1 //===- InstCombineLoadStoreAlloca.cpp -------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the visit functions for load, store and alloca. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "InstCombineInternal.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/Statistic.h" 17 #include "llvm/Analysis/Loads.h" 18 #include "llvm/IR/DataLayout.h" 19 #include "llvm/IR/LLVMContext.h" 20 #include "llvm/IR/IntrinsicInst.h" 21 #include "llvm/IR/MDBuilder.h" 22 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 23 #include "llvm/Transforms/Utils/Local.h" 24 using namespace llvm; 25 26 #define DEBUG_TYPE "instcombine" 27 28 STATISTIC(NumDeadStore, "Number of dead stores eliminated"); 29 STATISTIC(NumGlobalCopies, "Number of allocas copied from constant global"); 30 31 /// pointsToConstantGlobal - Return true if V (possibly indirectly) points to 32 /// some part of a constant global variable. This intentionally only accepts 33 /// constant expressions because we can't rewrite arbitrary instructions. 34 static bool pointsToConstantGlobal(Value *V) { 35 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) 36 return GV->isConstant(); 37 38 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 39 if (CE->getOpcode() == Instruction::BitCast || 40 CE->getOpcode() == Instruction::AddrSpaceCast || 41 CE->getOpcode() == Instruction::GetElementPtr) 42 return pointsToConstantGlobal(CE->getOperand(0)); 43 } 44 return false; 45 } 46 47 /// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived) 48 /// pointer to an alloca. Ignore any reads of the pointer, return false if we 49 /// see any stores or other unknown uses. If we see pointer arithmetic, keep 50 /// track of whether it moves the pointer (with IsOffset) but otherwise traverse 51 /// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to 52 /// the alloca, and if the source pointer is a pointer to a constant global, we 53 /// can optimize this. 54 static bool 55 isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy, 56 SmallVectorImpl<Instruction *> &ToDelete) { 57 // We track lifetime intrinsics as we encounter them. If we decide to go 58 // ahead and replace the value with the global, this lets the caller quickly 59 // eliminate the markers. 60 61 SmallVector<std::pair<Value *, bool>, 35> ValuesToInspect; 62 ValuesToInspect.emplace_back(V, false); 63 while (!ValuesToInspect.empty()) { 64 auto ValuePair = ValuesToInspect.pop_back_val(); 65 const bool IsOffset = ValuePair.second; 66 for (auto &U : ValuePair.first->uses()) { 67 auto *I = cast<Instruction>(U.getUser()); 68 69 if (auto *LI = dyn_cast<LoadInst>(I)) { 70 // Ignore non-volatile loads, they are always ok. 71 if (!LI->isSimple()) return false; 72 continue; 73 } 74 75 if (isa<BitCastInst>(I) || isa<AddrSpaceCastInst>(I)) { 76 // If uses of the bitcast are ok, we are ok. 77 ValuesToInspect.emplace_back(I, IsOffset); 78 continue; 79 } 80 if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) { 81 // If the GEP has all zero indices, it doesn't offset the pointer. If it 82 // doesn't, it does. 83 ValuesToInspect.emplace_back(I, IsOffset || !GEP->hasAllZeroIndices()); 84 continue; 85 } 86 87 if (auto CS = CallSite(I)) { 88 // If this is the function being called then we treat it like a load and 89 // ignore it. 90 if (CS.isCallee(&U)) 91 continue; 92 93 unsigned DataOpNo = CS.getDataOperandNo(&U); 94 bool IsArgOperand = CS.isArgOperand(&U); 95 96 // Inalloca arguments are clobbered by the call. 97 if (IsArgOperand && CS.isInAllocaArgument(DataOpNo)) 98 return false; 99 100 // If this is a readonly/readnone call site, then we know it is just a 101 // load (but one that potentially returns the value itself), so we can 102 // ignore it if we know that the value isn't captured. 103 if (CS.onlyReadsMemory() && 104 (CS.getInstruction()->use_empty() || CS.doesNotCapture(DataOpNo))) 105 continue; 106 107 // If this is being passed as a byval argument, the caller is making a 108 // copy, so it is only a read of the alloca. 109 if (IsArgOperand && CS.isByValArgument(DataOpNo)) 110 continue; 111 } 112 113 // Lifetime intrinsics can be handled by the caller. 114 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { 115 if (II->getIntrinsicID() == Intrinsic::lifetime_start || 116 II->getIntrinsicID() == Intrinsic::lifetime_end) { 117 assert(II->use_empty() && "Lifetime markers have no result to use!"); 118 ToDelete.push_back(II); 119 continue; 120 } 121 } 122 123 // If this is isn't our memcpy/memmove, reject it as something we can't 124 // handle. 125 MemTransferInst *MI = dyn_cast<MemTransferInst>(I); 126 if (!MI) 127 return false; 128 129 // If the transfer is using the alloca as a source of the transfer, then 130 // ignore it since it is a load (unless the transfer is volatile). 131 if (U.getOperandNo() == 1) { 132 if (MI->isVolatile()) return false; 133 continue; 134 } 135 136 // If we already have seen a copy, reject the second one. 137 if (TheCopy) return false; 138 139 // If the pointer has been offset from the start of the alloca, we can't 140 // safely handle this. 141 if (IsOffset) return false; 142 143 // If the memintrinsic isn't using the alloca as the dest, reject it. 144 if (U.getOperandNo() != 0) return false; 145 146 // If the source of the memcpy/move is not a constant global, reject it. 147 if (!pointsToConstantGlobal(MI->getSource())) 148 return false; 149 150 // Otherwise, the transform is safe. Remember the copy instruction. 151 TheCopy = MI; 152 } 153 } 154 return true; 155 } 156 157 /// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only 158 /// modified by a copy from a constant global. If we can prove this, we can 159 /// replace any uses of the alloca with uses of the global directly. 160 static MemTransferInst * 161 isOnlyCopiedFromConstantGlobal(AllocaInst *AI, 162 SmallVectorImpl<Instruction *> &ToDelete) { 163 MemTransferInst *TheCopy = nullptr; 164 if (isOnlyCopiedFromConstantGlobal(AI, TheCopy, ToDelete)) 165 return TheCopy; 166 return nullptr; 167 } 168 169 static Instruction *simplifyAllocaArraySize(InstCombiner &IC, AllocaInst &AI) { 170 // Check for array size of 1 (scalar allocation). 171 if (!AI.isArrayAllocation()) { 172 // i32 1 is the canonical array size for scalar allocations. 