOperand(LI, 0, SI->getOperand(2));
1029 
1030       // load (select (cond, P, null)) -> load P
1031       if (isa<ConstantPointerNull>(SI->getOperand(2)) &&
1032           !NullPointerIsDefined(SI->getFunction(),
1033                                 LI.getPointerAddressSpace()))
1034         return replaceOperand(LI, 0, SI->getOperand(1));
1035     }
1036   }
1037   return nullptr;
1038 }
1039 
1040 /// Look for extractelement/insertvalue sequence that acts like a bitcast.
1041 ///
1042 /// \returns underlying value that was "cast", or nullptr otherwise.
1043 ///
1044 /// For example, if we have:
1045 ///
1046 ///     %E0 = extractelement <2 x double> %U, i32 0
1047 ///     %V0 = insertvalue [2 x double] undef, double %E0, 0
1048 ///     %E1 = extractelement <2 x double> %U, i32 1
1049 ///     %V1 = insertvalue [2 x double] %V0, double %E1, 1
1050 ///
1051 /// and the layout of a <2 x double> is isomorphic to a [2 x double],
1052 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U.
1053 /// Note that %U may contain non-undef values where %V1 has undef.
1054 static Value *likeBitCastFromVector(InstCombinerImpl &IC, Value *V) {
1055   Value *U = nullptr;
1056   while (auto *IV = dyn_cast<InsertValueInst>(V)) {
1057     auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand());
1058     if (!E)
1059       return nullptr;
1060     auto *W = E->getVectorOperand();
1061     if (!U)
1062       U = W;
1063     else if (U != W)
1064       return nullptr;
1065     auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand());
1066     if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin())
1067       return nullptr;
1068     V = IV->getAggregateOperand();
1069   }
1070   if (!match(V, m_Undef()) || !U)
1071     return nullptr;
1072 
1073   auto *UT = cast<VectorType>(U->getType());
1074   auto *VT = V->getType();
1075   // Check that types UT and VT are bitwise isomorphic.
1076   const auto &DL = IC.getDataLayout();
1077   if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) {
1078     return nullptr;
1079   }
1080   if (auto *AT = dyn_cast<ArrayType>(VT)) {
1081     if (AT->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1082       return nullptr;
1083   } else {
1084     auto *ST = cast<StructType>(VT);
1085     if (ST->getNumElements() != cast<FixedVectorType>(UT)->getNumElements())
1086       return nullptr;
1087     for (const auto *EltT : ST->elements()) {
1088       if (EltT != UT->getElementType())
1089         return nullptr;
1090     }
1091   }
1092   return U;
1093 }
1094 
1095 /// Combine stores to match the type of value being stored.
1096 ///
1097 /// The core idea here is that the memory does not have any intrinsic type and
1098 /// where we can we should match the type of a store to the type of value being
1099 /// stored.
1100 ///
1101 /// However, this routine must never change the width of a store or the number of
1102 /// stores as that would introduce a semantic change. This combine is expected to
1103 /// be a semantic no-op which just allows stores to more closely model the types
1104 /// of their incoming values.
1105 ///
1106 /// Currently, we also refuse to change the precise type used for an atomic or
1107 /// volatile store. This is debatable, and might be reasonable to change later.
1108 /// However, it is risky in case some backend or other part of LLVM is relying
1109 /// on the exact type stored to select appropriate atomic operations.
1110 ///
1111 /// \returns true if the store was successfully combined away. This indicates
1112 /// the caller must erase the store instruction. We have to let the caller erase
1113 /// the store instruction as otherwise there is no way to signal whether it was
1114 /// combined or not: IC.EraseInstFromFunction returns a null pointer.
1115 static bool combineStoreToValueType(InstCombinerImpl &IC, StoreInst &SI) {
1116   // FIXME: We could probably with some care handle both volatile and ordered
1117   // atomic stores here but it isn't clear that this is important.
1118   if (!SI.isUnordered())
1119     return false;
1120 
1121   // swifterror values can't be bitcasted.
1122   if (SI.getPointerOperand()->isSwiftError())
1123     return false;
1124 
1125   Value *V = SI.getValueOperand();
1126 
1127   // Fold away bit casts of the stored value by storing the original type.
