1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the visit functions for load, store and alloca. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "InstCombineInternal.h" 14 #include "llvm/ADT/MapVector.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/Transforms/Utils/Local.h" 19 #include "llvm/IR/ConstantRange.h" 20 #include "llvm/IR/DataLayout.h" 21 #include "llvm/IR/DebugInfoMetadata.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/MDBuilder.h" 25 #include "llvm/IR/PatternMatch.h" 26 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 27 using namespace llvm; 28 using namespace PatternMatch; 29 30 #define DEBUG_TYPE "instcombine" 31 32 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 33 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 34 35 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 36 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 37 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 38 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 39 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 40 /// the alloca, and if the source pointer is a pointer to a constant global, we 41 /// can optimize this. 42 static bool 43 isOnlyCopiedFromConstantMemory(AliasAnalysis *AA, 44 Value *V, MemTransferInst *&TheCopy, 45 SmallVectorImpl<Instruction *> &ToDelete) { 46 // We track lifetime intrinsics as we encounter them. If we decide to go 47 // ahead and replace the value with the global, this lets the caller quickly 48 // eliminate the markers. 49 50 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 51 ValuesToInspect.emplace_back(V, false); 52 while (!ValuesToInspect.empty()) { 53 auto ValuePair = ValuesToInspect.pop_back_val(); 54 const bool IsOffset = ValuePair.second; 55 for (auto &U : ValuePair.first->uses()) { 56 auto *I = cast<Instruction>(U.getUser()); 57 58 if (auto *LI = dyn_cast<LoadInst>(I)) { 59 // Ignore non-volatile loads, they are always ok. 60 if (!LI->isSimple()) return false; 61 continue; 62 } 63 64 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 65 // If uses of the bitcast are ok, we are ok. 66 ValuesToInspect.emplace_back(I, IsOffset); 67 continue; 68 } 69 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 70 // If the GEP has all zero indices, it doesn't offset the pointer. If it 71 // doesn't, it does. 72 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 73 continue; 74 } 75 76 if (auto *Call = dyn_cast<CallBase>(I)) { 77 // If this is the function being called then we treat it like a load and 78 // ignore it. 79 if (Call->isCallee(&U)) 80 continue; 81 82 unsigned DataOpNo = Call->getDataOperandNo(&U); 83 bool IsArgOperand = Call->isArgOperand(&U); 84 85 // Inalloca arguments are clobbered by the call. 86 if (IsArgOperand && Call->isInAllocaArgument(DataOpNo)) 87 return false; 88 89 // If this is a readonly/readnone call site, then we know it is just a 90 // load (but one that potentially returns the value itself), so we can 91 // ignore it if we know that the value isn't captured. 92 if (Call->onlyReadsMemory() && 93 (Call->use_empty() || Call->doesNotCapture(DataOpNo))) 94 continue; 95 96 // If this is being passed as a byval argument, the caller is making a 97 // copy, so it is only a read of the alloca. 98 if (IsArgOperand && Call->isByValArgument(DataOpNo)) 99 continue; 100 } 101 102 // Lifetime intrinsics can be handled by the caller. 103 if (I->isLifetimeStartOrEnd()) { 104 assert(I->use_empty() && "Lifetime markers have no result to use!"); 105 ToDelete.push_back(I); 106 continue; 107 } 108 109 // If this is isn't our memcpy/memmove, reject it as something we can't 110 // handle. 111 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 112 if (!MI) 113 return false; 114 115 // If the transfer is using the alloca as a source of the transfer, then 116 // ignore it since it is a load (unless the transfer is volatile). 117 if (U.getOperandNo() == 1) { 118 if (MI->isVolatile()) return false; 119 continue; 120 } 121 122 // If we already have seen a copy, reject the second one. 123 if (TheCopy) return false; 124 125 // If the pointer has been offset from the start of the alloca, we can't 126 // safely handle this. 127 if (IsOffset) return false; 128 129 // If the memintrinsic isn't using the alloca as the dest, reject it. 130 if (U.getOperandNo() != 0) return false; 131 132 // If the source of the memcpy/move is not a constant global, reject it. 133 if (!AA->pointsToConstantMemory(MI->getSource())) 134 return false; 135 136 // Otherwise, the transform is safe. Remember the copy instruction. 137 TheCopy = MI; 138 } 139 } 140 return true; 141 } 142 143 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 144 /// modified by a copy from a constant global. If we can prove this, we can 145 /// replace any uses of the alloca with uses of the global directly. 146 static MemTransferInst * 147 isOnlyCopiedFromConstantMemory(AliasAnalysis *AA, 148 AllocaInst *AI, 149 SmallVectorImpl<Instruction *> &ToDelete) { 150 MemTransferInst *TheCopy = nullptr; 151 if (isOnlyCopiedFromConstantMemory(AA, AI, TheCopy, ToDelete)) 152 return TheCopy; 153 return nullptr; 154 } 155 156 /// Returns true if V is dereferenceable for size of alloca. 157 static bool isDereferenceableForAllocaSize(const Value *V, const AllocaInst *AI, 158 const DataLayout &DL) { 159 if (AI->isArrayAllocation()) 160 return false; 161 uint64_t AllocaSize = DL.getTypeStoreSize(AI->getAllocatedType()); 162 if (!AllocaSize) 163 return false; 164 return isDereferenceableAndAlignedPointer(V, Align(AI->getAlignment()), 165 APInt(64, AllocaSize), DL); 166 } 167 168 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 169 // Check for array size of 1 (scalar allocation). 170 if (!AI.isArrayAllocation()) { 171 // i32 1 is the canonical array size for scalar allocations. 172 if (AI.getArraySize()->getType()->isIntegerTy(32)) 173 return nullptr; 174 175 // Canonicalize it. 176 return IC.replaceOperand(AI, 0, IC.Builder.getInt32(1)); 177 } 178 179 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 180 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 181 if (C->getValue().getActiveBits() <= 64) { 182 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 183 AllocaInst *New = IC.Builder.CreateAlloca(NewTy, nullptr, AI.getName()); 184 New->setAlignment(AI.getAlign()); 185 186 // Scan to the end of the allocation instructions, to skip over a block of 187 // allocas if possible...also skip interleaved debug info 188 // 189 BasicBlock::iterator It(New); 190 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 191 ++It; 192 193 // Now that I is pointing to the first non-allocation-inst in the block, 194 // insert our getelementptr instruction... 195 // 196 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 197 Value *NullIdx = Constant::getNullValue(IdxTy); 198 Value *Idx[2] = {NullIdx, NullIdx}; 199 Instruction *GEP = GetElementPtrInst::CreateInBounds( 200 NewTy, New, Idx, New->getName() + ".sub"); 201 IC.InsertNewInstBefore(GEP, *It); 202 203 // Now make everything use the getelementptr instead of the original 204 // allocation. 