173 if (AI.getArraySize()->getType()->isIntegerTy(32)) 174 return nullptr; 175 176 // Canonicalize it. 177 Value *V = IC.Builder->getInt32(1); 178 AI.setOperand(0, V); 179 return &AI; 180 } 181 182 // Convert: alloca Ty, C - where C is a constant != 1 into: alloca [C x Ty], 1 183 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) { 184 Type *NewTy = ArrayType::get(AI.getAllocatedType(), C->getZExtValue()); 185 AllocaInst *New = IC.Builder->CreateAlloca(NewTy, nullptr, AI.getName()); 186 New->setAlignment(AI.getAlignment()); 187 188 // Scan to the end of the allocation instructions, to skip over a block of 189 // allocas if possible...also skip interleaved debug info 190 // 191 BasicBlock::iterator It(New); 192 while (isa<AllocaInst>(*It) || isa<DbgInfoIntrinsic>(*It)) 193 ++It; 194 195 // Now that I is pointing to the first non-allocation-inst in the block, 196 // insert our getelementptr instruction... 197 // 198 Type *IdxTy = IC.getDataLayout().getIntPtrType(AI.getType()); 199 Value *NullIdx = Constant::getNullValue(IdxTy); 200 Value *Idx[2] = {NullIdx, NullIdx}; 201 Instruction *GEP = 202 GetElementPtrInst::CreateInBounds(New, Idx, New->getName() + ".sub"); 203 IC.InsertNewInstBefore(GEP, *It); 204 205 // Now make everything use the getelementptr instead of the original 206 // allocation. 207 return IC.replaceInstUsesWith(AI, GEP); 208 } 209 210 if (isa<UndefValue>(AI.getArraySize())) 211 return IC.replaceInstUsesWith(AI, Constant::getNullValue(AI.getType())); 212 213 // Ensure that the alloca array size argument has type intptr_t, so that 214 // any casting is exposed early. 215 Type *IntPtrTy = IC.getDataLayout().getIntPtrType(AI.getType()); 216 if (AI.getArraySize()->getType() != IntPtrTy) { 217 Value *V = IC.Builder->CreateIntCast(AI.getArraySize(), IntPtrTy, false); 218 AI.setOperand(0, V); 219 return &AI; 220 } 221 222 return nullptr; 223 } 224 225 Instruction *InstCombiner::visitAllocaInst(AllocaInst &AI) { 226 if (auto *I = simplifyAllocaArraySize(*this, AI)) 227 return I; 228 229 if (AI.getAllocatedType()->isSized()) { 230 // If the alignment is 0 (unspecified), assign it the preferred alignment. 231 if (AI.getAlignment() == 0) 232 AI.setAlignment(DL.getPrefTypeAlignment(AI.getAllocatedType())); 233 234 // Move all alloca's of zero byte objects to the entry block and merge them 235 // together. Note that we only do this for alloca's, because malloc should 236 // allocate and return a unique pointer, even for a zero byte allocation. 237 if (DL.getTypeAllocSize(AI.getAllocatedType()) == 0) { 238 // For a zero sized alloca there is no point in doing an array allocation. 239 // This is helpful if the array size is a complicated expression not used 240 // elsewhere. 241 if (AI.isArrayAllocation()) { 242 AI.setOperand(0, ConstantInt::get(AI.getArraySize()->getType(), 1)); 243 return &AI; 244 } 245 246 // Get the first instruction in the entry block. 247 BasicBlock &EntryBlock = AI.getParent()->getParent()->getEntryBlock(); 248 Instruction *FirstInst = EntryBlock.getFirstNonPHIOrDbg(); 249 if (FirstInst != &AI) { 250 // If the entry block doesn't start with a zero-size alloca then move 251 // this one to the start of the entry block. There is no problem with 252 // dominance as the array size was forced to a constant earlier already. 253 AllocaInst *EntryAI = dyn_cast<AllocaInst>(FirstInst); 254 if (!EntryAI || !EntryAI->getAllocatedType()->isSized() || 255 DL.getTypeAllocSize(EntryAI->getAllocatedType()) != 0) { 256 AI.moveBefore(FirstInst); 257 return &AI; 258 } 259 260 // If the alignment of the entry block alloca is 0 (unspecified), 261 // assign it the preferred alignment. 262 if (EntryAI->getAlignment() == 0) 263 EntryAI->setAlignment( 264 DL.getPrefTypeAlignment(EntryAI->getAllocatedType())); 265 // Replace this zero-sized alloca with the one at the start of the entry 266 // block after ensuring that the address will be aligned enough for both 267 // types. 268 unsigned MaxAlign = std::max(EntryAI->getAlignment(), 269 AI.getAlignment()); 270 EntryAI->setAlignment(MaxAlign); 271 if (AI.getType() != EntryAI->getType()) 272 return new BitCastInst(EntryAI, AI.getType()); 273 return replaceInstUsesWith(AI, EntryAI); 274 } 275 } 276 } 277 278 if (AI.getAlignment()) { 279 // Check to see if this allocation is only modified by a memcpy/memmove from 280 // a constant global whose alignment is equal to or exceeds that of the 281 // allocation. If this is the case, we can change all users to use 282 // the constant global instead. This is commonly produced by the CFE by 283 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A' 284 // is only subsequently read. 285 SmallVector<Instruction *, 4> ToDelete; 286 if (MemTransferInst *Copy = isOnlyCopiedFromConstantGlobal(&AI, ToDelete)) { 287 unsigned SourceAlign = getOrEnforceKnownAlignment( 288 Copy->getSource(), AI.getAlignment(), DL, &AI, &AC, &DT); 289 if (AI.getAlignment() <= SourceAlign) { 290 DEBUG(dbgs() << "Found alloca equal to global: " << AI << '\n'); 291 DEBUG(dbgs() << " memcpy = " << *Copy << '\n'); 292 for (unsigned i = 0, e = ToDelete.size(); i != e; ++i) 293 eraseInstFromFunction(*ToDelete[i]); 294 Constant *TheSrc = cast<Constant>(Copy->getSource()); 295 Constant *Cast 296 = ConstantExpr::getPointerBitCastOrAddrSpaceCast(TheSrc, AI.getType()); 297 Instruction *NewI = replaceInstUsesWith(AI, Cast); 298 eraseInstFromFunction(*Copy); 299 ++NumGlobalCopies; 300 return NewI; 301 } 302 } 303 } 304 305 // At last, use the generic allocation site handler to aggressively remove 306 // unused allocas. 307 return visitAllocSite(AI); 308 } 309 310 /// \brief Helper to combine a load to a new type. 311 /// 312 /// This just does the work of combining a load to a new type. It handles 313 /// metadata, etc., and returns the new instruction. The \c NewTy should be the 314 /// loaded *value* type. This will convert it to a pointer, cast the operand to 315 /// that pointer type, load it, etc. 316 /// 317 /// Note that this will create all of the instructions with whatever insert 318 /// point the \c InstCombiner currently is using. 319 static LoadInst *combineLoadToNewType(InstCombiner &IC, LoadInst &LI, Type *NewTy, 320 const Twine &Suffix = "") { 321 Value *Ptr = LI.getPointerOperand(); 322 unsigned AS = LI.getPointerAddressSpace(); 323 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 324 LI.getAllMetadata(MD); 325 326 LoadInst *NewLoad = IC.Builder->CreateAlignedLoad( 327 IC.Builder->CreateBitCast(Ptr, NewTy->getPointerTo(AS)), 328 LI.getAlignment(), LI.isVolatile(), LI.getName() + Suffix); 329 NewLoad->setAtomic(LI.getOrdering(), LI.getSynchScope()); 330 MDBuilder MDB(NewLoad->getContext()); 331 for (const auto &MDPair : MD) { 332 unsigned ID = MDPair.first; 333 MDNode *N = MDPair.second; 334 // Note, essentially every kind of metadata should be preserved here! This 335 // routine is supposed to clone a load instruction changing *only its type*. 