1128   if (auto *BC = dyn_cast<BitCastInst>(V)) {
1129     assert(!BC->getType()->isX86_AMXTy() &&
1130            "store to x86_amx* should not happen!");
1131     V = BC->getOperand(0);
1132     // Don't transform when the type is x86_amx, it makes the pass that lower
1133     // x86_amx type happy.
1134     if (V->getType()->isX86_AMXTy())
1135       return false;
1136     if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) {
1137       combineStoreToNewValue(IC, SI, V);
1138       return true;
1139     }
1140   }
1141 
1142   if (Value *U = likeBitCastFromVector(IC, V))
1143     if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) {
1144       combineStoreToNewValue(IC, SI, U);
1145       return true;
1146     }
1147 
1148   // FIXME: We should also canonicalize stores of vectors when their elements
1149   // are cast to other types.
1150   return false;
1151 }
1152 
1153 static bool unpackStoreToAggregate(InstCombinerImpl &IC, StoreInst &SI) {
1154   // FIXME: We could probably with some care handle both volatile and atomic
1155   // stores here but it isn't clear that this is important.
1156   if (!SI.isSimple())
1157     return false;
1158 
1159   Value *V = SI.getValueOperand();
1160   Type *T = V->getType();
1161 
1162   if (!T->isAggregateType())
1163     return false;
1164 
1165   if (auto *ST = dyn_cast<StructType>(T)) {
1166     // If the struct only have one element, we unpack.
1167     unsigned Count = ST->getNumElements();
1168     if (Count == 1) {
1169       V = IC.Builder.CreateExtractValue(V, 0);
1170       combineStoreToNewValue(IC, SI, V);
1171       return true;
1172     }
1173 
1174     // We don't want to break loads with padding here as we'd loose
1175     // the knowledge that padding exists for the rest of the pipeline.
1176     const DataLayout &DL = IC.getDataLayout();
1177     auto *SL = DL.getStructLayout(ST);
1178     if (SL->hasPadding())
1179       return false;
1180 
1181     const auto Align = SI.getAlign();
1182 
1183     SmallString<16> EltName = V->getName();
1184     EltName += ".elt";
1185     auto *Addr = SI.getPointerOperand();
1186     SmallString<16> AddrName = Addr->getName();
1187     AddrName += ".repack";
1188 
1189     auto *IdxType = Type::getInt32Ty(ST->getContext());
1190     auto *Zero = ConstantInt::get(IdxType, 0);
1191     for (unsigned i = 0; i < Count; i++) {
1192       Value *Indices[2] = {
1193         Zero,
1194         ConstantInt::get(IdxType, i),
1195       };
1196       auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices),
1197                                                AddrName);
1198       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1199       auto EltAlign = commonAlignment(Align, SL->getElementOffset(i));
1200       llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1201       NS->setAAMetadata(SI.getAAMetadata());
1202     }
1203 
1204     return true;
1205   }
1206 
1207   if (auto *AT = dyn_cast<ArrayType>(T)) {
1208     // If the array only have one element, we unpack.
1209     auto NumElements = AT->getNumElements();
1210     if (NumElements == 1) {
1211       V = IC.Builder.CreateExtractValue(V, 0);
1212       combineStoreToNewValue(IC, SI, V);
1213       return true;
1214     }
1215 
1216     // Bail out if the array is too large. Ideally we would like to optimize
1217     // arrays of arbitrary size but this has a terrible impact on compile time.
1218     // The threshold here is chosen arbitrarily, maybe needs a little bit of
1219     // tuning.
1220     if (NumElements > IC.MaxArraySizeForCombine)
1221       return false;
1222 
1223     const DataLayout &DL = IC.getDataLayout();
1224     auto EltSize = DL.getTypeAllocSize(AT->getElementType());
1225     const auto Align = SI.getAlign();
1226 
1227     SmallString<16> EltName = V->getName();
1228     EltName += ".elt";
1229     auto *Addr = SI.getPointerOperand();
1230     SmallString<16> AddrName = Addr->getName();
1231     AddrName += ".repack";
1232 
1233     auto *IdxType = Type::getInt64Ty(T->getContext());
1234     auto *Zero = ConstantInt::get(IdxType, 0);
1235 
1236     uint64_t Offset = 0;
1237     for (uint64_t i = 0; i < NumElements; i++) {
1238       Value *Indices[2] = {
1239         Zero,
1240         ConstantInt::get(IdxType, i),
1241       };
1242       auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices),
1243                                                AddrName);
1244       auto *Val = IC.Builder.CreateExtractValue(V, i, EltName);
1245       auto EltAlign = commonAlignment(Align, Offset);
1246       Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign);
1247       NS->setAAMetadata(SI.getAAMetadata());
1248       Offset += EltSize;
1249     }
1250 
1251     return true;
1252   }
1253 
1254   return false;
1255 }
1256 
1257 /// equivalentAddressValues - Test if A and B will obviously have the same
1258 /// value. This includes recognizing that %t0 and %t1 will have the same
1259 /// value in code like this:
1260 ///   %t0 = getelementptr \@a, 0, 3
1261 ///   store i32 0, i32* %t0
1262 ///   %t1 = getelementptr \@a, 0, 3
1263 ///   %t2 = load i32* %t1
1264 ///
1265 static bool equivalentAddressValues(Value *A, Value *B) {
1266   // Test if the values are trivially equivalent.