205 return IC.replaceInstUsesWith(AI, GEP); 206 } 207 } 208 209 if (isa<UndefValue>(AI.getArraySize())) 210 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 211 212 // Ensure that the alloca array size argument has type intptr_t, so that 213 // any casting is exposed early. 214 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 215 if (AI.getArraySize()->getType() != IntPtrTy) { 216 Value *V = IC.Builder.CreateIntCast(AI.getArraySize(), IntPtrTy, false); 217 return IC.replaceOperand(AI, 0, V); 218 } 219 220 return nullptr; 221 } 222 223 namespace { 224 // If I and V are pointers in different address space, it is not allowed to 225 // use replaceAllUsesWith since I and V have different types. A 226 // non-target-specific transformation should not use addrspacecast on V since 227 // the two address space may be disjoint depending on target. 228 // 229 // This class chases down uses of the old pointer until reaching the load 230 // instructions, then replaces the old pointer in the load instructions with 231 // the new pointer. If during the chasing it sees bitcast or GEP, it will 232 // create new bitcast or GEP with the new pointer and use them in the load 233 // instruction. 234 class PointerReplacer { 235 public: 236 PointerReplacer(InstCombiner &IC) : IC(IC) {} 237 void replacePointer(Instruction &I, Value *V); 238 239 private: 240 void findLoadAndReplace(Instruction &I); 241 void replace(Instruction *I); 242 Value *getReplacement(Value *I); 243 244 SmallVector<Instruction *, 4> Path; 245 MapVector<Value *, Value *> WorkMap; 246 InstCombiner &IC; 247 }; 248 } // end anonymous namespace 249 250 void PointerReplacer::findLoadAndReplace(Instruction &I) { 251 for (auto U : I.users()) { 252 auto *Inst = dyn_cast<Instruction>(&*U); 253 if (!Inst) 254 return; 255 LLVM_DEBUG(dbgs() << "Found pointer user: " << *U << '\n'); 256 if (isa<LoadInst>(Inst)) { 257 for (auto P : Path) 258 replace(P); 259 replace(Inst); 260 } else if (isa<GetElementPtrInst>(Inst) || isa<BitCastInst>(Inst)) { 261 Path.push_back(Inst); 262 findLoadAndReplace(*Inst); 263 Path.pop_back(); 264 } else { 265 return; 266 } 267 } 268 } 269 270 Value *PointerReplacer::getReplacement(Value *V) { 271 auto Loc = WorkMap.find(V); 272 if (Loc != WorkMap.end()) 273 return Loc->second; 274 return nullptr; 275 } 276 277 void PointerReplacer::replace(Instruction *I) { 278 if (getReplacement(I)) 279 return; 280 281 if (auto *LT = dyn_cast<LoadInst>(I)) { 282 auto *V = getReplacement(LT->getPointerOperand()); 283 assert(V && "Operand not replaced"); 284 auto *NewI = new LoadInst(I->getType(), V, "", false, 285 IC.getDataLayout().getABITypeAlign(I->getType())); 286 NewI->takeName(LT); 287 IC.InsertNewInstWith(NewI, *LT); 288 IC.replaceInstUsesWith(*LT, NewI); 289 WorkMap[LT] = NewI; 290 } else if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 291 auto *V = getReplacement(GEP->getPointerOperand()); 292 assert(V && "Operand not replaced"); 293 SmallVector<Value *, 8> Indices; 294 Indices.append(GEP->idx_begin(), GEP->idx_end()); 295 auto *NewI = GetElementPtrInst::Create( 296 V->getType()->getPointerElementType(), V, Indices); 297 IC.InsertNewInstWith(NewI, *GEP); 298 NewI->takeName(GEP); 299 WorkMap[GEP] = NewI; 300 } else if (auto *BC = dyn_cast<BitCastInst>(I)) { 301 auto *V = getReplacement(BC->getOperand(0)); 302 assert(V && "Operand not replaced"); 303 auto *NewT = PointerType::get(BC->getType()->getPointerElementType(), 304 V->getType()->getPointerAddressSpace()); 305 auto *NewI = new BitCastInst(V, NewT); 306 IC.InsertNewInstWith(NewI, *BC); 307 NewI->takeName(BC); 308 WorkMap[BC] = NewI; 309 } else { 310 llvm_unreachable("should never reach here"); 311 } 312 } 313 314 void PointerReplacer::replacePointer(Instruction &I, Value *V) { 315 #ifndef NDEBUG 316 auto *PT = cast<PointerType>(I.getType()); 317 auto *NT = cast<PointerType>(V->getType()); 318 assert(PT != NT && PT->getElementType() == NT->getElementType() && 319 "Invalid usage"); 320 #endif 321 WorkMap[&I] = V; 322 findLoadAndReplace(I); 323 } 324 325 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 326 if (auto *I = simplifyAllocaArraySize(*this, AI)) 327 return I; 328 329 if (AI.getAllocatedType()->isSized()) { 330 // Move all alloca's of zero byte objects to the entry block and merge them 331 // together. Note that we only do this for alloca's, because malloc should 332 // allocate and return a unique pointer, even for a zero byte allocation. 333 if (DL.getTypeAllocSize(AI.getAllocatedType()).getKnownMinSize() == 0) { 334 // For a zero sized alloca there is no point in doing an array allocation. 335 // This is helpful if the array size is a complicated expression not used 336 // elsewhere. 337 if (AI.isArrayAllocation()) 338 return replaceOperand(AI, 0, 339 ConstantInt::get(AI.getArraySize()->getType(), 1)); 340 341 // Get the first instruction in the entry block. 342 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 343 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 344 if (FirstInst != &AI) { 345 // If the entry block doesn't start with a zero-size alloca then move 346 // this one to the start of the entry block. There is no problem with 347 // dominance as the array size was forced to a constant earlier already. 348 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 349 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 350 DL.getTypeAllocSize(EntryAI->getAllocatedType()) 351 .getKnownMinSize() != 0) { 352 AI.moveBefore(FirstInst); 353 return &AI; 354 } 355 356 // Replace this zero-sized alloca with the one at the start of the entry 357 // block after ensuring that the address will be aligned enough for both 358 // types. 359 const Align MaxAlign = std::max(EntryAI->getAlign(), AI.getAlign()); 360 EntryAI->setAlignment(MaxAlign); 361 if (AI.getType() != EntryAI->getType()) 362 return new BitCastInst(EntryAI, AI.getType()); 363 return replaceInstUsesWith(AI, EntryAI); 364 } 365 } 366 } 367 368 // Check to see if this allocation is only modified by a memcpy/memmove from 369 // a constant whose alignment is equal to or exceeds that of the allocation. 370 // If this is the case, we can change all users to use the constant global 371 // instead. This is commonly produced by the CFE by constructs like "void 372 // foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' is only subsequently 373 // read. 374 SmallVector<Instruction *, 4> ToDelete; 375 if (MemTransferInst *Copy = isOnlyCopiedFromConstantMemory(AA, &AI, ToDelete)) { 376 Align AllocaAlign = AI.getAlign(); 377 Align SourceAlign = getOrEnforceKnownAlignment( 378 Copy->getSource(), AllocaAlign, DL, &AI, &AC, &DT); 379 if (AllocaAlign <= SourceAlign && 380 isDereferenceableForAllocaSize(Copy->getSource(), &AI, DL)) { 381 LLVM_DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 382 LLVM_DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 383 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 384 eraseInstFromFunction(*ToDelete[i]); 385 Value *TheSrc = Copy->getSource(); 386 auto *SrcTy = TheSrc->getType(); 387 auto *DestTy = PointerType::get(AI.getType()->getPointerElementType(), 388 SrcTy->getPointerAddressSpace()); 389 Value *Cast = 390 Builder.CreatePointerBitCastOrAddrSpaceCast(TheSrc, DestTy); 391 if (AI.getType()->getPointerAddressSpace() == 392 SrcTy->getPointerAddressSpace()) { 393 Instruction *NewI = replaceInstUsesWith(AI, Cast); 394 eraseInstFromFunction(*Copy); 395 ++NumGlobalCopies; 396 return NewI; 397 } 398 399 PointerReplacer PtrReplacer(*this); 400 PtrReplacer.replacePointer(AI, Cast); 401 ++NumGlobalCopies; 402 } 403 } 404 405 // At last, use the generic allocation site handler to aggressively remove 406 // unused allocas. 