336 // The only metadata it makes sense to drop is metadata which is invalidated 337 // when the pointer type changes. This should essentially never be the case 338 // in LLVM, but we explicitly switch over only known metadata to be 339 // conservatively correct. If you are adding metadata to LLVM which pertains 340 // to loads, you almost certainly want to add it here. 341 switch (ID) { 342 case LLVMContext::MD_dbg: 343 case LLVMContext::MD_tbaa: 344 case LLVMContext::MD_prof: 345 case LLVMContext::MD_fpmath: 346 case LLVMContext::MD_tbaa_struct: 347 case LLVMContext::MD_invariant_load: 348 case LLVMContext::MD_alias_scope: 349 case LLVMContext::MD_noalias: 350 case LLVMContext::MD_nontemporal: 351 case LLVMContext::MD_mem_parallel_loop_access: 352 // All of these directly apply. 353 NewLoad->setMetadata(ID, N); 354 break; 355 356 case LLVMContext::MD_nonnull: 357 // This only directly applies if the new type is also a pointer. 358 if (NewTy->isPointerTy()) { 359 NewLoad->setMetadata(ID, N); 360 break; 361 } 362 // If it's integral now, translate it to !range metadata. 363 if (NewTy->isIntegerTy()) { 364 auto *ITy = cast<IntegerType>(NewTy); 365 auto *NullInt = ConstantExpr::getPtrToInt( 366 ConstantPointerNull::get(cast<PointerType>(Ptr->getType())), ITy); 367 auto *NonNullInt = 368 ConstantExpr::getAdd(NullInt, ConstantInt::get(ITy, 1)); 369 NewLoad->setMetadata(LLVMContext::MD_range, 370 MDB.createRange(NonNullInt, NullInt)); 371 } 372 break; 373 case LLVMContext::MD_align: 374 case LLVMContext::MD_dereferenceable: 375 case LLVMContext::MD_dereferenceable_or_null: 376 // These only directly apply if the new type is also a pointer. 377 if (NewTy->isPointerTy()) 378 NewLoad->setMetadata(ID, N); 379 break; 380 case LLVMContext::MD_range: 381 // FIXME: It would be nice to propagate this in some way, but the type 382 // conversions make it hard. If the new type is a pointer, we could 383 // translate it to !nonnull metadata. 384 break; 385 } 386 } 387 return NewLoad; 388 } 389 390 /// \brief Combine a store to a new type. 391 /// 392 /// Returns the newly created store instruction. 393 static StoreInst *combineStoreToNewValue(InstCombiner &IC, StoreInst &SI, Value *V) { 394 Value *Ptr = SI.getPointerOperand(); 395 unsigned AS = SI.getPointerAddressSpace(); 396 SmallVector<std::pair<unsigned, MDNode *>, 8> MD; 397 SI.getAllMetadata(MD); 398 399 StoreInst *NewStore = IC.Builder->CreateAlignedStore( 400 V, IC.Builder->CreateBitCast(Ptr, V->getType()->getPointerTo(AS)), 401 SI.getAlignment(), SI.isVolatile()); 402 NewStore->setAtomic(SI.getOrdering(), SI.getSynchScope()); 403 for (const auto &MDPair : MD) { 404 unsigned ID = MDPair.first; 405 MDNode *N = MDPair.second; 406 // Note, essentially every kind of metadata should be preserved here! This 407 // routine is supposed to clone a store instruction changing *only its 408 // type*. The only metadata it makes sense to drop is metadata which is 409 // invalidated when the pointer type changes. This should essentially 410 // never be the case in LLVM, but we explicitly switch over only known 411 // metadata to be conservatively correct. If you are adding metadata to 412 // LLVM which pertains to stores, you almost certainly want to add it 413 // here. 414 switch (ID) { 415 case LLVMContext::MD_dbg: 416 case LLVMContext::MD_tbaa: 417 case LLVMContext::MD_prof: 418 case LLVMContext::MD_fpmath: 419 case LLVMContext::MD_tbaa_struct: 420 case LLVMContext::MD_alias_scope: 421 case LLVMContext::MD_noalias: 422 case LLVMContext::MD_nontemporal: 423 case LLVMContext::MD_mem_parallel_loop_access: 424 // All of these directly apply. 425 NewStore->setMetadata(ID, N); 426 break; 427 428 case LLVMContext::MD_invariant_load: 429 case LLVMContext::MD_nonnull: 430 case LLVMContext::MD_range: 431 case LLVMContext::MD_align: 432 case LLVMContext::MD_dereferenceable: 433 case LLVMContext::MD_dereferenceable_or_null: 434 // These don't apply for stores. 435 break; 436 } 437 } 438 439 return NewStore; 440 } 441 442 /// \brief Combine loads to match the type of their uses' value after looking 443 /// through intervening bitcasts. 444 /// 445 /// The core idea here is that if the result of a load is used in an operation, 446 /// we should load the type most conducive to that operation. For example, when 447 /// loading an integer and converting that immediately to a pointer, we should 448 /// instead directly load a pointer. 449 /// 450 /// However, this routine must never change the width of a load or the number of 451 /// loads as that would introduce a semantic change. This combine is expected to 452 /// be a semantic no-op which just allows loads to more closely model the types 453 /// of their consuming operations. 454 /// 455 /// Currently, we also refuse to change the precise type used for an atomic load 456 /// or a volatile load. This is debatable, and might be reasonable to change 457 /// later. However, it is risky in case some backend or other part of LLVM is 458 /// relying on the exact type loaded to select appropriate atomic operations. 459 static Instruction *combineLoadToOperationType(InstCombiner &IC, LoadInst &LI) { 460 // FIXME: We could probably with some care handle both volatile and ordered 461 // atomic loads here but it isn't clear that this is important. 462 if (!LI.isUnordered()) 463 return nullptr; 464 465 if (LI.use_empty()) 466 return nullptr; 467 468 // swifterror values can't be bitcasted. 469 if (LI.getPointerOperand()->isSwiftError()) 470 return nullptr; 471 472 Type *Ty = LI.getType(); 473 const DataLayout &DL = IC.getDataLayout(); 474 475 // Try to canonicalize loads which are only ever stored to operate over 476 // integers instead of any other type. We only do this when the loaded type 477 // is sized and has a size exactly the same as its store size and the store 478 // size is a legal integer type. 479 if (!Ty->isIntegerTy() && Ty->isSized() && 480 DL.isLegalInteger(DL.getTypeStoreSizeInBits(Ty)) && 481 DL.getTypeStoreSizeInBits(Ty) == DL.getTypeSizeInBits(Ty) && 482 !DL.isNonIntegralPointerType(Ty)) { 483 if (all_of(LI.users(), [&LI](User *U) { 484 auto *SI = dyn_cast<StoreInst>(U); 485 return SI && SI->getPointerOperand() != &LI; 486 })) { 487 LoadInst *NewLoad = combineLoadToNewType( 488 IC, LI, 489 Type::getIntNTy(LI.getContext(), DL.getTypeStoreSizeInBits(Ty))); 490 // Replace all the stores with stores of the newly loaded value. 491 for (auto UI = LI.user_begin(), UE = LI.user_end(); UI != UE;) { 492 auto *SI = cast<StoreInst>(*UI++); 493 IC.Builder->SetInsertPoint(SI); 494 combineStoreToNewValue(IC, *SI, NewLoad); 495 IC.eraseInstFromFunction(*SI); 496 } 497 assert(LI.use_empty() && "Failed to remove all users of the load!"); 498 // Return the old load so the combiner can delete it safely. 