1267   if (A == B) return true;
1268 
1269   // Test if the values come form identical arithmetic instructions.
1270   // This uses isIdenticalToWhenDefined instead of isIdenticalTo because
1271   // its only used to compare two uses within the same basic block, which
1272   // means that they'll always either have the same value or one of them
1273   // will have an undefined value.
1274   if (isa<BinaryOperator>(A) ||
1275       isa<CastInst>(A) ||
1276       isa<PHINode>(A) ||
1277       isa<GetElementPtrInst>(A))
1278     if (Instruction *BI = dyn_cast<Instruction>(B))
1279       if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI))
1280         return true;
1281 
1282   // Otherwise they may not be equivalent.
1283   return false;
1284 }
1285 
1286 /// Converts store (bitcast (load (bitcast (select ...)))) to
1287 /// store (load (select ...)), where select is minmax:
1288 /// select ((cmp load V1, load V2), V1, V2).
1289 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombinerImpl &IC,
1290                                                 StoreInst &SI) {
1291   // bitcast?
1292   if (!match(SI.getPointerOperand(), m_BitCast(m_Value())))
1293     return false;
1294   // load? integer?
1295   Value *LoadAddr;
1296   if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr)))))
1297     return false;
1298   auto *LI = cast<LoadInst>(SI.getValueOperand());
1299   if (!LI->getType()->isIntegerTy())
1300     return false;
1301   Type *CmpLoadTy;
1302   if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy))
1303     return false;
1304 
1305   // Make sure the type would actually change.
1306   // This condition can be hit with chains of bitcasts.
1307   if (LI->getType() == CmpLoadTy)
1308     return false;
1309 
1310   // Make sure we're not changing the size of the load/store.
1311   const auto &DL = IC.getDataLayout();
1312   if (DL.getTypeStoreSizeInBits(LI->getType()) !=
1313       DL.getTypeStoreSizeInBits(CmpLoadTy))
1314     return false;
1315 
1316   if (!all_of(LI->users(), [LI, LoadAddr](User *U) {
1317         auto *SI = dyn_cast<StoreInst>(U);
1318         return SI && SI->getPointerOperand() != LI &&
1319                InstCombiner::peekThroughBitcast(SI->getPointerOperand()) !=
1320                    LoadAddr &&
1321                !SI->getPointerOperand()->isSwiftError();
1322       }))
1323     return false;
1324 
1325   IC.Builder.SetInsertPoint(LI);
1326   LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy);
1327   // Replace all the stores with stores of the newly loaded value.
1328   for (auto *UI : LI->users()) {
1329     auto *USI = cast<StoreInst>(UI);
1330     IC.Builder.SetInsertPoint(USI);
1331     combineStoreToNewValue(IC, *USI, NewLI);
1332   }
1333   IC.replaceInstUsesWith(*LI, PoisonValue::get(LI->getType()));
1334   IC.eraseInstFromFunction(*LI);
1335   return true;
1336 }
1337 
1338 Instruction *InstCombinerImpl::visitStoreInst(StoreInst &SI) {
1339   Value *Val = SI.getOperand(0);
1340   Value *Ptr = SI.getOperand(1);
1341 
1342   // Try to canonicalize the stored type.
1343   if (combineStoreToValueType(*this, SI))
1344     return eraseInstFromFunction(SI);
1345 
1346   // Attempt to improve the alignment.
1347   const Align KnownAlign = getOrEnforceKnownAlignment(
1348       Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT);
1349   if (KnownAlign > SI.getAlign())
1350     SI.setAlignment(KnownAlign);
1351 
1352   // Try to canonicalize the stored type.