407 return visitAllocSite(AI); 408 } 409 410 // Are we allowed to form a atomic load or store of this type? 411 static bool isSupportedAtomicType(Type *Ty) { 412 return Ty->isIntOrPtrTy() || Ty->isFloatingPointTy(); 413 } 414 415 /// Helper to combine a load to a new type. 416 /// 417 /// This just does the work of combining a load to a new type. It handles 418 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 419 /// loaded *value* type. This will convert it to a pointer, cast the operand to 420 /// that pointer type, load it, etc. 421 /// 422 /// Note that this will create all of the instructions with whatever insert 423 /// point the \c InstCombiner currently is using. 424 LoadInst *InstCombiner::combineLoadToNewType(LoadInst &LI, Type *NewTy, 425 const Twine &Suffix) { 426 assert((!LI.isAtomic() || isSupportedAtomicType(NewTy)) && 427 "can't fold an atomic load to requested type"); 428 429 Value *Ptr = LI.getPointerOperand(); 430 unsigned AS = LI.getPointerAddressSpace(); 431 Value *NewPtr = nullptr; 432 if (!(match(Ptr, m_BitCast(m_Value(NewPtr))) && 433 NewPtr->getType()->getPointerElementType() == NewTy && 434 NewPtr->getType()->getPointerAddressSpace() == AS)) 435 NewPtr = Builder.CreateBitCast(Ptr, NewTy->getPointerTo(AS)); 436 437 LoadInst *NewLoad = Builder.CreateAlignedLoad( 438 NewTy, NewPtr, LI.getAlign(), LI.isVolatile(), LI.getName() + Suffix); 439 NewLoad->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 440 copyMetadataForLoad(*NewLoad, LI); 441 return NewLoad; 442 } 443 444 /// Combine a store to a new type. 445 /// 446 /// Returns the newly created store instruction. 447 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 448 assert((!SI.isAtomic() || isSupportedAtomicType(V->getType())) && 449 "can't fold an atomic store of requested type"); 450 451 Value *Ptr = SI.getPointerOperand(); 452 unsigned AS = SI.getPointerAddressSpace(); 453 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 454 SI.getAllMetadata(MD); 455 456 StoreInst *NewStore = IC.Builder.CreateAlignedStore( 457 V, IC.Builder.CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 458 SI.getAlign(), SI.isVolatile()); 459 NewStore->setAtomic(SI.getOrdering(), SI.getSyncScopeID()); 460 for (const auto &MDPair : MD) { 461 unsigned ID = MDPair.first; 462 MDNode *N = MDPair.second; 463 // Note, essentially every kind of metadata should be preserved here! This 464 // routine is supposed to clone a store instruction changing *only its 465 // type*. The only metadata it makes sense to drop is metadata which is 466 // invalidated when the pointer type changes. This should essentially 467 // never be the case in LLVM, but we explicitly switch over only known 468 // metadata to be conservatively correct. If you are adding metadata to 469 // LLVM which pertains to stores, you almost certainly want to add it 470 // here. 471 switch (ID) { 472 case LLVMContext::MD_dbg: 473 case LLVMContext::MD_tbaa: 474 case LLVMContext::MD_prof: 475 case LLVMContext::MD_fpmath: 476 case LLVMContext::MD_tbaa_struct: 477 case LLVMContext::MD_alias_scope: 478 case LLVMContext::MD_noalias: 479 case LLVMContext::MD_nontemporal: 480 case LLVMContext::MD_mem_parallel_loop_access: 481 case LLVMContext::MD_access_group: 482 // All of these directly apply. 483 NewStore->setMetadata(ID, N); 484 break; 485 case LLVMContext::MD_invariant_load: 486 case LLVMContext::MD_nonnull: 487 case LLVMContext::MD_range: 488 case LLVMContext::MD_align: 489 case LLVMContext::MD_dereferenceable: 490 case LLVMContext::MD_dereferenceable_or_null: 491 // These don't apply for stores. 492 break; 493 } 494 } 495 496 return NewStore; 497 } 498 499 /// Returns true if instruction represent minmax pattern like: 500 /// select ((cmp load V1, load V2), V1, V2). 501 static bool isMinMaxWithLoads(Value *V, Type *&LoadTy) { 502 assert(V->getType()->isPointerTy() && "Expected pointer type."); 503 // Ignore possible ty* to ixx* bitcast. 504 V = peekThroughBitcast(V); 505 // Check that select is select ((cmp load V1, load V2), V1, V2) - minmax 506 // pattern. 507 CmpInst::Predicate Pred; 508 Instruction *L1; 509 Instruction *L2; 510 Value *LHS; 511 Value *RHS; 512 if (!match(V, m_Select(m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2)), 513 m_Value(LHS), m_Value(RHS)))) 514 return false; 515 LoadTy = L1->getType(); 516 return (match(L1, m_Load(m_Specific(LHS))) && 517 match(L2, m_Load(m_Specific(RHS)))) || 518 (match(L1, m_Load(m_Specific(RHS))) && 519 match(L2, m_Load(m_Specific(LHS)))); 520 } 521 522 /// Combine loads to match the type of their uses' value after looking 523 /// through intervening bitcasts. 524 /// 525 /// The core idea here is that if the result of a load is used in an operation, 526 /// we should load the type most conducive to that operation. For example, when 527 /// loading an integer and converting that immediately to a pointer, we should 528 /// instead directly load a pointer. 529 /// 530 /// However, this routine must never change the width of a load or the number of 531 /// loads as that would introduce a semantic change. This combine is expected to 532 /// be a semantic no-op which just allows loads to more closely model the types 533 /// of their consuming operations. 534 /// 535 /// Currently, we also refuse to change the precise type used for an atomic load 536 /// or a volatile load. This is debatable, and might be reasonable to change 537 /// later. However, it is risky in case some backend or other part of LLVM is 538 /// relying on the exact type loaded to select appropriate atomic operations. 539 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 540 // FIXME: We could probably with some care handle both volatile and ordered 541 // atomic loads here but it isn't clear that this is important. 542 if (!LI.isUnordered()) 543 return nullptr; 544 545 if (LI.use_empty()) 546 return nullptr; 547 548 // swifterror values can't be bitcasted. 549 if (LI.getPointerOperand()->isSwiftError()) 550 return nullptr; 551 552 Type *Ty = LI.getType(); 553 const DataLayout &DL = IC.getDataLayout(); 554 555 // Try to canonicalize loads which are only ever stored to operate over 556 // integers instead of any other type. We only do this when the loaded type 557 // is sized and has a size exactly the same as its store size and the store 558 // size is a legal integer type. 559 // Do not perform canonicalization if minmax pattern is found (to avoid 560 // infinite loop). 561 Type *Dummy; 562 if (!Ty->isIntegerTy() && Ty->isSized() && !isa<ScalableVectorType>(Ty) && 563 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 564 DL.typeSizeEqualsStoreSize(Ty) && !DL.isNonIntegralPointerType(Ty) && 565 !isMinMaxWithLoads( 566 peekThroughBitcast(LI.getPointerOperand(), /*OneUseOnly=*/true), 567 Dummy)) { 568 if (all_of(LI.users(), [&LI](User *U) { 569 auto *SI = dyn_cast<StoreInst>(U); 570 return SI && SI->getPointerOperand() != &LI && 571 !SI->getPointerOperand()->isSwiftError(); 572 })) { 573 LoadInst *NewLoad = IC.combineLoadToNewType( 574 LI, Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 575 // Replace all the stores with stores of the newly loaded value. 