499 return &LI; 500 } 501 } 502 503 // Fold away bit casts of the loaded value by loading the desired type. 504 // We can do this for BitCastInsts as well as casts from and to pointer types, 505 // as long as those are noops (i.e., the source or dest type have the same 506 // bitwidth as the target's pointers). 507 if (LI.hasOneUse()) 508 if (auto* CI = dyn_cast<CastInst>(LI.user_back())) { 509 if (CI->isNoopCast(DL)) { 510 LoadInst *NewLoad = combineLoadToNewType(IC, LI, CI->getDestTy()); 511 CI->replaceAllUsesWith(NewLoad); 512 IC.eraseInstFromFunction(*CI); 513 return &LI; 514 } 515 } 516 517 // FIXME: We should also canonicalize loads of vectors when their elements are 518 // cast to other types. 519 return nullptr; 520 } 521 522 static Instruction *unpackLoadToAggregate(InstCombiner &IC, LoadInst &LI) { 523 // FIXME: We could probably with some care handle both volatile and atomic 524 // stores here but it isn't clear that this is important. 525 if (!LI.isSimple()) 526 return nullptr; 527 528 Type *T = LI.getType(); 529 if (!T->isAggregateType()) 530 return nullptr; 531 532 StringRef Name = LI.getName(); 533 assert(LI.getAlignment() && "Alignment must be set at this point"); 534 535 if (auto *ST = dyn_cast<StructType>(T)) { 536 // If the struct only have one element, we unpack. 537 auto NumElements = ST->getNumElements(); 538 if (NumElements == 1) { 539 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ST->getTypeAtIndex(0U), 540 ".unpack"); 541 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 542 UndefValue::get(T), NewLoad, 0, Name)); 543 } 544 545 // We don't want to break loads with padding here as we'd loose 546 // the knowledge that padding exists for the rest of the pipeline. 547 const DataLayout &DL = IC.getDataLayout(); 548 auto *SL = DL.getStructLayout(ST); 549 if (SL->hasPadding()) 550 return nullptr; 551 552 auto Align = LI.getAlignment(); 553 if (!Align) 554 Align = DL.getABITypeAlignment(ST); 555 556 auto *Addr = LI.getPointerOperand(); 557 auto *IdxType = Type::getInt32Ty(T->getContext()); 558 auto *Zero = ConstantInt::get(IdxType, 0); 559 560 Value *V = UndefValue::get(T); 561 for (unsigned i = 0; i < NumElements; i++) { 562 Value *Indices[2] = { 563 Zero, 564 ConstantInt::get(IdxType, i), 565 }; 566 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 567 Name + ".elt"); 568 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 569 auto *L = IC.Builder->CreateAlignedLoad(Ptr, EltAlign, Name + ".unpack"); 570 V = IC.Builder->CreateInsertValue(V, L, i); 571 } 572 573 V->setName(Name); 574 return IC.replaceInstUsesWith(LI, V); 575 } 576 577 if (auto *AT = dyn_cast<ArrayType>(T)) { 578 auto *ET = AT->getElementType(); 579 auto NumElements = AT->getNumElements(); 580 if (NumElements == 1) { 581 LoadInst *NewLoad = combineLoadToNewType(IC, LI, ET, ".unpack"); 582 return IC.replaceInstUsesWith(LI, IC.Builder->CreateInsertValue( 583 UndefValue::get(T), NewLoad, 0, Name)); 584 } 585 586 const DataLayout &DL = IC.getDataLayout(); 587 auto EltSize = DL.getTypeAllocSize(ET); 588 auto Align = LI.getAlignment(); 589 if (!Align) 590 Align = DL.getABITypeAlignment(T); 591 592 auto *Addr = LI.getPointerOperand(); 593 auto *IdxType = Type::getInt64Ty(T->getContext()); 594 auto *Zero = ConstantInt::get(IdxType, 0); 595 596 Value *V = UndefValue::get(T); 597 uint64_t Offset = 0; 598 for (uint64_t i = 0; i < NumElements; i++) { 599 Value *Indices[2] = { 600 Zero, 601 ConstantInt::get(IdxType, i), 602 }; 603 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 604 Name + ".elt"); 605 auto *L = IC.Builder->CreateAlignedLoad(Ptr, MinAlign(Align, Offset), 606 Name + ".unpack"); 607 V = IC.Builder->CreateInsertValue(V, L, i); 608 Offset += EltSize; 609 } 610 611 V->setName(Name); 612 return IC.replaceInstUsesWith(LI, V); 613 } 614 615 return nullptr; 616 } 617 618 // If we can determine that all possible objects pointed to by the provided 619 // pointer value are, not only dereferenceable, but also definitively less than 620 // or equal to the provided maximum size, then return true. Otherwise, return 621 // false (constant global values and allocas fall into this category). 622 // 623 // FIXME: This should probably live in ValueTracking (or similar). 624 static bool isObjectSizeLessThanOrEq(Value *V, uint64_t MaxSize, 625 const DataLayout &DL) { 626 SmallPtrSet<Value *, 4> Visited; 627 SmallVector<Value *, 4> Worklist(1, V); 628 629 do { 630 Value *P = Worklist.pop_back_val(); 631 P = P->stripPointerCasts(); 632 633 if (!Visited.insert(P).second) 634 continue; 635 636 if (SelectInst *SI = dyn_cast<SelectInst>(P)) { 637 Worklist.push_back(SI->getTrueValue()); 638 Worklist.push_back(SI->getFalseValue()); 639 continue; 640 } 641 642 if (PHINode *PN = dyn_cast<PHINode>(P)) { 643 for (Value *IncValue : PN->incoming_values()) 644 Worklist.push_back(IncValue); 645 continue; 646 } 647 648 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(P)) { 649 if (GA->isInterposable()) 650 return false; 651 Worklist.push_back(GA->getAliasee()); 652 continue; 653 } 654 655 // If we know how big this object is, and it is less than MaxSize, continue 656 // searching. Otherwise, return false. 657 if (AllocaInst *AI = dyn_cast<AllocaInst>(P)) { 658 if (!AI->getAllocatedType()->isSized()) 659 return false; 660 661 ConstantInt *CS = dyn_cast<ConstantInt>(AI->getArraySize()); 662 if (!CS) 663 return false; 664 665 uint64_t TypeSize = DL.getTypeAllocSize(AI->getAllocatedType()); 666 // Make sure that, even if the multiplication below would wrap as an 667 // uint64_t, we still do the right thing. 668 if ((CS->getValue().zextOrSelf(128)*APInt(128, TypeSize)).ugt(MaxSize)) 669 return false; 670 continue; 671 } 672 673 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(P)) { 674 if (!GV->hasDefinitiveInitializer() || !GV->isConstant()) 675 return false; 676 677 uint64_t InitSize = DL.getTypeAllocSize(GV->getValueType()); 678 if (InitSize > MaxSize) 679 return false; 680 continue; 681 } 682 683 return false; 684 } while (!Worklist.empty()); 685 686 return true; 687 } 688 689 // If we're indexing into an object of a known size, and the outer index is 690 // not a constant, but having any value but zero would lead to undefined 691 // behavior, replace it with zero. 692 // 693 // For example, if we have: 694 // @f.a = private unnamed_addr constant [1 x i32] [i32 12], align 4 695 // ... 696 // %arrayidx = getelementptr inbounds [1 x i32]* @f.a, i64 0, i64 %x 697 // ... = load i32* %arrayidx, align 4 698 // Then we know that we can replace %x in the GEP with i64 0. 