1353   if (unpackStoreToAggregate(*this, SI))
1354     return eraseInstFromFunction(SI);
1355 
1356   if (removeBitcastsFromLoadStoreOnMinMax(*this, SI))
1357     return eraseInstFromFunction(SI);
1358 
1359   // Replace GEP indices if possible.
1360   if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) {
1361       Worklist.push(NewGEPI);
1362       return &SI;
1363   }
1364 
1365   // Don't hack volatile/ordered stores.
1366   // FIXME: Some bits are legal for ordered atomic stores; needs refactoring.
1367   if (!SI.isUnordered()) return nullptr;
1368 
1369   // If the RHS is an alloca with a single use, zapify the store, making the
1370   // alloca dead.
1371   if (Ptr->hasOneUse()) {
1372     if (isa<AllocaInst>(Ptr))
1373       return eraseInstFromFunction(SI);
1374     if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
1375       if (isa<AllocaInst>(GEP->getOperand(0))) {
1376         if (GEP->getOperand(0)->hasOneUse())
1377           return eraseInstFromFunction(SI);
1378       }
1379     }
1380   }
1381 
1382   // If we have a store to a location which is known constant, we can conclude
1383   // that the store must be storing the constant value (else the memory
1384   // wouldn't be constant), and this must be a noop.
1385   if (AA->pointsToConstantMemory(Ptr))
1386     return eraseInstFromFunction(SI);
1387 
1388   // Do really simple DSE, to catch cases where there are several consecutive
1389   // stores to the same location, separated by a few arithmetic operations. This
1390   // situation often occurs with bitfield accesses.
1391   BasicBlock::iterator BBI(SI);
1392   for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
1393        --ScanInsts) {
1394     --BBI;
1395     // Don't count debug info directives, lest they affect codegen,
1396     // and we skip pointer-to-pointer bitcasts, which are NOPs.
1397     if (BBI->isDebugOrPseudoInst() ||
1398         (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1399       ScanInsts++;
1400       continue;
1401     }
1402 
1403     if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
1404       // Prev store isn't volatile, and stores to the same location?
1405       if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1),
1406                                                         SI.getOperand(1))) {
1407         ++NumDeadStore;
1408         // Manually add back the original store to the worklist now, so it will
1409         // be processed after the operands of the removed store, as this may
1410         // expose additional DSE opportunities.
1411         Worklist.push(&SI);
1412         eraseInstFromFunction(*PrevSI);
1413         return nullptr;
1414       }
1415       break;
1416     }
1417 
1418     // If this is a load, we have to stop.  However, if the loaded value is from
1419     // the pointer we're loading and is producing the pointer we're storing,
1420     // then *this* store is dead (X = load P; store X -> P).
1421     if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
1422       if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) {
1423         assert(SI.isUnordered() && "can't eliminate ordering operation");
1424         return eraseInstFromFunction(SI);
1425       }
1426 
1427       // Otherwise, this is a load from some other location.  Stores before it
1428       // may not be dead.
1429       break;
1430     }
1431 
1432     // Don't skip over loads, throws or things that can modify memory.
1433     if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow())
1434       break;
1435   }
1436 
1437   // store X, null    -> turns into 'unreachable' in SimplifyCFG
1438   // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG
1439   if (canSimplifyNullStoreOrGEP(SI)) {
1440     if (!isa<PoisonValue>(Val))
1441       return replaceOperand(SI, 0, PoisonValue::get(Val->getType()));
1442     return nullptr;  // Do not modify these!
1443   }
1444 
1445   // store undef, Ptr -> noop
1446   if (isa<UndefValue>(Val))
1447     return eraseInstFromFunction(SI);
1448 
1449   return nullptr;
1450 }
1451 
1452 /// Try to transform:
1453 ///   if () { *P = v1; } else { *P = v2 }
1454 /// or:
1455 ///   *P = v1; if () { *P = v2; }
1456 /// into a phi node with a store in the successor.
1457 bool InstCombinerImpl::mergeStoreIntoSuccessor(StoreInst &SI) {
1458   if (!SI.isUnordered())
1459     return false; // This code has not been audited for volatile/ordered case.
1460 
1461   // Check if the successor block has exactly 2 incoming edges.