576 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 577 auto *SI = cast<StoreInst>(*UI++); 578 IC.Builder.SetInsertPoint(SI); 579 combineStoreToNewValue(IC, *SI, NewLoad); 580 IC.eraseInstFromFunction(*SI); 581 } 582 assert(LI.use_empty() && "Failed to remove all users of the load!"); 583 // Return the old load so the combiner can delete it safely. 584 return &LI; 585 } 586 } 587 588 // Fold away bit casts of the loaded value by loading the desired type. 589 // We can do this for BitCastInsts as well as casts from and to pointer types, 590 // as long as those are noops (i.e., the source or dest type have the same 591 // bitwidth as the target's pointers). 592 if (LI.hasOneUse()) 593 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) 594 if (CI->isNoopCast(DL)) 595 if (!LI.isAtomic() || isSupportedAtomicType(CI->getDestTy())) { 596 LoadInst *NewLoad = IC.combineLoadToNewType(LI, CI->getDestTy()); 597 CI->replaceAllUsesWith(NewLoad); 598 IC.eraseInstFromFunction(*CI); 599 return &LI; 600 } 601 602 // FIXME: We should also canonicalize loads of vectors when their elements are 603 // cast to other types. 604 return nullptr; 605 } 606 607 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 608 // FIXME: We could probably with some care handle both volatile and atomic 609 // stores here but it isn't clear that this is important. 610 if (!LI.isSimple()) 611 return nullptr; 612 613 Type *T = LI.getType(); 614 if (!T->isAggregateType()) 615 return nullptr; 616 617 StringRef Name = LI.getName(); 618 assert(LI.getAlignment() && "Alignment must be set at this point"); 619 620 if (auto *ST = dyn_cast<StructType>(T)) { 621 // If the struct only have one element, we unpack. 622 auto NumElements = ST->getNumElements(); 623 if (NumElements == 1) { 624 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ST->getTypeAtIndex(0U), 625 ".unpack"); 626 AAMDNodes AAMD; 627 LI.getAAMetadata(AAMD); 628 NewLoad->setAAMetadata(AAMD); 629 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 630 UndefValue::get(T), NewLoad, 0, Name)); 631 } 632 633 // We don't want to break loads with padding here as we'd loose 634 // the knowledge that padding exists for the rest of the pipeline. 635 const DataLayout &DL = IC.getDataLayout(); 636 auto *SL = DL.getStructLayout(ST); 637 if (SL->hasPadding()) 638 return nullptr; 639 640 const auto Align = LI.getAlign(); 641 auto *Addr = LI.getPointerOperand(); 642 auto *IdxType = Type::getInt32Ty(T->getContext()); 643 auto *Zero = ConstantInt::get(IdxType, 0); 644 645 Value *V = UndefValue::get(T); 646 for (unsigned i = 0; i < NumElements; i++) { 647 Value *Indices[2] = { 648 Zero, 649 ConstantInt::get(IdxType, i), 650 }; 651 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 652 Name + ".elt"); 653 auto *L = IC.Builder.CreateAlignedLoad( 654 ST->getElementType(i), Ptr, 655 commonAlignment(Align, SL->getElementOffset(i)), Name + ".unpack"); 656 // Propagate AA metadata. It'll still be valid on the narrowed load. 657 AAMDNodes AAMD; 658 LI.getAAMetadata(AAMD); 659 L->setAAMetadata(AAMD); 660 V = IC.Builder.CreateInsertValue(V, L, i); 661 } 662 663 V->setName(Name); 664 return IC.replaceInstUsesWith(LI, V); 665 } 666 667 if (auto *AT = dyn_cast<ArrayType>(T)) { 668 auto *ET = AT->getElementType(); 669 auto NumElements = AT->getNumElements(); 670 if (NumElements == 1) { 671 LoadInst *NewLoad = IC.combineLoadToNewType(LI, ET, ".unpack"); 672 AAMDNodes AAMD; 673 LI.getAAMetadata(AAMD); 674 NewLoad->setAAMetadata(AAMD); 675 return IC.replaceInstUsesWith(LI, IC.Builder.CreateInsertValue( 676 UndefValue::get(T), NewLoad, 0, Name)); 677 } 678 679 // Bail out if the array is too large. Ideally we would like to optimize 680 // arrays of arbitrary size but this has a terrible impact on compile time. 681 // The threshold here is chosen arbitrarily, maybe needs a little bit of 682 // tuning. 683 if (NumElements > IC.MaxArraySizeForCombine) 684 return nullptr; 685 686 const DataLayout &DL = IC.getDataLayout(); 687 auto EltSize = DL.getTypeAllocSize(ET); 688 const auto Align = LI.getAlign(); 689 690 auto *Addr = LI.getPointerOperand(); 691 auto *IdxType = Type::getInt64Ty(T->getContext()); 692 auto *Zero = ConstantInt::get(IdxType, 0); 693 694 Value *V = UndefValue::get(T); 695 uint64_t Offset = 0; 696 for (uint64_t i = 0; i < NumElements; i++) { 697 Value *Indices[2] = { 698 Zero, 699 ConstantInt::get(IdxType, i), 700 }; 701 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 702 Name + ".elt"); 703 auto *L = IC.Builder.CreateAlignedLoad(AT->getElementType(), Ptr, 704 commonAlignment(Align, Offset), 705 Name + ".unpack"); 706 AAMDNodes AAMD; 707 LI.getAAMetadata(AAMD); 708 L->setAAMetadata(AAMD); 709 V = IC.Builder.CreateInsertValue(V, L, i); 710 Offset += EltSize; 711 } 712 713 V->setName(Name); 714 return IC.replaceInstUsesWith(LI, V); 715 } 716 717 return nullptr; 718 } 719 720 // If we can determine that all possible objects pointed to by the provided 721 // pointer value are, not only dereferenceable, but also definitively less than 722 // or equal to the provided maximum size, then return true. Otherwise, return 723 // false (constant global values and allocas fall into this category). 724 // 725 // FIXME: This should probably live in ValueTracking (or similar). 726 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 727 const DataLayout &DL) { 728 SmallPtrSet<Value *, 4> Visited; 729 SmallVector<Value *, 4> Worklist(1, V); 730 731 do { 732 Value *P = Worklist.pop_back_val(); 733 P = P->stripPointerCasts(); 734 735 if (!Visited.insert(P).second) 736 continue; 737 738 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 739 Worklist.push_back(SI->getTrueValue()); 740 Worklist.push_back(SI->getFalseValue()); 741 continue; 742 } 743 744 if (PHINode *PN = dyn_cast<PHINode>(P)) { 745 for (Value *IncValue : PN->incoming_values()) 746 Worklist.push_back(IncValue); 747 continue; 748 } 749 750 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 751 if (GA->isInterposable()) 752 return false; 753 Worklist.push_back(GA->getAliasee()); 754 continue; 755 } 756 757 // If we know how big this object is, and it is less than MaxSize, continue 758 // searching. Otherwise, return false. 759 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 760 if (!AI->getAllocatedType()->isSized()) 761 return false; 762 763 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 764 if (!CS) 765 return false; 766 767 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 768 // Make sure that, even if the multiplication below would wrap as an 769 // uint64_t, we still do the right thing. 770 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 771 return false; 772 continue; 773 } 774 775 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 776 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 777 return false; 778 779 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 780 if (InitSize > MaxSize) 781 return false; 782 continue; 783 } 784 785 return false; 786 } while (!Worklist.empty()); 787 788 return true; 789 } 790 791 // If we're indexing into an object of a known size, and the outer index is 792 // not a constant, but having any value but zero would lead to undefined 793 // behavior, replace it with zero. 794 // 795 // For example, if we have: 796 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 797 // ... 