699 // 700 // FIXME: We could fold any GEP index to zero that would cause UB if it were 701 // not zero. Currently, we only handle the first such index. Also, we could 702 // also search through non-zero constant indices if we kept track of the 703 // offsets those indices implied. 704 static bool canReplaceGEPIdxWithZero(InstCombiner &IC, GetElementPtrInst *GEPI, 705 Instruction *MemI, unsigned &Idx) { 706 if (GEPI->getNumOperands() < 2) 707 return false; 708 709 // Find the first non-zero index of a GEP. If all indices are zero, return 710 // one past the last index. 711 auto FirstNZIdx = [](const GetElementPtrInst *GEPI) { 712 unsigned I = 1; 713 for (unsigned IE = GEPI->getNumOperands(); I != IE; ++I) { 714 Value *V = GEPI->getOperand(I); 715 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) 716 if (CI->isZero()) 717 continue; 718 719 break; 720 } 721 722 return I; 723 }; 724 725 // Skip through initial 'zero' indices, and find the corresponding pointer 726 // type. See if the next index is not a constant. 727 Idx = FirstNZIdx(GEPI); 728 if (Idx == GEPI->getNumOperands()) 729 return false; 730 if (isa<Constant>(GEPI->getOperand(Idx))) 731 return false; 732 733 SmallVector<Value *, 4> Ops(GEPI->idx_begin(), GEPI->idx_begin() + Idx); 734 Type *AllocTy = 735 GetElementPtrInst::getIndexedType(GEPI->getSourceElementType(), Ops); 736 if (!AllocTy || !AllocTy->isSized()) 737 return false; 738 const DataLayout &DL = IC.getDataLayout(); 739 uint64_t TyAllocSize = DL.getTypeAllocSize(AllocTy); 740 741 // If there are more indices after the one we might replace with a zero, make 742 // sure they're all non-negative. If any of them are negative, the overall 743 // address being computed might be before the base address determined by the 744 // first non-zero index. 745 auto IsAllNonNegative = [&]() { 746 for (unsigned i = Idx+1, e = GEPI->getNumOperands(); i != e; ++i) { 747 bool KnownNonNegative, KnownNegative; 748 IC.ComputeSignBit(GEPI->getOperand(i), KnownNonNegative, 749 KnownNegative, 0, MemI); 750 if (KnownNonNegative) 751 continue; 752 return false; 753 } 754 755 return true; 756 }; 757 758 // FIXME: If the GEP is not inbounds, and there are extra indices after the 759 // one we'll replace, those could cause the address computation to wrap 760 // (rendering the IsAllNonNegative() check below insufficient). We can do 761 // better, ignoring zero indices (and other indices we can prove small 762 // enough not to wrap). 763 if (Idx+1 != GEPI->getNumOperands() && !GEPI->isInBounds()) 764 return false; 765 766 // Note that isObjectSizeLessThanOrEq will return true only if the pointer is 767 // also known to be dereferenceable. 768 return isObjectSizeLessThanOrEq(GEPI->getOperand(0), TyAllocSize, DL) && 769 IsAllNonNegative(); 770 } 771 772 // If we're indexing into an object with a variable index for the memory 773 // access, but the object has only one element, we can assume that the index 774 // will always be zero. If we replace the GEP, return it. 775 template <typename T> 776 static Instruction *replaceGEPIdxWithZero(InstCombiner &IC, Value *Ptr, 777 T &MemI) { 778 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Ptr)) { 779 unsigned Idx; 780 if (canReplaceGEPIdxWithZero(IC, GEPI, &MemI, Idx)) { 781 Instruction *NewGEPI = GEPI->clone(); 782 NewGEPI->setOperand(Idx, 783 ConstantInt::get(GEPI->getOperand(Idx)->getType(), 0)); 784 NewGEPI->insertBefore(GEPI); 785 MemI.setOperand(MemI.getPointerOperandIndex(), NewGEPI); 786 return NewGEPI; 787 } 788 } 789 790 return nullptr; 791 } 792 793 Instruction *InstCombiner::visitLoadInst(LoadInst &LI) { 794 Value *Op = LI.getOperand(0); 795 796 // Try to canonicalize the loaded type. 797 if (Instruction *Res = combineLoadToOperationType(*this, LI)) 798 return Res; 799 800 // Attempt to improve the alignment. 801 unsigned KnownAlign = getOrEnforceKnownAlignment( 802 Op, DL.getPrefTypeAlignment(LI.getType()), DL, &LI, &AC, &DT); 803 unsigned LoadAlign = LI.getAlignment(); 804 unsigned EffectiveLoadAlign = 805 LoadAlign != 0 ? LoadAlign : DL.getABITypeAlignment(LI.getType()); 806 807 if (KnownAlign > EffectiveLoadAlign) 808 LI.setAlignment(KnownAlign); 809 else if (LoadAlign == 0) 810 LI.setAlignment(EffectiveLoadAlign); 811 812 // Replace GEP indices if possible. 813 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Op, LI)) { 814 Worklist.Add(NewGEPI); 815 return &LI; 816 } 817 818 if (Instruction *Res = unpackLoadToAggregate(*this, LI)) 819 return Res; 820 821 // Do really simple store-to-load forwarding and load CSE, to catch cases 822 // where there are several consecutive memory accesses to the same location, 823 // separated by a few arithmetic operations. 824 BasicBlock::iterator BBI(LI); 825 bool IsLoadCSE = false; 826 if (Value *AvailableVal = 827 FindAvailableLoadedValue(&LI, LI.getParent(), BBI, 828 DefMaxInstsToScan, AA, &IsLoadCSE)) { 829 if (IsLoadCSE) { 830 LoadInst *NLI = cast<LoadInst>(AvailableVal); 831 unsigned KnownIDs[] = { 832 LLVMContext::MD_tbaa, LLVMContext::MD_alias_scope, 833 LLVMContext::MD_noalias, LLVMContext::MD_range, 834 LLVMContext::MD_invariant_load, LLVMContext::MD_nonnull, 835 LLVMContext::MD_invariant_group, LLVMContext::MD_align, 836 LLVMContext::MD_dereferenceable, 837 LLVMContext::MD_dereferenceable_or_null}; 838 combineMetadata(NLI, &LI, KnownIDs); 839 }; 840 841 return replaceInstUsesWith( 842 LI, Builder->CreateBitOrPointerCast(AvailableVal, LI.getType(), 843 LI.getName() + ".cast")); 844 } 845 846 // None of the following transforms are legal for volatile/ordered atomic 847 // loads. Most of them do apply for unordered atomics. 848 if (!LI.isUnordered()) return nullptr; 849 850 // load(gep null, ...) -> unreachable 851 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) { 852 const Value *GEPI0 = GEPI->getOperand(0); 853 // TODO: Consider a target hook for valid address spaces for this xform. 854 if (isa<ConstantPointerNull>(GEPI0) && GEPI->getPointerAddressSpace() == 0){ 855 // Insert a new store to null instruction before the load to indicate 856 // that this code is not reachable. We do this instead of inserting 857 // an unreachable instruction directly because we cannot modify the 858 // CFG. 859 new StoreInst(UndefValue::get(LI.getType()), 860 Constant::getNullValue(Op->getType()), &LI); 861 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 862 } 863 } 864 865 // load null/undef -> unreachable 866 // TODO: Consider a target hook for valid address spaces for this xform. 