1462   BasicBlock *StoreBB = SI.getParent();
1463   BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
1464   if (!DestBB->hasNPredecessors(2))
1465     return false;
1466 
1467   // Capture the other block (the block that doesn't contain our store).
1468   pred_iterator PredIter = pred_begin(DestBB);
1469   if (*PredIter == StoreBB)
1470     ++PredIter;
1471   BasicBlock *OtherBB = *PredIter;
1472 
1473   // Bail out if all of the relevant blocks aren't distinct. This can happen,
1474   // for example, if SI is in an infinite loop.
1475   if (StoreBB == DestBB || OtherBB == DestBB)
1476     return false;
1477 
1478   // Verify that the other block ends in a branch and is not otherwise empty.
1479   BasicBlock::iterator BBI(OtherBB->getTerminator());
1480   BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
1481   if (!OtherBr || BBI == OtherBB->begin())
1482     return false;
1483 
1484   // If the other block ends in an unconditional branch, check for the 'if then
1485   // else' case. There is an instruction before the branch.
1486   StoreInst *OtherStore = nullptr;
1487   if (OtherBr->isUnconditional()) {
1488     --BBI;
1489     // Skip over debugging info and pseudo probes.
1490     while (BBI->isDebugOrPseudoInst() ||
1491            (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) {
1492       if (BBI==OtherBB->begin())
1493         return false;
1494       --BBI;
1495     }
1496     // If this isn't a store, isn't a store to the same location, or is not the
1497     // right kind of store, bail out.
1498     OtherStore = dyn_cast<StoreInst>(BBI);
1499     if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) ||
1500         !SI.isSameOperationAs(OtherStore))
1501       return false;
1502   } else {
1503     // Otherwise, the other block ended with a conditional branch. If one of the
1504     // destinations is StoreBB, then we have the if/then case.
1505     if (OtherBr->getSuccessor(0) != StoreBB &&
1506         OtherBr->getSuccessor(1) != StoreBB)
1507       return false;
1508 
1509     // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
1510     // if/then triangle. See if there is a store to the same ptr as SI that
1511     // lives in OtherBB.
1512     for (;; --BBI) {
1513       // Check to see if we find the matching store.
1514       if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
1515         if (OtherStore->getOperand(1) != SI.getOperand(1) ||
1516             !SI.isSameOperationAs(OtherStore))
1517           return false;
1518         break;
1519       }
1520       // If we find something that may be using or overwriting the stored
1521       // value, or if we run out of instructions, we can't do the transform.
1522       if (BBI->mayReadFromMemory() || BBI->mayThrow() ||
1523           BBI->mayWriteToMemory() || BBI == OtherBB->begin())
1524         return false;
1525     }
1526 
1527     // In order to eliminate the store in OtherBr, we have to make sure nothing
1528     // reads or overwrites the stored value in StoreBB.
1529     for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
1530       // FIXME: This should really be AA driven.
1531       if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory())
1532         return false;
1533     }
1534   }
1535 
1536   // Insert a PHI node now if we need it.
1537   Value *MergedVal = OtherStore->getOperand(0);
1538   // The debug locations of the original instructions might differ. Merge them.
1539   DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(),
1540                                                      OtherStore->getDebugLoc());
1541   if (MergedVal != SI.getOperand(0)) {
1542     PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge");
1543     PN->addIncoming(SI.getOperand(0), SI.getParent());
1544     PN->addIncoming(OtherStore->getOperand(0), OtherBB);
1545     MergedVal = InsertNewInstBefore(PN, DestBB->front());
1546     PN->setDebugLoc(MergedLoc);
1547   }
1548 
1549   // Advance to a place where it is safe to insert the new store and insert it.
1550   BBI = DestBB->getFirstInsertionPt();
1551   StoreInst *NewSI =
1552       new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(),
1553                     SI.getOrdering(), SI.getSyncScopeID());
1554   InsertNewInstBefore(NewSI, *BBI);
1555   NewSI->setDebugLoc(MergedLoc);
1556 
1557   // If the two stores had AA tags, merge them.
1558   AAMDNodes AATags = SI.getAAMetadata();
1559   if (AATags)
1560     NewSI->setAAMetadata(AATags.merge(OtherStore->getAAMetadata()));
1561 
1562   // Nuke the old stores.
1563   eraseInstFromFunction(SI);
1564   eraseInstFromFunction(*OtherStore);
1565   return true;
1566 }
1567