798 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 799 // ... = load i32* %arrayidx, align 4 800 // Then we know that we can replace %x in the GEP with i64 0. 801 // 802 // FIXME: We could fold any GEP index to zero that would cause UB if it were 803 // not zero. Currently, we only handle the first such index. Also, we could 804 // also search through non-zero constant indices if we kept track of the 805 // offsets those indices implied. 806 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 807 Instruction *MemI, unsigned &Idx) { 808 if (GEPI->getNumOperands() < 2) 809 return false; 810 811 // Find the first non-zero index of a GEP. If all indices are zero, return 812 // one past the last index. 813 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 814 unsigned I = 1; 815 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 816 Value *V = GEPI->getOperand(I); 817 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 818 if (CI->isZero()) 819 continue; 820 821 break; 822 } 823 824 return I; 825 }; 826 827 // Skip through initial 'zero' indices, and find the corresponding pointer 828 // type. See if the next index is not a constant. 829 Idx = FirstNZIdx(GEPI); 830 if (Idx == GEPI->getNumOperands()) 831 return false; 832 if (isa<Constant>(GEPI->getOperand(Idx))) 833 return false; 834 835 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 836 Type *AllocTy = 837 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 838 if (!AllocTy || !AllocTy->isSized()) 839 return false; 840 const DataLayout &DL = IC.getDataLayout(); 841 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 842 843 // If there are more indices after the one we might replace with a zero, make 844 // sure they're all non-negative. If any of them are negative, the overall 845 // address being computed might be before the base address determined by the 846 // first non-zero index. 847 auto IsAllNonNegative = [&]() { 848 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 849 KnownBits Known = IC.computeKnownBits(GEPI->getOperand(i), 0, MemI); 850 if (Known.isNonNegative()) 851 continue; 852 return false; 853 } 854 855 return true; 856 }; 857 858 // FIXME: If the GEP is not inbounds, and there are extra indices after the 859 // one we'll replace, those could cause the address computation to wrap 860 // (rendering the IsAllNonNegative() check below insufficient). We can do 861 // better, ignoring zero indices (and other indices we can prove small 862 // enough not to wrap). 863 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 864 return false; 865 866 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 867 // also known to be dereferenceable. 868 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 869 IsAllNonNegative(); 870 } 871 872 // If we're indexing into an object with a variable index for the memory 873 // access, but the object has only one element, we can assume that the index 874 // will always be zero. If we replace the GEP, return it. 875 template <typename T> 876 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 877 T &MemI) { 878 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 879 unsigned Idx; 880 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 881 Instruction *NewGEPI = GEPI->clone(); 882 NewGEPI->setOperand(Idx, 883 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 884 NewGEPI->insertBefore(GEPI); 885 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 886 return NewGEPI; 887 } 888 } 889 890 return nullptr; 891 } 892 893 static bool canSimplifyNullStoreOrGEP(StoreInst &SI) { 894 if (NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())) 895 return false; 896 897 auto *Ptr = SI.getPointerOperand(); 898 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) 899 Ptr = GEPI->getOperand(0); 900 return (isa<ConstantPointerNull>(Ptr) && 901 !NullPointerIsDefined(SI.getFunction(), SI.getPointerAddressSpace())); 902 } 903 904 static bool canSimplifyNullLoadOrGEP(LoadInst &LI, Value *Op) { 905 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 906 const Value *GEPI0 = GEPI->getOperand(0); 907 if (isa<ConstantPointerNull>(GEPI0) && 908 !NullPointerIsDefined(LI.getFunction(), GEPI->getPointerAddressSpace())) 909 return true; 910 } 911 if (isa<UndefValue>(Op) || 912 (isa<ConstantPointerNull>(Op) && 913 !NullPointerIsDefined(LI.getFunction(), LI.getPointerAddressSpace()))) 914 return true; 915 return false; 916 } 917 918 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 919 Value *Op = LI.getOperand(0); 920 921 // Try to canonicalize the loaded type. 922 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 923 return Res; 924 925 // Attempt to improve the alignment. 926 Align KnownAlign = getOrEnforceKnownAlignment( 927 Op, DL.getPrefTypeAlign(LI.getType()), DL, &LI, &AC, &DT); 928 if (KnownAlign > LI.getAlign()) 929 LI.setAlignment(KnownAlign); 930 931 // Replace GEP indices if possible. 932 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 933 Worklist.push(NewGEPI); 934 return &LI; 935 } 936 937 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 938 return Res; 939 940 // Do really simple store-to-load forwarding and load CSE, to catch cases 941 // where there are several consecutive memory accesses to the same location, 942 // separated by a few arithmetic operations. 943 BasicBlock::iterator BBI(LI); 944 bool IsLoadCSE = false; 945 if (Value *AvailableVal = FindAvailableLoadedValue( 946 &LI, LI.getParent(), BBI, DefMaxInstsToScan, AA, &IsLoadCSE)) { 947 if (IsLoadCSE) 948 combineMetadataForCSE(cast<LoadInst>(AvailableVal), &LI, false); 949 950 return replaceInstUsesWith( 951 LI, Builder.CreateBitOrPointerCast(AvailableVal, LI.getType(), 952 LI.getName() + ".cast")); 953 } 954 955 // None of the following transforms are legal for volatile/ordered atomic 956 // loads. Most of them do apply for unordered atomics. 957 if (!LI.isUnordered()) return nullptr; 958 959 // load(gep null, ...) -> unreachable 960 // load null/undef -> unreachable 961 // TODO: Consider a target hook for valid address spaces for this xforms. 962 if (canSimplifyNullLoadOrGEP(LI, Op)) { 963 // Insert a new store to null instruction before the load to indicate 964 // that this code is not reachable. We do this instead of inserting 965 // an unreachable instruction directly because we cannot modify the 966 // CFG. 967 StoreInst *SI = new StoreInst(UndefValue::get(LI.getType()), 968 Constant::getNullValue(Op->getType()), &LI); 969 SI->setDebugLoc(LI.getDebugLoc()); 970 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 971 } 972 973 if (Op->hasOneUse()) { 974 // Change select and PHI nodes to select values instead of addresses: this 975 // helps alias analysis out a lot, allows many others simplifications, and 976 // exposes redundancy in the code. 977 // 978 // Note that we cannot do the transformation unless we know that the 979 // introduced loads cannot trap! Something like this is valid as long as 980 // the condition is always false: load (select bool %C, int* null, int* %G), 981 // but it would not be valid if we transformed it to load from null 982 // unconditionally. 