867 if (isa<UndefValue>(Op) || 868 (isa<ConstantPointerNull>(Op) && LI.getPointerAddressSpace() == 0)) { 869 // Insert a new store to null instruction before the load to indicate that 870 // this code is not reachable. We do this instead of inserting an 871 // unreachable instruction directly because we cannot modify the CFG. 872 new StoreInst(UndefValue::get(LI.getType()), 873 Constant::getNullValue(Op->getType()), &LI); 874 return replaceInstUsesWith(LI, UndefValue::get(LI.getType())); 875 } 876 877 if (Op->hasOneUse()) { 878 // Change select and PHI nodes to select values instead of addresses: this 879 // helps alias analysis out a lot, allows many others simplifications, and 880 // exposes redundancy in the code. 881 // 882 // Note that we cannot do the transformation unless we know that the 883 // introduced loads cannot trap! Something like this is valid as long as 884 // the condition is always false: load (select bool %C, int* null, int* %G), 885 // but it would not be valid if we transformed it to load from null 886 // unconditionally. 887 // 888 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) { 889 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2). 890 unsigned Align = LI.getAlignment(); 891 if (isSafeToLoadUnconditionally(SI->getOperand(1), Align, DL, SI) && 892 isSafeToLoadUnconditionally(SI->getOperand(2), Align, DL, SI)) { 893 LoadInst *V1 = Builder->CreateLoad(SI->getOperand(1), 894 SI->getOperand(1)->getName()+".val"); 895 LoadInst *V2 = Builder->CreateLoad(SI->getOperand(2), 896 SI->getOperand(2)->getName()+".val"); 897 assert(LI.isUnordered() && "implied by above"); 898 V1->setAlignment(Align); 899 V1->setAtomic(LI.getOrdering(), LI.getSynchScope()); 900 V2->setAlignment(Align); 901 V2->setAtomic(LI.getOrdering(), LI.getSynchScope()); 902 return SelectInst::Create(SI->getCondition(), V1, V2); 903 } 904 905 // load (select (cond, null, P)) -> load P 906 if (isa<ConstantPointerNull>(SI->getOperand(1)) && 907 LI.getPointerAddressSpace() == 0) { 908 LI.setOperand(0, SI->getOperand(2)); 909 return &LI; 910 } 911 912 // load (select (cond, P, null)) -> load P 913 if (isa<ConstantPointerNull>(SI->getOperand(2)) && 914 LI.getPointerAddressSpace() == 0) { 915 LI.setOperand(0, SI->getOperand(1)); 916 return &LI; 917 } 918 } 919 } 920 return nullptr; 921 } 922 923 /// \brief Look for extractelement/insertvalue sequence that acts like a bitcast. 924 /// 925 /// \returns underlying value that was "cast", or nullptr otherwise. 926 /// 927 /// For example, if we have: 928 /// 929 /// %E0 = extractelement <2 x double> %U, i32 0 930 /// %V0 = insertvalue [2 x double] undef, double %E0, 0 931 /// %E1 = extractelement <2 x double> %U, i32 1 932 /// %V1 = insertvalue [2 x double] %V0, double %E1, 1 933 /// 934 /// and the layout of a <2 x double> is isomorphic to a [2 x double], 935 /// then %V1 can be safely approximated by a conceptual "bitcast" of %U. 936 /// Note that %U may contain non-undef values where %V1 has undef. 937 static Value *likeBitCastFromVector(InstCombiner &IC, Value *V) { 938 Value *U = nullptr; 939 while (auto *IV = dyn_cast<InsertValueInst>(V)) { 940 auto *E = dyn_cast<ExtractElementInst>(IV->getInsertedValueOperand()); 941 if (!E) 942 return nullptr; 943 auto *W = E->getVectorOperand(); 944 if (!U) 945 U = W; 946 else if (U != W) 947 return nullptr; 948 auto *CI = dyn_cast<ConstantInt>(E->getIndexOperand()); 949 if (!CI || IV->getNumIndices() != 1 || CI->getZExtValue() != *IV->idx_begin()) 950 return nullptr; 951 V = IV->getAggregateOperand(); 952 } 953 if (!isa<UndefValue>(V) ||!U) 954 return nullptr; 955 956 auto *UT = cast<VectorType>(U->getType()); 957 auto *VT = V->getType(); 958 // Check that types UT and VT are bitwise isomorphic. 959 const auto &DL = IC.getDataLayout(); 960 if (DL.getTypeStoreSizeInBits(UT) != DL.getTypeStoreSizeInBits(VT)) { 961 return nullptr; 962 } 963 if (auto *AT = dyn_cast<ArrayType>(VT)) { 964 if (AT->getNumElements() != UT->getNumElements()) 965 return nullptr; 966 } else { 967 auto *ST = cast<StructType>(VT); 968 if (ST->getNumElements() != UT->getNumElements()) 969 return nullptr; 970 for (const auto *EltT : ST->elements()) { 971 if (EltT != UT->getElementType()) 972 return nullptr; 973 } 974 } 975 return U; 976 } 977 978 /// \brief Combine stores to match the type of value being stored. 979 /// 980 /// The core idea here is that the memory does not have any intrinsic type and 981 /// where we can we should match the type of a store to the type of value being 982 /// stored. 983 /// 984 /// However, this routine must never change the width of a store or the number of 985 /// stores as that would introduce a semantic change. This combine is expected to 986 /// be a semantic no-op which just allows stores to more closely model the types 987 /// of their incoming values. 988 /// 989 /// Currently, we also refuse to change the precise type used for an atomic or 990 /// volatile store. This is debatable, and might be reasonable to change later. 991 /// However, it is risky in case some backend or other part of LLVM is relying 992 /// on the exact type stored to select appropriate atomic operations. 993 /// 994 /// \returns true if the store was successfully combined away. This indicates 995 /// the caller must erase the store instruction. We have to let the caller erase 996 /// the store instruction as otherwise there is no way to signal whether it was 997 /// combined or not: IC.EraseInstFromFunction returns a null pointer. 998 static bool combineStoreToValueType(InstCombiner &IC, StoreInst &SI) { 999 // FIXME: We could probably with some care handle both volatile and ordered 1000 // atomic stores here but it isn't clear that this is important. 1001 if (!SI.isUnordered()) 1002 return false; 1003 1004 // swifterror values can't be bitcasted. 1005 if (SI.getPointerOperand()->isSwiftError()) 1006 return false; 1007 1008 Value *V = SI.getValueOperand(); 1009 1010 // Fold away bit casts of the stored value by storing the original type. 1011 if (auto *BC = dyn_cast<BitCastInst>(V)) { 1012 V = BC->getOperand(0); 1013 combineStoreToNewValue(IC, SI, V); 1014 return true; 1015 } 1016 1017 if (Value *U = likeBitCastFromVector(IC, V)) { 1018 combineStoreToNewValue(IC, SI, U); 1019 return true; 1020 } 1021 1022 // FIXME: We should also canonicalize stores of vectors when their elements 1023 // are cast to other types. 1024 return false; 1025 } 1026 1027 static bool unpackStoreToAggregate(InstCombiner &IC, StoreInst &SI) { 1028 // FIXME: We could probably with some care handle both volatile and atomic 1029 // stores here but it isn't clear that this is important. 1030 if (!SI.isSimple()) 1031 return false; 1032 1033 Value *V = SI.getValueOperand(); 1034 Type *T = V->getType(); 1035 1036 if (!T->isAggregateType()) 1037 return false; 1038 1039 if (auto *ST = dyn_cast<StructType>(T)) { 1040 // If the struct only have one element, we unpack. 