983 // 984 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 985 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 986 Align Alignment = LI.getAlign(); 987 if (isSafeToLoadUnconditionally(SI->getOperand(1), LI.getType(), 988 Alignment, DL, SI) && 989 isSafeToLoadUnconditionally(SI->getOperand(2), LI.getType(), 990 Alignment, DL, SI)) { 991 LoadInst *V1 = 992 Builder.CreateLoad(LI.getType(), SI->getOperand(1), 993 SI->getOperand(1)->getName() + ".val"); 994 LoadInst *V2 = 995 Builder.CreateLoad(LI.getType(), SI->getOperand(2), 996 SI->getOperand(2)->getName() + ".val"); 997 assert(LI.isUnordered() && "implied by above"); 998 V1->setAlignment(Alignment); 999 V1->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1000 V2->setAlignment(Alignment); 1001 V2->setAtomic(LI.getOrdering(), LI.getSyncScopeID()); 1002 return SelectInst::Create(SI->getCondition(), V1, V2); 1003 } 1004 1005 // load (select (cond, null, P)) -> load P 1006 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 1007 !NullPointerIsDefined(SI->getFunction(), 1008 LI.getPointerAddressSpace())) 1009 return replaceOperand(LI, 0, SI->getOperand(2)); 1010 1011 // load (select (cond, P, null)) -> load P 1012 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 1013 !NullPointerIsDefined(SI->getFunction(), 1014 LI.getPointerAddressSpace())) 1015 return replaceOperand(LI, 0, SI->getOperand(1)); 1016 } 1017 } 1018 return nullptr; 1019 } 1020 1021 /// Look for extractelement/insertvalue sequence that acts like a bitcast. 1022 /// 1023 /// \returns underlying value that was "cast", or nullptr otherwise. 1024 /// 1025 /// For example, if we have: 1026 /// 1027 /// %E0 = extractelement <2 x double> %U, i32 0 1028 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 1029 /// %E1 = extractelement <2 x double> %U, i32 1 1030 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 1031 /// 1032 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 1033 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 1034 /// Note that %U may contain non-undef values where %V1 has undef. 1035 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 1036 Value *U = nullptr; 1037 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 1038 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 1039 if (!E) 1040 return nullptr; 1041 auto *W = E->getVectorOperand(); 1042 if (!U) 1043 U = W; 1044 else if (U != W) 1045 return nullptr; 1046 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 1047 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 1048 return nullptr; 1049 V = IV->getAggregateOperand(); 1050 } 1051 if (!isa<UndefValue>(V) ||!U) 1052 return nullptr; 1053 1054 auto *UT = cast<VectorType>(U->getType()); 1055 auto *VT = V->getType(); 1056 // Check that types UT and VT are bitwise isomorphic. 1057 const auto &DL = IC.getDataLayout(); 1058 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 1059 return nullptr; 1060 } 1061 if (auto *AT = dyn_cast<ArrayType>(VT)) { 1062 if (AT->getNumElements() != UT->getNumElements()) 1063 return nullptr; 1064 } else { 1065 auto *ST = cast<StructType>(VT); 1066 if (ST->getNumElements() != UT->getNumElements()) 1067 return nullptr; 1068 for (const auto *EltT : ST->elements()) { 1069 if (EltT != UT->getElementType()) 1070 return nullptr; 1071 } 1072 } 1073 return U; 1074 } 1075 1076 /// Combine stores to match the type of value being stored. 1077 /// 1078 /// The core idea here is that the memory does not have any intrinsic type and 1079 /// where we can we should match the type of a store to the type of value being 1080 /// stored. 1081 /// 1082 /// However, this routine must never change the width of a store or the number of 1083 /// stores as that would introduce a semantic change. This combine is expected to 1084 /// be a semantic no-op which just allows stores to more closely model the types 1085 /// of their incoming values. 1086 /// 1087 /// Currently, we also refuse to change the precise type used for an atomic or 1088 /// volatile store. This is debatable, and might be reasonable to change later. 1089 /// However, it is risky in case some backend or other part of LLVM is relying 1090 /// on the exact type stored to select appropriate atomic operations. 1091 /// 1092 /// \returns true if the store was successfully combined away. This indicates 1093 /// the caller must erase the store instruction. We have to let the caller erase 1094 /// the store instruction as otherwise there is no way to signal whether it was 1095 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 1096 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 1097 // FIXME: We could probably with some care handle both volatile and ordered 1098 // atomic stores here but it isn't clear that this is important. 1099 if (!SI.isUnordered()) 1100 return false; 1101 1102 // swifterror values can't be bitcasted. 1103 if (SI.getPointerOperand()->isSwiftError()) 1104 return false; 1105 1106 Value *V = SI.getValueOperand(); 1107 1108 // Fold away bit casts of the stored value by storing the original type. 1109 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1110 V = BC->getOperand(0); 1111 if (!SI.isAtomic() || isSupportedAtomicType(V->getType())) { 1112 combineStoreToNewValue(IC, SI, V); 1113 return true; 1114 } 1115 } 1116 1117 if (Value *U = likeBitCastFromVector(IC, V)) 1118 if (!SI.isAtomic() || isSupportedAtomicType(U->getType())) { 1119 combineStoreToNewValue(IC, SI, U); 1120 return true; 1121 } 1122 1123 // FIXME: We should also canonicalize stores of vectors when their elements 1124 // are cast to other types. 1125 return false; 1126 } 1127 1128 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1129 // FIXME: We could probably with some care handle both volatile and atomic 1130 // stores here but it isn't clear that this is important. 1131 if (!SI.isSimple()) 1132 return false; 1133 1134 Value *V = SI.getValueOperand(); 1135 Type *T = V->getType(); 1136 1137 if (!T->isAggregateType()) 1138 return false; 1139 1140 if (auto *ST = dyn_cast<StructType>(T)) { 1141 // If the struct only have one element, we unpack. 1142 unsigned Count = ST->getNumElements(); 1143 if (Count == 1) { 1144 V = IC.Builder.CreateExtractValue(V, 0); 1145 combineStoreToNewValue(IC, SI, V); 1146 return true; 1147 } 1148 1149 // We don't want to break loads with padding here as we'd loose 1150 // the knowledge that padding exists for the rest of the pipeline. 1151 const DataLayout &DL = IC.getDataLayout(); 1152 auto *SL = DL.getStructLayout(ST); 1153 if (SL->hasPadding()) 1154 return false; 1155 1156 const auto Align = SI.getAlign(); 1157 1158 SmallString<16> EltName = V->getName(); 1159 EltName += ".elt"; 1160 auto *Addr = SI.getPointerOperand(); 1161 SmallString<16> AddrName = Addr->getName(); 1162 AddrName += ".repack"; 1163 1164 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1165 auto *Zero = ConstantInt::get(IdxType, 0); 1166 for (unsigned i = 0; i < Count; i++) { 1167 Value *Indices[2] = { 1168 Zero, 1169 ConstantInt::get(IdxType, i), 1170 }; 1171 auto *Ptr = IC.Builder.CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1172 AddrName); 1173 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1174 auto EltAlign = commonAlignment(Align, SL->getElementOffset(i)); 1175 llvm::Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1176 AAMDNodes AAMD; 1177 SI.getAAMetadata(AAMD); 1178 NS->setAAMetadata(AAMD); 1179 } 1180 1181 return true; 1182 } 1183 1184 if (auto *AT = dyn_cast<ArrayType>(T)) { 1185 // If the array only have one element, we unpack. 1186 auto NumElements = AT->getNumElements(); 1187 if (NumElements == 1) { 1188 V = IC.Builder.CreateExtractValue(V, 0); 1189 combineStoreToNewValue(IC, SI, V); 1190 return true; 1191 } 1192 1193 // Bail out if the array is too large. Ideally we would like to optimize 1194 // arrays of arbitrary size but this has a terrible impact on compile time. 1195 // The threshold here is chosen arbitrarily, maybe needs a little bit of 1196 // tuning. 1197 if (NumElements > IC.MaxArraySizeForCombine) 1198 return false; 1199 1200 const DataLayout &DL = IC.getDataLayout(); 1201 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1202 const auto Align = SI.getAlign(); 1203 1204 SmallString<16> EltName = V->getName(); 1205 EltName += ".elt"; 1206 auto *Addr = SI.getPointerOperand(); 1207 SmallString<16> AddrName = Addr->getName(); 1208 AddrName += ".repack"; 1209 1210 auto *IdxType = Type::getInt64Ty(T->getContext()); 1211 auto *Zero = ConstantInt::get(IdxType, 0); 1212 1213 uint64_t Offset = 0; 1214 for (uint64_t i = 0; i < NumElements; i++) { 1215 Value *Indices[2] = { 1216 Zero, 1217 ConstantInt::get(IdxType, i), 1218 }; 1219 auto *Ptr = IC.Builder.CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1220 AddrName); 1221 auto *Val = IC.Builder.CreateExtractValue(V, i, EltName); 1222 auto EltAlign = commonAlignment(Align, Offset); 1223 Instruction *NS = IC.Builder.CreateAlignedStore(Val, Ptr, EltAlign); 1224 AAMDNodes AAMD; 1225 SI.getAAMetadata(AAMD); 1226 NS->setAAMetadata(AAMD); 1227 Offset += EltSize; 1228 } 1229 1230 return true; 1231 } 1232 1233 return false; 1234 } 1235 1236 /// equivalentAddressValues - Test if A and B will obviously have the same 1237 /// value. This includes recognizing that %t0 and %t1 will have the same 1238 /// value in code like this: 1239 /// %t0 = getelementptr \@a, 0, 3 1240 /// store i32 0, i32* %t0 1241 /// %t1 = getelementptr \@a, 0, 3 1242 /// %t2 = load i32* %t1 1243 /// 1244 static bool equivalentAddressValues(Value *A, Value *B) { 1245 // Test if the values are trivially equivalent. 1246 if (A == B) return true; 1247 1248 // Test if the values come form identical arithmetic instructions. 1249 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1250 // its only used to compare two uses within the same basic block, which 1251 // means that they'll always either have the same value or one of them 1252 // will have an undefined value. 1253 if (isa<BinaryOperator>(A) || 1254 isa<CastInst>(A) || 1255 isa<PHINode>(A) || 1256 isa<GetElementPtrInst>(A)) 1257 if (Instruction *BI = dyn_cast<Instruction>(B)) 1258 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1259 return true; 1260 1261 // Otherwise they may not be equivalent. 1262 return false; 1263 } 1264 1265 /// Converts store (bitcast (load (bitcast (select ...)))) to 1266 /// store (load (select ...)), where select is minmax: 1267 /// select ((cmp load V1, load V2), V1, V2). 1268 static bool removeBitcastsFromLoadStoreOnMinMax(InstCombiner &IC, 1269 StoreInst &SI) { 1270 // bitcast? 1271 if (!match(SI.getPointerOperand(), m_BitCast(m_Value()))) 1272 return false; 1273 // load? integer? 1274 Value *LoadAddr; 1275 if (!match(SI.getValueOperand(), m_Load(m_BitCast(m_Value(LoadAddr))))) 1276 return false; 1277 auto *LI = cast<LoadInst>(SI.getValueOperand()); 1278 if (!LI->getType()->isIntegerTy()) 1279 return false; 1280 Type *CmpLoadTy; 1281 if (!isMinMaxWithLoads(LoadAddr, CmpLoadTy)) 1282 return false; 1283 1284 // Make sure the type would actually change. 1285 // This condition can be hit with chains of bitcasts. 1286 if (LI->getType() == CmpLoadTy) 1287 return false; 1288 1289 // Make sure we're not changing the size of the load/store. 1290 const auto &DL = IC.getDataLayout(); 1291 if (DL.getTypeStoreSizeInBits(LI->getType()) != 1292 DL.getTypeStoreSizeInBits(CmpLoadTy)) 1293 return false; 1294 1295 if (!all_of(LI->users(), [LI, LoadAddr](User *U) { 1296 auto *SI = dyn_cast<StoreInst>(U); 1297 return SI && SI->getPointerOperand() != LI && 1298 peekThroughBitcast(SI->getPointerOperand()) != LoadAddr && 1299 !SI->getPointerOperand()->isSwiftError(); 1300 })) 1301 return false; 1302 1303 IC.Builder.SetInsertPoint(LI); 1304 LoadInst *NewLI = IC.combineLoadToNewType(*LI, CmpLoadTy); 1305 // Replace all the stores with stores of the newly loaded value. 1306 for (auto *UI : LI->users()) { 1307 auto *USI = cast<StoreInst>(UI); 1308 IC.Builder.SetInsertPoint(USI); 1309 combineStoreToNewValue(IC, *USI, NewLI); 1310 } 1311 IC.replaceInstUsesWith(*LI, UndefValue::get(LI->getType())); 1312 IC.eraseInstFromFunction(*LI); 1313 return true; 1314 } 1315 1316 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1317 Value *Val = SI.getOperand(0); 1318 Value *Ptr = SI.getOperand(1); 1319 1320 // Try to canonicalize the stored type. 1321 if (combineStoreToValueType(*this, SI)) 1322 return eraseInstFromFunction(SI); 1323 1324 // Attempt to improve the alignment. 1325 const Align KnownAlign = getOrEnforceKnownAlignment( 1326 Ptr, DL.getPrefTypeAlign(Val->getType()), DL, &SI, &AC, &DT); 1327 if (KnownAlign > SI.getAlign()) 1328 SI.setAlignment(KnownAlign); 1329 1330 // Try to canonicalize the stored type. 1331 if (unpackStoreToAggregate(*this, SI)) 1332 return eraseInstFromFunction(SI); 1333 1334 if (removeBitcastsFromLoadStoreOnMinMax(*this, SI)) 1335 return eraseInstFromFunction(SI); 1336 1337 // Replace GEP indices if possible. 1338 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1339 Worklist.push(NewGEPI); 1340 return &SI; 1341 } 1342 1343 // Don't hack volatile/ordered stores. 1344 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1345 if (!SI.isUnordered()) return nullptr; 1346 1347 // If the RHS is an alloca with a single use, zapify the store, making the 1348 // alloca dead. 1349 if (Ptr->hasOneUse()) { 1350 if (isa<AllocaInst>(Ptr)) 1351 return eraseInstFromFunction(SI); 1352 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1353 if (isa<AllocaInst>(GEP->getOperand(0))) { 1354 if (GEP->getOperand(0)->hasOneUse()) 1355 return eraseInstFromFunction(SI); 1356 } 1357 } 1358 } 1359 1360 // If we have a store to a location which is known constant, we can conclude 1361 // that the store must be storing the constant value (else the memory 1362 // wouldn't be constant), and this must be a noop. 1363 if (AA->pointsToConstantMemory(Ptr)) 1364 return eraseInstFromFunction(SI); 1365 1366 // Do really simple DSE, to catch cases where there are several consecutive 1367 // stores to the same location, separated by a few arithmetic operations. This 1368 // situation often occurs with bitfield accesses. 