1041 unsigned Count = ST->getNumElements(); 1042 if (Count == 1) { 1043 V = IC.Builder->CreateExtractValue(V, 0); 1044 combineStoreToNewValue(IC, SI, V); 1045 return true; 1046 } 1047 1048 // We don't want to break loads with padding here as we'd loose 1049 // the knowledge that padding exists for the rest of the pipeline. 1050 const DataLayout &DL = IC.getDataLayout(); 1051 auto *SL = DL.getStructLayout(ST); 1052 if (SL->hasPadding()) 1053 return false; 1054 1055 auto Align = SI.getAlignment(); 1056 if (!Align) 1057 Align = DL.getABITypeAlignment(ST); 1058 1059 SmallString<16> EltName = V->getName(); 1060 EltName += ".elt"; 1061 auto *Addr = SI.getPointerOperand(); 1062 SmallString<16> AddrName = Addr->getName(); 1063 AddrName += ".repack"; 1064 1065 auto *IdxType = Type::getInt32Ty(ST->getContext()); 1066 auto *Zero = ConstantInt::get(IdxType, 0); 1067 for (unsigned i = 0; i < Count; i++) { 1068 Value *Indices[2] = { 1069 Zero, 1070 ConstantInt::get(IdxType, i), 1071 }; 1072 auto *Ptr = IC.Builder->CreateInBoundsGEP(ST, Addr, makeArrayRef(Indices), 1073 AddrName); 1074 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1075 auto EltAlign = MinAlign(Align, SL->getElementOffset(i)); 1076 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1077 } 1078 1079 return true; 1080 } 1081 1082 if (auto *AT = dyn_cast<ArrayType>(T)) { 1083 // If the array only have one element, we unpack. 1084 auto NumElements = AT->getNumElements(); 1085 if (NumElements == 1) { 1086 V = IC.Builder->CreateExtractValue(V, 0); 1087 combineStoreToNewValue(IC, SI, V); 1088 return true; 1089 } 1090 1091 const DataLayout &DL = IC.getDataLayout(); 1092 auto EltSize = DL.getTypeAllocSize(AT->getElementType()); 1093 auto Align = SI.getAlignment(); 1094 if (!Align) 1095 Align = DL.getABITypeAlignment(T); 1096 1097 SmallString<16> EltName = V->getName(); 1098 EltName += ".elt"; 1099 auto *Addr = SI.getPointerOperand(); 1100 SmallString<16> AddrName = Addr->getName(); 1101 AddrName += ".repack"; 1102 1103 auto *IdxType = Type::getInt64Ty(T->getContext()); 1104 auto *Zero = ConstantInt::get(IdxType, 0); 1105 1106 uint64_t Offset = 0; 1107 for (uint64_t i = 0; i < NumElements; i++) { 1108 Value *Indices[2] = { 1109 Zero, 1110 ConstantInt::get(IdxType, i), 1111 }; 1112 auto *Ptr = IC.Builder->CreateInBoundsGEP(AT, Addr, makeArrayRef(Indices), 1113 AddrName); 1114 auto *Val = IC.Builder->CreateExtractValue(V, i, EltName); 1115 auto EltAlign = MinAlign(Align, Offset); 1116 IC.Builder->CreateAlignedStore(Val, Ptr, EltAlign); 1117 Offset += EltSize; 1118 } 1119 1120 return true; 1121 } 1122 1123 return false; 1124 } 1125 1126 /// equivalentAddressValues - Test if A and B will obviously have the same 1127 /// value. This includes recognizing that %t0 and %t1 will have the same 1128 /// value in code like this: 1129 /// %t0 = getelementptr \@a, 0, 3 1130 /// store i32 0, i32* %t0 1131 /// %t1 = getelementptr \@a, 0, 3 1132 /// %t2 = load i32* %t1 1133 /// 1134 static bool equivalentAddressValues(Value *A, Value *B) { 1135 // Test if the values are trivially equivalent. 1136 if (A == B) return true; 1137 1138 // Test if the values come form identical arithmetic instructions. 1139 // This uses isIdenticalToWhenDefined instead of isIdenticalTo because 1140 // its only used to compare two uses within the same basic block, which 1141 // means that they'll always either have the same value or one of them 1142 // will have an undefined value. 1143 if (isa<BinaryOperator>(A) || 1144 isa<CastInst>(A) || 1145 isa<PHINode>(A) || 1146 isa<GetElementPtrInst>(A)) 1147 if (Instruction *BI = dyn_cast<Instruction>(B)) 1148 if (cast<Instruction>(A)->isIdenticalToWhenDefined(BI)) 1149 return true; 1150 1151 // Otherwise they may not be equivalent. 1152 return false; 1153 } 1154 1155 Instruction *InstCombiner::visitStoreInst(StoreInst &SI) { 1156 Value *Val = SI.getOperand(0); 1157 Value *Ptr = SI.getOperand(1); 1158 1159 // Try to canonicalize the stored type. 1160 if (combineStoreToValueType(*this, SI)) 1161 return eraseInstFromFunction(SI); 1162 1163 // Attempt to improve the alignment. 1164 unsigned KnownAlign = getOrEnforceKnownAlignment( 1165 Ptr, DL.getPrefTypeAlignment(Val->getType()), DL, &SI, &AC, &DT); 1166 unsigned StoreAlign = SI.getAlignment(); 1167 unsigned EffectiveStoreAlign = 1168 StoreAlign != 0 ? StoreAlign : DL.getABITypeAlignment(Val->getType()); 1169 1170 if (KnownAlign > EffectiveStoreAlign) 1171 SI.setAlignment(KnownAlign); 1172 else if (StoreAlign == 0) 1173 SI.setAlignment(EffectiveStoreAlign); 1174 1175 // Try to canonicalize the stored type. 1176 if (unpackStoreToAggregate(*this, SI)) 1177 return eraseInstFromFunction(SI); 1178 1179 // Replace GEP indices if possible. 1180 if (Instruction *NewGEPI = replaceGEPIdxWithZero(*this, Ptr, SI)) { 1181 Worklist.Add(NewGEPI); 1182 return &SI; 1183 } 1184 1185 // Don't hack volatile/ordered stores. 1186 // FIXME: Some bits are legal for ordered atomic stores; needs refactoring. 1187 if (!SI.isUnordered()) return nullptr; 1188 1189 // If the RHS is an alloca with a single use, zapify the store, making the 1190 // alloca dead. 1191 if (Ptr->hasOneUse()) { 1192 if (isa<AllocaInst>(Ptr)) 1193 return eraseInstFromFunction(SI); 1194 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) { 1195 if (isa<AllocaInst>(GEP->getOperand(0))) { 1196 if (GEP->getOperand(0)->hasOneUse()) 1197 return eraseInstFromFunction(SI); 1198 } 1199 } 1200 } 1201 1202 // Do really simple DSE, to catch cases where there are several consecutive 1203 // stores to the same location, separated by a few arithmetic operations. This 1204 // situation often occurs with bitfield accesses. 1205 BasicBlock::iterator BBI(SI); 1206 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts; 1207 --ScanInsts) { 1208 --BBI; 1209 // Don't count debug info directives, lest they affect codegen, 1210 // and we skip pointer-to-pointer bitcasts, which are NOPs. 1211 if (isa<DbgInfoIntrinsic>(BBI) || 1212 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1213 ScanInsts++; 1214 continue; 1215 } 1216 1217 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) { 1218 // Prev store isn't volatile, and stores to the same location? 1219 if (PrevSI->isUnordered() && equivalentAddressValues(PrevSI->getOperand(1), 1220 SI.getOperand(1))) { 1221 ++NumDeadStore; 1222 ++BBI; 1223 eraseInstFromFunction(*PrevSI); 1224 continue; 1225 } 1226 break; 1227 } 1228 1229 // If this is a load, we have to stop. However, if the loaded value is from 1230 // the pointer we're loading and is producing the pointer we're storing, 1231 // then *this* store is dead (X = load P; store X -> P). 