1369 BasicBlock::iterator BBI(SI); 1370 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1371 --ScanInsts) { 1372 --BBI; 1373 // Don't count debug info directives, lest they affect codegen, 1374 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1375 if (isa<DbgInfoIntrinsic>(BBI) || 1376 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1377 ScanInsts++; 1378 continue; 1379 } 1380 1381 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1382 // Prev store isn't volatile, and stores to the same location? 1383 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1384 SI.getOperand(1))) { 1385 ++NumDeadStore; 1386 // Manually add back the original store to the worklist now, so it will 1387 // be processed after the operands of the removed store, as this may 1388 // expose additional DSE opportunities. 1389 Worklist.push(&SI); 1390 eraseInstFromFunction(*PrevSI); 1391 return nullptr; 1392 } 1393 break; 1394 } 1395 1396 // If this is a load, we have to stop. However, if the loaded value is from 1397 // the pointer we're loading and is producing the pointer we're storing, 1398 // then *this* store is dead (X = load P; store X -> P). 1399 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1400 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1401 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1402 return eraseInstFromFunction(SI); 1403 } 1404 1405 // Otherwise, this is a load from some other location. Stores before it 1406 // may not be dead. 1407 break; 1408 } 1409 1410 // Don't skip over loads, throws or things that can modify memory. 1411 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory() || BBI->mayThrow()) 1412 break; 1413 } 1414 1415 // store X, null -> turns into 'unreachable' in SimplifyCFG 1416 // store X, GEP(null, Y) -> turns into 'unreachable' in SimplifyCFG 1417 if (canSimplifyNullStoreOrGEP(SI)) { 1418 if (!isa<UndefValue>(Val)) 1419 return replaceOperand(SI, 0, UndefValue::get(Val->getType())); 1420 return nullptr; // Do not modify these! 1421 } 1422 1423 // store undef, Ptr -> noop 1424 if (isa<UndefValue>(Val)) 1425 return eraseInstFromFunction(SI); 1426 1427 // If this store is the second-to-last instruction in the basic block 1428 // (excluding debug info and bitcasts of pointers) and if the block ends with 1429 // an unconditional branch, try to move the store to the successor block. 1430 BBI = SI.getIterator(); 1431 do { 1432 ++BBI; 1433 } while (isa<DbgInfoIntrinsic>(BBI) || 1434 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1435 1436 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1437 if (BI->isUnconditional()) 1438 mergeStoreIntoSuccessor(SI); 1439 1440 return nullptr; 1441 } 1442 1443 /// Try to transform: 1444 /// if () { *P = v1; } else { *P = v2 } 1445 /// or: 1446 /// *P = v1; if () { *P = v2; } 1447 /// into a phi node with a store in the successor. 1448 bool InstCombiner::mergeStoreIntoSuccessor(StoreInst &SI) { 1449 assert(SI.isUnordered() && 1450 "This code has not been audited for volatile or ordered store case."); 1451 1452 // Check if the successor block has exactly 2 incoming edges. 1453 BasicBlock *StoreBB = SI.getParent(); 1454 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1455 if (!DestBB->hasNPredecessors(2)) 1456 return false; 1457 1458 // Capture the other block (the block that doesn't contain our store). 1459 pred_iterator PredIter = pred_begin(DestBB); 1460 if (*PredIter == StoreBB) 1461 ++PredIter; 1462 BasicBlock *OtherBB = *PredIter; 1463 1464 // Bail out if all of the relevant blocks aren't distinct. This can happen, 1465 // for example, if SI is in an infinite loop. 1466 if (StoreBB == DestBB || OtherBB == DestBB) 1467 return false; 1468 1469 // Verify that the other block ends in a branch and is not otherwise empty. 1470 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1471 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1472 if (!OtherBr || BBI == OtherBB->begin()) 1473 return false; 1474 1475 // If the other block ends in an unconditional branch, check for the 'if then 1476 // else' case. There is an instruction before the branch. 1477 StoreInst *OtherStore = nullptr; 1478 if (OtherBr->isUnconditional()) { 1479 --BBI; 1480 // Skip over debugging info. 1481 while (isa<DbgInfoIntrinsic>(BBI) || 1482 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1483 if (BBI==OtherBB->begin()) 1484 return false; 1485 --BBI; 1486 } 1487 // If this isn't a store, isn't a store to the same location, or is not the 1488 // right kind of store, bail out. 1489 OtherStore = dyn_cast<StoreInst>(BBI); 1490 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1491 !SI.isSameOperationAs(OtherStore)) 1492 return false; 1493 } else { 1494 // Otherwise, the other block ended with a conditional branch. If one of the 1495 // destinations is StoreBB, then we have the if/then case. 1496 if (OtherBr->getSuccessor(0) != StoreBB && 1497 OtherBr->getSuccessor(1) != StoreBB) 1498 return false; 1499 1500 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1501 // if/then triangle. See if there is a store to the same ptr as SI that 1502 // lives in OtherBB. 1503 for (;; --BBI) { 1504 // Check to see if we find the matching store. 1505 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1506 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1507 !SI.isSameOperationAs(OtherStore)) 1508 return false; 1509 break; 1510 } 1511 // If we find something that may be using or overwriting the stored 1512 // value, or if we run out of instructions, we can't do the transform. 1513 if (BBI->mayReadFromMemory() || BBI->mayThrow() || 1514 BBI->mayWriteToMemory() || BBI == OtherBB->begin()) 1515 return false; 1516 } 1517 1518 // In order to eliminate the store in OtherBr, we have to make sure nothing 1519 // reads or overwrites the stored value in StoreBB. 1520 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1521 // FIXME: This should really be AA driven. 1522 if (I->mayReadFromMemory() || I->mayThrow() || I->mayWriteToMemory()) 1523 return false; 1524 } 1525 } 1526 1527 // Insert a PHI node now if we need it. 1528 Value *MergedVal = OtherStore->getOperand(0); 1529 // The debug locations of the original instructions might differ. Merge them. 1530 DebugLoc MergedLoc = DILocation::getMergedLocation(SI.getDebugLoc(), 1531 OtherStore->getDebugLoc()); 1532 if (MergedVal != SI.getOperand(0)) { 1533 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1534 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1535 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1536 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1537 PN->setDebugLoc(MergedLoc); 1538 } 1539 1540 // Advance to a place where it is safe to insert the new store and insert it. 1541 BBI = DestBB->getFirstInsertionPt(); 1542 StoreInst *NewSI = 1543 new StoreInst(MergedVal, SI.getOperand(1), SI.isVolatile(), SI.getAlign(), 1544 SI.getOrdering(), SI.getSyncScopeID()); 1545 InsertNewInstBefore(NewSI, *BBI); 1546 NewSI->setDebugLoc(MergedLoc); 1547 1548 // If the two stores had AA tags, merge them. 1549 AAMDNodes AATags; 1550 SI.getAAMetadata(AATags); 1551 if (AATags) { 1552 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1553 NewSI->setAAMetadata(AATags); 1554 } 1555 1556 // Nuke the old stores. 1557 eraseInstFromFunction(SI); 1558 eraseInstFromFunction(*OtherStore); 1559 return true; 1560 } 1561