1232 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) { 1233 if (LI == Val && equivalentAddressValues(LI->getOperand(0), Ptr)) { 1234 assert(SI.isUnordered() && "can't eliminate ordering operation"); 1235 return eraseInstFromFunction(SI); 1236 } 1237 1238 // Otherwise, this is a load from some other location. Stores before it 1239 // may not be dead. 1240 break; 1241 } 1242 1243 // Don't skip over loads or things that can modify memory. 1244 if (BBI->mayWriteToMemory() || BBI->mayReadFromMemory()) 1245 break; 1246 } 1247 1248 // store X, null -> turns into 'unreachable' in SimplifyCFG 1249 if (isa<ConstantPointerNull>(Ptr) && SI.getPointerAddressSpace() == 0) { 1250 if (!isa<UndefValue>(Val)) { 1251 SI.setOperand(0, UndefValue::get(Val->getType())); 1252 if (Instruction *U = dyn_cast<Instruction>(Val)) 1253 Worklist.Add(U); // Dropped a use. 1254 } 1255 return nullptr; // Do not modify these! 1256 } 1257 1258 // store undef, Ptr -> noop 1259 if (isa<UndefValue>(Val)) 1260 return eraseInstFromFunction(SI); 1261 1262 // If this store is the last instruction in the basic block (possibly 1263 // excepting debug info instructions), and if the block ends with an 1264 // unconditional branch, try to move it to the successor block. 1265 BBI = SI.getIterator(); 1266 do { 1267 ++BBI; 1268 } while (isa<DbgInfoIntrinsic>(BBI) || 1269 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())); 1270 if (BranchInst *BI = dyn_cast<BranchInst>(BBI)) 1271 if (BI->isUnconditional()) 1272 if (SimplifyStoreAtEndOfBlock(SI)) 1273 return nullptr; // xform done! 1274 1275 return nullptr; 1276 } 1277 1278 /// SimplifyStoreAtEndOfBlock - Turn things like: 1279 /// if () { *P = v1; } else { *P = v2 } 1280 /// into a phi node with a store in the successor. 1281 /// 1282 /// Simplify things like: 1283 /// *P = v1; if () { *P = v2; } 1284 /// into a phi node with a store in the successor. 1285 /// 1286 bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) { 1287 assert(SI.isUnordered() && 1288 "this code has not been auditted for volatile or ordered store case"); 1289 1290 BasicBlock *StoreBB = SI.getParent(); 1291 1292 // Check to see if the successor block has exactly two incoming edges. If 1293 // so, see if the other predecessor contains a store to the same location. 1294 // if so, insert a PHI node (if needed) and move the stores down. 1295 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0); 1296 1297 // Determine whether Dest has exactly two predecessors and, if so, compute 1298 // the other predecessor. 1299 pred_iterator PI = pred_begin(DestBB); 1300 BasicBlock *P = *PI; 1301 BasicBlock *OtherBB = nullptr; 1302 1303 if (P != StoreBB) 1304 OtherBB = P; 1305 1306 if (++PI == pred_end(DestBB)) 1307 return false; 1308 1309 P = *PI; 1310 if (P != StoreBB) { 1311 if (OtherBB) 1312 return false; 1313 OtherBB = P; 1314 } 1315 if (++PI != pred_end(DestBB)) 1316 return false; 1317 1318 // Bail out if all the relevant blocks aren't distinct (this can happen, 1319 // for example, if SI is in an infinite loop) 1320 if (StoreBB == DestBB || OtherBB == DestBB) 1321 return false; 1322 1323 // Verify that the other block ends in a branch and is not otherwise empty. 1324 BasicBlock::iterator BBI(OtherBB->getTerminator()); 1325 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI); 1326 if (!OtherBr || BBI == OtherBB->begin()) 1327 return false; 1328 1329 // If the other block ends in an unconditional branch, check for the 'if then 1330 // else' case. there is an instruction before the branch. 1331 StoreInst *OtherStore = nullptr; 1332 if (OtherBr->isUnconditional()) { 1333 --BBI; 1334 // Skip over debugging info. 1335 while (isa<DbgInfoIntrinsic>(BBI) || 1336 (isa<BitCastInst>(BBI) && BBI->getType()->isPointerTy())) { 1337 if (BBI==OtherBB->begin()) 1338 return false; 1339 --BBI; 1340 } 1341 // If this isn't a store, isn't a store to the same location, or is not the 1342 // right kind of store, bail out. 1343 OtherStore = dyn_cast<StoreInst>(BBI); 1344 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1) || 1345 !SI.isSameOperationAs(OtherStore)) 1346 return false; 1347 } else { 1348 // Otherwise, the other block ended with a conditional branch. If one of the 1349 // destinations is StoreBB, then we have the if/then case. 1350 if (OtherBr->getSuccessor(0) != StoreBB && 1351 OtherBr->getSuccessor(1) != StoreBB) 1352 return false; 1353 1354 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an 1355 // if/then triangle. See if there is a store to the same ptr as SI that 1356 // lives in OtherBB. 1357 for (;; --BBI) { 1358 // Check to see if we find the matching store. 1359 if ((OtherStore = dyn_cast<StoreInst>(BBI))) { 1360 if (OtherStore->getOperand(1) != SI.getOperand(1) || 1361 !SI.isSameOperationAs(OtherStore)) 1362 return false; 1363 break; 1364 } 1365 // If we find something that may be using or overwriting the stored 1366 // value, or if we run out of instructions, we can't do the xform. 1367 if (BBI->mayReadFromMemory() || BBI->mayWriteToMemory() || 1368 BBI == OtherBB->begin()) 1369 return false; 1370 } 1371 1372 // In order to eliminate the store in OtherBr, we have to 1373 // make sure nothing reads or overwrites the stored value in 1374 // StoreBB. 1375 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) { 1376 // FIXME: This should really be AA driven. 1377 if (I->mayReadFromMemory() || I->mayWriteToMemory()) 1378 return false; 1379 } 1380 } 1381 1382 // Insert a PHI node now if we need it. 1383 Value *MergedVal = OtherStore->getOperand(0); 1384 if (MergedVal != SI.getOperand(0)) { 1385 PHINode *PN = PHINode::Create(MergedVal->getType(), 2, "storemerge"); 1386 PN->addIncoming(SI.getOperand(0), SI.getParent()); 1387 PN->addIncoming(OtherStore->getOperand(0), OtherBB); 1388 MergedVal = InsertNewInstBefore(PN, DestBB->front()); 1389 } 1390 1391 // Advance to a place where it is safe to insert the new store and 1392 // insert it. 1393 BBI = DestBB->getFirstInsertionPt(); 1394 StoreInst *NewSI = new StoreInst(MergedVal, SI.getOperand(1), 1395 SI.isVolatile(), 1396 SI.getAlignment(), 1397 SI.getOrdering(), 1398 SI.getSynchScope()); 1399 InsertNewInstBefore(NewSI, *BBI); 1400 NewSI->setDebugLoc(OtherStore->getDebugLoc()); 1401 1402 // If the two stores had AA tags, merge them. 1403 AAMDNodes AATags; 1404 SI.getAAMetadata(AATags); 1405 if (AATags) { 1406 OtherStore->getAAMetadata(AATags, /* Merge = */ true); 1407 NewSI->setAAMetadata(AATags); 1408 } 1409 1410 // Nuke the old stores. 1411 eraseInstFromFunction(SI); 1412 eraseInstFromFunction(*OtherStore); 1413 return true; 1414 } 1415